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Abstract We examine some consequences of the duality that a U(1) phase
factor added on a wave function describes a whole system motion and also
plays the role of a U(1) gauge potential. First, we show that the duality solves
a long-standing puzzling problem that the ‘flux rule’ (the Faraday’s induction
formula) and the Lorentz force calculation for an emf emerging in an electron
system moving in a magnetic field give the same result (Feynman et al. [1]).
Next, we examine a U(1) phase factor induced on the wave function for an
electron system due to the single-valuedness requirement of the wave function
with respect to the electron coordinates, and its consequential appearance of
a U(1) instanton. This instanton explains the Meissner effect, supercurrent
generation, flux quantization in the units of h

2e , and the voltage quantization

in the units of hf
2e across the Josephson junction in the presence of a radiation

field with frequency f . In the experiment, a radiation field must be present to
have a finite voltage across the Josephson junction; but a clear explanation for
it has been lacking. The present work provides an explanation for it, and also
explains the high precision of the quantized voltage as due to a topological
effect.

Keywords Flux rule, U(1) instanton

The role played by the electromagnetic gauge potential (vector+ scalar po-
tentials) is different in quantum theory and classical theory. In classical theory,
the gauge potential is a supplementary tool that can be used to facilitate cal-
culations involving the magnetic field Bem and electric field Eem. On the other
hand, it is a real physical entity in quantum theory. The physical reality of
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the gauge potential has been predicted [2] and experimentally verified [3]. The
explanation of the Meissner effect observed in superconductors is explained
using the London formula that directly connects the current density to the
vector potential [4]. It is also notable that a new approach of electrodynam-
ics using the quantum nature of matter with the gauge potential rather than
using Maxwell’s equations has been proposed [5].

From the view point that the vector potential Aem and scalar one φem are
more fundamental than Bem and Eem, two of Maxwell’s equations, ∇·Bem = 0
and ∇× Eem = −∂Bem

∂t become the equations that define Bem and Eem from
the fundamental gauge potential,

Bem = ∇×Aem; Eem = −∂Aem

∂t
−∇φem (1)

The interaction of the quantum system and electromagnetic field is intro-
duced by the following changes in the material Hamiltonian,

p =
h̄

i
∇ → h̄

i
∇− qAem; ih̄

∂

∂t
→ ih̄

∂

∂t
− qφem (2)

where q = −e is the electron charge. This way of including the interaction gives
rise to a duality that a U(1) phase factor added on a wave function describes
a whole system motion, and also works as a U(1) gauge potential.

Let us see this point more, closely. We denote the wave function of a system
with Ne electrons as Ψ(x1, · · · ,xNe , t), where xi is the coordinate of the ith
electrons. We express it as a product form

Ψ(x1, · · · ,xNe , t) = Ψ0(x1, · · · ,xNe , t) exp

−i

Ne∑
j=1

f(xj , t)

 (3)

where Ψ0 is a wave function for a currentless state, and exp(−i
∑Ne

j=1 f(xj , t))
describes the whole system motion. Ψ0 may depend adiabatically on time
through the adiabatic change of the frame, and the currentless here means
with respect to this moving frame.

We can transfer the phase factor from the wave function to the Hamilto-
nian, resulting the modification of the gauge potential as Aem → Aem + h̄

q∇f

and φem → φem − h̄
q ∂tf .

Then, we may regard

Aeff = Aem +
h̄

q
∇f ; φeff = φem − h̄

q
∂tf (4)

as the effective gauge potentials in the material. Actually, all the observables
will be given as functionals of Aeff and φeff instead of Aem and φem since Aem

and φem always accompanied by ∇f and ∂tf in the above form.
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In the present work, we identify Aeff and φeff as the effective gauge po-
tentials in the material; and also identify the observed magnetic and electric
fields in it as

Beff = ∇×Aeff ; Eeff = −∂Aeff

∂t
−∇φeff (5)

Using the above identifications, we first explain a puzzling fact that the ‘flux
rule’ (the Faraday’s induction formula) can be used for the calculation of the
electromotive force (emf) emerging in an electron system moving in a magnetic
field and gives the same result calculated by the Lorentz force [1]. Next we take
up superconductivity. It has been shown that when spin-vortices are created
by itinerant electrons, the currentless wave function Ψ0 becomes multi-valued
with respect to the electron coordinates [6,7]; and a phase factor is induced to
make Ψ single-valued. This induced phase factor creates a U(1) instanton in
the material, and gives rise to phenomena associated with superconductivity.

