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Preface

One of the features of modern data is the data has a high dimension and a low sample size. We call
such data “HDLSS” or “largey, smalln” data wherep/n — oo; herep is the data dimension and is
the sample size. One can see HDLSS data in various areas of modern science such as genetic microarrays,
medical imaging, finance, chemometrics and so on. When we analyze HDLSS data, how should we treat
this type of data? We have a lot of theories and methodologies in multivariate analysis, however, we cannot
apply multivariate analysis to HDLSS data without consideration because multivariate analysis is based on
the large sample theory. We have to construct new theories and methodologies for HDLSS data.

Aoshima and Yata [2, 3] gave a broad perspective of high-dimensional statistical analysis such as given-
bandwidth confidence region, two-sample test, test of equality of two covariance matrices, classification,
variable selection, regression, pathway analysis and so on along with sample size determination to ensure
prespecified accuracy for each inference. In addition, Aoshima and Yata [4, 5] gave review articles cov-
ering this field of research. Aoshima and Yata [7] developed the theory of asymptotic normality in order
to ensure the accuracy for HDLSS data under mild conditions. As for the two-sample test, Aoshima and
Yata [9] discussed the optimality of the two-sample test for HDLSS data and created new test procedures
based on the eigenstructure of HDLSS data wher oo andn — oo. As for the classification problem,
Aoshima and Yata [6] gave the distance-based classifier and developed the misclassification rate adjusted
classification which controls misclassification rates. Aoshima and Yata [8] gave the geometric classifier
which discriminates the classes by using the heteroscedasticity in addition to the difference of means. As for
the pathway analysis, Yata and Aoshima [39, 41] considered tests of the correlation matrix. As for the noise
of HDLSS data, the asymptotic behaviors of HDLSS data were studied by Hall et al. [18], Ahn et al. [1],
and Yata and Aoshima [38] when— oo while n is fixed. They found several geometric representations
of HDLSS data under some conditions. The HDLSS asymptotic study usually assumes either the normality
as the population distribution or@mixing condition as the dependency of random variables in a sphered
data matrix. See Jung and Marron [25]. In a more general framework, Yata and Aoshima [35] showed that
the conventional principal component analysis (PCA) cannot give consistent estimators of eigenvalues and
eigenvectors in the HDLSS context. In order to overcome this inconvenience, Yata and Aoshima [38] devel-
oped the noise-reduction (NR) methodology for Gaussian type HDLSS data. Moreover, Yata and Aoshima
[36, 37, 40] created the cross-data-matrix (CDM) methodology for non-Gaussian type HDLSS data and in-



vestigated its asymptotic properties throughly when oo andn — oo. Yata and Aoshima [42] considered
the reconstruction of a low-rank signal matrix for HDLSS data by using the methods.

In this thesis, we consider the two-sample problem for HDLSS data whenoo while n is fixed. We
investigate the eigenstructure of HDLSS data theoretically, and give new two-sample test procedures based
on the eigenstructure of HDLSS data. This thesis consists of four chapters.

In Chapter 1, we consider the estimation of the first (largest) eigenvalue. We summarize the findings by
Ishii etal. [19, 20] and Ishii [22]. The key point is the geometric representation of the noise space for HDLSS
data. In Section 2, we introduce the geometric representation given by Ishii et al. [19]. In Section 3, we
show that the conventional estimator does not work well for HDLSS data. According to Ishii et al. [20] and
Ishii [22], we provide asymptotic properties of the estimators given by the NR method and the CDM method
whenp — oo while n is fixed. In Section 4, we discuss the performance of the estimators numerically.

In Chapter 2, we consider applications of the first eigenvalue. We summarize the findings by Ishii et al.
[20]. In Section 2, we construct the confidence interval of the first contribution ratio. We apply the result to
actual microarray data sets. In Section 3, we consider the estimation of the first eigenvector. We show that
the conventional estimator leads to the inconsistency in the HDLSS context. We give asymptotic properties
of the NR estimator whep — oo while n is fixed. In Section 4, we consider the estimation of the first PC
score. In Section 5, we consider the one-sample test for a mean vector. Finally, we discuss the performance
of the estimators numerically.

