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Huntington’s disease (HD) is an inherited neurodegenerative disorder characterized by 

progressive loss of striatal medium spiny neurons (MSNs) that constitute direct and indirect 

pathways. Impairment of cAMP and cGMP signaling is hypothesized as one of the molecular 

mechanisms underlying degeneration of MSNs. Phosphodiesterase 10A (PDE10A) degrades 

both cAMP and cGMP, and is selectively expressed in both direct and indirect pathway MSNs. 

Therefore, PDE10A inhibition is considered to be a promising strategy for the treatment of 

HD symptoms. In HD, indirect pathway MSNs are more vulnerable to degeneration than 

direct pathway MSNs, thus a balanced activation of both MSNs, which means a biased 

activation of indirect pathway MSNs, is likely to be more beneficial for patients with HD. 

To test this hypothesis, I obtained Cmpd-A, a tool compound which specifically inhibits 

PDE10A in vivo, and induces the balanced activation of both MSNs. Cmpd-A potently and 

selectively inhibited human recombinant PDE10A in vitro. Autoradiography studies using rat 

brain slices indicated that Cmpd-A binds to native PDE10A with high binding affinity. In vivo 

autoradiography and PDE10A occupancy studies revealed that Cmpd-A can readily penetrate 

into the brain and selectively bind to native PDE10A in living rats. In addition, a previous 

study showed that Cmpd-A induced the biased activation of indirect pathway MSNs in rats. 

In the R6/2 mouse model of HD, repeated treatment with Cmpd-A suppressed the reduction 

of BDNF levels, prevented striatal neurodegeneration, and suppressed the increase in seizure 

frequency. As for motor deficits, Cmpd-A suppressed the development of clasping behavior 



3 
 

and decreased locomotor activity in the open field in R6/2 mice. Regarding cognitive function, 

Cmpd-A improved deficits in procedural learning in R6/2 mice. 

These results suggest that the balanced activation of both direct and indirect pathway 

MSNs based on specific and unique PDE10A inhibition has a potential to improve HD 

symptoms. Moreover, the findings in the current study will help us better understand the 

biological function of PDE10A. 
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ARG, autoradiography 

BDNF, brain-derived neurotrophic factor 

Bs, brain stem 

CAG, cytosine-adenine-guanine 

cAMP, cyclic adenosine monophosphate 

Cb, cerebellum 

cGMP, cyclic guanosine monophosphate 

CFC, contextual fear conditioning 

CNS, central nervous system 

CPu, caudate putamen 

CREB, cAMP response element-binding protein 

EPS, extrapyramidal symptoms 

Fcx, frontal cortex 

GP, globus pallidus 

HD, Huntington’s disease 

HE, hematoxylin and eosin 

hPDE10A, human recombinant PDE10A 

IC50 value, half-maximal inhibitory concentration 

KO, knockout 
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mHTT, mutant huntingtin 

MS, mass spectrometry 

MSNs, medium spiny neurons 

NAc, nucleus accumbens 

NORT, novel object recognition test 

NSB, non-specific binding 

PBS, phosphate buffered saline  

PDE, phosphodiesterase 

PSL, photostimulated luminescence 

RM-ANOVA, repeated measures analysis of variance  

ROI, region of interest 

RT, room temperature 

SD, Sprague-Dawley 

SN, substantia nigra 

Str, striatum 

Tg, transgenic 

Thal, thalamus 

TBZ, tetrabenazine 

WT, wild-type  
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Huntington’s disease (HD) is an autosomal dominant inherited, progressive 

neurodegenerative disorder with a variable phenotype including motor dysfunction such as 

chorea and dystonia, cognitive impairment, and psychiatric disturbances such as significant 

changes in personality or mood (Ross and Tabrizi, 2011; Scheuing et al., 2014; Walker, 2007). 

The prevalence of HD is roughly 6 cases per 100,000 people in the western nations including 

North America, Europe, and Australia, and the typical latency from onset to death is 15-20 

years (Ross and Tabrizi, 2011; Scheuing et al., 2014; Walker, 2007). These severe symptoms 

of HD seriously debilitate the quality of life not only in patients but also in their families and 

caregivers. HD is caused by a pathogenic cytosine-adenine-guanine (CAG) trinucleotide 

repeat expansion (more than 35 repeats) at exon 1 of the huntingtin gene, which encodes the 

mutant huntingtin protein (mHTT) including an expanded polyglutamine tract, resulting in the 

toxic aggregate formation of mHTT (Ross and Tabrizi, 2011; Scheuing et al., 2014). Despite 

the ubiquitous expression of HTT throughout the brain and body, prominent atrophy and cell 

loss occur selectively in the striatum (Ross and Tabrizi, 2011; Walker, 2007). Approximately 

95% of the striatal neurons are inhibitory projection neurons termed medium spiny neurons 

(MSNs) (Reinius et al., 2015). MSNs are known to be the most vulnerable to the degeneration 

in HD although the exact mechanism underlying this selective vulnerability has not yet been 

elucidated (Ross and Tabrizi, 2011; Scheuing et al., 2014; Walker, 2007). 

Tetrabenazine (TBZ) is the only Food and Drug Administration-approved drug indicated 
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for the treatment of chorea associated with HD (Frank, 2014). Although the efficacy of TBZ 

as an antichoreic drug has been clearly demonstrated in a double-blind, placebo-controlled 

clinical study, TBZ can cause adverse events such as akathisia, depression, dizziness, or 

parkinsonism (Frank, 2014). Moreover, TBZ does not halt disease progression, nor does it 

treat psychiatric symptoms associated with HD (Scheuing et al., 2014). Because the causal 

gene, mHtt, has already been identified, several gene silencing or repairing therapies have 

been preclinically studied for the treatment of HD (Godinho et al., 2014). So far, however, 

there are still some limitations to clinical application, such as the lack of effective and 

nontoxic strategies for the delivery of such technologies to the brain, off-target adverse effects, 

and the saturation of endogenous gene-silencing pathways (Godinho et al., 2014). Thus, 

disease-modifying therapies are still of great values for patients with HD. 

Intracellular cyclic adenosine and guanosine monophosphate (cAMP and cGMP) play 

important roles as second messenger molecules controlling multiple cellular processes. 

Impairment in cAMP signaling and its downstream cAMP response element-binding protein 

(CREB) signaling pathway by mHTT has been hypothesized to play a critical role in the 

neurodegeneration of HD pathology (Choi et al., 2009; Gines et al., 2003; Mantamadiotis et 

al., 2002; Nucifora et al., 2001; Sugars and Rubinsztein, 2003; Wyttenbach et al., 2001). In 

addition, neuronal nitric oxide synthase mRNA is also decreased in the postmortem striatum 

of patients with HD (Norris et al., 1996), suggesting the downregulation of cGMP signaling. 
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Phosphodiesterase 10A (PDE10A) is an enzyme degrading both cAMP and cGMP, and is 

selectively expressed in the striatum in mammals including mice, rats, monkeys, and humans 

(Bender and Beavo, 2006; Coskran et al., 2006; Fujishige et al., 1999; Seeger et al., 2003). 

PDE10A inhibition enhances cAMP and cGMP signaling selectively in MSNs, thus it may be 

a promising strategy for the treatment of HD (Fig.1). 

There are 11 different families of PDEs comprising 21 different gene products, and each 

PDE superfamily enzyme shows a distinct distribution pattern and has important functions 

(Bender and Beavo, 2006). Therefore, a brain permeable inhibitor specific for PDE10A under 

physiological condition is extremely useful as a tool to test the therapeutic potential of 

PDE10A inhibition for HD symptoms. In part 1, I focused on discovering a tool inhibitor 

specific for PDE10A. By high-throughput screening from thousands of chemical seeds and 

structure-based drug design using X-ray crystal structure of PDE10A catalytic domain, 

Cmpd-A was identified as a potent and specific inhibitor of human recombinant PDE10A 

(hPDE10A) in vitro (Kunitomo et al., 2014). Binding and functional activities of compounds 

for recombinant proteins are potentially different from those for proteins under physiological 

condition due to differences in protein folding and/or binding partners. Therefore, I also 

checked binding activity and selectivity of Cmpd-A for naive PDE10A in rodents. In vitro 

autoradiography (ARG) study demonstrated that Cmpd-A selectively accumulates in the areas 

where PDE10A is highly expressed with a high binding affinity. Moreover, in vivo ARG study 
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and PDE10A occupancy study revealed that orally administered Cmpd-A readily penetrates 

into the rat brain and selectively binds to PDE10A in vivo. Thus, I obtained Cmpd-A, a brain 

penetrating inhibitor specific for native PDE10A under physiological condition. 

The R6/2 mouse is a widely used transgenic mouse model of HD due to its robust 

phenotype with an early onset, rapidly progressive neurodegeneration, weight loss, and motor 

and cognitive deficits (Pouladi et al., 2013). Thus, in part 2, I evaluated the effects of Cmpd-A 

on various phenotypes in R6/2 mice to predict the therapeutic potential of PDE10A-specific 

inhibition for HD symptoms. Brain-derived neurotrophic factor (BDNF), a putative 

CREB-regulated molecule, is crucial for activity and survival of MSNs (Choi et al., 2009; 

Zuccato and Cattaneo, 2007). R6/2 mice showed reduced striatal BDNF levels, striatal 

atrophy, higher frequency of stress-induced seizures, and body weight loss. These mice also 

exhibited clasping behavior, a cardinal phenotype of HD model mice, and various motor and 

cognitive deficits. Repeated treatment with Cmpd-A suppressed the reduction of striatal 

BDNF levels, prevented striatal atrophy, and suppressed the increase in seizure frequency. 

Cmpd-A treatment also suppressed the development of clasping behavior and motor 

dysfunction in the open field test, and improved deficits in procedural learning. 

These results obtained from the two studies suggest that specific inhibition of PDE10A is 

potentially effective for several HD symptoms (Fig. 1).  
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A Tool Phosphodiesterase 10A Inhibitor 
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Abstract 

Phosphodiesterase 10A (PDE10A) inhibition is a novel and promising approach for the 

treatment of central nervous system disorders such as schizophrenia and Huntington’s disease. 

A novel PDE10A inhibitor, Cmpd-A 

[1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-

4(1H)-one] has shown high inhibitory activity and selectivity for human recombinant 

PDE10A2 in vitro; the half-maximal inhibitory concentration was 0.30 nM, and selectivity 

over other phosphodiesterases (PDEs) was more than 15000-fold. Cmpd-A at 10 µM did not 

show more than 50% inhibition or stimulation of 91 enzymes or receptors except for PDEs. In 

vitro autoradiography (ARG) studies using rat brain sections revealed that [3H]Cmpd-A 

selectively accumulated in the caudate putamen (CPu), nucleus accumbens (NAc), globus 

pallidus, substantia nigra, and striatonigral projection, where PDE10A is highly expressed. 

This [3H]Cmpd-A accumulation was almost entirely blocked by an excess amount of MP-10, 

a PDE10A selective inhibitor, and the accumulation was not observed in brain slices of 

Pde10a-knockout mice. In rat brain sections, [3H]Cmpd-A bound to a single high-affinity site 

with mean ± SEM dissociation constants of 7.2 ± 1.2 and 2.6 ± 0.5 nM for the CPu and NAc 

shell, respectively. Orally administered [14C]Cmpd-A selectively accumulated in PDE10A 

expressing brain regions in an in vivo ARG study in rats. Striatal PDE10A occupancy by 

Cmpd-A in vivo was measured using T-773 as a tracer and a dose of 0.88 mg/kg (p.o.) was 
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calculated to produce 50% occupancy in rats. Translational studies with Cmpd-A and other 

PDE10A inhibitors such as those presented here will help us better understand the 

pharmacological profile of this class of potential central nervous system drugs.  
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Introduction 

Intracellular cAMP and cGMP play important roles as second messenger molecules 

controlling multiple cellular processes. Phosphodiesterases (PDEs) are enzymes that regulate 

cellular levels of these cyclic nucleotides by regulating their degradation rates (Bender and 

Beavo, 2006). There are 11 different families of PDEs comprising 21 different gene products, 

and each PDE superfamily enzyme shows a distinct distribution pattern and has important 

functions (Bender and Beavo, 2006). PDE10A is a dual-substrate PDE that hydrolyzes both 

cAMP and cGMP (Fujishige et al., 1999; Soderling et al., 1999), and it is highly enriched 

in the central nervous system (CNS) of many mammalian species including humans 

(Coskran et al., 2006; Seeger et al., 2003). In the mammalian brain, PDE10A mRNA and 

protein are selectively expressed in striatal medium spiny neurons (MSNs) (Bender and 

Beavo, 2006; Coskran et al., 2006; Fujishige et al., 1999; Seeger et al., 2003). 

The striatal outputs mediated by MSNs are divided into two pathways: the dopamine D2 

receptor expressing indirect pathway and the D1 receptor expressing direct pathway (Graybiel, 

1990, 2000). Activation of the indirect pathway by D2 receptor antagonism is thought to be 

the principal mechanism of action of most antipsychotic drugs (Karam et al., 2010); however, 

excessive activation of the indirect pathway by D2 receptor antagonists is known to cause 

extrapyramidal symptoms (EPS) (Krebs et al., 2006). Activation of the direct pathway is 

expected to counteract excessive activation of the indirect pathway and reduce these side 
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effects (Siuciak et al., 2006). In line with this idea, PDE10A inhibitors have shown lower 

risks of EPS through the activation of both direct and indirect pathways in pre-clinical studies 

(Grauer et al., 2009). In addition to EPS, some of the current antipsychotics cause 

hyperprolactinemia owing to their D2 receptor antagonism in the pituitary gland (Rourke et al., 

2006). PDE10A inhibitors can avoid hyperprolactinemia as PDE10A expression is low in the 

pituitary gland. Furthermore, PDE10A inhibitor can modulate cognitive functions via 

activation of corticostriatal circuit (Graybiel, 2000; Simpson et al., 2010). Accordingly, 

PDE10A inhibition can be a novel therapeutic approach for the treatment of schizophrenia 

with lower risks of these side effects (Kehler and Nielsen, 2011; Menniti et al., 2007; Siuciak 

et al., 2006). Moreover, several pre-clinical studies have shown that PDE10A inhibitors can 

protect striatal MSNs against neurodegeneration in Huntington’s disease (HD) models 

through the improvement of cAMP signaling (Giampà et al., 2010; Giampà et al., 2009; 

Kleiman et al., 2011). Thus, I decided to develop a PDE10A inhibitor as a therapeutic drug for 

the abovementioned CNS disorders. 

Each PDE family has essential functions; thus, PDE10A selectivity is critical for avoiding 

off-target effects associated with inhibition of other PDEs. For instance, PDE4 inhibition in 

the brainstem is thought to cause emesis (Mori et al., 2010), and PDE6 inhibition in the 

mammalian retina can cause disturbance in visual function (Cote, 2004). PDE10A selectivity 

is also crucial in understanding the pharmacological profile of PDE10A inhibitors because 
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small molecules targeting distinct PDEs show overlapping pharmacological effects. For 

example, both the PDE4 inhibitor rolipram and the PDE5 inhibitor zaprinast enhance memory 

function in novel object recognition test (NORT) using mice (Akar et al., 2014). Both the 

PDE2 inhibitor BAY 60-7550 and the PDE10A inhibitor PQ-10 attenuate scopolamine- and 

MK-801-induced memory deficits in NORT using rats (Reneerkens et al., 2013). In addition, 

the PDE4 inhibitor RO 20-1724, the PDE5 inhibitor sildenafil, and the PDE10 inhibitor TP-10 

ameliorate motor dysfunction in rodent HD models (Giampà et al., 2010; Thakur et al., 2013). 