Firstly, we derive some general relations obtained using Aeff and φeff for
later use (some of them are also found in Ref. [8]). Using the fact that Aem and
φem appear as part of Aeff and φeff , the current density j and charge density
ρ are given by

j = − δE

δAem
= − q

h̄

δE

δ∇f
; ρ =

δE

δφem
=

q

h̄

δE

δ∂tf
, (6)

From Eq. (6), the canonical conjugate variable for f is given by

pf = h̄q−1ρ, (7)

Then, using pf , the Lagrangian for f is given by

L=−
∫

d3xρφeff−Ē
[
Aeff

]
(8)

where Ē is defined as a functional of only Aeff as

Ē
[
Aeff

]
= E

[
Aeff , φem

]
−
∫

d3x ρφem (9)

The Hamilton’s equations for f and pf are given by

ṗf = −δE

δf
= ∇ · δE

δ∇f
(10)

ḟ =
δE

δpf
=

q

h̄

δE

δρ
(11)

where the fact that E depends not directly on f but through ∇f and ∂tf is
used.

Using Eqs. (6) and (7), Eq. (10) becomes the equation for the conservation
of charge ρ̇ = −∇ · j.

For the ground state of an isolated system, Eq. (11) gives h̄ḟ = 0 since the
energy is optimized with respect to ρ. If the system is contacted with a particle
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reservoir, it indicates that h̄ḟ is the chemical potential. In this case, h̄ḟ is fixed
by the constraint

∫
d3xρ = qNe, where Ne is the number of electrons in the

system.

Now, let us examine the validity of using the ‘flux rule’ (the Faraday’s in-
duction formula) for the calculation of an emf emerging in an electron system
moving in a magnetic field [1]. We consider a moving crossbar on a U-shaped
rail by changing the area surrounded by the circuit composed of the U-shaped
rail and the crossbar [1]. An emf is induced in this circuit when it is pene-
trated by a magnetic field. A puzzling fact is that this emf can be calculated
classically either by the Lorentz force acting on electrons in the crossbar or by
the Faraday’s induction formula as the time-derivative of the flux through the
circuit. This is puzzling since the two methods used here are different in the
physical origin in the classical theory [1].

Let us place the circuit of the moving bar and the U-shaped rail in the xy
plane and the magnetic field is applied in the z direction. Then, the magnetic
field is by (0, 0, B). The crossbar is parallel to the x axis and moving in the y
direction with velocity v. The wave function for an electron in the crossbar is
expressed as Ψ0(x, y − y0(t), z) when B = 0, where y0(t) = vt is the center of
the y-coordinate of the moving bar (y0 = 0 is the position of the crossbar at
t = 0) by assuming that the wave function adiabatically depends on y0(t) [9].

We express the wave function for the case when B ̸= 0 as Ψ(x, y, z, t) =
Ψ0(x, y−y0(t), z)e

−if(x,y,z,t). We choose the gauge in which the vector potential
for the applied magnetic field is given by Aem = (0, Bx, 0). We obtain f by
minimizing the energy calculated by Ψ , ⟨Ψ0|H[Aeff ]|Ψ0⟩ (H is the Hamiltonian
depends on Aeff = Aem − h̄e−1∇f ). From the stationary condition of the
energy with respect to the variation in∇f , we will obtainAeff = 0 sinceAeff ̸=
0 increases the kinetic energy. This leads to the solution ∇f = (0, h̄−1eBx, 0).
Then, the wave function Ψ(x, y, z, t) is given by

Ψ(x, y, z, t) = Ψ0(x, y − y0(t), z) exp

(
−i

eB

h̄
xy

)
(12)

Actually, this wave function agrees with the one obtained by using the Dirac’s
magnetic phase factor [10,11] (the same phase factor can be found as in
Eq. (15.29) of Ref. [1]).

