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Abstract 

 

Chytrids are basal lineages of true fungi that reproduce with posteriorly uniflagellate zoospores. 

During the last decade, the classification system of chytrids has been dramatically changed from the 

traditional system based on thallus morphology to the current system based on molecular phylogeny 

and zoospore ultrastructure. However, a large number of gaps in the current classification system 

were revealed by the recent environmental DNA surveys of chytrids. Although more than 400 

species of parasitic chytrids have been morphologically described under the traditional 

classification system, less than 10 species of parasitic chytrids were sequenced and their zoospore 

ultrastructure were examined. To establish the complete classification system of chytrids, taxonomic 

examinations of parasitic chytrids which are missing in the current system are indispensable. The 

object of this study is determination of taxonomic position of parasitic chytrids on algae in the 

current classification system. To do this I tried to establish dual cultures of parasitic chytrids and 

their host algae. Using these cultures, I identified them based on thallus morphology and discussed 

their taxonomy based on molecular phylogeny and zoospore ultrastructure. 

 I isolated chytrids and algae from the water samples collected at several lakes in Japan and 

established six dual cultures (KS93, KS94, KS97, KS98, KS99 and KS100). Culture C1 was 

provided by Dr. Maiko Kagami (Toho University). 

 Five cultures were assigned to the genus Zygorhizidium based on operculate zoosporangium and 

resting spore formed as a result of sexual reproduction, in which a male thallus and female thallus 

fuse via a conjugation tube. They were identified as three known species: Zygorhizidium willei 

(KS97) parasitic on zygnematophycean green algae, Zygorhizidium planktonicum (KS98) and 

Zygorhizidium melosirae (C1, KS94 and KS99) parasitic on diatoms. The molecular phylogenetic 

analysis revealed that the Zygorhizidium was polyphyletic and separated into two distinct clades. 

KS97 (Z. willei) was sister to an environmental sequence of uncultured chytrid and distinguished 

from any known orders in Chytridiomycetes. The four cultures (Z. planktonicum and Z. melosirae) 

were placed in a novel clade that was previously reported as an undescribed clade composed of only 
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the environmental sequences. The transmission electron microscopic observations on KS97 (Z. 

willei) and KS98 (Z. planktonicum) revealed that the zoospore ultrastructure of these chytrids were 

remarkably different and also unique among the known orders in Chytridiomycetes. Based on these 

results, I proposed two new orders: the Zygorhizidiales including Z. willei (type species of 

Zygorhizidium) and the Zygophlyctidales including Z. planktonicum and Z. melosirae which were 

segregated from the Zygorhizidium and accommodated in the genus Zygophlyctis. 

 Culture KS93 was parasitic on diatom Aulacoseira granulata, and its morphological characters 

were distinguished from those of any known species. In the phylogenetic tree, KS93 was sister to 

environmental sequences of uncultured chytrids and placed in the basal position of the family 

Chytriomycetaceae in the order Chytridiales. The zoospore of KS93 possessed the characters of 

Group I type zoospore which are specific to the Chytriomycetaceae. Based on these results, I 

described a new species in a new genus of Chytriomycetaceae, Pendulichytrium sphaericum. 

 Culture KS100 was parasitic on green algae Microglena coccifera and its morphological 

characters were distinguished from those of any known species. In the phylogenetic tree, KS100 

belonged to the order Rhizophydiales and were distinguished from any known family in the order. 

The zoospore of KS100 was revealed to have the kinetosome-associated structure which was 

distinguished from that of any other family in the Rhizophydiales concerning its morphology and 

position. Based on these results, I described a new species in a new genus, Collimyces mutans, and 

erected a new family Collimycetaeae to accommodate it. 

 As a result, I clarified the taxonomic position of seven cultures of parasitic chytrids in the current 

classification system of chytrids. They were identified as five species. Three of them were the 

known species but accommodated in the two new orders in the Chytridiomycetes. The other two 

were novel taxa in the known orders: the Chytridiales and the Rhizophydiales, respectively. Finally, 

I discussed 1) environmental sequences, 2) host specificity, 3) nutritional traits, 4) sexual 

reproduction and 5) zoospore ultrastructure, with the new knowledges obtained in this study, from 

the point of view of their taxonomic implications. I provided the future perspective for taxonomic 

study of chytrids.  
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Chapter 1 

General introduction 
 

1.1. General description of chytrids 

Chytrids are true fungi and characteristically reproduce with posteriorly uniflagellate zoospores. 

During asexual reproduction, they form a sac-like structure called the zoosporangium, in which 

zoospores are produced. They also produce thick-walled resting spores sexually or asexually. As 

chytrids occupy a basal position in the kingdom fungi (James et al. 2006a), they must hold the key 

to understand the early evolution of fungi such as origin of fungi and terrestrialization of fungi 

(Stajich et al. 2009).  

 Chytids are essentially ubiquitous, inhabiting freshwater environments such as streams, ponds 

and lakes as well as terrestrial environments such as forest, agricultural and desert soils (Barr 2001; 

Powell 1993). Some are found from brackish water, marine environment and coastal, saline soil 

(Barr 2001). Recent molecular environmental surveys revealed that chytrids dominate the fungal 

community in marine and freshwater habitats and high-elevation soils (Comeau et al. 2016; 

Freeman et al. 2009; Hassett and Gradinger 2016). The sequences of chytrids are also found from 

unique habitats such as anoxic environment, cold-seep sediments and hydrothermal vent in deep-sea 

(Bass et al. 2007; Le Calvez et al. 2009; Nagahama et al. 2011; Stoeck and Epstein 2003).  