In Chapter 3, we consider the equality test of two covariance matrices. We summarize the findings by
Ishii et al. [20] and Ishii [22]. In Section 2, we consider the equality test of the first eigenvalues between two
classes. In Section 3, we consider the equality test of the first eigenspaces between two classes. By using the
test procedure given in this section, one can check the validity of the assumption required in Chapter 4. In
Section 4, we construct the equality test of two covariance matrices between two classes. By using the test
procedure given in this section, one can distinguish two high-dimensional covariance matrices even when
the sample sizes are fixed. Finally, we apply our test procedures to actual microarray data sets.

In Chapter 4, we consider the two-sample test for HDLSS data. We summarize the findings by Ishii
[21, 22]. A lot of papers consider this premier problem, however, they usually assume the equality of two
covariance matrices from technical reasons. We emphasize that assuming the equality of two covariance
matrices is quite unrealistic in actual data analyses. We rather utilize the difference of the two covariance
matrices and construct test procedures based on the eigenstructures. In Section 2, we introduce the test
procedure given by Ishii [21] for Gaussian type HDLSS data. In Section 3, we introduce the test procedure
given by Ishii [22] for non-Gaussian type HDLSS data. In Section 4, we discuss the performance of the test
procedures numerically. Finally, we apply our test procedures to actual microarray data sets.
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Chapter 1

Estimation of the First Eigenvalue in the
HDLSS Context

In this chapter, we consider estimation of the first eigenvalue in the HDLSS context. This chapter is
organized by Ishii et al. [19, 20] and Ishii [22].

In Section 2, we consider geometric representations of HDLSS data. The asymptotic behaviors of
HDLSS data were studied by Hall et al. [18], Ahn et al. [1], and Yata and Aoshima [38] whenco
while n is fixed. Hall et al. [18] discussed a geometric representation of high-dimensional data vectors
themselves. On the other hand, Ahn et al. [1], and Yata and Aoshima [38] discussed geometric representa-
tions of HDLSS data in a dual space. In this section, we first consider the case when the population mean is
known and introduce previous studies about geometric representations of HDLSS data in a dual space. Next,
according to Ishii et al. [19], we give another geometric representation of HDLSS data in a dual space when
the population mean is unknown.

In Section 3, we consider the estimation of the first eigenvalue of population covariance matrix. The
first eigenvalue is quite important for high-dimensional data and it often becomes much larger than the other
eigenvalues. We first show that the conventional estimator cannot estimate the first eigenvalue correctly in
the HDLSS context. In order to overcome this inconvenience, we introduce two estimators given by using
the NR method and the CDM method. We show that the NR estimator has asymptotic properties under a
mild condition and so does the bias corrected CDM estimator under a more relaxed condition.

Finally, in Section 4, we summarize simulation studies and discuss the performances of the findings.



1 Introduction

Suppose we haveyax n data matrix,X ) = [©1(,), ..., Tn(p)], Wherez; ) = (1), - Tpjp) > J =
1,...,n, are independent and identically distributed (i.i.d.) asdimensional distribution with mean vector
u,, and covariance matrif, (> 0). We assume: > 4. The eigen-decomposition &, is given by

3, = HpApHT, whereA,, is a diagonal matrix of eigenvalues; ) > --- > /\p(p)(z 0),andH, =
[R1(p), - Py is @n orthogonal matrix of the corresponding eigenvectors. Xel — [, ..., 1] =
HPA;/QZ(Z,). Then,Z, is ap x n sphered data matrix from a distribution with the zero mean and the
identity covariance matrix. Here, we Writ€ ) = [21(), .-, Zp(p)]” @Ndz;0) = (2j1(p)s s Zjn(p)) s J =

L, ..., p. Note thatF(z;; ) 2j0i(p)) = 0 (j # j') and Valz;(,)) = I, wherel, is then-dimensional identity
matrix. Hereafter, the subscriptwill be omitted for the sake of simplicity when it does not cause any
confusion. We assume that the fourth moments of each varialdeaire uniformly bounded. Note thatX

is Gaussianz;;s are i.i.d. asvV(0, 1), whereN (0, 1) denotes the standard normal distribution.