Thus, careful validation of PDE10A selectivity under physiological conditions is crucial for 

the precise profiling of PDE10A inhibitors. 

Cmpd-A 

[1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-

4(1H)-one] was discovered as a novel PDE10A inhibitor by optimization using a 

structure-based drug design strategy (Kunitomo et al., 2014). In the present study, I 

investigated the PDE10A selectivity of Cmpd-A using multiple methods, including in vitro 

and in vivo autoradiography (ARG) in rodents. Finally, I assessed PDE10A occupancy by 

Cmpd-A in rats using T-773 as a tracer; [11C]T-773 is our original PET radioligand for 

PDE10A (Harada et al., 2015b). Translational studies with Cmpd-A based on the information 

presented here will help us to understand the pharmacological profile of PDE10A inhibitors as 

potential CNS drugs.  
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Materials and Methods 

Ethics Statement 

The care and use of the animals and the experimental protocols used in this research were 

approved by the Experimental Animal Care and Use Committee of Takeda Pharmaceutical 

Company Limited. 

 

Animals 

Seven-week-old male Sprague–Dawley (SD) rats were purchased from Charles River 

Laboratories Japan, Inc. (Yokohama, Japan). After acclimation for 1 week in our laboratory, 

the 8-week-old rats were used for experiments. Pde10a wild-type (WT) and homozygous 

knockout (KO) mice (129/SvEv-C57BL/6) were purchased from Taconic Farms, Inc. (Hudson, 

NY), and used for experiments after at least 1 week of acclimation. The animals were housed 

in a light-controlled room (12-h light/dark cycle with lights on from 7:00 AM). Food and 

water were provided ad libitum. 

 

Radioligands and Chemicals 

Cmpd-A, MP-10 succinate, and T-773 were synthesized by Takeda Pharmaceutical 

Company Limited. MP-10 has been reported to be a potent and selective PDE10A inhibitor 

developed by Pfizer Inc. (New York City, NY) (Grauer et al., 2009; Schmidt et al., 2008; 
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Verhoest et al., 2009). [3H]Cmpd-A (37.0 MBq/mL in ethanol) was synthesized by Sekisui 

Medical Co., Ltd. (Tokyo, Japan). The specific radioactivity and radiochemical purity were 

665 GBq/mmol and 98.1%, respectively. [14C]Cmpd-A was synthesized by Nemoto Science 

Co., Ltd. (Tokyo, Japan). The specific radioactivity and radiochemical purity were 3.08 

GBq/mmol and 99.2%, respectively. [3H]T-773 (37.0 MBq/mL in ethanol) was synthesized by 

Quotient Bioresearch (Radiochemicals) Limited (Cambridgeshire, UK). The specific 

radioactivity and the radiochemical purity were 555 GBq/mmol and 99.9%, respectively. 

 

Preparation of Tissue Slices 

Male SD rats and male Pde10a WT and KO mice were euthanized by decapitation. The 

brains were rapidly removed, slowly frozen in an isopentane-dry ice bath, and then stored in a 

deep freezer. Sagittal or coronal 20-µm-thick sections were cut in a cryostat (Leica 

Microsystems, Wetzlar, Germany) and thaw-mounted onto glass slides. For the rat, coronal 

brain sections were collected from the region between 1.7 to 0.2 mm anterior to bregma, and 

sagittal sections were collected from the region 1.9–3.4 mm lateral to the midline (Paxinos 

and Watson, 1998). For the mouse, coronal brain sections were collected from the region 

between 1.5 to 0.7 mm anterior to bregma (Paxinos and Franklin, 2001). 

 

In Vitro ARG Using Rat and Mouse Brain Sections 
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Sagittal brain sections prepared from a rat brain or coronal brain sections prepared from 

Pde10a WT and KO mouse brains (n=5 per genotype) were warmed to room temperature 

(RT). The sections were pre-incubated in buffer (50 mM Tris-HCl pH 7.5, 1.7 mM EDTA, 6 

mM MgCl2, 120 mM NaCl and 0.1% BSA) twice for 5 min at RT. The sections were then 

incubated in binding buffer (pre-incubation buffer containing 0.03% Triton X-100) with 

[3H]Cmpd-A (8 nM for rats and 16 nM for mice) or [3H]T-773 (20 nM for rats) for 60 min at 

RT. Blocking of specific binding in adjacent sections was conducted by the addition of an 

excess amount of PDE10A-selective inhibitors to the radioligand-containing buffer (final 

concentration of 1 μM). The sections were washed twice for 5 min ([3H]Cmpd-A) or for 1 

min ([3H]T-773) at 4°C in pre-incubation buffer, and then rapidly rinsed in ice-cold distilled 

water. The sections were dried under a stream of cool air, and were exposed to BAS IP TR 

2040E imaging plates (GE Healthcare UK Ltd.) for 5–7 days. The imaging plates were 

analyzed using an image analyzer FLA-7000 (Fujifilm, Tokyo, Japan) and image analyzing 

software ImageGauge 4.0 (Fujifilm). In the ARG study using [3H]Cmpd-A, regions of interest 

(ROIs) were placed at the frontal cortex (Fcx), caudate putamen (CPu), nucleus accumbens 

(NAc), thalamus (Thal), brainstem (Bs), hippocampus (Hipp), and cerebellum (Cb). 

Radioactivity in each ROI was analyzed and represented as photostimulated luminescence 

(PSL) values. The background was subtracted from the PSL values of each ROI, and the PSL 

values in each brain region were then averaged for each group. In the ARG study in mouse 



21 
 

brain sections, the PSL values in the presence and absence of an excess amount of MP-10 

were represented as total binding and non-specific binding (NSB), respectively. The rat brain 

sections adjacent to those used for ARG were stained with hematoxylin and eosin (HE) for 

anatomical identification. 

 

Saturation Binding Assay with [3H]Cmpd-A Using Rat Brain Sections 

Coronal brain sections prepared from 4 rat brains were warmed to RT, and were 

pre-incubated twice in buffer for 5 min at RT. The sections were then incubated with 0.25, 0.5, 

1, 2, 4, 8, 16, or 32 nM [3H]Cmpd-A in binding buffer for 60 min at RT. NSB was determined 

in the presence of 1 μM MP-10. The sections were rinsed, dried using the same procedure 

described above, and then exposed to an imaging plate for 6 days. Autoradiograms were read 

using FLA-7000 and analyzed using ImageGauge 4.0. ROIs were placed at the CPu and NAc 

shell of both hemispheres in each section and radioactivity in the ROIs was represented as 

PSL values. The background PSL value was subtracted from the PSL values of each ROI, and 

the PSL values of the left and right hemispheres were averaged for each section. The PSL 

values in the absence and presence of an excess amount of MP-10 were represented as total 

binding and NSB, respectively. The saturation binding curves were fit by nonlinear regression 

using GraphPad Prism 5.01 (GraphPad Software, Inc., La Jolla, CA), and the dissociation 

constant (Kd value) was calculated using the same software. 
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In Vivo ARG with [14C]Cmpd-A in Rats 

[14C]Cmpd-A was suspended in 0.5% (w/v) methylcellulose in distilled water and orally 

administrated to male SD rats (n=2) at 1.5 mg/kg (10.1 MBq/9.48 mL/kg). At 6 h after 

administration, the rats were euthanized by inhalation of chloroform under anesthesia with 

isoflurane, and were preliminarily frozen in a bath of dry ice/hexane. The decapitated head 

was embedded in 2% (w/v) sodium carboxymethyl cellulose in distilled water. Using a 

cryostat, 40-µm-thick sagittal sections were collected from the right hemispheres of the heads, 

and then 40-µm-thick coronal sections were collected from the left hemispheres. These 

sections were freeze-dried in a cryostat at approximately –20°C for 1 day. The sections were 

then covered with a sample-protecting film (Nakagawa Mfg. Co., Ltd., Warabi, Japan) and 

were exposed to an imaging plate BAS-MS2040 or BAS-III2040 (GE Healthcare UK Ltd.) 

for 48 h. After the exposure, the imaging plate was analyzed with an image analyzer 

FLA-7000 (Fujifilm). 

 

In vivo Occupancy Study of Cmpd-A in Rats 

Cmpd-A was suspended in 0.5% (w/v) methylcellulose in distilled water, and T-773 was 

dissolved in N,N-dimethylacetamide and 1,3-butanediol (1:1). Cmpd-A (0, 0.03, 0.1, 0.3, 1, 3, 

and 10 mg/kg) was orally administered to male SD rats (n=2-3 in each group), and 0.02 
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mg/kg of T-773 was administered by bolus intravenous injection via the lateral tail vein 90 

min after Cmpd-A administration. The rats were anesthetized by inhalation of 4% isoflurane 

and were euthanized by cardiac perfusion with heparinized saline 30 min after T-773 injection, 

and the whole brains were isolated. The striatum (Str) and cerebellum (Cb) were dissected 

from the brains, and were stored at −30°C until use. The frozen samples were homogenized in 

saline at 4 mL/g tissue, and the concentration of T-773 was measured by mass spectrometry 

(MS) in each homogenate. Specific T-773 binding (BSP) in Str was represented as the 

difference between the T-773 concentration in Str and that in Cb. PDE10A occupancy was 

calculated using the following equation: Occupancy (%) = (BSP,base − BSP,drug)/BSP,base × 100, 

where BSP,base and BSP,drug are the concentrations at baseline (vehicle-treatment) and at 

drug-treatment, respectively. The saturation curve of occupancy was fit by nonlinear 

regression using GraphPad Prism 5.02.  
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Results 

In Vitro PDE10A Selectivity of Cmpd-A 

Cmpd-A was identified as a novel PDE10A inhibitor. I have reported the PDE10A2 

inhibitory activity of Cmpd-A and its selectivity over other PDE family enzymes by in vitro 

enzyme inhibition assays using various human recombinant PDE family proteins (Kunitomo 

et al., 2014). The half-maximal inhibitory concentration (IC50) value of Cmpd-A for 

PDE10A2 was 0.30 nM, and the minimum IC50 value among the other 10 PDE families was 

5500 nM for PDE4D2. Thus, the PDE10A2 selectivity of Cmpd-A over other PDE family 

enzymes was more than 15000-fold. In vitro PDE10A2 selectivity of Cmpd-A was further 

assessed by measuring its inhibitory or stimulatory activities against enzymes (Table 1) and 

receptors (Table 2) at Ricerca Biosciences (Concord, OH). More than 50% inhibition or 

stimulation by 10 µM of Cmpd-A was considered as a significant response. Cmpd-A did not 

induce a significant response in 91 target molecules, except for PDEs. These results indicate 

that Cmpd-A is a potent and selective inhibitor of human PDE10A in vitro. 

 

In Vitro ARG with [3H]Cmpd-A in Rat Brain Sections 

To confirm the selectivity of Cmpd-A for native PDE10A, in vitro ARG with [3H]Cmpd-A 

was performed using rat brain sagittal sections. The chemical structure of [3H]Cmpd-A is 

shown in Fig. 2A. For anatomical identification, HE staining was conducted using adjacent 
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sections (Fig. 2B). The radioactivity of [3H]Cmpd-A was selectively detected in the CPu, NAc, 

the globus pallidus (GP), and the substantia nigra (SN), where PDE10A is highly expressed. 

Radioactivity was also detected in the connecting pathway between the striatal complex and 

SN (Fig. 2C). Following this, I investigated the inhibition of [3H]Cmpd-A accumulation by 

using PDE10A inhibitors with different chemical structures: MP-10 and non-radiolabeled 

Cmpd-A. The selective accumulation of [3H]Cmpd-A at 8 nM was mostly blocked by 1 μM of 

either MP-10 or Cmpd-A (Fig. 2D and E). The amount of [3H]Cmpd-A radioactivity in 

several brain regions in the absence or presence of these cold compounds was represented as 

PSL value (/mm2) (Fig. 2F). In the presence of 1 μM of MP-10, [3H]Cmpd-A radioactivity 

was significantly decreased in the CPu (P ≤ 0.01), NAc (P ≤ 0.01), and Hipp (P ≤ 0.05). The 

PSL values in the presence of 1 μM of MP-10 were considered as backgrounds and the 

specific binding of [3H]Cmpd-A in the CPu, NAc, and Hipp was calculated using these PSL 

values. High specific binding was observed in the CPu and NAc with PSL values of 175 ± 

21.3 and 88.2 ± 20.1, respectively. The PSL value in the Hipp was only 4.26 ± 0.784, which 

was more than 40-fold lower than that in the CPu. These results suggest that [3H]Cmpd-A 

selectively binds to native PDE10A in rat brain sections. 

 

In Vitro ARG with [3H]Cmpd-A in Mouse Brain Sections 
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I next performed in vitro ARG using [3H]Cmpd-A and coronal brain sections from Pde10a 

WT and KO mice. In WT mouse brain sections, [3H]Cmpd-A selectively accumulated in the 

CPu and NAc, where PDE10A is highly expressed (Fig. 3A). This selective accumulation was 

not observed in brain sections from Pde10a KO mice (Fig. 3B). I also conducted a blocking 

experiment with an excess amount of MP-10 (1 μM) using brain slices from these mice. In the 

presence of 1 μM of MP-10, [3H]Cmpd-A radioactivity in the CPu of WT mouse brain 

sections was similar to that in KO mouse brain sections (Fig. 3C). These results further 

demonstrate the specific binding of [3H]Cmpd-A to native PDE10A. 

 

Binding Affinity of [3H]Cmpd-A for Native PDE10A in Rat Brain Sections 

I next evaluated the binding affinity of [3H]Cmpd-A to native PDE10A. I conducted a 

saturation binding assay using rat brain coronal sections and calculated Kd values in the CPu 

and the shell region of NAc. ROIs in a rat brain section were shown in Fig. 4A. Selective and 

saturable binding of [3H]Cmpd-A was observed in these regions with mean ± SEM Kd values 

of 7.2 ± 1.2 nM for the CPu and 2.6 ± 0.5 nM for the NAc shell (Fig. 4B and C), suggesting 

that [3H]Cmpd-A binds to a single high-affinity site of PDE10A in the rat brain. 

 

In Vivo ARG with [14C]Cmpd-A in Rats 
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To validate PDE10A selectivity of Cmpd-A in vivo, in vivo ARG was conducted after oral 

administration of [14C]Cmpd-A. The chemical structure of [14C]Cmpd-A is shown in Fig. 5A. 

Six hours after oral administration of [14C]Cmpd-A (1.5 mg/kg), autoradiograms of sagittal 

and coronal head sections were obtained. High radioactivity was observed in the CPu, NAc, 

GP, and SN of the rat brain regions (Fig. 5B-H), consistent with those in which [3H]Cmpd-A 

accumulated in in vitro ARG studies and with areas of PDE10A high expression in the rat 

brain. Thus, [14C]Cmpd-A appears to selectively bind to native PDE10A protein in vivo. 