Due to the fact that f is obtained by the stationary condition of ⟨Ψ0|H[Aeff ]|Ψ0⟩
with respect to the variation of ∇f , we have

jy = −δ⟨Ψ |H[Aem]|Ψ⟩
δAem

y

= −δ⟨Ψ0|H[Aeff ]|Ψ0⟩
δAem

y

= − e

h̄

δ⟨Ψ0|H[Aeff ]|Ψ0⟩
δ(∂yf)

= 0(13)

where jy is the current density in the y direction. Therefore, our choice of
Aem = (0, Bx, 0) correctly describes the situation where the electric current
of the electromagnetic field origin in the y direction is absent.

Now we assume that the width of the moving bar in the y direction is
very small. Then, we may use the approximation, y ≈ y0 = vt. Consequently,
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Ψ(x, y, z, t) is expressed as

Ψ(x, y, z, t) ≈ Ψ0(x, y − y0(t), z) exp

(
−i

eB

h̄
xvt

)
. (14)

From the phase factor of the wave function in Eq. (14), the time-derivative
of the x component of the momentum px = h̄kx is given by

ṗx = h̄k̇x = −eBẏ0 = −eBv (15)

This shows that the force −eBv is acting on the electron in the x direction.
This force equals the Lorentz force (the Lorentz force result).

The same problem is also solved by transferring the phase factor exp
(
−i eBh̄ xy0(t)

)
into the Hamiltonian. It gives rise to the x component of an effective vector
potential Aeff

x = −Bvt. The electric field is then calculated using Eq. (5) as

Eeff
x = −∂tA

eff
x = Bv, (16)

This is the electric field of the emf calculated by the flux rule (the flux rule
result). The force acting on the electron by the emf is calculated as Fx = −eBv,
which is equal to the value in Eq. (15). The reason that the two different
methods of calculations give the same result is attributed to the dual role
played by the U(1) phase on the wave function.

Next, we consider the emergence of a U(1) instanton in materials, and the
appearance of various phenomena associated with superconductivity. It has
been shown that when itinerant electrons form spin-vortices, the currentless
wave function Ψ0 in Eq. (3) obtained by energy minimization becomes multi-
valued with respect to the electron coordinates [6,7]. In this situation, the
single-valued requirement of the total wave function Ψ induces a phase factor
that describes the whole system motion with f = 1

2χ in Eq. (3), where χ is an
angular variable with period 2π [6,7].

The equation to determine χ is given as the stationary condition for the
following functional

F [∇χ]=E
[
Aeff,φem

]
+

Nloop∑
ℓ=1

λℓ

(∮
Cℓ

∇χ · dr−2πw̄ℓ

)
(17)

with respect to the variation of ∇χ, where the second term in the rhs of
Eq. (17) imposes the constraint for the single-valuedness of the total wave
function, and λℓ’s are Lagrange multipliers [6,7].

The stationary condition yields,

0 =
δE

[
Aeff , φem

]
δ∇χ

+

Nloop∑
ℓ=1

λℓ
δ

δ∇χ

∮
Cℓ

∇χ · dr. (18)

The solution ∇χ is a U(1) ‘instanton’,

Afic =
h̄

2q
∇χ (19)
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in the sense that it is a solution of a classical equation of motion (i.e., Eq. (18))
and characterized by topological quantum numbers w̄ℓ given by w̄ℓ = wℓ[χ] ≡
(2π)−1

∮
Cℓ

∇χ · dr as is given in the constraint in Eq. (17) [12].