2 Geometric Representations in a Dual Space

In this section, we consider geometric representations for Gaussian-type HDLSS data whew
while n is fixed.

2.1 When the population mean vector is known

We assumeu = 0 without loss of generality. Let us write the sample covariance matri$ as=
n~1XXT. Then, we define the x n dual sample covariance matrix 8,p, = n ! X7 X. Let A1 >
- > Aon > 0 be the eigenvalues &,p. Then, we define the eigen-decompositionSqf, by S,p =
Z;‘:l Xojﬁojﬁfj, whereu,; denotes a unit eigenvector correspondiné,;p Note thatS, andS,p share
the non-zero eigenvalues. We consider the following condition.
tr(=?) b1 A

NS S AP LR

Note that (A-i) is equivalent to the condition that/tr(3) — 0, p — oo. Then, whenX is Gaussian oZ
is p-mixing, Ahn et al. [1] and Jung and Marron [25] showed a geometric representation as follows:

n P
SO I’I’L7 . 21
() D — p— 00 (2.1)

Letw,; = {n/tr(X)}\ojite; andR,, = {e, € R"| ||e,|| = 1}. Yata and Aoshima [38] showed that

Woj € Rom j = 17 =y T (22)



in probability asp — oo. On the other hand, wheKX is non-Gaussian and is nonp-mixing, Yata and
Aoshima [38] showed another geometric representation as follows:

n

P
@SoD — Dy, p— o0 (2-3)

whereD,, is a diagonal matrix whose diagonal elements ar@ pf1). Yata and Aoshima [38] considered a
boundary condition between (2.1) and (2.3) as follows:

Var(||z, — pl|?) Ts>1 ArA SE{(23, — 1)(22, — 1)}
tr(%)? - (X25=1A)?

(Aii)

— 0, p— 0.
Then, they gave the following result.

Theorem 2.1(Yata and Aoshima [38])Assume (A-i). If the elements &f satisfy (A-ii), we have (2.1) as
p — oo. Otherwise, we have (2.3) as— oc.

2.2 When the population mean vector is unknown

Let us write the sample covariance matrixs= (n—1)""(X - X)(X - X)" = (n—1)"" 3_7_, (;
z)(z;—z)T, whereX = [z, ...,z] andz = >_j—1 xj/n. Then, we define the x n dual sample covariance
matrix by Sp = (n —1)"(X — X)T(X — X). LetA; > --- > \,_1 > 0 be the eigenvalues & .

Let us write the eigen-decomposition 8f, asSp = Z 1 DY u]u whered; denotes a unit eigenvector
corresponding té\j. Note thatS and Sp share the non-zero eigenvalues. Then, Ishii et al. [19] gave the

following results.

Theorem 2.2. Assume (A-i) and (A-ii). Then, we haveras- oo that

wherel,, = (1,...,1)7.

Proof. By using Chebyshev’s inequality, for amy> 0, we have ap — oo that

Hw _/J’HZ _ er> A A E{( )(Zg _1>} .
(Fry ) s o
T — T T — 2
P ut:(z()k “>-) 92::%)3 =0 (kAFK) 24)

under (A-i) and (A-ii). Then, we havéX — [u, ..., u))T(X — [w, ..., u]) /tr(2) L, I,. We note that
(X — [y oo, u)) (I, — 1,11 /n) = X — X. Thus we write that

(Ln = 1025 /n)(X = g, p) (X = [y p) (T = 1015 /)
n—1

Sp =




Hence, we have that ( )
- I,—-1,1;.
rE) "

n
It concludes the result. O

Corollary 2.1. Letw; = {(n — 1)/tr(2)}f\jﬁj. Assume (A-i) and (A-ii). Then, we have that

(n—DA (- Dal Spi
tr(s) tr(x)

w; e R,, j=1,..,n-1

21, i=1,n—1;

in probability asp — oo, whereR,, = {e,, € R"| el 1, =0, |le,|| = 1}.