 

In Vivo Occupancy Study of Cmpd-A in Rats 

PDE10A occupancy by Cmpd-A was measured using T-773 as a tracer. First, I investigated 

whether Cmpd-A could compete with PDE10A-selective binding of T-773. [3H]T-773 

selectively accumulated in PDE10A-expressing regions in sagittal brain sections (Fig. 6A), 

and the accumulation was almost completely blocked in the presence of an excess amount of 

Cmpd-A (Fig. 6B), indicating binding competition between [3H]T-773 and Cmpd-A. 

In vivo occupancy study using non-radiolabeled tracer is an established method which 

confers several advantages over those using radiolabeled tracers in living animals, such as no 

risk of contamination by radionuclides and no influence of radiometabolites (Chernet et al., 

2005; Nirogi et al., 2012). Therefore, PDE10A occupancy by Cmpd-A was measured using 

non-radiolabeled T-773 as a tracer. Specific binding of T-773 to PDE10A in the Str was 
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calculated using the Cb as a reference region based on the lack of specific binding of 

[3H]Cmpd-A (Fig. 2); amount of T-773 that specifically bound to PDE10A in the Str was 

determined by taking the difference in its concentration between the Str and Cb. Striatal 

PDE10A occupancy by Cmpd-A was calculated from the reduction in the binding amount of 

T-773 to PDE10A after administration of various dosage of Cmpd-A. The Tmax of orally 

administered Cmpd-A in the rat brain was 2 h in our preliminary study. Therefore, 

non-radiolabeled T-773 was intravenously injected to rats 90 min after oral administration of 

Cmpd-A, and then the Str and Cb were collected from each rat 30 min after T-773 injection. 

The striatal concentration of T-773 without Cmpd-A administration was more than 5-fold 

higher than that of the reference area, Cb, suggesting the Str-selective accumulation of T-773 

(Table 3). The concentration of T-773 in the Str was dose-dependently decreased by 

pretreatment with Cmpd-A (Table 3). When the Cb was employed as a reference site, the 

calculated PDE10A occupancy by Cmpd-A in the Str was increased in a dose-dependent 

manner (Fig. 6C). When data were fitted by nonlinear regression, PDE10A occupancies at 0.3 

and 3 mg/kg of Cmpd-A were 26% and 77%, respectively. Cmpd-A (0.88 mg/kg) was 

estimated to produce 50% PDE10A occupancy within the Str.  
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Discussion 

Cmpd-A showed potent inhibitory activity (IC50 value of 0.30 nM) and high selectivity 

(more than 15000-fold against other PDEs) for human recombinant PDE10A2 in vitro 

(Kunitomo et al., 2014). Moreover, Cmpd-A did not induce a significant response when tested 

for activity against 91 enzymes and receptors except for PDE family even at 10 µM, which is 

more than a 33000-fold higher concentration than the IC50 value for recombinant PDE10A2 

(0.30 nM). Thus, Cmpd-A is highly selective for recombinant PDE10A in vitro. 

I performed ARG using radiolabeled Cmpd-A and rodent brain sections to confirm the 

selectivity of Cmpd-A for native PDE10A. PDE10A is highly enriched in striatal MSNs 

(Siuciak et al., 2006). MSNs constitute the direct and indirect pathways projecting to the SN 

and GP, respectively (Lei et al., 2004). High levels of accumulation of [3H]Cmpd-A were 

observed in the CPu, NAc, GP, SN, and the striatonigral projection of the rat brain, supporting 

the selective accumulation of [3H]Cmpd-A in striatal MSNs. MP-10 was previously reported 

to interact with PDE10A at the substrate-binding site in the catalytic domain (Verhoest et al., 

2009). Co-crystal structural analysis of Cmpd-A with the PDE10A catalytic domain showed 

that Cmpd-A also uses this binding site (Kunitomo et al., 2014). Therefore, I performed a 

blocking study using MP-10 as a control to confirm PDE10A-selective binding of 

[3H]Cmpd-A in an in vitro ARG study. As expected, [3H]Cmpd-A accumulation in rat brain 

sections was almost entirely blocked by an excess amount of either non-radiolabeled Cmpd-A 
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or MP-10. Furthermore, the Str-selective accumulation of [3H]Cmpd-A was almost 

completely abolished in brain sections from Pde10a KO mice with complete deletion of 

PDE10A protein (Harada et al., 2015b). These results indicate the PDE10A-specific binding 

of Cmpd-A under physiological conditions. 

In previous immunohistochemical studies with rat brain sections, PDE10A 

immunoreactivity was detected in parts of the Hipp, Cb, and cortex, as well as the CPu, NAc, 

GP, and SN (Coskran et al., 2006; Seeger et al., 2003). In those reports, PDE10A expression 

was confined to individual neuronal nuclei in the Hipp, Cb, and cortex. PDE10A expression 

levels were 50–200-fold lower in the Hipp, Cb, and cortex than that in the Str (Coskran et al., 

2006; Seeger et al., 2003). In the present autoradiography study, specific binding of 

[3H]Cmpd-A in the Hipp was observed at more than 40-fold lower levels than that in the CPu, 

and no specific binding was observed in the Fcx, Thal, Bs, and Cb. Thus, PDE10A may be 

expressed in the Hipp at more than 40-fold lower levels than that in the CPu. PDE10A 

expression levels in the other non-striatal regions are under detection limit at the level of 

sensitivity of the present study. 

A saturation binding assay using rat brain sections showed that [3H]Cmpd-A bound to a 

single high-affinity binding site with Kd values of 7.2 and 2.6 nM in the CPu and NAc shell, 

respectively. It is reasonable to determine NSB by the addition of 1 μM of MP-10 because this 

concentration of MP-10 almost completely inhibited the selective binding of [3H]Cmpd-A in 
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the blocking study. Indeed, [3H]Cmpd-A binding in the presence of 1 μM of MP-10 was linear 

in both the CPu and NAc shell over the range of concentrations used, suggesting NSB. As 

discussed before, the Cmpd-A-binding site in the PDE10A enzyme is the substrate-binding 

site in the catalytic domain; thus, the high binding affinity of Cmpd-A suggests potent 

inhibitory activity against native PDE10A. 

Orally administered [14C]Cmpd-A selectively accumulated in rat brain areas associated 

with high PDE10A expression in the in vivo ARG study. This result suggests that systemically 

administered Cmpd-A can penetrate the blood-brain barrier and specifically bind to native 

PDE10A in living rats. I measured PDE10A occupancy by Cmpd-A using T-773, a brain 

penetrable PDE10A-specific tracer, with the Cb as a reference region (Harada et al., 2015b). 

The in vitro competitive binding study revealed that PDE10A-selective accumulation of 

[3H]T-773 can be inhibited by Cmpd-A; thus, PDE10A occupancy by Cmpd-A can be 

measured using T-773 displacement. Fitted by nonlinear regression, a dose of 0.88 mg/kg of 

Cmpd-A was estimated to produce 50% PDE10A occupancy within the striatum. 

In summary, I demonstrated that Cmpd-A is specific for both recombinant PDE10A in vitro 

and for native PDE10A in vivo. Furthermore, PDE10A occupancy of orally administered 

Cmpd-A was successfully calculated using T-773 as a tracer in rats. Pre-clinical and clinical 

investigations of the therapeutic potential of Cmpd-A against CNS disorders such as 

schizophrenia and HD with accurate information regarding PDE10A occupancy will improve 
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our understanding of the relation between enzyme occupancy and the pharmacodynamic 

effects of PDE10A inhibitors and provide important information regarding this translational 

approach.   
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Part 2 

Specific Inhibition of Phosphodiesterase 10A Protects from 

Striatal Neurodegeneration and Ameliorates Behavioral Deficits 

in the R6/2 Mouse Model of Huntington's Disease 
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Abstract 

Huntington’s disease (HD) is characterized by progressive loss of striatal medium spiny 

neurons (MSNs) that constitute direct and indirect pathways: the indirect pathway MSNs is 

more vulnerable than the direct pathway MSNs. Impairment of cAMP/cGMP signaling by 

mutant huntingtin is hypothesized as the molecular mechanism underlying degeneration of 

MSNs. Phosphodiesterase 10A (PDE10A) is selectively expressed in MSNs and degrades 

both cAMP and cGMP; thus, PDE10A inhibition can restore impaired cAMP/cGMP signaling. 

Compared with other PDE10A inhibitors, a novel PDE10A inhibitor Cmpd-A 

[1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4

(1H)-one] showed comparable activation of the indirect pathway MSNs, while it produced 

partial activation of the direct pathway MSNs by its faster off-rate property. Here, I report the 

effects of Cmpd-A on striatal neurodegeneration and behavioral deficits in the R6/2 mouse 

model of HD. Cmpd-A at 0.5 or 5 mg/kg/day was orally administrated from 4.5–5 to 12 

weeks of age, and the effects of Cmpd-A were characterized over this period. Repeated 

treatment with Cmpd-A suppressed the reduction of brain-derived neurotrophic factor levels, 

prevented striatal neurodegeneration, and suppressed increase in seizure frequency, but did 

not prevent the suppression of body weight gain. As for motor deficits, Cmpd-A suppressed 

the development of clasping behavior and motor dysfunctions, including decreased motor 

activity in the open field, but did not improve the impairment in motor coordination on the 
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rotarod. Regarding cognitive functions, Cmpd-A improved deficits in procedural learning, but 

was ineffective for deficits in contextual memory. These results suggest that Cmpd-A reduces 

striatal neurodegeneration and ameliorates behavioral deficits in R6/2 mice. 
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Introduction 

Huntington’s disease (HD) is an autosomal dominant, inherited neurodegenerative disease 

associated with progressive cognitive impairment and motor symptoms such as chorea, 

akinesia, and dystonia (Ross and Tabrizi, 2011; Walker, 2007). HD is caused by a mutation 

that results in an abnormal expansion of cytosine-adenine-guanine (CAG) trinucleotide 

repeats beyond about 35 repeats within exon 1 of the huntingtin gene, which encodes the 

huntingtin protein (Frank, 2014; Ross et al., 2014; Walker, 2007). Although mutant huntingtin 

is expressed throughout the brain, the most prominent cell loss is of medium spiny neurons 

(MSNs) in the striatum (Vonsattel and DiFiglia, 1998). The MSNs constitute two distinct 

output pathways: the direct and indirect pathways (Graybiel, 1990, 2000). Particularly, 

indirect pathway MSNs appear to be more vulnerable to degeneration than direct pathway 

MSNs in patients with HD (Galvan et al., 2012; Glass et al., 2000; Reiner et al., 1988; Sapp 

et al., 1995). So far, multiple animal models of HD have been established (Pouladi et al., 

2013). HD model mice, such as R6/2, CAG140 and YAC128 mice, are initially hyperactive 

and gradually become hypoactive (Lüesse et al., 2001; Menalled et al., 2003; Slow et al., 

2003), suggesting the reduced output from both direct and indirect pathway MSNs. Those 

phenotypes might reflect the higher vulnerability of indirect pathway MSNs than direct 

pathway MSNs at earlier phases, although the direct evidence is limited. Interestingly, green 

fluorescent protein, selectively expressed in indirect pathway MSNs under Drd2 promoter 
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control, was reduced from early stages of disease progression in R6/2, R6/1, CAG140, and 

HdhQ111 mice (Crook and Housman, 2012). Those HD model mice might not completely 

replicate the HD pathology; however, these mice would be useful for preclinical evaluation of 

potential therapeutics for the treatment of HD. Impairment in cAMP signaling and its 

downstream cAMP response element-binding protein (CREB) signaling pathway by mutant 

huntingtin protein has been hypothesized to play a critical role in the neurodegeneration in 

HD pathology (Choi et al., 2009; Gines et al., 2003; Mantamadiotis et al., 2002; Nucifora et 

al., 2001; Sugars and Rubinsztein, 2003; Wyttenbach et al., 2001). Neuronal nitric oxide 

synthase mRNA is also decreased in the postmortem striatum of patients with HD (Norris et 

al., 1996), suggesting the downregulation of cGMP signaling. Thus, activation of cAMP and 

cGMP signaling pathways, especially in indirect pathway MSNs, could be a potential 

therapeutic approach for HD. 

Phosphodiesterase 10A (PDE10A) is a dual-substrate PDE that hydrolyzes both cAMP and 

cGMP, and is highly expressed in both direct and indirect pathway MSNs (Coskran et al., 

2006; Fujishige et al., 1999; Seeger et al., 2003). PDE10A inhibitors activate both types of 

MSNs, and previous studies suggested the indirect pathway preferential activation by 

PDE10A inhibitors such as papaverine, TP-10, and MP-10 (Nishi et al., 2008; Threlfell et al., 

2009; Wilson et al., 2015). A selective PDE10A inhibitor TP-10 significantly increased 

striatal cell survival and activated CREB in the quinolinic rat model of HD (Giampà et al., 
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2009). TP-10 also showed significant beneficial effects in R6/2 mice; it recovered striatal and 

cortical levels of phosphorylated CREB and BDNF, inhibited striatal atrophy, and showed 

improvement in clasping behavior, performance in rotarod, and locomotor activity (Giampà et 

al., 2010). TP-10 was reported to increase the corticostriatal transmission via upregulation of 

cGMP signaling (Padovan-Neto et al., 2015), which might also contribute to its beneficial 

effects in the quinolinic rat model and R6/2 mice. Thus, restoring cAMP and cGMP signaling 

by PDE10A inhibition may be a promising treatment approach for HD. Cmpd-A 

[1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-

4(1H)-one] is a selective and orally active PDE10A inhibitor (Kunitomo et al., 2014). 

Interestingly, our previous study revealed that activation pattern of MSNs by a faster off-rate 

PDE10A inhibitor Cmpd-A was different from those by slower off-rate PDE10A inhibitors 

such as MP-10 and compound 1; compared to MP-10 and compound 1, Cmpd-A equally 

activated indirect pathway MSNs, whereas it partially activated direct pathway MSNs (Suzuki 

et al., 2016). Considering the lower vulnerability of direct pathway MSNs than that of indirect 

pathway MSNs, this MSN activation pattern by Cmpd-A could protect MSNs in both 

pathways from neurodegeneration by mutant huntingtin without unbalanced activation of 

these pathways. 

In this study, I investigated the effects of Cmpd-A on the R6/2 mouse model of HD. R6/2 

mouse line is a widely used transgenic (Tg) mouse model of HD with several phenotypes 
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similar to that seen in patients with HD, including striatal atrophy, motor deficits, and 

cognitive impairments. Here, I report preclinical evidence that Cmpd-A protects from striatal 

neurodegeneration and ameliorates behavioral deficits in R6/2 mice. 
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Materials and Methods 

Ethics Statement 

All behavioral studies were conducted by PsychoGenics Inc. (Tarrytown, NY) according to 

principles of the Public Health Service Policy on Humane Care and Use of Laboratory 

Animals, and procedures were approved by the Institutional Animal Care and Use Committee 

of PsychoGenics Inc. (IACUC protocol number: 179_0312). PsychoGenics Inc. achieved 

Association for Assessment and Accreditation of Laboratory Animal Care International 

accreditation (AAALAC Unit #001213). 