 Nutritional traits are varied among the chytrid taxa (Barr 2001; Powell 1993). Some are 

saprotrophs, decomposing refractory substrates such as pollen, organic materials containing chitin, 

keratin and cellulose. Others are parasites of microorganisms such as algae, protists, other fungi and 

small invertebrates. Plant pathogenic chytrids such as Synchytrium spp. and Olpidium spp. are also 

known. Synchytrium endobioticum (Schilberszky) Percival is the causal agent of potato wart disease 

and has the potential to cause significant economic damage (Obidiegwu et al. 2014). Only two 

amphibian parasitic chytrids, Batrachochytrium dendrobatidis Longcore and Batrachochytrium 

salamandrivorans Martel are known to be parasitic on vertebrates. They are considered to cause the 

population declines of amphibians (Berger et al. 2016; James et al. 2015; Martel et al. 2013). 

 In aquatic habitats, parasitic chytrids influence the population dynamics of host phytoplankton 
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species (Canter and Lund 1948, 1951, 1953; Kudoh and Takahashi 1990; Van Donk and Ringelberg 

1983). Chytrids have been shown to play an important role in aquatic food webs (Gleason et al. 

2008; Kagami et al. 2014; Sime-Ngando 2012). Parasitic chytrids were previously found to transfer 

nutrients and energy from inedible phytoplankton to zooplankton such as Daphnia via zoospores 

(Kagami et al. 2007b, 2011). This new pathway from the phytoplankton to the zooplankton via the 

zoospores of parasitic chytrids named as “Mycoloop (Kagami et al. 2007a)” is considered to be an 

important factor to shape the food-web dynamics in aquatic ecosystems (Kagami et al. 2007a, 

2014). 

 

1.2. A history of chytrids classification 

The first described chytrid is Chytridium olla Braun which is an obligate parasite of oogonia of 

green algae, Oedogonium (Braun 1851, 1856). Subsequently, approximately 1000 species have been 

described to date (Longcore 1996; Sparrow 1960). In the traditional classification, which is based 

on the morphological features of thallus (Karling 1977; Sparrow 1960), chytrids were included in 

the single class Chytridiomycetes (Phycomycetes in Sparrow 1960) and divided into three orders: 

Chytridiales, Blastocladiales and Monoblepharidales (Table 1). Chytridiales was the largest order in 

the Chytridiomycetes including more than 75 genera, and the classification of the order was based 

on thallus morphology. Sparrow (1960) divided the Chytridiales into two groups based on presence 

or absence of the operculum, a lid-like structure on zoosporangium, which opens during zoospore 

discharge. In contrast, other researchers such as Barr (1978) and Karling (1977) used development 

of thallus to divide the Chytridiales to the families. Under the traditional classification system, 

many species of chytrids had been described based on the direct observations on the collected 

samples or the observations on the crude culture using the substrates such as pollen. However, the 

morphological observations on pure culture of chytrids revealed the plasticity of important 

taxonomic characteristic in the traditional classification (Powell and Koch 1977). Therefore, 

revision of classification system of chytrids has been demanded. 
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 As the technology of transmission electron microscopy improved, the ultrastructures of cell were 

observed in every organism. In 1970s to 1980s, the ultrastructural features such as organelles 

arrangements and flagellar apparatus began to be recognized as the stable taxonomic characteristics 

for classification of various groups of protists (Hibberd 1976; Hibberd and Leedale 1972; Lynn and 

Small 1981; O’Kelly and Floyd 1984). The early ultrastructural observations on chytrids (Koch 

1961) revealed the significant variation of zoospore ultrastructure and its potential to use for 

assessing the relationships among the chytrid taxa. Since 1970s, zoospore ultrastructure of many 

chytrid taxa have been observed and several distinct “zoospore types” were recognized of the basis 

on a constellation of characters such as the flagellar apparatus and the microbody-lipid globule 

complex (MLC) which is a unique and intricate assemblage of organelles in the zoospore (Barr 

1981; Lange and Olson 1979; Powell 1978). Barr (1980) used the features of zoospore 

ultrastructure for higher taxonomy of chytrids for the first time. He segregated some taxa from the 

Chytridiales and placed them in the new order Spizellomycetales based on their unique features of 

zoospore ultrastructure. Although Heath et al. (1983) added the obligate anaerobic chytrids such as 

Neocallimastix frontalis (Braune) Vavra & Joyon ex Heath in the Spizellomycetales, Li et al. (1993) 

placed these anaerobic chytrids in the new order Neocallimastigales. In the classification system by 

Barr (2001), chytrids were included in the phylum Chytridiomycota and divided into five orders: 

Chytridiales, Monoblepharidales, Blastocladiales, Spizellomycetales and Neocallimastigales (Table 

1). 

 In the early 1990s, molecular phylogenetic analysis began to be used for assessing the 

classification of each group of the fungi. Based on the molecular phylogeny, the classification of the 

kingdom Fungi was dramatically changed (Hibbett et al. 2007). As a result of the molecular 

phylogenetic analysis of Chytridiomycota (James et al. 2000, 2006b), chytrids were divided into 

three basal phyla in the kingdom Fungi: Chytridiomycota, Blastocladiomycota, and 

Neocallimastigomycota (Hibbett et al. 2007; James et al. 2006b). In the Chytridiomycota, 

Monoblepharidales was segregated from Chytridiomycetes including Chytridiales and 

Spizellomycetales, and placed in the Monoblepharidomycetes (Hibbett et al. 2007). 
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 In the Chytridiomycetes, Chytridiales and Spizellomycetales were revealed to be polyphyletic and 

separated into several monophyletic clades (James et al. 2000; 2006b). As the clades recognized by 

molecular phylogeny were also distinguished from each other based on the zoospore ultrastructure 

(James et al. 2000, 2006b), order-level taxonomy of Chytridiomycetes was rewritten based on the 

molecular phylogeny and the zoospore ultrastructure (Powell and Letcher 2014). Each 

monophyletic clade was circumscribed as the new orders. The “Rhizophlyctis clade” (James et al. 

2006b) was segregated from the Spizellomycetales as the Rhizophlyctidales (Letcher et al. 2008a). 