Proof. From Theorem 2.2 it follows that rang(,) = n — 1 asymptotically. By noting thai! 1,, = 0 with
probability tending ta fori =1, ...,n — 1, it concludes the results. O

From Corollary 2.1 the eigenspace spannedjy: = 1, ..., n—1, is close to the orthogonal complement
of 1,, in R™ asp — oo and the direction of the eigenvectors is not uniquely determined. On the other hand,
the eigenvalues become deterministic but there becomes no difference among them. For these reasons, it is
difficult to estimate the eigenvalues and the eigenvectors by @ingor S) in conventional PCA.

Let us observe a geometric representation given by Corollary 2.1. Now, we consider an easy example
suchas\; = --- = )\, = 1 andn = 3. In Fig. 1, we displayed scatter plots of 20 independent pairs of
+w; (j = 1,2) that were generated froni, (u, I,,) for (a)p = 4, (b)p = 40, (c)p = 400 and (d)p = 4000.

We denotedw; by € andw by &. We also denoted,, = (1,1,1)7 by the dotted line. We observed that all
the plots ofw; andw- gather on the surface of the orthogonal complement,of (1,1,1)” in R? when
pis large. Moreover, they appeared around the unit circle on the orthogonal complerigntafi, 1,1)”

in R? as expected by Corollary 2.1.



(©) p = 400 (d) p = 4000

Figure 1. The geometric representation of 20 pairstab;(j = 1,2) from N,(u, I,) whenp = 4,40, 400 and4000.
We denotedv; by €, ws by@ and1,, = (1,1,1)7 by the dotted line.

3 Estimation of the First Eigenvalue

In this section, we consider eigenvalue estimation and give asymptotic distributions for the first eigen-
value. In recent years, substantial work had been done on the asymptotic behavior of eigenvalues of the
sample covariance matrix in the limit as— oo, see Johnstone [24] and Paul [28] for Gaussian data and
Baik and Silverstein [11] for non-Gaussian, i.i.d. data. Those literatures handled the cases aviien
increase at the same rate, i.g/n — ¢ > 0. The HDLSS asymptotic study usually assumes either the
normality as the population distribution orpamixing condition as the dependency of random variables in
a sphered data matrix. For instance, see Jung and Marron [25]. Yata and Aoshima [35, 40] succeeded in
investigating the consistency properties of both eigenvalues and eigenvectors in a more general framework.
Yata and Aoshima [38] gave consistent estimators of both the eigenvalues and eigenvectors together with



the principal component (PC) scores by a method callechtfige-reduction (NR) methodolagyata and
Aoshima [36, 39] created theross-data-matrix (CDM) methodologfyat provides a nonparametric method
for non-Gaussian HDLSS data.

3.1 Conventional estimator

Usually, one uses eigenvalues and eigenvectors of the sample covariance shatripg — 1)1 (X —
X)(X — X)T. Now, we recall the dual sample covariance matfiy, = (n — 1)~} X — X)7(X — X).
Note thatS and Sp share the non-zero eigenvalues. In actual data analyses, weuse estimate the
target eigenvalues because of its low computational costd,Let tr(2) — 32'_ A2 = D1 A2 for
i =1,...,p— 1. Then, we consider the following assumptions for the first eigenvalue:

Tx

= o(1) asp — oo whenn is fixed; iQ = o(1) asp — oo for some fixedi, (< p) when
1

(A-ii)y =
A
n — o0.
Somssa MAE{ (23 — 1)(23 — 1)}

(A-iv) 12 = o(1) asp — oo either whem: is fixed orn — oc.
nAY

Note that (A-iii) implies the conditions that;/\; — 0 asp — oo whenn is fixed and)\;, 11 /A1 — 0 as
p — oo for some fixed, whenn — oo. Also, note that (A-iv) holds wheiX is Gaussian and (A-iii) is met.
See Remark 3.2.