 

Animals 

R6/2 Tg mice carrying the N-terminal region of a mutant human huntingtin gene and 

wild-type (WT) mice were used in this study (Mangiarini et al., 1996). Mice were bred in the 

colony of PsychoGenics Inc. by crossing ovarian transplanted females on a CBA×C57BL/6 

background (The Jackson Laboratory, Bar Harbor, ME) with male C57BL/6 mice. Mice were 

identified before weaning by real-time PCR of tail snips. CAG repeat length in mutant mice 

was analyzed by ABI Prism 377 DNA Sequencer (Life Technologies, Carlsbad, CA). Average 

CAG repeat lengths for each R6/2 mouse group were as follows: vehicle-treated group, 

123.79 ± 0.35; 0.5 mg/kg/day of Cmpd-A–treated group, 123.34 ± 0.48; 5 mg/kg/day of 

Cmpd-A–treated group, 123.66 ± 0.49 (mean ± SEM; n = 19–22). Mice were given 1-min 
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handling habituation on 2 consecutive days between 19–21 days of age, and were identified 

by tail tattoo at 20–21 days of age and weaned at 21–22 days of age. Mice were housed in a 

room with light control (12-h light/12-h dark cycle with lights on at 7:00 AM). Food and 

water were provided ad libitum. Animals were checked for survival twice per day and body 

weighed once per week. Mice from multiple littermates were used for each treatment group 

(almost equally divided between sexes), and housed 4–5 mice/cage. Two WT mice of the 

same sex, but different littermates, were included in each cage for providing normal social 

stimulation. 

 

Chemicals 

Cmpd-A 

[1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-

4(1H)-one] was synthesized by Takeda Pharmaceutical Company Limited (Fujisawa, Japan). 

Cmpd-A was suspended in vehicle (0.5% methylcellulose in sterile water) using an ultrasonic 

sonicator for 10 min and was then mixed by pipetting and inverting the tube to eliminate any 

precipitation. Dosing solutions were formulated daily. All formulated dosing solutions were 

prepared in amber glass vials. The formulated solutions were additionally stirred for at least 

10 min before dosing and were stirred throughout the dosing session. Daily oral 

administration of vehicle or Cmpd-A at 0.5 mg/kg or 5 mg/kg with a dose volume of 10 
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mL/kg was started from 4.5–5 to 12 weeks of age. The drugs were administered after the 

completion of behavioral tests each day. No mice were dead up to 12 weeks of age. 

 

Biochemical Analysis 

At 12 weeks of age (after 8 weeks of repeated dosing and behavioral studies), mice (n = 6 

in each group) were sacrificed and tissue collected 3 h after the last administration. Plasma 

samples of Cmpd-A-treated groups were also collected at the same time point. The plasma 

concentrations of Cmpd-A at 0.5 and 5 mg/kg/day were 191.2 ± 11.0 and 1123.5 ± 32.5 

ng/mL, respectively (mean ± S.E.M., n = 7). Striatal PDE10A occupancies of Cmpd-A at 

plasma concentrations of 191.2 and 1123.5 ng/mL are estimated as 58 and 89%, respectively, 

in mice (data not shown). The brains were rapidly removed and rinsed in ice cold saline. The 

striatum and cerebral cortex were then immediately dissected and frozen on dry ice. The 

dissected tissues were homogenized by ultrasonic sonication in 20 mL/g of lysis buffer (137 

mM NaCl, 20 mM Tris-HCl pH 8.0, 1% NP40, 10% glycerol, and 1% proteinase inhibitor 

cocktail). The homogenates were centrifuged at 15,000 rpm for 20 min at 4°C, and the 

supernatants were frozen at −80°C until use. Brain-derived neurotrophic factor (BDNF) levels 

were determined using BDNF Emax
® ImmunoAssay System kit (Promega, Madison, WI) 

following the manufacturer’s instructions. The 96-well plates coated with anti-BDNF 

monoclonal antibody were incubated with a blocking buffer at room temperature (RT) for 1 h. 
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The frozen samples and BDNF standards were applied to the plates. The plates were 

incubated with shaking for 2 h at RT, followed by rinse with the washing buffer. Then, the 

plates were incubated with anti-BDNF polyclonal antibody for 2 h at RT, and were rinsed 

with the washing buffer. The plates were incubated with horseradish peroxidase-conjugated 

anti-IgY antibody for 1 h at RT. To produce a color reaction, the solution of peroxidase 

substrate and tetramethylbenzidine was added to the plates. The reaction was terminated by 

addition of 1 M hydrochloric acid, and then the absorbance was measured at 450 nm using a 

plate reader Wallac ARVO SX 1420 (PerkinElmer, Waltham, MA). 

 

Histochemical Analysis 

At 12 weeks of age (after 8 weeks of daily dosing and behavioral studies), mice (n = 4 in 

each group, 2 males and 2 females) were randomly selected and were anesthetized with 

sodium pentobarbital and transcardially perfused with saline, followed by 4% 

paraformaldehyde in 0.1 M phosphate buffered saline (PBS) 3 h after the last administration. 

The whole brain was removed and fixed overnight in 4% paraformaldehyde in 0.1 M PBS at 

4°C and then transferred to a solution of 30% sucrose in 0.1 M PBS at 4°C. The brains were 

embedded in 7.5% sucrose containing Tissue-Tek OCT Compound (Sakura Finetek, Tokyo, 

Japan) and were stored at −80°C until use. Multiple coronal serial sections per animal (20 μm 

thick) within the coordinates of 0.86–0.50 mm rostrocaudal from bregma, were cut on a 
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cryostat. Two sections per animal were randomly selected from the multiple sections for the 

following staining. Cresyl violet (MP Biomedicals, Aurora, OH) was used to stain Nissl 

substance in the cytoplasm of neurons. The sections were rehydrated through graded alcohols 

and then stained with 0.07% acetic acid containing 0.25% aqueous solution of cresyl violet 

for 30 min. The sections were briefly rinsed with water, followed by dehydration in graded 

alcohols. The sections were cleared in xylene and were sealed by coverslips. Images of 

stained sections were captured at ×20 magnification by a slide scanner (NanoZoomer, 

Hamamatsu Photonics, Hamamatsu, Japan). To assess striatal atrophy, the bilateral striata of 

the sections were manually delineated according to the stereotaxic atlas of the mouse brain 

(Paxinos and Franklin, 2001) using NDP viewing software (Hamamatsu Photonics) by an 

investigator blind to the treatment groups. The defined striatal areas (mm2) were automatically 

calculated by the same software. The bilateral striatal areas were averaged between two 

sections per animal, and further averaged over each treatment group (n = 4). 

 

Experimental Design of Behavioral Study 

All testing and assessments were performed during the animals’ light cycle phase. Mice in 

their home cages were transferred from the rearing room to the experimental rooms and were 

acclimated to the experimental rooms for at least 1 h before the beginning of any experiments. 

At 4 weeks of age, mice were tested for rotarod and open field behaviors for validation of 
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baseline phenotypes. Mice were balanced between four treatment groups (vehicle-treated WT 

mice, vehicle-treated R6/2 mice, 0.5 mg/kg/day of Cmpd-A–treated R6/2 mice, and 5 mg/kg 

of Cmpd-A–treated R6/2 mice) in terms of sex, body weight, CAG repeat number, and past 

behavioral performance. Experimenters were blind to both treatment and genotype at time of 

behavioral testing. 

 

Body Weight 

Mice were weighed once per week throughout the study (4–12 weeks of age). 

 

Clasping Behavior 

Clasping behavior was weekly assessed at the time body weights were measured. Mice 

were suspended by the tail for 30 s and observed for hind limb clasping. The percentages of 

mice showing full clasping behavior within 30 s were calculated at 5–12 weeks of age. 

 

Open Field Test 

The open field test was conducted in a Plexiglas square chamber (27.3×27.3×20.3 cm; Med 

Associates Inc., St. Albans, VT) surrounded by infrared photobeam sources. Horizontal 

activity (distance traveled) and vertical activity (rearing) were measured by infrared 

photobeam sources from consecutive beam breaks. Animals were placed in the chambers for 
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30 min, and total ambulatory distance and total rearing were measured. Mice were tested at 4 

(baseline) and 12 weeks of age. 

 

Rotarod Test 

Rotarod test was performed over 3 consecutive days at 4 (baseline), 6, and 12 weeks of age. 

Mice were placed on the rotarod and the speed of rotation was gradually and uniformly 

increased 4 to 40 rpm over 300 s. The latency to fall off from the rotarod was recorded up to 

300 s. 

 

Procedural Water T-Maze Test 

To investigate procedural learning and cognitive flexibility, procedural water T-maze test 

was performed using a T-shaped water maze in mice at 9–10 weeks of age (Menalled et al., 

2014; Tanimura et al., 2008). T-maze test was conducted in a room at approximately 15 lux. 

The black Plexiglas T-maze with arms 33 cm high, 10 cm wide, and 49 cm long was filled 

with 25 ± 1°C water colored opaque with non-toxic white tempera paint. A platform was 

submerged approximately 0.5 cm below the water surface at one end of the left or right arm. 

In the acquisition phase, mice were placed in the stem of the water-filled T-maze and were 

allowed to swim to find the hidden escape platform in either the right or left arm. The location 

of the platform was fixed for each mouse. Once a mouse reached the hidden platform, the 
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mouse was allowed to stay there for 10 s. The mice underwent 8 trials per day with an 

approximately 15 min of inter-trial interval. If a mouse reached the platform in 6 or more out 

of 8 trials per day for 2 consecutive days, the mouse met the criteria and the number of days 

required to meet the criteria was counted. Up to 7 days were provided to achieve the criteria 

in the acquisition phase and mice that did not reach the criteria within 7 days were assigned a 

value of 7 (cut-off value). Once the criteria were achieved within 7 days, each mouse was 

advanced to the reversal phase. In the reversal phase, the platform was located in the opposite 

arm for each mouse. The performance in this phase was assessed for 6 consecutive days (8 

trials per day). 

 

Seizure Susceptibility 

Seizures were observed in R6/2 mice during the first 3 days of the acquisition phase when I 

tried to conduct water T-maze test. These seizures were probably caused by water-immersion 

stress because R6/2 mice are known to have increased susceptibility to seizures triggered by 

stress (Mangiarini et al., 1996). The number of observed seizures during those days was 

counted. 

 

Contextual Fear Conditioning (CFC) Test 

To evaluate contextual memory, I conducted a contextual fear conditioning task in mice at 
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11 weeks of age. Training was performed using an automated software package (Coulbourn, 

Whitehall, PA). On the training day, mice were acclimated to the testing chamber for 20 s 

before receiving the first of 5 presentations of 2-s footshock (0.6 mA). The baseline data were 

recorded during the first shock. The second shock was presented 80 s later; the third and 

fourth shocks were presented 120 s after the second and third shock, respectively. The final 

shock was presented 140 s after the fourth shock. Mice were then left in the chambers for 40 s 

and subsequently returned to their home cages. On the test day, mice were placed back in the 

original training context for a 3-min period 24 h later from the training. Contextual memory 

was assessed by measuring a freezing behavior, defined as cessation of all movement with the 

exception of respiration. Freezing behavior was quantified using software, FreezeFrame 

(Actimetrics, Wilmette, IL). 

 

Statistical Analysis 

The statistical significance of differences between two groups was analyzed using Aspin–

Welch test with an alpha level of 0.05. For comparing dose-dependent effects of multiple 

doses of Cmpd-A with the control group, the homogeneity of variances was assessed by 

Bartlett’s test, and then the statistical significance was analyzed using two-tailed Williams’ 

test (Williams, 1971) (for parametric data, P > 0.05 by Bartlett’s test) or two-tailed 

Shirley-Williams test (Shirley, 1977) (for non-parametric data, P ≤ 0.05 by Bartlett’s test). 
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Differences yielding P ≤ 0.05 were considered significant. In the clasping test, I scored "1" or 

"0" when each mouse exhibited full clasping behavior or not, respectively, and the statistical 

significance was analyzed using two-tailed Shirley-Williams test. In the rotarod test, 

differences between vehicle-treated WT mice and vehicle-treated R6/2 mice at each week of 

age were analyzed using a repeated measures analysis of variance (RM-ANOVA) with test 

day as the repeated factor. 
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Results 

Cmpd-A Suppressed BDNF Reduction in the Striatum of R6/2 Mice. 

Cmpd-A dose-dependently increased cAMP and cGMP levels, and upregulated 

phosphorylation of CREB in the mouse striatum (Suzuki et al., 2015). Cmpd-A at 0.5 mg/kg 

(51% striatal PDE10A occupancy) significantly increased cAMP and cGMP levels in the 

mouse striatum after both single and repeated administration (Suzuki et al., 2015; Suzuki et 

al., 2016). Thus, 0.5 mg/kg and a higher dose (5 mg/kg, 91% PDE10A occupancy in mice) of 

Cmpd-A were used in this study. Daily oral administration of vehicle or Cmpd-A at 0.5 mg/kg 

or 5 mg/kg was started from 4.5–5 to 12 weeks of age. Activation of cAMP signaling 

cascades is known to upregulate BDNF expression via phosphorylation of CREB (Tardito et 

al., 2006). I evaluated BDNF protein levels in the striatum and the cortex of mice at 12 weeks 

of age. BDNF levels in the striatum of vehicle-treated R6/2 mice were significantly lower 

than that of vehicle-treated WT mice (P ≤ 0.01; Fig. 7A), and 8 weeks of daily treatment with 

Cmpd-A significantly and dose-dependently suppressed the reduction of BDNF levels in R6/2 

mice (P ≤ 0.05; Fig. 7A). BDNF levels in the cortex of vehicle-treated R6/2 mice were not 

statistically different from those of vehicle-treated WT mice (P = 0.15). Repeated treatment 

with Cmpd-A did not statistically change the BDNF levels in the cortex of R6/2 mice (P = 

0.06, Fig. 7B). 
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Cmpd-A Prevented Striatal Atrophy in R6/2 Mice. 

Significant upregulation of BDNF levels in the striatum by Cmpd-A was expected to 

produce a neuroprotective effect against mutant huntingtin-induced neurodegeneration in 

R6/2 mice. Striatal atrophy in R6/2 mice was assessed by measuring striatal areas in the 

Nissl-stained brain sections of mice at 12 weeks of age (Fig. 8A). The area of the striatum was 

significantly reduced in brain sections from vehicle-treated R6/2 mice compared with those 

from vehicle-treated WT mice (P ≤ 0.01; Fig. 8B). Repeated treatment with Cmpd-A at 5 

mg/kg/day significantly inhibited the decline of striatal area in R6/2 mice (P ≤ 0.05 at 5 

mg/kg/day; Fig. 8B). This result suggests that Cmpd-A prevents striatal atrophy in R6/2 mice. 

 

Cmpd-A Reduced Seizure Frequency but Did Not Prevent the Suppression of Body 

Weight Gain in R6/2 Mice. 