The four new orders were established for the clades segregated from the Chytridiales sensu stricto: 

the Rhizophydiales (Letcher et al. 2006) for the “Rhizophydium clade” (James et al. 2000, 2006b), 

the Cladochytriales (Mozley-Standridge et al. 2009) for the “Cladochytrium clade” (James et al. 

2006b), the Lobulomycetales (Simmons et al. 2009) for the “Chytriomyces angularis clade” (James 

et al. 2006b) and the Polychytriales (Longcore and Simmons 2012) for the “Polychytrium clade” 

(James et al. 2006b). Currently, the Chytridiomycetes contains nine orders in total (Table 1) with the 

recently established two new orders Gromochytriales and Mesochytriales (Karpov et al. 2014).  

 

1.3. The problems of taxonomy of chytrids 

Molecular environmental studies have revealed a large number of undescribed lineages in 

Chytridiomycetes (Freeman et al. 2009; Jobard et al. 2012; Lefèvre et al. 2007, 2008, 2012; 

Monchy et al. 2011). Some of the environmental sequences of uncultured chytrids form the 

order-level novel clades (Jobard et al. 2012; Lefèvre et al. 2008). These results indicate that there is 

a large number of gaps in the current classification system of Chytridiomycota. 

 Recent taxonomic studies on chytrids based on molecular phylogeny and zoospore ultrastructure 

were mainly conducted using isolates of saprophytic chytrids as their cultures are easily available 

(Letcher et al. 2006, 2008a, 2008c, 2012; Longcore and Simmons 2012; Mozley-Standridge et al. 

2009; Simmons 2011; Simmons and Longcore 2012; Simmons et al. 2009). However, there are also 

a large number of parasitic chytrids described (Sparrow 1960; Longcore 1996). Although more than 

400 species of parasitic chytrids were described, only a few parasitic chytrid species have been 
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sequenced and their phylogenetic positions were clarified (Karpov et al. 2010, 2014; Küpper et al. 

2006; Lepelletier et al. 2014; Sønstebø and Rokrlack 2011; Vélez et al. 2011). Some parasitic 

chytrids such as Caulochytrium protostelioides Olive, Polyphagus euglenae (Bail) Nowakowski and 

Zygorhizidium planktonicum Canter were revealed to have unique characters of zoospore 

ultrastructure (Beakes et al. 1988; Powell 1981a, 1981b), but DNA sequences of them are not 

available. Some of the environmental sequences of “uncultured” chytirds may be identical or related 

to the sequences of parasitic chyrids whose culture has not yet been established and whose DNA 

data have not been obtained yet. Recently, two chytrids parasitic on algae were revealed to be 

related to the environmental sequences and placed in the order-level novel clades in 

Chytridiomycetes (Karpov et al. 2014). On the basis of molecular phylogeny and unique zoospore 

ultrastructural features, Karpov et al. (2014) proposed two new orders: Gromochytriales and 

Mesochytriales. Lepelletier et al. (2014) described a novel chytrid Dinomyces arenysensis Karpov 

& Guillou which is parasitic on marine dinoflagellates and placed it in the new family in the 

Rhizophydiales. These results mean that parasitic chytrids corresponds with the gaps in the current 

systematics of chytrids.  

 

1.4. Purpose of this study 

To establish the complete classification system of chytrids, taxonomic examinations of parasitic 

chytrids which are missing in the current system are indispensable. In this study, I aimed at 

constructing the taxonomy of parasitic chytrids infecting on the planktonic algae. My object was 

determination of taxonomic position of parasitic chytrids on algae in the current classification 

system. To do this I tried to establish dual cultures of parasitic chytrids and their host algae. Using 

these cultures, I identified them based on thallus morphology and discussed their taxonomy based 

on molecular phylogeny and zoospore ultrastructure. 
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Chapter 2 

Isolation and culturing of parasitic chytrid on algae and their 

phylogenetic position 
 

2.1. Introduction 

Although more than 400 species of parasitic chytrids are described (Sparrow 1960; Longcore 1996), 

a few of them have been cultured. Obligate parasites are generally difficult to culture because they 

need their host to grow and can’t grow as pure culture. Some parasitic chytrids on algae were 

cultured with their host, and used for the studies of the host-parasite interactions such as the 

examination of host specificity (Canter and Jaworski 1978, 1982, 1986; Canter et al. 1992; De 

Bruin el al. 2004; Doggett and Porter 1995; Gromov et al. 1999; Kagami et al. 2004; Müller et al. 

1999; Sønstebø and Rokrlack 2011). Transmission electron microscopic observations of some 

species of parasitic chytrids were also conducted using the dual culture (Barr and 

Hadland-Hartmann 1978; Beakes et al. 1988, 1993; Powell et al. 1981a, 1981b). However, less than 

10 species of obligate parasitic chytrids on algae or other fungi were examined in the molecular 

phylogenetic studies (Karpov et al. 2010, 2014; Küpper et al. 2006; Lepelletier et al. 2014; Sønstebø 

and Rokrlack 2011; Vélez et al. 2011), except for the plant pathogenic chytrids such as Synchytrium 

spp. and Olpidium spp. (James et al. 2006a, 2006b; Sekimoto et al. 2011; Smith et al. 2014). 

Therefore, only a few DNA sequence data of parasitic chytrids are available from the databases 

such as GenBank. 

 Here, I tried to establish the dual cultures of parasitic chytrids and their host algae for the 

taxonomic consideration of parasitic chytrids. Using the sequences of rDNA region, I examined the 

phylogenetic position of established cultures and compared them to the known sequences of 

saprophytic chytrids and also environmental sequences of uncultured chytrids. 
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2.2. Materials and methods 

2.2.1. Isolation and culturing 

I collected water samples from lakes or ponds in Japan and observed them directly to detect 

parasitic chytrids on algae. To establish algal cultures, I isolated a single algal cell or colony by 

micro-pipetting and placed it in a well of microplate containing WC medium (Guillard and 

Lorenzen 1972). To establish dual cultures of parasitic chytrids and their host algae, a single 

zoosporangium on a host algal cell was isolated by micro-pipetting and transferred into a well of a 

microplate containing the host algal culture, which was isolated from the same sample. Chytrid-alga 

dual cultures and host algal cultures were maintained at 14 °C or 20 °C under a photoperiod of 18:6 

h (light:dark). I also used the dual culture C1 and host algal culture C5 which were provided by Dr. 