Remark 3.1. For a spiked model such as
Aj=a;p¥ (j=1,...,m) and A\j=c¢; (j=m+1,...,p)

with positive (fixed) constantsy;s, c¢;s anda;s, and a positive (fixed) integer, (A-iii) holds under the
condition that; > 1/2 anda; > a whenn is fixed. Whem — oo, (A-iii) holds undera; > 1/2 even if
a1 = a,,. See Yata and Aoshima [38] for the details.

Remark 3.2. For several statistical inferences of high-dimensional data, Bai and Saranadasa [10], Chen and
Qin [13] and Aoshima and Yata [7] assumed a general factor model as follows:

z;=Tw;+p

for j = 1,...,n, whereI' is ap x r matrix for somer > 0 such tha'T” = X, andw;, j = 1,...,n,

are i.i.d. random vectors having(w;) = 0 and Vafw,) = I,. As forw; = (wy;,...,w,;)T, assume
that E(w?;w?;) = 1 and E(wgjwsjwijw,;) = 0 for all ¢ # s,¢,u. From Lemma 1 in Yata and Aoshima
[40], one can claim that (A-iv) holds under (A-iii) in the factor model. Also, we note that the factor model
naturally holds wherX is Gaussian.

Letk =tr(X) — Ay = >_2_, As. Then, we have the following result.



Proposition 3.1. Under (A-iii) and (A-iv), it holds that

N V=TI = s = (1) (3.)

asp — oo either whem is fixed orn — oo.

Proof. Let P, = I, — 1,11 /n, wherel,, = (1,....1)T. Also, lete, = (e1,...,e,)’ be an arbitrary
(random)n-vector such thafie,, || = 1 andel1,, = 0. We assumg: = 0 without loss of generality. We
write that X7 X = Z 1A sZs2L 4 P it Aszsz! for i, = 1 whenn is fixed, and for some fixed
i«(> 1) whenn — co. Here, by using Markov’s inequality, for any> 0, under (A-iii) and (A-iv), we have
that

N e e =

o i e n)\1 ™A}
andP{Z( Z As2sjZs! ) r}< % (3.2)
ni\ - 7')\% '
j#j" s=ix+1
asp — oo either whenn is fixed orn — oo. Note that) 7, ej < 1and) 7, efe? < 1. Then, under

(A-iil) and (A-iv), we have that

2 1 n D WE -
Sa > M (X M

s=tx+ 7=1 =1 s=i«+1
=o0p(1) and
T AsZejZsgt T, 2w P Nozgjzej\ 2 1/2
‘26]6] Z n)\1 S{ 'ejejl} {Z< Z n)\1 ) }
J#7 s=lx+1 J#5’ J#J s=iatl
= 0p(1)

asp — oo either whem is fixed orn — oo. Thus, we claim that

s XTX Tz | Aszs2T
R Vi (n—l))\l

6 en + +0p(1) (33)

(n—1)\

from the fact thad~?_, | As/{(n — 1)A\1} = &/{(n — 1)A1} + o(1) whenn — occ. Note thate] P,, =
el and Pz, = z,s for all s. Also, note thatz’ z,,/n = op(1) for s # s asn — oo from the
fact that E{(z1,z,s/n)?} = o(l) asn — oo. Then, by noting that’(lim,_ ||z.1|] # 0) = 1,
liminf, o A1/A2 > 1andzl 1, = 0, it holds that

s T Tx T
max {65—25:1 AsZsZs en} = max {83;—25:1 AsZosZos en}
€, (n - 1))\1 €, (n - 1))\1
= ||zo1/Vn — 1H2+0p(1) (3.4)



asp — oo either whem is fixed orn — co. Note thatii! 1,, = 0 anda! P,, = @f whenSp # O. Then,
from (3.3), (3.4) andP, X' X P,,/(n — 1) = Sp, under (A-iii) and (A-iv), we have that

S xT'x K

~TD ~T ~ 2

ey y P — U = -1 4+ —+ 1 3.5
u] N wu; = Uy CESY w1 = ||zo1/Vn —1|| CESY op(1) (3.5)
asp — oo either whem is fixed orn — oco. It concludes the result. O

Remark 3.3. Jung et al. [26] gave a result similar to Proposition 3.1 wikeis Gaussiang = 0 andn is
fixed.