I assessed effects of repeated treatment with Cmpd-A on general symptoms seen in R6/2 

mice, including the suppression of body weight gain and increased susceptibility to seizures. 

The body weight of vehicle-treated WT mice increased gradually up to 11 weeks of age, 

whereas that of vehicle-treated R6/2 mice reached a plateau at 7 weeks of age (Fig. 9A). At 12 

weeks of age, the body weight of vehicle-treated R6/2 mice was significantly lower than that 

of vehicle-treated WT mice (P ≤ 0.01). Repeated treatment with Cmpd-A did not significantly 

prevent the suppression of body weight gain in R6/2 mice. Seizures were observed in R6/2 
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mice during the first 3 days of the acquisition phase when I tried to conduct water T-maze test 

at 9 weeks of age. These seizures were probably caused by water-immersion stress because 

R6/2 mice are known to have increased susceptibility to seizures triggered by stress 

(Mangiarini et al., 1996). Repeated treatment of Cmpd-A dose-dependently and significantly 

suppressed seizure frequency in R6/2 mice (P ≤ 0.05 at 5 mg/kg/day; Fig. 9B). 

 

Cmpd-A Prevented Motor Deficits in R6/2 Mice. 

To evaluate the effects of Cmpd-A on motor functions in R6/2 mice, I assessed the 

development of a clasping behavior and performed open field test and rotarod test. The foot 

clasping, an abnormal posturing of the hind limb during the tail suspension (Nguyen et al., 

2005), is a cardinal phenotype in R6/2 mice (Mangiarini et al., 1996). I assessed foot clasping 

behavior weekly from 5 to 12 weeks of age. Vehicle-treated R6/2 mice, but not WT mice, 

exhibited clasping behavior after 8 weeks of age (Fig. 10A). Cmpd-A at 5 mg/kg/day tended 

to decrease the percentage of mice exhibiting clasping behavior at 10 and 11 weeks of age (P 

= 0.07 and 0.10, respectively), although the difference did not reach statistical significance 

(Fig. 10A). In open field test, vehicle-treated R6/2 mice showed significant decreases of total 

distance traveled and rearing frequency compared with vehicle-treated WT mice at 12 weeks 

of age (Fig. 10B and 10C). Repeated treatment with Cmpd-A dose-dependently inhibited the 

decrease of total distance traveled and rearing frequency (P ≤ 0.05 at 5 mg/kg/day; Fig. 10B 
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and 9C). In rotarod test, R6/2 mice exhibited decrease of latency to fall off from the rotarod at 

6 and 12 weeks of age, indicating the deficit in motor coordination (Fig. 10D). RM-ANOVA 

between WT and vehicle-treated R6/2 mice at each week of age showed significant effects of 

genotype at 6 and 12 weeks of age (P ≤ 0.01). Repeated treatment with Cmpd-A did not 

prevent this deficit under these experimental conditions (Fig. 10D). These results suggest that 

in R6/2 mice, Cmpd-A prevents the deficits in motor functions, including the development of 

clasping behavior and the decreased activities in open field, but not the deficits in motor 

coordination on rotarod. 

 

Cmpd-A Prevented Procedural Learning Deficits in Procedural Water T-Maze Test in 

R6/2 Mice. 

To assess the efficacy of Cmpd-A for cognitive impairments in R6/2 mice, I conducted 

procedural water T-maze test at 9 to 10 weeks of age. In this test, procedural learning and 

cognitive flexibility can be evaluated in the acquisition and reversal phase, respectively 

(Tanimura et al., 2008). This task is especially useful in assessing cognitive function in 

animals with motor impairments since the accuracy of their “choices” can be measured 

independently of their latency of escape, which may be perturbed by poor swimming 

performance (Melief et al., 2015). Vehicle-treated R6/2 mice needed more days to reach the 

criteria than vehicle-treated WT mice in the acquisition phase, indicating impaired procedural 
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learning in R6/2 mice (P ≤ 0.01; Fig. 11A). Repeated treatment with Cmpd-A 

dose-dependently and significantly reduced the numbers of days required to meet the criteria 

in R6/2 mice, suggesting the partial improvement in procedural learning by a high dose of 

Cmpd-A (P ≤ 0.05 at 5 mg/kg/day; Fig. 11A). 

Once the criteria were achieved within 7 days, the animals progressed to the reversal phase 

on an individual basis to characterize their cognitive flexibility. Eleven mice in each R6/2 

mice group did not reach the criteria even after 7 days of acquisition phase and therefore were 

not evaluated in the reversal phase. On day 1 in the reversal phase, starting performance was 

different between groups. To assess the improvement in performance during the reversal 

phase, correct choice percentages on the latter half of this phase (days 4 to 6) were averaged 

and normalized by those on day 1. These values were represented as normalized correct 

choice percentages. The normalized correct choice percentages were significantly lower in 

R6/2 mice than WT mice in the reversal phase, suggesting impaired cognitive flexibility in 

R6/2 mice (P ≤ 0.05; Fig. 11B). Repeated administration of Cmpd-A tended to increase the 

normalized correct choice percentages, although the effect did not reach statistical 

significance (P = 0.09 at 5 mg/kg/day; Fig. 11B). These results suggest that the high dose of 

Cmpd-A (5 mg/kg/day) partially prevents procedural learning deficits, whereas it does not 

have significant effects on the impairments of cognitive flexibility in R6/2 mice. 
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Cmpd-A Did Not Prevent Contextual Memory Deficits in CFC Test in R6/2 Mice. 

To evaluate effects of Cmpd-A on contextual memory deficits in R6/2 mice, I conducted 

CFC test at 11 weeks of age. At the contextual phase 24 h after conditioning session, freezing 

behavior was significantly decreased in vehicle-treated R6/2 mice compared with 

vehicle-treated WT mice, indicating severe impairment of associative learning in R6/2 mice 

(P ≤ 0.01; Fig. 12). Repeated administration of Cmpd-A did not increase the freezing time in 

R6/2 mice at the contextual phase. This result suggests that Cmpd-A does not prevent 

contextual memory deficits in R6/2 mice at 11 weeks of age. 
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Discussion 

Indirect pathway MSNs appear to be more vulnerable than direct pathway MSNs in 

patients with HD (Galvan et al., 2012). These differences in MSN vulnerability may provide 

unique opportunities in the future treatment of HD. Compared with other PDE10A inhibitors 

such as MP-10 and compound 1, Cmpd-A with a faster off-rate property activates the indirect 

pathway MSNs to a similar extent, whereas it partially activates the direct pathway MSNs 

(Suzuki et al., 2016). This activation pattern of MSNs by Cmpd-A may protect MSNs in both 

pathways from neurotoxic effects of mutant huntingtin without inducing unbalanced 

activation of these neural pathways. I evaluated the effects of Cmpd-A on striatal 

neurodegeneration and behavioral deficits in the R6/2 mouse model of HD. The results were 

summarized and compared with the reported effects of TP-10 (Table 4). 

BDNF plays a critical role in activity and survival of MSNs (Choi et al., 2009). Striatal 

BDNF levels were decreased in R6/2 mice, and repeated treatment with Cmpd-A at 5 

mg/kg/day almost completely prevented this reduction of BDNF levels at 12 weeks of age. 

Moreover, Cmpd-A at 5 mg/kg/day significantly prevented striatal atrophy in R6/2 mice at 

this age. These results suggest that the indirect pathway MSN-biased activation pattern by 

Cmpd-A is neuroprotective in the striatum of R6/2 mice. In addition, administration of 

Cmpd-A prevented the development of clasping behavior and deficits in motor functions in 

the open field, suggesting the prevention of disease progression in R6/2 mice. Cmpd-A did 
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not prevent the progressive deficit in motor coordination in rotarod test under these 

experimental conditions. Further studies would be needed but the impairment of motor 

coordination may be due to some functional deficits of the surviving MSNs, other brain 

regions, or peripheral regions. 

The striatum and cortex are highly connected via neural circuitry (Haber, 2003; Simpson et 

al., 2010), and this connectivity of the corticostriatal circuit enables sensory inputs to be 

associated with the output functions such as motor and cognitive responses, including 

procedural learning and cognitive flexibility (Tanimura et al., 2008). Pharmacological 

magnetic resonance imaging and electroencephalography studies suggest that Cmpd-A likely 

modulates cortical activity through cortical-striatal-thalamic circuits (Tomimatsu et al., 2016). 

Cmpd-A at 0.3 mg/kg improved cognitive functions in several rodent models (Shiraishi et al., 

2016). Therefore, in addition to neuroprotective effects of Cmpd-A, modulation of cortical 

functions through the corticostriatal circuit may also contribute to the improvement of 

cognitive function of R6/2 mice in the procedural water T-maze test. Cmpd-A did not prevent 

the deficit in contextual memory in R6/2 mice in CFC test at 11 weeks of age. The 

hippocampus plays an important role in the formation of contextual memory (Ramirez et al., 

2013). Autoradiography study using rat brain sections suggests that the PDE10A expression 

level in the hippocampus is quite low: 40-fold lower levels than that in the striatum (Harada et 

al., 2015a). In addition, acute treatment with Cmpd-A did not increase cAMP and pCREB 
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levels in the mouse hippocampus (Suzuki et al., 2015). Thus, Cmpd-A does not show 

significant improvement in contextual memory deficits in CFC test in R6/2 mice. 

R6/2 mice are known to develop a tremor that worsens under stress and increases 

susceptibility to seizures (Cepeda-Prado et al., 2012; Mangiarini et al., 1996). The seizures 

observed in R6/2 mice during the procedural water T-maze test were probably triggered by the 

stress of water immersion. Intriguingly, Cmpd-A dose-dependently decreased seizure 

frequency. HD patients with more than 60 CAG repeats are afflicted by early and more 

aggressive pathologies, including myoclonic seizures, which are refractory to standard 

antiepileptic medications (Naydenov et al., 2014). Cmpd-A could also have a potential 

therapeutic effect on myoclonic seizures in severe HD patients. 

Cmpd-A did not prevent the suppression of body weight gain in R6/2 mice. TP-10 also 

showed no effects on it in R6/2 mice (Giampà et al., 2010). Although the underlying 

mechanism of the suppression of body weight gain in mouse models of HD and in patients 

with HD remains unclear, peripheral effects of mutant huntingtin including wasting of skeletal 

muscle and adipose tissue are hypothesized (van der Burg et al., 2009). PDE10A is selectively 

expressed in MSNs of the striatum; thus, if the suppression of body weight gain were due to 

peripheral effects of mutant huntingtin it would be reasonable that selective inhibition of 

PDE10A would have low impact on the suppression of body weight gain by mutant huntingtin 

in R6/2 mice. 
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Cmpd-A did not prevent the progressive deficit in motor coordination in a rotarod test 

under the present experimental conditions, whereas TP-10 was reported to significantly 

prevent the decline in rotarod performance in R6/2 mice (Giampà et al., 2010). Although the 

precise reasons for this discrepancy remain unclear, differences in experimental conditions 

could possibly influence the pharmacological effects of the two compounds: animal 

husbandry and the acceleration and the maximum speed of rotarod are not consistent with 

those in TP-10 study. In line with this speculation, coenzyme Q10 and minocycline, potential 

drug candidates for the treatment of HD, produced conflicting results regarding their efficacy 

in rotarod test in R6/2 mice at least partially due to animal husbandry and testing protocols 

(Menalled et al., 2010). To further investigate the differences of effects on impairment in 

motor coordination between Cmpd-A and TP-10, a direct comparison study under same 

experimental conditions is needed. 

Some current antipsychotics with dopamine D2 receptor antagonistic activity such as 

haloperidol and fluphenazine are commonly used to suppress chorea in HD by reducing 

involuntary movements through the activation of the indirect pathway (Bonelli and Wenning, 

2006; Giménez-Roldán and Mateo, 1989). PDE10A inhibitors would also be expected to 

suppress chorea via PDE10A inhibition in the indirect pathway. However, PDE10A inhibitors 

activate both direct and indirect MSN pathways, and these pathways are considered to have 

competing effects on motor functions. In fact, a cataleptic response induced by activation of 
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the indirect pathway by haloperidol was canceled by excessive activation of the direct 

pathway by a D1 receptor agonist SKF82958 in rats (Suzuki et al., 2015). Moreover, several 

reports have suggested that excessive activation of the direct pathway MSNs is involved in 

the production of dystonia, one of the major clinical features of HD (Burbaud, 2012; Janavs 

and Aminoff, 1998; Louis et al., 1999). It is not known whether the indirect pathway 

MSN-biased activation pattern by Cmpd-A would translate to therapeutic benefit in humans. 

Further preclinical and clinical studies are worth conducting to investigate pharmacological 

and tolerability profiles of Cmpd-A. 

In this study, I used R6/2 mouse, a fragment Tg model, to evaluate the potential of Cmpd-A 

on HD. The R6/2 mouse is a widely used mouse model of HD for a preclinical study, because 

this fragment Tg model has a robust phenotype with an early onset, rapidly progressive 

neurodegeneration, weight loss, and motor and cognitive deficits (Pouladi et al., 2013). 

However, there are also some caveats to the use of fragment Tg models to determine the 

preclinical efficacy of potential therapeutic candidates: widespread and relatively nonselective 

neuropathology, and/or a too rapid disease progression which may reduce the ability to detect 

the efficacy of a test compound (William Yang and Gray, 2011). Knock-in mouse models, 

such as CAG140, are thought to possess better face and construct validity compared with 

fragment Tg models because knock-in mouse models have a slow progression of phenotype, 

have a similar neuropathology to that of HD, and are genetically more representative of the 
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human disease under the endogenous huntingtin promoter (Ferrante, 2009; Menalled et al., 

2003). Thus, knock-in mouse models are considered to be a more faithful genetic model of 

the human condition. Although a pharmacological evaluation using knock-in mouse models 

with a slower phenotype progression will require longer study periods than fragment Tg 

models, further study using knock-in mouse models may provide additional information about 

the therapeutic potential of Cmpd-A in HD. 

In summary, these results suggest that Cmpd-A with the indirect pathway MSN-biased 

activation pattern protects striatal neurons from degeneration and ameliorates behavioral 

deficits in the R6/2 mouse model of HD. 
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General Discussion  
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In HD, striatal MSNs are known to be the most vulnerable to the neurodegeneration 

(Vonsattel and DiFiglia, 1998). MSNs constitute two distinct output pathways from the 

striatum: the direct pathway projecting to SN, and the indirect pathway projecting to GP 

(Graybiel, 1990, 2000), and both MSNs undergo neurodegeneration in HD (Vonsattel and 

DiFiglia, 1998). Impairment in cAMP-CREB signaling pathway caused by mHTT aggregates 

has been hypothesized to play a critical role in HD pathology (Choi et al., 2009; Gines et al., 

2003; Mantamadiotis et al., 2002; Nucifora et al., 2001; Sugars and Rubinsztein, 2003; 

Wyttenbach et al., 2001). PDE10A is selectively expressed in both direct and indirect pathway 

MSNs and degrades cAMP (Bender and Beavo, 2006; Coskran et al., 2006; Fujishige et al., 

1999; Seeger et al., 2003). Thus, PDE10A inhibition would be a promising strategy to treat 

HD symptoms. To test this hypothesis, I obtained Cmpd-A, a tool inhibitor specific for 

PDE10A under physiological condition (part 1), and evaluated effects of PDE10A-specific 

inhibition on various phenotypes in HD model R6/2 mice using Cmpd-A (part 2). 