Maiko Kagami (Toho University). Cultures used in this study were listed in Table 2 and 3. 

 

2.2.2. DNA extraction, amplification and sequencing 

Cultures C1, KS93, KS94, KS98, KS99 

DNA was extracted from dual cultures using PrepMan® Ultra Sample Preparation Reagent 

(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. 18S 

rDNA, ITS1-5.8S-ITS2, and 28S rDNA (D1/D2 region) genes were amplified by PCR using KOD 

FX (TOYOBO, Osaka, Japan) with the following primer set: NS1 (White et al. 1990) and LR5 

(Vilgalys and Hester 1990). Thermal cycling conditions for PCR amplification were: i) 95 °C for 5 

min, ii) 10 cycles of denaturation at 98 °C for 10 s, annealing at 55-50 °C (0.5 °C decrease per 

cycle) for 30 s, and extension at 68 °C for 4 min, iii) 30 cycles of 98 °C for 10 s, 50 °C for 30 s, and 

68 °C for 4 min, and iv) hold at 4 °C. PCR products were purified by PEG precipitation. Cycle 

sequence reactions were conducted using BigDye® Terminator v3.1 (Applied Biosystems) and the 

following primers: NS1, NS4, NS6 (White et al. 1990), and NS8z (O’Donnell et al. 1998) for 18S 

rDNA, ITS5 and ITS4 (White et al. 1990) for the ITS1-5.8S-ITS, and LR0R (Rehner and Samuels 

1994) and LR5 for 28S rDNA. DNA sequences were analyzed using an ABI PRISM 3130 Genetic 

Analyzer (Applied Biosystems). 
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Culture KS97 

I harvested about 10 zoospores from the dual culture by micro-pipetting, transferred to a 200-ml 

PCR tube, and used them as template for direct PCR. 18S rDNA, ITS1-5.8S-ITS2, and 28S rDNA 

(D1/D2 region) genes were amplified using KOD FX with the following primer sets: NS1 and NS8 

(White et al. 1990) for 18S rDNA, ITS5 and ITS4 for ITS1-5.8S-ITS2, LR0R and LR5 for 28S 

rDNA. Thermal cycling conditions for PCR amplification were: i) 95 °C for 5 min, ii) 10 cycles of 

denaturation at 98 °C for 10 s, annealing at 55-50 °C (0.5 °C decrease per cycle) for 30 s, and 

extension at 68 °C for 3 min (for 18S rDNA) or 1 min (for ITS1-5.8S-ITS2 and 28S rDNA), iii) 30 

cycles of 98 °C for 10 s, 50 °C for 30 s, and 68 °C for 3 min or 1 min, and iv) hold at 4 °C. PCR 

products were purified by PEG precipitation. Cycle sequence reactions were conducted using 

BigDye® Terminator v3.1 and the following primers: NS1, NS4, NS6 and NS8 for 18S rDNA, 

ITS5 and ITS4 for the ITS1-5.8S-ITS2, and LR0R and LR5 for 28S rDNA. DNA sequences were 

analyzed using an ABI PRISM 3130 Genetic Analyzer. 

 

Culture KS100 

I harvested about 10 zoospores from the dual culture by micro-pipetting, transferred to a 200-ml 

PCR tube, and used them as template for direct PCR. 18S rDNA, ITS1-5.8S-ITS2, and 28S rDNA 

(D1/D2 region) genes were amplified using KOD FX with the following primer sets: NS1 and NS8z 

for 18S rDNA, ITS1F (Gardes and Bruns 1993) and LR5 for ITS1-5.8S-ITS2 and 28S rDNA. 

Thermal cycling conditions for PCR amplification were: i) 95 °C for 5 min, ii) 10 cycles of 

denaturation at 98 °C for 10 s, annealing at 55-50 °C (0.5 °C decrease per cycle) for 30 s, and 

extension at 68 °C for 2 min, iii) 30 cycles of 98 °C for 10 s, 50 °C for 30 s, and 68 °C for 2 min, 

and iv) hold at 4 °C. PCR products were purified by PEG precipitation. Cycle sequence reactions 

were conducted using BigDye® Terminator v3.1 and the following primers: NS1, NS4, NS6 and 

NS8z for 18S rDNA, ITS1F and ITS4 for the ITS1-5.8S-ITS2, and LR0R and LR5 for 28S rDNA. 

DNA sequences were analyzed using an ABI PRISM 3130 Genetic Analyzer. 
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Algal cultures 

DNA was extracted from each culture using HotSHOT method (Truett et al. 2000). 18S rDNA 

genes were amplified by PCR using KOD FX with the following primer set: SR1 and SR12 

(Nakayama et al. 1996). Thermal cycling conditions for PCR amplification were: i) 95 °C for 5 min, 

ii) 10 cycles of denaturation at 98 °C for 10 s, annealing at 55-50 °C (0.5 °C decrease per cycle) for 

30 s, and extension at 68 °C for 2 min, iii) 30 cycles of 98 °C for 10 s, 50 °C for 30 s, and 68 °C for 

2 min, and iv) hold at 4 °C. PCR products were purified by PEG precipitation. Cycle sequence 

reactions were conducted using BigDye® Terminator v3.1 and the following primers: SR1, SR2, 

SR5, SR7, SR9 (Nakayama et al. 1996) and SR12. DNA sequences were analyzed using an ABI 

PRISM 3130 Genetic Analyzer. 