Now, we consider the asymptotic distribution of the conventional estimatanhenp — oo while n

is fixed. As necessary, we consider the following assumption for the normalized first PC sgores,
1/2y . .
s/ ), =1,...,n

(Av)  z5, j=1,..,n,areiid. asVv(0,1).

Note thatP(lim, . ||z01]| # 0) = 1 under (A-v) from the fact thaz,1 ||? is distributed as¢2_,, where
X2 denotes a random variable distributedy@gdistribution with. degrees of freedom. From (3.1) we have
the following result for the conventional estimator.

Corollary 3.1. Assume (A-v). lk/\; = o(1) asp — oo, it holds that agp — oo

A
(n— 1)/\—1 = X%fr (3.6)

Proof. If k/\; = o(1) asp — oo, from Proposition 3.1 it holds gs— oo thatA; /A1 = ||zo1/v/n — 1|2 +
0p(1). Note that||z,||? is distributed as¢?_; under (A-v), wherey2_; denotes a random variable dis-
tributed asy? distribution withn — 1 degrees of freedom. It concludes the result. a

Remark 3.4. Jung and Marron [25] gave (3.6) under different but still strict assumptions.

It holds thatE(||z,1/v/n — 1||?) = 1 and||z.1/vn — 1||> = 1 + 0,(1) asn — oco. If £/(nA1) = o(1)
asp — oo andn — oo, A; is a consistent estimator of . Whenn is fixed, the conditions/A; = o(1)’
is equivalent to A1 /tr(X) = 1 + o(1)" in which the contribution ratio of the first principal component
is asymptoticallyl. In that sense,x/\; = o(1)" is quite strict condition in real high-dimensional data
analyses. Hereafter, we assulneinf, .. x/A1 > 0.



3.2 Noise-reduction estimator

Yata and Aoshima [38] proposed a method for eigenvalue estimation calletitereduction (NR)
methodologyhat was brought by the geometric representation in (2.2). When we apply the NR methodology
to the case whep is unknown, the NR estimator of is given by

r(Sp) — S A

n—1—1

Note thatS\i > 0fori =1,...,n — 2. Also, note that the second term in (3.7) with= 1 is an estimator
of /(n — 1). See Lemma 2.1 in Chapter 2 for the details. Yata and Aoshima [38, 40] showey} ties
several consistency properties wher> co andn — co. On the other hand, Ishii et al. [19] gave asymptotic
properties of\; whenp — oo while n is fixed. The following theorem summarizes their findings:

Theorem 3.1(Yata and Aoshima [40], Ishii et al. [19])Under (A-iii) and (A-iv), it holds that ap — oo

e l[zo1/v/n —1||2 + 0p(1) whenn is fixed
vl
14 0p(1) whenn — oo.

Under (A-iii) to (A-v), it holds that ap — oo

(n — 1)% =2 whenn is fixed
1

n—1 5\1
Vs ()\—1—1):1\7(0,1) whenn — co.

Here, “ = ” denotes the convergence in distribution.

Proof. Whenn — oo, we can claim the results from Theorems 4.1, 4.2 and Corollary 4.1 in Yata and
Aoshima [40]. Whem is fixed, by combining Proposition 3.1 with Lemma 2.1 in Chapter 2, we can claim
the results becausgzo1||? = >_i_; 2%, — nz} is distributed as2_; under (A-v). O

Remark 3.5. Let Var(sz) = M, (< oco0) and assuméim inf, .., M; > 0. Note thatM; = 2 if 2y, j =
1,...,n,areiid. asN(0,1). Whenp — oo andn — oo, Yata and Aoshima [40] showed that under (A-iii)
and (A-iv)

”J\;ll (ii - 1) = N(0,1).