If the instanton with wℓ[χ] ̸= 0 emerges, we have λℓ ̸= 0. Then, using
Eq. (6) with f = 1

2χ and Eq. (18)), a nonzero current density

j =
2q

h̄

∑
ℓ

λℓ
δ

δ∇χ

∮
Cℓ

∇χ · dr (20)

is obtained. This is a persistent current that flows as long as the instanton
exists. The current carrying state with the instanton is higher in energy than
the currentless state; however, the single-valued requirement of the wave func-
tion insists the presence of the instanton, the current carrying state is the only
allowed state.

The functional in Eq. (17) can be extended to the case where a current is
fed, externally [6,7]. In such a case, the external current can flow through the
system without a voltage drop, thus, it is a supercurrent.

The Meissner effect is explained as follows. If ∇χ is optimized neglecting
the constraint, a currentless state (i.e., a state with j = 0) is obtained in the
same reason we obtained Eq. (13). The energy E

[
Aeff , φem

]
for this state

should be no more than the energy for the state with j ̸= 0 obtained including
the constraint. Further,Aeff is gauge invariant with respect to the choice of the
gauge forAem since∇χ is obtained through optimization and this optimization
compensates the arbitrariness of the gauge in Aem [6,7]. Thus, for small Aeff ,
the energy functional is given as a quadratic functional of the gauge invariant
Aeff ; then, the current density is a linear functional of Aeff [8]. Therefore, the
state with Aeff = 0 is currentless. The linear relation between the current and
Aeff leads to the Meissner effect.

As is well-known, the Meissner effect gives rise to the flux quantization.
Let us re-derive this: we take a ring-shaped system and consider a loop C that
encircles the hole of the ring through the bulk of the ring. We assume Aeff = 0
along C due to the Meissner effect. Then, we have∮

C

Aem · dr = − h̄

2(−e)

∮
C

∇χ · dr =
h

2e
n (21)

where n is an integer corresponding to the topological winding number of χ
around C. This shows the flux quantization in the units of h

2e . The quantization

arises from the topological property of Afic = h̄
2q∇χ.

Lastly, we consider the ac Josephson effect [13]. The most clear experimen-
tal observation of the ac Josephson effect is the appearance of plateaus in the
I-V plot under the application of a microwave radiation with dc current feed-
ing [14]. The voltage V at the plateaus is given by V = hf

2e n (n is an integer),
where f is the applied microwave frequency.

We now explain the observed voltage quantization using the U(1) instanton
in the xt plane. Let us consider a Josephson junction (or an SIS junction) which
is composed of two superconductors ‘SL’ and ‘SR’, and a non-superconducting
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Fig. 1 Loop for the voltage quantization calculation. The SIS junction is along the x di-
rection; the edges of the left ‘S’ (‘SL’) and right ‘S’ (‘SR’) that contact with ‘I’ are denoted
as as xL and xR, respectively. t2 and t1 are two times with separation t2 − t1 = 1/f , where
f is the frequency of the radiation field applied.

region ‘I’ between them. We take the direction of the junction in the x direction
and the edges of ‘SL’ and ‘SR’ contacting with ‘I’ as xL and xR, respectively
(Fig. 1). We apply a microwave with an electric field Eem

x = E0 cos(2πft)
where E0 is a constant.

Then, the effective electric field in ‘I’ is given by

Eeff
x =−∂Aeff

x

∂t
− ∂xφ

eff =Eem
x − h̄

2q
(∂t∂x − ∂x∂t)χ (22)

The voltage across the junction V is calculated as an average voltage cal-
culated using Eeff

x over the time interval 1/f ,

V = f

∫ t2

t1

dt

∫ xR

xL

dxEeff
x = f

∫ t2

t1

dt

∫ R

L

dxEem
x

− h̄f

2q

∫ t2

t1

dt

∫ xR

xL

dx (∂t∂x − ∂x∂t)χ (23)

where t2 and t1 are two times with separation t2 − t1 = 1/f , and f is the
frequency of the radiation field.