 

2.2.3. Phylogenetic analysis 

I created a dataset of the 18S rDNA sequences of chytrids. As a result of BLAST searches using the 

18S rDNA sequences of my cultures, I found that they were closely related to the sequences of 

uncultured clones. I selected some of these sequences and added them to the dataset. I also added 

some environmental sequences which belong to the novel clades in Chytridiomycetes (Jobard et al. 

2012; Lefèvre et al. 2008). Rozella allomycis Faust and Rozella sp. (JEL374) were selected as an 

outgroup. Sequences were automatically aligned with MAFFT (Katoh and Standley 2013). 

Ambiguously aligned regions were excluded using trimAl (Capella-Gutiérrez et al. 2009) with a 

gappyout model. The maximum likelihood (ML) tree was inferred using RAxML 8.2.7 (Stamatakis 

2014). I ran an analysis under the GTRGAMMAI model and used the “-fa” option to conduct a 

rapid bootstrap analysis with 1000 replicates combining 200 searches for the optimal tree. A 

Bayesian analysis was run using MrBayes 3.2.6 (Ronquist et al. 2012) under the GTRGAMMAI 

model and 5 million generations, with sampling every 100 generations. The first 25% of trees were 

discarded as “burn-in”. Bayesian posterior probability and branch lengths were calculated from the 

remaining 75% of trees. 
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2.3. Results 

2.3.1. Isolation and culturing 

I newly established six dual cultures of chytrids (KS93, KS94, KS97, KS98, KS99 and KS100). 

Detailed information on cultures was described in Table 2. Their taxonomy was discussed in 

Chapter 3, 4 and 5.  

 Detailed information on established cultures of algae used in this study was described in Table 3. 

Identification of each alga was made based on morphological characters and BLAST searching 

using the 18S rDNA sequences. Although cultures KSA17, KSA47 and KSA52 were identified as 

Aulacoseira granulata (Ehrenberg) Simonsen based on the morphological characters, the sequence 

data divided them to two groups. Edgar and Theriot (2004) pointed out that Au. granulata is not a 

single species but a species complex including several intraspecific groups based on the 

phylogenetic analysis using the morphological (qualitative and quantitative) data. Here, I tentatively 

called cultures KSA17 and KSA52 as Au. granulata group 1, and KSA47 as Au. granulata group 2. 

The 18S rDNA sequences of cultures KSA32 and KSA56 were identical to that of “Synedra ulna 

strain UTEX FD404 (GenBank accession number: HQ912590)”. However, morphological 

characters of two cultures were distinguished from that of S. ulna. Thus, I regarded cultures KSA32 

and KSA56 as Synedra sp. 

 

2.3.2. Phylogenetic analysis 

In the ML tree, cultures C1, KS94, KS98 and KS99 were related to the environmental sequences of 

uncultured chytrids, and they formed a clade which were not assingned to any known orders in the 

Chytridiomycetes (Fig. 1). This clade was reported as “Novel Clade II” in the phylogenetic survey 

of fungi at the three lakes in France (Jobard et al. 2012). Lefèvre et al. (2008) also reported a novel 

clade and named it “Novel Clade II”. “Novel Clade II” sensu Jobard et al. (2012) and “Novel Clade 

II” sensu Lefèvre et al. (2008) were distinct from each other (Fig. 1). Culture KS97 was sister to 

environmental sequence named P34.43 from Lake Pavin in France (Lefranc et al. 2005) but 

statistical support of the sister relationship was not high (ML bootstrap value = 46; Bayesian 
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posteriorly probability = 0.96). KS97-P34.43 clade was distinguished from any other known orders 

in Chytridiomycetes (Fig. 1). Culture KS93 was placed in the order Chytridiales (Fig. 1) and sister 

to two environmental sequences 272H08 and 282H08 from Columbia River in USA (Kahn et al. 

2014). Culture KS100 was positioned in the order Rhizophydiales (Fig. 1) and there were no related 

environmental sequences or known species. 

 

 

2.4. Discussion 

A molecular analysis of environmental samples previously indicated the existence of a large number 

of uncultured chytrids with no affinity for any known species (Freeman et al. 2009; Jobard et al. 

2012; Lefèvre et al. 2007, 2008, 2012; Monchy et al. 2011). The phylogenetic analysis of parasitic 

chytrid cultures established in this study revealed that five cultures are related to the environmental 

sequences of uncultured chytrids. The 18S rDNA sequences of cultures KS93 and KS98 were 

almost identical to the environmental sequences: 272H08 and 282H08 from the Columbia River in 

USA (Kahn et al. 2014) and PFH1AU2004 from Lake Pavin in France (Lefèvre et al. 2007). Some 

of the other environmental sequences of as yet undiscovered chytrids may be related or identical to 

parasitic chytrids. On the other hands, cultures KS97 and KS100 were not related to environmental 

sequences. Especially, no environmental sequences did form the sister clade with culture KS100. 

That is to say, these two parasitic chytrids have not been found during environmental DNA surveys. 

Regarding the culture KS97, it had approximately 1000 bp long insertion in the 18S rDNA 

sequence (data not shown). PCR amplification might be failed for this chytrid. Other possible 

reason of overlooking the two chytrids is limited occurrence of parasitic chytrids. Parasitic chytrid 

on algae are known to occur in accordance with the seasonal population dynamics of host algae 

(Canter and Lund 1948, 1951, 1953; Kudoh and Takahashi 1990). It is possible that the two chytrids 

did not occur at the time of sampling of environmental DNA surveys in the previous studies. 
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Chapter 7 

Concluding remarks 

 

In this study, I clarified the taxonomic position of seven cultures of parasitic chytrids including six 

newly established cultures. As a results, seven cultures were identified as five species. Three of 

them were the known species but accommodated in the two new orders in the Chytridiomycetes. 