Cmpd-A was identified as a potent and specific inhibitor for hPDE10A in vitro. Binding 

and functional activities of compounds for recombinant proteins are potentially different from 

those for proteins under physiological conditions due to differences in protein folding and/or 

binding partners. Therefore, I also checked binding activity and selectivity of Cmpd-A for 

naive PDE10A in rodents. By using in vitro ARG technique, I confirmed high binding affinity 

and high selectivity of Cmpd-A for native PDE10A protein of rats. In vivo ARG study using 
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rats also showed that orally administered Cmpd-A can readily penetrate into the brain and 

selectively bind to PDE10A protein in vivo. Here, I confirmed that Cmpd-A is an ideal tool to 

evaluate biological effects of PDE10A-specific inhibition under physiological conditions. 

Although both MSNs undergo degeneration in HD, particularly indirect pathway MSNs are 

known to be more vulnerable to degeneration compared to direct pathway MSNs (Galvan et 

al., 2012; Glass et al., 2000; Reiner et al., 1988; Sapp et al., 1995). Given that overactivation 

of the direct pathway is suggested to be involved in the production of dystonia, one of the 

major clinical features of HD (Burbaud, 2012; Janavs and Aminoff, 1998; Louis et al., 1999), 

activation of both MSNs without excessive activation of direct pathway MSNs seems to be 

beneficial for the treatment of HD symptoms. Dopamine D1 receptor, predominantly 

expressed in direct pathway MSNs, is a G protein-coupled receptor (GPCR) coupled with Gs 

protein and increases cAMP when activated, while D2 receptor, predominantly expressed in 

indirect pathway MSNs, is a GPCR coupled with Gi protein and decreases cAMP when 

stimulated (Missale et al., 1998; Neve et al., 2004). Therefore, cAMP concentration in direct 

pathway MSNs may be higher than that in indirect pathway MSNs under the basal conditions. 

Indeed, previous immunohistochemical study showed that more than 90% of cAMP-positive 

cells were substance P (a marker of direct pathway MSNs)-positive in the rat striatum (Suzuki 

et al., 2016). Enzyme substrates are degraded at the binding pockets in the catalytic domains 

of enzymes. Competitive enzyme inhibitors prevent substrate degradation by binding 
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competition with the substrates at the binding pockets. Thus, inhibitory effects of competitive 

enzyme inhibitors depend on concentrations of substrates and inhibitors, and dissociation 

rates (off-rates) of inhibitors. In general, competitive enzyme inhibitors with faster off-rates 

are more sensitive to binding competition with the enzyme substrates compared to inhibitors 

with slower off-rate especially at higher concentrations of substrates. In the case of PDE10A 

inhibitors, compared with slower off-rate ones, faster off-rate ones may inhibit PDE10A 

equally in indirect pathway MSNs but more weakly in direct pathway MSNs due to the higher 

cAMP levels in direct pathway MSNs than indirect pathway MSNs. In vitro ARG study using 

rat brain slices revealed that Cmpd-A dissociated from PDE10A clearly faster than MP-10 

(Suzuki et al., 2016). Moreover, analysis of pathway-specific markers showed that compared 

with MP-10, Cmpd-A equally activated indirect pathway MSNs, while it partially activated 

direct pathway MSNs (Suzuki et al., 2016). Thus, Cmpd-A could be an ideal tool to produce a 

balanced activation of both MSNs without excess activation of direct pathway MSNs (indirect 

pathway MSN-biased activation) by specific and unique PDE10A inhibition in vivo. 

To examine the therapeutic potential of the balanced activation of both direct and indirect 

pathway MSNs based on specific and unique PDE10A inhibition for the treatment of HD, 

effects of repeated treatment with Cmpd-A on various phenotypes of HD model R6/2 mice 

were investigated. Compared to WT mice, R6/2 mice showed reduced BDNF levels in the 

striatum, reduction of striatal areas, higher frequency of stress (water immersion)-induced 
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seizures, lower body weight. Regarding motor functions, R6/2 mice exhibited progressive 

clasping behavior, decline of locomotor activity in the open field, deficits in motor 

co-ordination in the rotarod test. As for cognitive functions, deficits in procedural learning 

and cognitive flexibility in the procedural water T-maze task, and a severe impairment of 

associative memory in the CFC test were observed in R6/2 mice. Repeated treatment with 

Cmpd-A dose-dependently prevented the reduction of striatal BDNF levels and striatal 

atrophy in R6/2 mice. Because BDNF is known to play a critical role in activity and survival 

of MSNs (Choi et al., 2009; Zuccato and Cattaneo, 2007), prevention of decrease in striatal 

BDNF levels might contribute to the protection of MSNs from degeneration. Cmpd-A 

reduced the increased frequency of stress-induced seizures, and prevented the progression of 

several deficits such as development of clasping behavior and decline of locomotion, and 

improved the procedural learning impairment in R6/2 mice. These findings demonstrate that 

the balanced activation of both MSNs by specific and unique inhibition of PDE10A improves 

several phenotypes in R6/2 mice. 

Recently, Pfizer announced that in a clinical study named 'Amaryllis' trial, PF-02545920 

(MP-10) failed to improve HD symptoms (ClinicaTrials.gov Identifier: NCT02197130). It 

was also recently reported that MP-10 did not affect the worsened neurological index, but 

modestly improved striatal volume measured by in vivo MRI and some motor deficits in Q175 

knock-in mouse model for HD (Beaumont et al., 2016). As mentioned above, MP-10 has a 
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slower off-rate property and elicits excess activation of direct pathway MSNs compared to 

Cmpd-A. Although HD model animals available to date may not completely replicate the HD 

pathology, head-to-head comparison between Cmpd-A and MP-10 using these models will 

further provide some insight into the therapeutic potential of different modes of PDE10A 

inhibition for HD symptoms. Nevertheless, the current study suggests that the balanced 

activation of both direct and indirect pathway MSNs based on specific and unique inhibition 

of PDE10A has some potential to improve HD symptoms. Furthermore, the findings in the 

present study will help us better understand the biological function of PDE10A. 

  



68 
 

 

 

 

 

 

Acknowledgements  



69 
 

I am most grateful to Professor Kazuto Nakada, University of Tsukuba, for his continuous 

guidance and valuable discussions through my doctoral program. I am also grateful to 

Professor Tomoki Chiba, Professor Kenji Miura, and Associate Professor Hidekazu 

Kuwayama, University of Tsukuba, for their helpful discussion on my doctoral dissertation. 

I wish to express our sincere thanks to Hirobumi Suzuki, Takeda Pharmaceutical Company 

Limited for experimental assistance, and to Noriyasu Sano, Takeda Pharmaceutical Company 

Limited for technical instruction of the PDE10A occupancy study. I also thank Jun Kunitomo, 

Takeda Pharmaceutical Company Limited for providing chemical compounds. 

I thank PsychoGenics Inc. for conducting behavioral experiments, Drug Metabolism and 

Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited for 

analysis of Cmpd-A exposure and PDE10A occupancy, and Motohisa Suzuki, Takeda 

Pharmaceutical Company Limited for the blind evaluation of histological data. 

  



70 
 

 

 

 

 

 

References  



71 
 

Akar, F., Mutlu, O., Celikyurt, I.K., Bektas, E., Tanyeri, M.H., et al. (2014). Effects of 

Zaprinast and Rolipram on Olfactory and Visual Memory in the Social Transmission of Food 

Preference and Novel Object Recognition Tests in Mice. Drug Target Insights 8, 23-29. 

Beaumont, V., Zhong, S., Lin, H., Xu, W., Bradaia, A., et al. (2016). Phosphodiesterase 

10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington's Disease Models. 

Neuron. 

Bender, A.T., and Beavo, J.A. (2006). Cyclic nucleotide phosphodiesterases: molecular 

regulation to clinical use. Pharmacol Rev 58, 488-520. 

Bonelli, R.M., and Wenning, G.K. (2006). Pharmacological management of Huntington's 

disease: an evidence-based review. Curr Pharm Des 12, 2701-2720. 

Burbaud, P. (2012). Dystonia Pathophysiology: A Critical Review, in Dystonia: The Many 

facets, R. Rosales, ed. (InTech), pp. 199-220. 

Cepeda-Prado, E., Popp, S., Khan, U., Stefanov, D., Rodriguez, J., et al. (2012). R6/2 

Huntington's disease mice develop early and progressive abnormal brain metabolism and 

seizures. J Neurosci 32, 6456-6467. 

Chernet, E., Martin, L.J., Li, D., Need, A.B., Barth, V.N., et al. (2005). Use of LC/MS to 

assess brain tracer distribution in preclinical, in vivo receptor occupancy studies: dopamine 

D2, serotonin 2A and NK-1 receptors as examples. Life Sci 78, 340-346. 

Choi, Y.S., Lee, B., Cho, H.Y., Reyes, I.B., Pu, X.A., et al. (2009). CREB is a key regulator 



72 
 

of striatal vulnerability in chemical and genetic models of Huntington's disease. Neurobiol 

Dis 36, 259-268. 

Coskran, T.M., Morton, D., Menniti, F.S., Adamowicz, W.O., Kleiman, R.J., et al. (2006). 

Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. 

J Histochem Cytochem 54, 1205-1213. 

Cote, R.H. (2004). Characteristics of photoreceptor PDE (PDE6): similarities and differences 

to PDE5. Int J Impot Res 16 Suppl 1, S28-33. 

Crook, Z.R., and Housman, D.E. (2012). Dysregulation of dopamine receptor D2 as a 

sensitive measure for Huntington disease pathology in model mice. Proc Natl Acad Sci U S A 

109, 7487-7492. 

Ferrante, R.J. (2009). Mouse models of Huntington's disease and methodological 

considerations for therapeutic trials. Biochim Biophys Acta 1792, 506-520. 

Frank, S. (2014). Treatment of Huntington's disease. Neurotherapeutics 11, 153-160. 

Fujishige, K., Kotera, J., Michibata, H., Yuasa, K., Takebayashi, S., et al. (1999). Cloning 

and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and 

cGMP (PDE10A). J Biol Chem 274, 18438-18445. 

Galvan, L., Andre, V.M., Wang, E.A., Cepeda, C., and Levine, M.S. (2012). Functional 

Differences Between Direct and Indirect Striatal Output Pathways in Huntington's Disease. J 

Huntingtons Dis 1, 17-25. 



73 
 

Giampà, C., Laurenti, D., Anzilotti, S., Bernardi, G., Menniti, F.S., and Fusco, F.R. 

(2010). Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and 

cortical pathology in R6/2 mouse model of Huntington's disease. PLoS One 5, e13417. 

Giampà, C., Patassini, S., Borreca, A., Laurenti, D., Marullo, F., et al. (2009). 

Phosphodiesterase 10 inhibition reduces striatal excitotoxicity in the quinolinic acid model of 

Huntington's disease. Neurobiol Dis 34, 450-456. 

Giménez-Roldán, S., and Mateo, D. (1989). [Huntington disease: tetrabenazine compared to 

haloperidol in the reduction of involuntary movements]. Neurologia 4, 282-287. 

Gines, S., Seong, I.S., Fossale, E., Ivanova, E., Trettel, F., et al. (2003). Specific 

progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's 

disease knock-in mice. Hum Mol Genet 12, 497-508. 

Glass, M., Dragunow, M., and Faull, R.L. (2000). The pattern of neurodegeneration in 

Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and 

GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. 

Neuroscience 97, 505-519. 

Godinho, B.M., Malhotra, M., O'Driscoll, C.M., and Cryan, J.F. (2014). Delivering a 

disease-modifying treatment for Huntington's disease. Drug Discov Today. 

Grauer, S.M., Pulito, V.L., Navarra, R.L., Kelly, M.P., Kelley, C., et al. (2009). 

Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and 



74 
 

negative symptoms of schizophrenia. J Pharmacol Exp Ther 331, 574-590. 

Graybiel, A.M. (1990). Neurotransmitters and neuromodulators in the basal ganglia. Trends 

Neurosci 13, 244-254. 

Graybiel, A.M. (2000). The basal ganglia. Curr Biol 10, R509-511. 

Haber, S.N. (2003). The primate basal ganglia: parallel and integrative networks. J Chem 

Neuroanat 26, 317-330. 

Harada, A., Suzuki, K., Kamiguchi, N., Miyamoto, M., Tohyama, K., et al. (2015a). 

Characterization of Binding and Inhibitory Properties of TAK-063, a Novel 

Phosphodiesterase 10A Inhibitor. PLoS One 10, e0122197. 

Harada, A., Suzuki, K., Miura, S., Hasui, T., Kamiguchi, N., et al. (2015b). 

Characterization of the binding properties of T-773 as a PET radioligand for 

phosphodiesterase 10A. Nucl Med Biol 42, 146-154. 

Janavs, J.L., and Aminoff, M.J. (1998). Dystonia and chorea in acquired systemic disorders. 

J Neurol Neurosurg Psychiatry 65, 436-445. 

Karam, C.S., Ballon, J.S., Bivens, N.M., Freyberg, Z., Girgis, R.R., et al. (2010). 

Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends 

Pharmacol Sci 31, 381-390. 

Kehler, J., and Nielsen, J. (2011). PDE10A inhibitors: novel therapeutic drugs for 

schizophrenia. Curr Pharm Des 17, 137-150. 



75 
 

Kleiman, R.J., Kimmel, L.H., Bove, S.E., Lanz, T.A., Harms, J.F., et al. (2011). Chronic 

suppression of phosphodiesterase 10A alters striatal expression of genes responsible for 

neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in 

Huntington's disease. J Pharmacol Exp Ther 336, 64-76. 

Krebs, M., Leopold, K., Hinzpeter, A., and Schaefer, M. (2006). Current schizophrenia 

drugs: efficacy and side effects. Expert Opin Pharmacother 7, 1005-1016. 

Kunitomo, J., Yoshikawa, M., Fushimi, M., Kawada, A., Quinn, J.F., et al. (2014). 

Discovery of 

1-[2-Fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyri 

dazin-4(1H)-one (TAK-063), a Highly Potent, Selective, and Orally Active Phosphodiesterase 

10A (PDE10A) Inhibitor. J Med Chem 57, 9627-9643. 

Lüesse, H.G., Schiefer, J., Spruenken, A., Puls, C., Block, F., and Kosinski, C.M. (2001). 

Evaluation of R6/2 HD transgenic mice for therapeutic studies in Huntington's disease: 

behavioral testing and impact of diabetes mellitus. Behav Brain Res 126, 185-195. 

Lei, W., Jiao, Y., Del Mar, N., and Reiner, A. (2004). Evidence for differential cortical input 

to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24, 

8289-8299. 

Louis, E.D., Lee, P., Quinn, L., and Marder, K. (1999). Dystonia in Huntington's disease: 

Prevalence and clinical characteristics. Mov Disord 14, 95-101. 



76 
 

Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., et al. (1996). Exon 1 of 

the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological 

phenotype in transgenic mice. Cell 87, 493-506. 