We have
∫ t2
t1

dtEem
x = 0, and the presence of the instanton in the xt plane

yields, ∫ t2

t1

dt

∫ xR

xL

dx (∂t∂x − ∂x∂t)χ = 2πn (24)

where n is an integer.
Thus, V is given by

V = −f
h̄

2(−e)
2πn =

hf

2e
n (25)

As indicated in Eq. (24), this quantized voltage is a topological origin in a
similar manner as the quantized Hall conductance in the quantum Hall effect
[15] and the flux quantization in Eq. (21).
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Let us examine how this instanton looks like. We consider the loop in the
xt plane shown in Fig. 1, where τ1 = χ(xR, t1) − χ(xL, t1), τ2 = χ(xR, t2) −
χ(xR, t1), τ3 = χ(xR, t2)−χ(xL, t2), and τ4 = χ(xL, t2)−χ(xL, t1). Then, the
condition in Eq. (24) is given by τ1 + τ2 − τ3 − τ4 = 2πn.

The classical action S from which the instanton solution is obtained is
given by S(τ1, τ2, τ3, τ4) =

∫ t2
t1

Ldt. The optimization of S is done under the
constraint τ1 + τ2 − τ3 − τ4 = 2πn. This is achieved by using the following
function

P (τ1, τ2, τ3, τ4, λ)=S − λ(τ1 + τ2 − τ3 − τ4 − 2πn) (26)

where λ is a Lagrange multiplier.
From the stationary condition of P with respect to variations of τi, i =

1, 2, 3, 4, and using the relations in Eq. (6), we have

λ =
∂S

∂τ1
=

∂S

∂τ2
= − ∂S

∂τ3
= − ∂S

∂τ4

=
h̄

2e
J(t1) = − h̄

2e
QR = − h̄

2e
J(t2) =

h̄

2e
QL, (27)

where J(t1) and J(t2) are the current flowing from xL to xR at time t1 and
t2, respectively; and QR and QL are charges at xR and xL, respectively. The
above relation shows that QR = −QL, thus, the instant has charges of the
same magnitude and opposite sign at its end points. This is similar to a flux
tube having magnetic monopoles of the same magnitude and opposite sign at
its end points [16].

Now consider the role played by the dc current feeding in the voltage
quantization. Since the instantons in the xt plane have charges of the same
magnitude and opposite sign at the two ends, the junction behaves a capacitor.
We denote the capacitance of it as C and the stored charge as Q, with the
relation Q = CVn, where Vn is the voltage given in Eq. (25).

The junction is not a perfect capacitor; the tunneling causes the discharging
by the recombination of the opposite charges. We may express this process by
dQ
dt = −αQ, where α is the discharging rate. By including the current flow due
to the tunneling J̄ and the feeding current from the lead J , the conservation
of the charge gives the following relation,

dQ

dt
= J − J̄ − αQ. (28)

The stationary condition dQ
dt = 0 yields J = αCVn + J̄ ; thus, the observed

I−V plateaus in the experiment is obtained [14]. Here, the dc current feeding
helps to create instantons that are destroyed due to the pair-annihilation of
the charges by supplying charges.

In the Josephson’s prediction [13], an application of a dc voltage V on
the junction is assumed. However, a simple application of a dc voltage results
in the flow of a dc current with zero voltage across the junction. Experiments
indicate that a radiation field is necessary to have a voltage across the junction
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[14]. The present theory explains that a radiation field is necessary to creates
the U(1) instanton.

In conclusion, we show that the duality of a U(1) phase factor added on
a wave function, a whole system motion and a U(1) gauge potential, explains
the validity of using the ‘flux rule’ (the Faraday’s induction formula) for the
calculation of an emf emerging in an electron system moving in a magnetic
field. This duality allows the appearance of a U(1) instanton in materials,
and explains the phenomena associated with superconductivity as topological
phenomena brought about by the instanton.
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