The other two were novel taxa in the known orders: the Chytridiales and the Rhizophydiales 

respectively. These results reconfirmed that taxonomic studies on parasitic chytrids are 

indispensable to fill the gaps in the current systematics of chytrids. 

 Five cultures were identified as three known species of the genus Zygorhizidium: Zygor. willei 

(KS97), Zygor. planktonicum (KS98) and Zygor. melosirae (C1, KS94 and KS99). To date, none of 

the species in the Zygorhizidium have been sequenced. Here, I clarified the taxonomic position of 

the Zygorhizidium in the current classification system of chytrids for the first time. As a results, the 

Zygorhizidium was revealed to be polyphyletic and divided into two order-level novel clades. Based 

on the uniqueness of zoospore ultrastructure and monophyly indicated by molecular phylogeny, I 

proposed two new orders: Zygorhizidiales including Zygo. willei (type species of the 

Zygorhizidium), and Zygophlyctidales including Zygop. planktonica and Zygop. melosirae. 

 Cultures KS93 and KS100 were identified as new species in the known orders. Culture KS93 was 

assigned as a new species in a new genus Pendulichytrium sphaericum of the family 

Chytriomycetaceae in the order Chytridiales. Culture KS100 was assigned as a new species in a 

new genus Collimyces mutans of the new family Collimycetaceae in the order Rhizophydiales. 

These results expanded our knowledge of the ecophysiological diversities of chytrids in the known 

orders which have been considered to contain mainly saprophytic taxa. 

 

As the result of above mentioned discussion on molecular phylogeny, ecology, physiology and 

morphology of chytrids, the future perspectives of taxonomic studies on chytrids were provided. 

 The significance of the analysis of environmental DNA sequences on the taxonomic study of 

chytrid was evaluated. Three of five species identified in this study were identical or related to the 
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environmental sequences of uncultured chytrids. Indeed, two belonged to the clade that was 

previously reported as an undescribed clade, “Novel Clade II” composed of only the environmental 

sequences of uncultured chytrids. The real status of members of the “Novel Clade II” was identified 

for the first time. The other two of five species did not have any affinity with environmental 

sequences. That is to say, these taxa were overlooked even in the environmental DNA surveys. To 

explore the whole diversity of chytrids and fill the gap of the current systematics of chytrids, the 

more extensive samplings are needed. And also, more culture-based taxonomical studies of parasitic 

chytrids are indispensable to clarify the identity of the environmental sequences. 

 The taxonomic implications of host specificity, nutritional traits, and sexual reproduction of 

chytrids were discussed. Combining with the appropriate molecular marker, the host specificity of 

chytrids has the potential to be used as taxonomic character for species delineation. Considering the 

taxonomic distribution of the nutritional traits and the type of sexual reproduction, these characters 

were revealed to be used as the available taxonomic character for order- to genus-level delineations. 

For instance, the order Zygophlyctidales proposed in this study is possible to be exclusive for 

parasitic species. The uniqueness of “Zygorhizidium type” sexual reproduction supports the 

order-level novel taxonomic positions of Zygorhizidium spp. Although “Zygorhizidium type” sexual 

reproduction was turned to emerge at least in the two distantly independent lineages, these sexual 

behaviours of two lineages might be distinguished based on the timing of karyogamy. To evaluate 

and realize the taxonomic implications of nutritional traits and sexual reproduction, precise 

observation and analyses of the further additional taxa are needed. 

 The zoospore ultrastructural characters which have been important as taxonomic characters were 

discussed in the point of view of their cytological aspects and function. The NfC of Zygop. 

planktonica with the unique morphology and position was interpreted as the immature stage of the 

centriole during the duplication. The function of the rumposome and the unique membrane bounded 

vesicle observed in Zygor. willei and Zygop. planktonica were discussed. Using the culture 

established in this study, the precise observations and analyses on cytological events like mitosis, 

zoospore movement and infection process are needed.  
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Table 1. Classification system of chytrids from 1960 to the present. 

 

 

Sparrow (1960) Barr (2001) Current systematics 

 CHYTRIDIOMYCOTA CHYTRIDIOMYCOTA 

PHYCOMYCETES  CHYTRIDIOMYCETES  CHYTRIDIOMYCETES 

 Chytridiales    Chytridiales   Chytridiales 

 Monoblepharidales    Spizellomycetales   Cladochytriales 

 Blastocladiales    Monoblepharidales   Gromochytriales 

    Neocallimastigales   Lobulomycetales 

    Blastocladiales   Mesochytriales 

    Polychytriales 

    Rhizophydiales 

    Rhizophlyctidales 

    Spizellomycetales 

   MONOBLEPHARIDOMYCETES 

    Monoblepharidales 

  NEOCALLIMASTIGOMYCOTA 

   NEOCALLIMASTIGOMYCETES 

    Neocallimastigales 

  BLASTOCLADIOMYCOTA 

   BLASTOCLADIOMYCETES 

    Blastocladiales 
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Table 2. Dual cultures used in this study 

 

  

Culture Species Host (culture) Source Date of sampling 

C1 Zygophlyctis melosirae comb. nov. Aulacoseira ambigua (C5) Lake Inbanuma, Chiba, Japan 30 July 2011 

KS93 Pedulichytrium sphaericum gen. et sp. nov. Aulacoseira granulata (KSA17) Lake Teganuma, Chiba, Japan 2 September 2014 

KS94 Zygophlyctis melosirae comb. nov. Aulacoseira ambigua (KSA24) Lake Shirakaba, Nagano, Japan 23 September 2014 

KS97 Zygorhizidium willei Gonatozygon brebissonii (KSA15) Lake Suwa, Nagano, Japan 7 June 2015 

KS98 Zygophlyctis planktonika Asterionella formosa (KSA51) Lake Biwaike, Nagano, Japan 31 October 2015 

KS99 Zygophlyctis melosirae comb. nov. Aulacoseira granulata (KSA52) Lake Suwa, Nagano, Japan 24 October 2015 