Mantamadiotis, T., Lemberger, T., Bleckmann, S.C., Kern, H., Kretz, O., et al. (2002). 

Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31, 47-54. 

Melief, E.J., Cudaback, E., Jorstad, N.L., Sherfield, E., Postupna, N., et al. (2015). Partial 

depletion of striatal dopamine enhances penetrance of cognitive deficits in a transgenic mouse 

model of Alzheimer's disease. J Neurosci Res 93, 1413-1422. 

Menalled, L.B., Kudwa, A.E., Oakeshott, S., Farrar, A., Paterson, N., et al. (2014). 

Genetic deletion of transglutaminase 2 does not rescue the phenotypic deficits observed in 

R6/2 and zQ175 mouse models of Huntington's disease. PLoS One 9, e99520. 

Menalled, L.B., Patry, M., Ragland, N., Lowden, P.A., Goodman, J., et al. (2010). 

Comprehensive behavioral testing in the R6/2 mouse model of Huntington's disease shows no 

benefit from CoQ10 or minocycline. PLoS One 5, e9793. 

Menalled, L.B., Sison, J.D., Dragatsis, I., Zeitlin, S., and Chesselet, M.F. (2003). Time 

course of early motor and neuropathological anomalies in a knock-in mouse model of 

Huntington's disease with 140 CAG repeats. J Comp Neurol 465, 11-26. 

Menniti, F.S., Chappie, T.A., Humphrey, J.M., and Schmidt, C.J. (2007). 

Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of 



77 
 

schizophrenia. Curr Opin Investig Drugs 8, 54-59. 

Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine 

receptors: from structure to function. Physiol Rev 78, 189-225. 

Mori, F., Pérez-Torres, S., De Caro, R., Porzionato, A., Macchi, V., et al. (2010). The 

human area postrema and other nuclei related to the emetic reflex express cAMP 

phosphodiesterases 4B and 4D. J Chem Neuroanat 40, 36-42. 

Naydenov, A.V., Horne, E.A., Cheah, C.S., Swinney, K., Hsu, K.L., et al. (2014). ABHD6 

blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in 

R6/2 mice. Neuron 83, 361-371. 

Neve, K.A., Seamans, J.K., and Trantham-Davidson, H. (2004). Dopamine receptor 

signaling. J Recept Signal Transduct Res 24, 165-205. 

Nguyen, T., Hamby, A., and Massa, S.M. (2005). Clioquinol down-regulates mutant 

huntingtin expression in vitro and mitigates pathology in a Huntington's disease mouse model. 

Proc Natl Acad Sci U S A 102, 11840-11845. 

Nirogi, R., Kandikere, V., Bhyrapuneni, G., Muddana, N., Saralaya, R., et al. (2012). In 

vivo receptor occupancy assay of histamine H(3) receptor antagonist in rats using 

non-radiolabeled tracer. J Pharmacol Toxicol Methods 65, 115-121. 

Nishi, A., Kuroiwa, M., Miller, D.B., O'Callaghan, J.P., Bateup, H.S., et al. (2008). 

Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. 



78 
 

J Neurosci 28, 10460-10471. 

Norris, P.J., Waldvogel, H.J., Faull, R.L., Love, D.R., and Emson, P.C. (1996). Decreased 

neuronal nitric oxide synthase messenger RNA and somatostatin messenger RNA in the 

striatum of Huntington's disease. Neuroscience 72, 1037-1047. 

Nucifora, F.C., Jr., Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., et al. (2001). 

Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular 

toxicity. Science 291, 2423-2428. 

Padovan-Neto, F.E., Sammut, S., Chakroborty, S., Dec, A.M., Threlfell, S., et al. (2015). 

Facilitation of corticostriatal transmission following pharmacological inhibition of striatal 

phosphodiesterase 10A: role of nitric oxide-soluble guanylyl cyclase-cGMP signaling 

pathways. J Neurosci 35, 5781-5791. 

Paxinos, G., and Franklin, K.B.J. (2001). The mouse brain in stereotaxic coordinates., 2nd 

edn (San Diego: Academic Press). 

Paxinos, G., and Watson, C. (1998). The rat brain in stereotaxic coordinates., 4th edn (San 

Diego: Academic Press). 

Pouladi, M.A., Morton, A.J., and Hayden, M.R. (2013). Choosing an animal model for the 

study of Huntington's disease. Nat Rev Neurosci 14, 708-721. 

Ramirez, S., Tonegawa, S., and Liu, X. (2013). Identification and optogenetic manipulation 

of memory engrams in the hippocampus. Front Behav Neurosci 7, 226. 



79 
 

Reiner, A., Albin, R.L., Anderson, K.D., D'Amato, C.J., Penney, J.B., and Young, A.B. 

(1988). Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad 

Sci U S A 85, 5733-5737. 

Reinius, B., Blunder, M., Brett, F.M., Eriksson, A., Patra, K., et al. (2015). Conditional 

targeting of medium spiny neurons in the striatal matrix. Front Behav Neurosci 9, 71. 

Reneerkens, O.A., Rutten, K., Bollen, E., Hage, T., Blokland, A., et al. (2013). Inhibition 

of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by 

scopolamine or MK-801. Behav Brain Res 236, 16-22. 

Ross, C.A., Aylward, E.H., Wild, E.J., Langbehn, D.R., Long, J.D., et al. (2014). 

Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev 

Neurol 10, 204-216. 

Ross, C.A., and Tabrizi, S.J. (2011). Huntington's disease: from molecular pathogenesis to 

clinical treatment. Lancet Neurol 10, 83-98. 

Rourke, C., Starr, K.R., Reavill, C., Fenwick, S., Deadman, K., and Jones, D.N. (2006). 

Effects of the atypical antipsychotics olanzapine and risperidone on plasma prolactin levels in 

male rats: a comparison with clinical data. Psychopharmacology (Berl) 184, 107-114. 

Sapp, E., Ge, P., Aizawa, H., Bird, E., Penney, J., et al. (1995). Evidence for a preferential 

loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington's 

disease using high resolution image analysis. Neuroscience 64, 397-404. 



80 
 

Scheuing, L., Chiu, C.T., Liao, H.M., Linares, G.R., and Chuang, D.M. (2014). Preclinical 

and clinical investigations of mood stabilizers for Huntington's disease: what have we 

learned? Int J Biol Sci 10, 1024-1038. 

Schmidt, C.J., Chapin, D.S., Cianfrogna, J., Corman, M.L., Hajos, M., et al. (2008). 

Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic 

approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325, 681-690. 

Seeger, T.F., Bartlett, B., Coskran, T.M., Culp, J.S., James, L.C., et al. (2003). 

Immunohistochemical localization of PDE10A in the rat brain. Brain Res 985, 113-126. 

Shiraishi, E., Suzuki, K., Harada, A., Suzuki, N., and Kimura, H. (2016). The 

Phosphodiesterase 10A Selective Inhibitor TAK-063 Improves Cognitive Functions 

Associated with Schizophrenia in Rodent Models. J Pharmacol Exp Ther 356, 587-595. 

Shirley, E. (1977). A non-parametric equivalent of Williams' test for contrasting increasing 

dose levels of a treatment. Biometrics 33, 386-389. 

Simpson, E.H., Kellendonk, C., and Kandel, E. (2010). A possible role for the striatum in 

the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 65, 585-596. 

Siuciak, J.A., Chapin, D.S., Harms, J.F., Lebel, L.A., McCarthy, S.A., et al. (2006). 

Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the 

treatment of psychosis. Neuropharmacology 51, 386-396. 

Slow, E.J., van Raamsdonk, J., Rogers, D., Coleman, S.H., Graham, R.K., et al. (2003). 



81 
 

Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol 

Genet 12, 1555-1567. 

Soderling, S.H., Bayuga, S.J., and Beavo, J.A. (1999). Isolation and characterization of a 

dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci U S A 96, 

7071-7076. 

Sugars, K.L., and Rubinsztein, D.C. (2003). Transcriptional abnormalities in Huntington 

disease. Trends Genet 19, 233-238. 

Suzuki, K., Harada, A., Shiraishi, E., and Kimura, H. (2015). In Vivo Pharmacological 

Characterization of TAK-063, a Potent and Selective Phosphodiesterase 10A Inhibitor with 

Antipsychotic-Like Activity in Rodents. J Pharmacol Exp Ther 352, 471-479. 

Suzuki, K., Harada, A., Suzuki, H., Miyamoto, M., and Kimura, H. (2016). TAK-063, a 

PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides Potent 

Antipsychotic-Like Effects in Multiple Paradigms. Neuropsychopharmacology 41, 

2252-2262. 

Tanimura, Y., Yang, M.C., and Lewis, M.H. (2008). Procedural learning and cognitive 

flexibility in a mouse model of restricted, repetitive behaviour. Behav Brain Res 189, 

250-256. 

Tardito, D., Perez, J., Tiraboschi, E., Musazzi, L., Racagni, G., and Popoli, M. (2006). 

Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms 



82 
 

in the action of antidepressants: a critical overview. Pharmacol Rev 58, 115-134. 

Thakur, T., Sharma, S., Kumar, K., Deshmukh, R., and Sharma, P.L. (2013). 

Neuroprotective role of PDE4 and PDE5 inhibitors in 3-nitropropionic acid induced 

behavioral and biochemical toxicities in rats. Eur J Pharmacol 714, 515-521. 

Threlfell, S., Sammut, S., Menniti, F.S., Schmidt, C.J., and West, A.R. (2009). Inhibition 

of Phosphodiesterase 10A Increases the Responsiveness of Striatal Projection Neurons to 

Cortical Stimulation. J Pharmacol Exp Ther 328, 785-795. 

Tomimatsu, Y., Cash, D., Suzuki, M., Suzuki, K., Bernanos, M., et al. (2016). TAK-063, a 

phosphodiesterase 10A inhibitor, modulates neuronal activity in various brain regions in 

phMRI and EEG studies with and without ketamine challenge. Neuroscience 339, 180-190. 

van der Burg, J.M., Bjorkqvist, M., and Brundin, P. (2009). Beyond the brain: widespread 

pathology in Huntington's disease. Lancet Neurol 8, 765-774. 

Verhoest, P.R., Chapin, D.S., Corman, M., Fonseca, K., Harms, J.F., et al. (2009). 

Discovery of a novel class of phosphodiesterase 10A inhibitors and identification of clinical 

candidate 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline 

(PF-2545920) for the treatment of schizophrenia. J Med Chem 52, 5188-5196. 

Vonsattel, J.P., and DiFiglia, M. (1998). Huntington disease. J Neuropathol Exp Neurol 57, 

369-384. 

Walker, F.O. (2007). Huntington's disease. The Lancet 369, 218-228. 



83 
 

William Yang, X., and Gray, M. (2011). Mouse Models for Validating Preclinical 

Candidates for Huntington's Disease, in Neurobiology of Huntington's Disease: Applications 

to Drug Discovery, D.C. Lo, and R.E. Hughes, eds. (Boca Raton (FL): CRC Press/Taylor & 

Francis Llc.). 

Williams, D.A. (1971). A test for differences between treatment means when several dose 

levels are compared with a zero dose control. Biometrics 27, 103-117. 

Wilson, J.M., Ogden, A.M., Loomis, S., Gilmour, G., Baucum, A.J., 2nd, et al. (2015). 

Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos 

in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 99, 

379-386. 

Wyttenbach, A., Swartz, J., Kita, H., Thykjaer, T., Carmichael, J., et al. (2001). 

Polyglutamine expansions cause decreased CRE-mediated transcription and early gene 

expression changes prior to cell death in an inducible cell model of Huntington's disease. 

Hum Mol Genet 10, 1829-1845. 

Zuccato, C., and Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in 

Huntington's disease. Prog Neurobiol 81, 294-330. 

 

  



84 
 

 

 

 

 

 

Tables  



85 
 

Table 1. Percent inhibition of enzymes by Cmpd-A at 10 µM. 

Enzyme % inhibition 

Acetylcholinesterase 3 

ATPase, Ca„2+, Skeletal Muscle 6 

ATPase, Na+/K+, Heart 8 

Carbonic anhydrase II 6 

Cyclooxygenase-1 (COX-1) 26 

Cyclooxygenase-2 (COX-2) 6 

EGF receptor tyrosine kinase 5 

HMG-CoA reductase 11 

5-Lipoxygenase (5-LO) 3 

Monoamine oxidase A (MAO-A) 16 

Monoamine oxidase B (MAO-B) 10 

Nitric oxide synthase, inducible (iNOS) 1 

Nitric oxide synthase, neuronal (nNOS) 12 

Peptidase, factor Xa 1 

Matrix metalloproteinase-1 (MMP-1) 9 

Matrix metalloproteinase-7 (MMP-7) 7 

Matrix metalloproteinase-13 (MMP-13) 11 
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Phosphodiesterase PDE3 23 

Phosphodiesterase PDE4 50 

Phosphodiesterase PDE5 44 

Phosphodiesterase PDE6 20 

Phosphodiesterase PDE10A1 101 

Protein kinase A (PKA), nonselective −3 

Protein kinase C (PKC), nonselective 7 

Steroid 5α-reductase 16 

Xanthine oxidase −3 

EGF, epidermal growth factor; HMG CoA, 3-hydroxy-3-methyl-glutaryl coenzyme A. 

Negative value of percent inhibition indicates activation of enzyme activity. 
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Table 2. Percent inhibition of receptors by Cmpd-A at 10 µM. 

Receptor % inhibition 

Adenosine A1 11 

Adenosine A2A −4 

Adenosine A2B 0 

Adrenergic α1, non-selective 14 

Adrenergic α2, non-selective −2 

Adrenergic β1 6 

Adrenergic β2 6 

Adrenergic β3 1 

Androgen (testosterone) 6 

Angiotensin AT1 13 

Angiotensin AT2 −4 

Bradykinin B1 11 

Bradykinin B2 −2 

Calcium channel L-type, benzothiazepine 3 

Calcium channel L-type, dihydropyridine 0 

Calcium channel L-type, phenylalkylamine 4 

Calcium channel N-type −3 
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Cannabinoid CB1 3 

Cholecystokinin CCK1 (CCKA) 5 

Cholecystokinin CCK2 (CCKB) 1 

Dopamine D1 8 

Dopamine D2L −7 

Dopamine D3 −1 

Dopamine D4.2 7 

Dopamine transporter (DAT) 11 

Estrogen ERα 3 

GABAA, chloride channel 12 

GABAA, flunitrazepam, central −3 

GABAA, muscimol, central 0 

GABAA, non-selective 7 

GABAB1A −18 

GABAB1B −13 

GABA transporter 11 

Glucocorticoid −5 

Glutamate, AMPA −6 

Glutamate, kainate 5 
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Glutamate, NMDA 24 

Glutamate, NMDA, glycine 11 

Glutamate, NMDA, phencyclidine 0 

Glycine, strychninee −1 

Growth hormone secretagogue (ghrelin) 1 

Histamine H1 −8 

Histamine H2 −5 

Imidazoline I2, central 7 

Insulin −8 

Muscarinic M1 4 

Muscarinic M2 −10 

Muscarinic M3 −1 

Nicotinic acetylcholine 1 

Norepinephrine transporter (NET) 15 

Opiate δ (OP1, DOP) 16 

Opiate κ (OP2, KOP) 5 

Opiate μ (OP3, MOP) −1 

Potassium channel (KATP) 12 

Potassium channel (SKCA) 5 
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Progesterone PR-B 0 

Prostanoid / thromboxane A2 (TP) 13 

Serotonin 5-HT1, non-selective 15 

Serotonin 5-HT2, non-selective 23 

Serotonin 5-HT2B 14 

Serotonin 5-HT3 −3 

Serotonin 5-HT4 −1 

Serotonin transporter (SERT) −5 

Sigma, non-selective −9 

Sodium channel, Site 2 15 

Tachykinin NK1 −2 

Tachykinin NK2 0 

Tachykinin NK3 −11 

Vasopressin V1A 4 

Vasopressin V2 −2 

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, 

N-methyl-D-aspartic acid. Negative value of percent inhibition indicates stimulation of 

receptor activity. 
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Table 3. Concentration of T-773 in the rat brain and displacement by Cmpd-A. 