On the other hand, /A1 = o(1) asp — oo, it holds agp — oo andn — oo that

,/"AZ (ii - 1) = N(0,1).




3.3 Bias corrected cross-data-matrix estimator

We consider the case when (A-iv) is not always met. In such cases, the NR methodology does not
ensure the asymptotic properties. Yata and Aoshima [36] proposed a method calbedsgidata-matrix
(CDM) methodologyto proceed with eigenvalue estimation even in such cases.nhet= [n/2] and
n() = n — n(), where[z] denotes the smallest integer ». We divide the data matriX into X ) =
[T (1)1 -5 m(l)n(l)] and X (o) = [T(2)1, - a:(Q)n(Q)] at random. We define a cross data matrix wifh;, and
X (2) by Sp) = {(n@) — D(n@ — D} 2 X 1) — X1)T (X (2) — X (2)), whereX ;) = [Z;), ..., (5)]
havingp-vectorz;, = n -1 ]”la:” (i=1 2) Letr = n(y) — 1. We calculate the singular value
decomposition o5 (1) by Sp1) = Z )\ iU(1); ( )i ,wherel; > - > Ar(> 0) denote singular values
of Sp(1), anda(y); (0r d(3) ;) denotesaunlt left- (or right-) singular vector correspondinitgj = 1, ..., 7).
Yata and Aoshima [36, 40] showed thfqtenjoys several consistency properties to estimataithout any
assumptions about the population distribution when co andn — oo even in the HDLSS context.

Letus writeX ([, ..., ] = HAY?Z ), whereZ ; = [z(iy1, .., Z(iyp) | andz(m = (2(i)j1, ...,z(-)jnw)T,
i=1,2j=1,..,p. Letz,,); = 24— (245 ...,Z(i)j)T, Jj=1,...,p,wherez;; = n() Zk O 2 ik (=
1,25 =1,...,p). We assume’(lim;, . ||z,)1l| #0) =1, i = 1,2. We have that

p

\/(n(l) — 1)(n(2) — 1)SD(1) = Alzo(l)lzﬁz)l + Z Ajzo(l)jz§2)j. (38)

=2

Here, for any(i, j) element ofzj 9 AjZo(1);% o( ) it holds that ap — oo
Var{ \_o As(2a)si — Z(1)s) (2(2)s5 — Z(2)s)}
)\2
1
(n() — D) — 1 r(2?) — A7

= — 0
n()n () A%

under (A-iii). Hence, we can claim under (A-iii) that as— oo

25:2 )‘jzo(l)sz(Q)j

P
0. 3.9
. = (3.9)

Let us observe (3.9) by using computer simulations. We toek6 samples fronp-variatet-distribution,
t,(0, %, 5), with mean0, covariance matri® = diag(\1, A2, ..., \,) having\; = p?/3 andy = --- =
Ap = 1, and5 degrees of freedom. We considered four cages: 6,60, 600,6000. For each case we

calculated)\fl{\/(n(l) — D(ng) —1)Spa) — Mzoa)zhp)} = (w1, w2, ws)", wherew;s are3 x 1
vectors. Note thatv;s are orthogonal tds in view of (3.8). We plottedw; (white triangle),ws (black
circle) andws (cross mark) twenty times on the compliment spacéin Fig. 2. One can observe;s
converge to zero whemis large as expected theoretically in (3.9).
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Figure 2. The behaviors oh;l{\/(n(l) —1)(n@) —1)Spa) — >\1Zo(1)1z(:f(2)1} = (w1, wq,w3)’ on the compli-
ment space ols;. We plottedw; (white triangle),w, (black circle) andws (cross mark) whem = 6 samples are

taken fromt, (0, 2, 5) with = = diag(\1, \a, ..., Ap) having\; = p*3 andy = --- =\, = 1.

From (3.9) we have under (A-iii) that as— oo

5\1 , T SD(l) ,
N oy e

= (a{(l)zo(l)l/ n(l) —1 ) (z§2)1a1(2)/ n(z) —1 ) + Op(l). (310)

Then, we have the following result.