KS100 Collimyces mutans gen. et sp. nov. Microglena coccifera (KSA58) Pond in the park, Chiba, Japan 27 March 2016 
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Table 3. Algal cultures used in this study 

 

 

  

Species Culture Source Date of sampling Comment 

Bacillariophyceae     

Asterionella formosa KSA51 Lake Biwaike, Nagano, Japan 12 October 2015 Host of KS98 

Asterionella formosa KSA59 Lake Teganuma, Chiba, Japan 27 March 2016 - 

Asterionella formosa KSA60 Lake Chuzenji, Tochigi, Japan 24 May 2016 - 

Aulacoseira ambigua C5 Lake Inbanuma, Nagano, Japan 30 July 2011 Host of C1 

Aulacoseira ambigua KSA24 Lake Shirakaba, Nagano, Japan 23 September 2014 Host of KS94 

Aulacoseira ambigua KSA35 Lake Teganuma, Chiba, Japan 21 April 2015 - 

Aulacoseira granulata group 1 KSA17 Lake Teganuma, Chiba, Japan 21 August 2014 Host of KS93 

Aulacoseira granulata group 1 KSA52 Lake Suwa, Nagano, Japan 24 October 2015 Host of KS99 

Aulacoseira granulata group 2 KSA47 Lake Shirakaba, Nagano, Japan 4 September 2015 - 

Aulacoseira subarctica KSA62 Lake Chuzenji, Tochigi, Japan 24 May 2016 - 

Synedra sp. KSA32 Lake Teganuma, Chiba, Japan 2 March 2015 - 

Synedra sp. KSA56 Lake Inbanuma, Nagano, Japan 19 January 2016 - 

Chlorophyceae     

Microglena coccifera KSA58 Pond in the park, Chiba, Japan 27 March 2016 Host of KS100 

Zygnematophyceae     

Gonatozygon brebissonii KSA15 Lake Suwa, Nagano, Japan 5 July 2014 Host of KS97 
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Table 5. Comparison of thallus morphology and host diatom of cultures C1, KS94, KS99 and Zygorhizidium melosirae Canter emend. (Canter 1967) 

 

 

 

 

 

 

Culture/Species Zoospore Zoosporangium  Resting spore Host diatom 

C1 spherical, 2.5–3 μm, with a single lipid 

globule, a ~13 μm long flagellum 

narrowly obpyriform, 

8–11.5 × 4.4–5.7 μm 

ellipsoidal, ovoid, 

4.5–6.9 × 4.1–5.4 μm 

Aulacoseira ambigua 

KS94 spherical, 2.5–3 μm, with a single lipid 

globule, a ~13 μm long flagellum 

narrowly obpyriform, 

10–16.5 × 5–7.5 μm 

ellipsoidal, ovoid, 6–

8.5 × 4–6 μm 

Aulacoseira ambigua 

KS99 spherical, 2.5–3 μm, with a single lipid 

globule, a ~15 μm long flagellum 

broadly obpyriform, 

7.6–10.8 × 6.3–8.8 μm 

ellipsoidal, ovoid, 

6.3–8 × 4.8–6.6 μm 

Aulacoseira granulata 

Zygorhizidium melosirae 

emend. 

spherical, 3–3.5 μm, with a single lipid 

globule, a ~17.5 μm long flagellum 

broadly obpyriform, 

11.2–15 × 7–9.5 μm 

ovoid,  

6.6–13 × 3.3–8 μm 

Aulacoseira subarctica 
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Figure legends 

 

Fig. 1. Maximum-likelihood tree of chytrids using 18S rDNA sequences. Black circles indicate the 

environmental sequences of uncultured chytrids. Only bootstrap support ≥ 70% is shown. Nodes 

supported by Bayesian posterior probabilities ≥ 0.95 are highlighted by bold lines. 

 

Fig. 2. Morphology of Zygorhizidium willei KS97 on the host Gonatozygon brebissonii. A. Two 

zoospores. B. Encysted zoospore. C. Germinated thallus. D. Developing zoosporangium. E. Mature 

zoosporangium. F. Zoospore discharge. G. Empty zoosporangium with an operculum. H, I. 

Conjugation of two thalli. J. Resting spore. K. Germinated resting spore. RS=resting spore, 

Zsr=zoosporangium. Scale Bars = 10 μm. 

 

Fig. 3. Morphology of Zygophlyctis planktonica KS98 on the host Asterionella formosa. A. 

Encysted zoospore. B. Developing zoosporangium. C. Mature zoosporangium. D, E. Zoospore 

discharge. F. Conjugation of two thalli. G, H. Resting spore. Scale Bars = 10 μm. 

 

Fig. 4. Morphology of Zygophlyctis melosirae C1 on the host Aulacoseira ambigua. A. Encysted 

zoospore. B. Developing zoosporangium. C. Mature zoosporangium. D, E. Zoospore discharge. F. 

Conjugation of two thalli. G, H. Resting spore. Scale Bars = 10 μm. 

 

Fig. 5. Morphology of Zygophlyctis melosirae KS94 on the host Aulacoseira ambigua. A. Encysted 

zoospore. B. Developing zoosporangium. C. Mature zoosporangium. D, E. Zoospore discharge. F. 

Conjugation of two thalli. G, H. Resting spore. Scale Bars = 10 μm. 

 

Fig. 6. Morphology of Zygophlyctis melosirae KS99 on the host Aulacoseira granulata. A. 

Encysted zoospore. B. Developing zoosporangium. C. Mature zoosporangium. D, E. Zoospore 

discharge. F. Conjugation of two thalli. G, H. Resting spore. Scale Bars = 10 μm. 
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Fig. 7. Ultrastructure of developing zoosporangium and rhizoid of Zygorhizidium willei KS97 (A), 

Zygophlyctis planktonica KS98 (B). Ap = apophysis, F = frustule, HCW = host cell wall, Rh = 

rhizoid, Zsr = zoosporangium. Scale Bars = 1 μm. 