 
Dose of Cmpd-A (mg/kg, p.o.) 

Brain area 0 0.03 0.1 0.3 1 3 10 

Striatum 
26.1 ± 

2.6 

28.5 ± 

2.0 

22.2 ± 

0.9 
15.9 

12.9 ± 

0.9 
8.9 ± 0.4 5.3 ± 0.4 

Cerebellum 5.0 ± 0.4 4.4 ± 0.4 3.6 ± 0.2 2.8 3.2 ± 0.4 2.8 ± 0.1 2.9 ± 0.6 

The data (ng/g tissue) are represented as mean (n=2 at 0.3 mg/kg) or mean ± SEM (n=3).
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Table 4. Comparison of the effects on the phenotypes of R6/2 mice between Cmpd-A and 

TP-10. 

  Effect of test compound 

  Cmpd-A TP-10 

Neural 

protection and 

brain pathology 

Reduction of BDNF levels Suppression 

(striatum) 

Suppression 

(striatum and cortex) 

Striatal atrophy Prevention Prevention 

Formation of NIIs NT Reduction 

Microglial activation NT Inhibition 

General 

behavior 

Loss of righting reflex 

(survival) 

NT Inhibition 

Suppression of body weight 

gain 

No effect No effect 

Increase in seizure frequency Suppression NT 

Motor function Development of a clasping 

behavior 

Prevention Prevention 

Decrease in motor activity 

(open field test) 

Inhibition Inhibition 

Deficit in motor coordination No effect Improvement 



93 
 

(rotarod test) 

Cognitive 

function 

Deficits in procedural learning 

and cognitive flexibility 

(water T-maze test) 

Improvement 

(procedural learning) 

NT 

Deficit in contextual memory 

(contextual fear conditioning 

test) 

No effect NT 

The results of TP-10 are reported by Giampà et al. (2010). 

BDNF, brain-derived neurotrophic factor; NIIs, neuronal intranuclear inclusions; NT, not 

tested. 
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Figure 1. Schematic illustration of the therapeutic strategy for Huntington’s disease 

(HD) by phosphodiesterase 10A (PDE10A) inhibition. In striatal medium spiny neurons 

(MSNs) of patients with HD, cyclic adenosine monophosphate (cAMP)-cAMP response 

element-binding protein (CREB) signaling could be impaired by mutant Huntingtin (mHtt) 

aggregates. This has been hypothesized to play a critical role in HD pathology. PDE10A is 

selectively expressed in mammalian MSNs and degrades cAMP, thus PDE10A inhibition can 

enhance cAMP-CREB signaling selectively in MSNs. Therefore, PDE10A inhibition could be 

a promising therapeutic strategy for HD. Here, I demonstrate that specific inhibition of 

PDE10A by Cmpd-A suppresses reduction of striatal brain-derived neurotrophic factor 

(BDNF), prevents striatal atrophy, and improves several phenotypes in HD model R6/2 mice.  

CREB BDNF

cAMP

MSNs

Protection from
striatal atrophy

Selective expression of PDE10A
PDE10A
inhibitor PDE10A

mHtt
aggregates

The brains of
patients with HD

Striatum
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Figure 2. In vitro autoradiography (ARG) using [3H]Cmpd-A in sagittal rat brain 

sections. The chemical structure of [3H]Cmpd-A (A). Sections adjacent to those used for in 

vitro ARG of [3H]Cmpd-A, were stained with hematoxylin and eosin (B). The autoradiogram 

shows the high accumulation of [3H]Cmpd-A in the caudate putamen (CPu; white arrow), 

nucleus accumbens (NAc; black arrow), globus pallidus (GP; white arrow head), substantia 

nigra (SN; black arrow head), and striatonigral projection (gray arrow; C). In vitro ARGs in 

the presence of an excess amount of MP-10 (D) or Cmpd-A (E) were performed with adjacent 

sections. Radioactivity levels in several brain regions were represented as photostimulated 

luminescence (PSL) values in the presence or absence of an excess amount of MP-10 or 

Cmpd-A (F). Statistical analyses were performed using Dunnett's test (*P ≤ 0.05, **P ≤ 0.01 
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vs total binding, n=3). Fcx, frontal cortex; Thal, thalamus; Bs, brainstem; Hipp, hippocampus; 

Cb, cerebellum. 
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Figure 3. In vitro autoradiography (ARG) using [3H]Cmpd-A in mouse brain sections. 

[3H]Cmpd-A selectively accumulated in the caudate putamen (CPu; black arrow) and nucleus 

accumbens (NAc; white arrow) of wild-type (WT) mouse brain sections (A). The selective 

accumulation of [3H]Cmpd-A in these areas did not occur in Pde10a-KO mouse brain 

sections (B). Radioactivity levels in the CPu of brain sections in the presence and absence of 

an excess amount of MP-10 are represented as a percent of total binding of WT mice (C). 

Data are represented as mean ± SEM. 
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Figure 4. Saturation binding analysis using [3H]Cmpd-A in rat brain coronal sections. A 

saturation binding assay was performed with a range of concentrations of [3H]Cmpd-A. 

Regions of interest (ROIs) were the bilateral caudate putamen (CPu; arrows) and nucleus 

accumbens (NAc) shell (arrowheads) in the autoradiograms (A). Total and non-specific 

binding in each ROI was represented as PSL values (/mm2), and saturation binding curves 

from the CPu (B) and NAc shell (C) were analyzed by nonlinear regression. Kd values in the 

CPu and NAc shell were estimated at 7.2 ± 1.2 nM and 2.6 ± 0.5 nM, respectively. All data 

were represented as mean ± SEM. 
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Figure 5. In vivo ARG of [14C]Cmpd-A in rats. The chemical structure of [14C]Cmpd-A (A). 

The asterisk denotes the labeled position. Autoradiograms of head sections were obtained 

from male rats 6 h after single oral administration of [14C]Cmpd-A. The autoradiograms of 40 

µm sagittal sections between 2.1 to 2.4 mm lateral to midline were taken (B). The locations 

for each coronal section relative to the bregma were 1.7 to 1.2 mm (C), 0.48 to −0.26 mm (D), 

−0.4 to −0.8 mm (E), −2.8 to −3.1 mm (F), −6.0 to −6.3 mm (G), and −12.7 to −12.8 mm (H). 

Acc, nucleus accumbens; Cb, cerebellum; Cpu, caudate putamen; Ctx, cortex; Fcx, frontal 

cortex; GP, globus pallidus; Hipp, hippocampus; MO, medulla oblongata; OT, olfactory 

tubercle; SN, substantia nigra; Thal, thalamus; VP, ventral pallidum. 
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Figure 6. In vivo occupancy study of Cmpd-A using T-773 as a tracer in rats. In in vitro 

ARG study using the rat brain sagittal section, [3H]T-773 selectively accumulated in the 

caudate putamen (CPu; white arrow), globus pallidus (GP; black arrow), nucleus accumbens 

(NAc; white arrow head), substantia nigra (SN; black arrow head), and striatonigral projection 

(gray arrow), where PDE10A is highly expressed (A). This accumulation was almost 

completely blocked by an excess amount of Cmpd-A (B). PDE10A occupancy (%) in the 

striatum was plotted against doses of orally administered Cmpd-A in rats with intravenous 

T-773 injection (C). The cerebellum was used as a reference region. PDE10A occupancy was 

increased in a dose-dependent manner. Oral administration of 0.88 mg/kg of Cmpd-A resulted 

in 50% PDE10A occupancy as determined by regression analysis. 
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Figure 7. Effects of Cmpd-A on brain-derived neurotrophic factor (BDNF) levels in R6/2 

mouse brain. BDNF protein levels in the striatum (A) and the cortex (B) of wild-type (WT) 

and R6/2 mice were measured by enzyme-linked immuno-sorbent assay at 12 weeks of age. 

Data are shown as mean + S.E.M. (n = 6 in each group). Statistical significance between WT 

and R6/2 mice was determined using Aspin–Welch test (**P ≤ 0.01; versus vehicle-treated 

WT mice). Dose-dependent effects were statistically analyzed using two-tailed Williams’ test 

(#P ≤ 0.05; versus vehicle-treated R6/2 mice). 
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Figure 8. Effects of Cmpd-A on striatal atrophy in R6/2 mice. (A) Representative 

Nissl-stained coronal sections from mouse brains prepared at 12 weeks of age are shown. The 

dotted lines outline the striatum. (B) Striatal areas (mm2) in the sections were measured to 

evaluate striatal atrophy. Data are represented as mean + S.E.M. (n = 4 in each group). 

Statistical significance between wild-type (WT) and R6/2 mice was determined using Aspin–

Welch test (*P ≤ 0.05; versus vehicle-treated WT mice). Dose-dependent effects were 

statistically analyzed using two-tailed Williams’ test (#P ≤ 0.05; versus vehicle-treated R6/2 

mice). 
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Figure 9. Effects of Cmpd-A on body weight changes and seizure frequency in R6/2 mice. 

(A) Mice were weighed once per week throughout the study. Data are represented as mean ± 

S.E.M. [n = 20 in vehicle-treated wild-type (WT) mice, n =19 vehicle-treated R6/2 mice, n = 

22 in Cmpd-A-treated R6/2 mice]. At 12 weeks of age, the body weight of vehicle-treated 

R6/2 mice was significantly lower than that of vehicle-treated WT mice (**P ≤ 0.01). Daily 

treatment with Cmpd-A at 0.5 and 5 mg/kg/day for 8 weeks did not significantly prevent the 

suppression of body weight gain in R6/2 mice. Statistical significance between WT and R6/2 

mice at 12 weeks of age was determined using Aspin–Welch test (**P ≤ 0.01; versus 

vehicle-treated WT mice), and dose-dependent effects were statistically analyzed using 

two-tailed Williams’ test (versus vehicle-treated R6/2 mice). (B) The number of seizures 

observed during the first 3 days of the acquisition phase in the procedural water T-maze test. 

All data are indicated as mean + S.E.M. (n = 20 in vehicle-treated WT mice, n =19 in 

vehicle-treated R6/2 mice, n = 22 in Cmpd-A-treated R6/2 mice). Dose-dependent effects 

were statistically analyzed using two-tailed Shirley–Williams test (#P ≤ 0.05; versus 

vehicle-treated R6/2 mice).  
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Figure 10. Effects of Cmpd-A on motor deficits in R6/2 mice. (A) Clasping behavior was 

evaluated once per week at 5–12 weeks of age. Data are represented as the percentages of 

mice showing full clasping behavior within 30 s of tail suspension [n = 20 in vehicle-treated 

wild-type (WT) mice, n =19 in vehicle-treated R6/2 mice, n = 22 in Cmpd-A–treated R6/2 
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mice]. (B and C) An open field test was performed at 12 weeks of age. Locomotor activities 

of mice were measured by two distinct indicators, total distance traveled (B) and rearing 

frequency (C). Data are represented as mean + S.E.M. (n = 20 in vehicle-treated WT mice, n 

=19 in vehicle-treated R6/2 mice, n = 22 in Cmpd-A-treated R6/2 mice). Statistical 

significance between WT and R6/2 mice was determined using Aspin–Welch test (**P ≤ 0.01; 

versus vehicle-treated WT mice), and dose-dependent effects were statistically analyzed using 

two-tailed Shirley–Williams test (#P ≤ 0.05; versus vehicle-treated R6/2 mice). (D) Motor 

coordination was assessed as the latency to fall off from a rotarod at 4, 6, and 12 weeks of age. 

Data are represented as mean ± S.E.M. (n = 20 in vehicle-treated WT mice, n =19 in 

vehicle-treated R6/2 mice, n = 22 in Cmpd-A–treated R6/2 mice). Differences between WT 

and vehicle-treated R6/2 mice at each week of age were analyzed using a repeated measures 

analysis of variance (RM-ANOVA). The RM-ANOVA showed a significant effect of test day 

at 4 weeks of age, significant effects of genotype and test day at 6 weeks of age, and 

significant effects of genotype and test day, and a significant genotype × test day interaction at 

12 weeks of age. §§P ≤ 0.01, a significant effect of genotype. 
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Figure. 11. Effects of Cmpd-A on impairment of procedural learning and cognitive 

flexibility in a procedural water T-maze task in R6/2 mice at 9–10 weeks of age. (A) The 

number of days to reach criteria during the acquisition phase is shown. Repeated treatment 

with Cmpd-A dose-dependently and significantly reduced the number of days required to 

meet the criteria in R6/2 mice. Data are indicated as mean + S.E.M. [n = 20 in vehicle-treated 

wild-type (WT) mice, n =19 in vehicle-treated R6/2 mice, n = 22 in Cmpd-A-treated R6/2 

mice]. Statistical significance between WT and R6/2 mice was determined using Aspin–

Welch test (**P ≤ 0.01; versus vehicle-treated WT mice). Dose-dependent effects were 

statistically analyzed using two-tailed Williams’ test (#P ≤ 0.05; versus vehicle-treated R6/2 

mice). (B) Once the criteria were achieved within 7 days in the acquisition phase, the animals 

progressed to the reversal phase on an individual basis. Effects of repeated treatment with 

Cmpd-A on reversal learning in R6/2 mice were evaluated. Data are expressed as the 

percentage of correct choices during days 4 to 6, normalized by the percent correct on Day 1, 
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and are presented as mean + S.E.M. (n = 20 in vehicle-treated WT mice, n = 8 in 

vehicle-treated R6/2 mice, n = 11 in Cmpd-A–treated R6/2 mice). Statistical significance 

between WT and R6/2 mice was determined using Aspin–Welch (*P ≤ 0.05; versus 

vehicle-treated WT mice).  
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Figure 12. Effects of Cmpd-A on memory deficits in a contextual fear conditioning 

(CFC) test in R6/2 mice at 11 weeks of age. Data are represented as percent freezing time 

relative to total measuring time (180 s), and indicated as mean + S.E.M. (n = 20 in 

vehicle-treated WT mice, n =19 in vehicle-treated R6/2 mice, n = 22 in Cmpd-A-treated R6/2 

mice). Statistical significance between WT and R6/2 mice was determined using Aspin–

Welch test (**P ≤ 0.01; versus vehicle-treated WT mice). 

 