 

Fig. 8. Zoospore ultrastructure of Zygorhizidium willei KS97. A, B. Longitudinal section of 

zoospore. C–E. Longitudinal serial sections through the base of flagellaum. BS1 = banded structure 

1, BS2 = banded structure 2, K = kinetosome, L = lipid globule, LV = large vesicle, Mt = 

mitochondrion, N = nucleus, NfC = nonflagellated centriole, Ru = rumposome. Scar Bars = 500 nm 

(A, B), 200 nm (C–E). 

 

Fig. 9. Zoospore ultrastructure of Zygorhizidium willei KS97. A–D. Transverse serial sections 

through the base of flagellum. E, F. Serial sections including transverse section of nonflagellated 

centriole. G. Section near the posterior region of the zoospore with small dense vesicles. BS1 = 

banded structure 1, BS2 = banded structure 2, K = kinetosome, LV = large vesicle, NfC = 

nonflagellated centriole, Ru = rumposome, SDB = small dense bodies. Scar Bars = 200 nm. 

 

Fig. 10. Zoospore ultrastructure of Zygophlyctis planktonica KS98. A. Longitudinal section of 

zoospore. B. Microbody associated with lipid globule. C. Longitudinal section of rumposome 

associated with fibrillar vesicle. D. Transverse section of rumposome. E. Dense particulate body 

associated with mitochondrion. F, G. Longitudinal section of the base of flagellum. H. 

Nonflagellated centriole associated with mitochondrion. I. Transverse section of base of flagellum. 

J. Transverse section of kinetosome. K, L. Transverse section of nonflagellated centriole. DPB = 

dense particulate body, FV = fibrillar vesicle, K = kinetosome, L = lipid globule, Mb = microdoby, 

Mt = mitochondrion, N = nucleus, NfC = nonflagellated centriole, Ru = rumposome. Scale Bars = 

500 nm (A), 200 nm (B–H), 100 nm (I–L). 
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Fig. 11. Maximum-likelihood tree of chytrids using concatenated rDNA sequences (18S, 5.8S, 28S). 

Black circles indicate the environmental sequences of uncultured chytrids. Only bootstrap support ≥ 

70% is shown. Nodes supported by Bayesian posterior probabilities ≥ 0.95 are highlighted by bold 

lines. 

 

Fig. 12. Morphology of Pedulichytrium sphaericum KS93 on the host Aulacoseira granulata. A. 

Two zoospores. B. Encysted and germinated zoospore. C. Developing zoosporangium. D. Mature 

zoosporangium. E–G. Zoospore discharge. H. Rhizoid inside the host cell (arrowhead). I. Resting 

spore. K. Resting spore formed after rhizoidal anastomosis between two thalli. Scale Bars = 10 μm. 

 

Fig. 13. Ultrastructure of Pedulichytrium sphaericum KS93. A. Longitudinal section of zoospore. B. 

Longitudinal section of rumposome with microtubular root (arrow). C. Transverse section of 

rumposome. D. Longitudinal section of base of flagellum with microtubular root (arrow). E. 

Transverse section of microtubular root (arrow). F. Longitudinal section of the base of the flagellum 

with kinetosome associated structure (arrowhead). G. Transverse section of the base of the 

flagellum with kinetosome associated structure (arrowhead). H. Developing zoosporangium and 

rhizoid. CC = cell coat, F = frustule, FP = flagellar plug, G = Golgi apparatus, H = host, K = 

kinetosome, L = lipid globule, Mt = mitochondrion, N = nucleus, NfC = nonflagellated centriole, R 

= ribosomes, Rh = rhizoid, Ru = rumposome. Zsr = zoosporangium. Scale Bars = 500 nm (A), 200 

nm (B–G), 2 μm (H). 

 

Fig. 14. Maximum-likelihood tree of Chytridiales using concatenated rDNA sequences (18S, 5.8S, 

28S). Black circles indicate the environmental sequences of uncultured chytrids. Only bootstrap 

support ≥ 70% is shown. Nodes supported by Bayesian posterior probabilities ≥ 0.95 are 

highlighted by bold lines. 
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Fig. 15. Morphology of Collimyces mutans KS100 on the host Microglena coccifera. A. Zoospore. 

B. Encysted zoospore. C. Developing zoosporangium. D. Mature zoosporangium. E–H. Zoospore 

discharge from small pores (arrows) on zoosporangium. I. Delicate, thin wall (arrowhead) of empty 

zoosporangium. Scale Bars = 10 μm. 

 

Fig. 16. Zoospore ultrastructure of Collimyces mutans KS100. A. Longitudinal section of zoospore. 

B. Longitudinal section of rumposome. C. Transverse section of rumposome. D. Longitudinal 

section of kinetosome and nonflagellated centriole with bridge including wide zone of convergence 

(arrowhead). E–G. Transverse serial sections of kinetosome and nonflagellated centriole with 

bridge (arrowhead), kinetosome associated structure (double arrowhead) and microtubular root 

(arrow). H. Longitudinal section of kinetosome with kinetosome associated structure (double 

arrowhead). I. Longitudinal section of kinetosome with microtubular root (arrow). J. Transverse 

section of microtubular root (arrows) near kinetosome. K. Transverse section microtubular root 

(arrows) near lipid globule. K = kinetosome, L = lipid globule, Mt = mitochondrion, N = nucleus, 

NfC = nonflagellated centriole, R = ribosomes, Ru = rumposome. Scale Bars = 500 nm (A), 200 nm 

(B–J), 100 nm (K). 

 

Fig. 17. Maximum-likelihood tree of Rhizophydiales using concatenated rDNA sequences (5.8S 

and 28S). Only bootstrap support ≥ 70% is shown. Nodes supported by Bayesian posterior 

probabilities ≥ 0.95 are highlighted by bold lines. 
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