Theorem 3.2. It holds under (A-iii) that a® — oo

Ay 1zo(1)1/+/7(1) — UlllZo@2)1/1/n(2) — Ll +0p(1)  whenn is fixed

A 1+ 0,(1) whenn — co.

Proof. Lete(;) = (e(j)l,...,e(j)n(j))T, j = 1,2, be arbitrary unitn;)-vectors. From (3.8) and (3.9) we

11



have under (A-iii) that ag — oo
zo(1>1zf(2)1

\/(n(n —D(ng) —1)

Now we consider the first singular value 8f,(;). Then, it holds that ag — oo

:\ii = max {e{l) (20(1)1/ ny — 1 ) (on(2)1/\/m) e + op(l)}

)\fle{l)SD(l)e(g) = 6%1) 6(2) + Op(l).

= [zoq)1/1/m1) — UllZog2)1/ /7 2) — LI + 0p(1). (3.11)
Note that|[z,)1//nu) — 1| = 1+ 0p(1), @ = 1,2, whenp — oo andn — oc. Then, it concludes the
result. a

Corollary 3.2. It holds under (A-iii) and (A-v) that ag — oo

. 2 2
M| X X(?)nm—l’ (3.12)
A1 nay — 1\ ne -1

where“ = ” denotes the convergence in distribution, @Q?%n(-)_p i = 1,2, are mutually independent

random variables distributed as the chi-squared distribution with — 1, degrees of freedom.

Proof. Note that||z, | = 3, Z(Qi)lk — n(;)Z(y, I8 distributed 3363%-)4 fori = 1,2, if 2y, k =
L,...,ng, arei.i.d. asv(0,1). Thus we can conclude the result. O

From Corollary 3.2 we have that

2 2
E X(l)n(l)—l X(Q)’VL(Q)—l _ C
n(l) —1 n(2) -1 \/(n(l) — 1)(71(2) — 1)

e (P () ()

whereI'(-) denotes the gamma function. Thus we can give a bias-correction of the CDM estimator for the

first eigenvalue by

) \/(nu) —1)(n@) —1),
S = - A, (3.13)

Then, we have the following result.

Corollary 3.3. It holds under (A-iii) and (A-v) that as — oo

>;\11* - %\/X%l)”m—l\/x%?)"(z)—l and E<);\11*> -l

Proof. From Corollary 3.2 and (3.13) we can conclude the result. O
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4 Simulation Studies

In order to study the distributions af and)\;, we used computer simulations. We 3et= diag(Aq, ..., Ap)
with \; = p?3 and)y = --- = )\, = 1. We considered the casesf= 20, 100, 500 and 2500 when
(@n = 5and (b)n = 25. We generateet;, j = 1,...,n, independently from the-dimensional normal
distribution, N, (u, 3). Note that (A-iii) and (A-iv) hold, however/A; = o(1)’ does not hold. We de-
noted independent pseudorandom 2000 observations ahd \; by A\, and Ay, for » = 1, ...,2000. In
the end of therth replication, we checked whether the evet,— l)f\h/)\l < an_1, is true (or false)
and definedP,, = 1 (or 0) accordingly, wherez,_; is the upper0.05 point of 2 ;. We calculated
P(0.95) = 329 P, /2000 as an estimate aP{(n — 1)A; /A1 < a,_1}. Note that the standard deviation
of the estimates is less thard11. As for \; as well, we calculate@®(0.95) = S-2°P P, /2000 similarly as
an estimate oP{(n — 1)A; /A1 < an_1}.

In Fig. 3, we gave the histograms @f — 1)A;/); (left panel) andn — 1)1 /A1 (right panel) together
with P(0.95) for p = 20, 100, 500 and2500 when (a)n = 5 and (b)n = 25. From Corollary 3.1 and
Theorem 3.1, we displayed the asymptotic probability density.of 1)A; /A1 (or (n— 1)\ /A1) andy?_;.
We observed that the histograms(af— 1)\, /A; become close tq2 _, asp increases even when= 5.
On the other hand, the histograms(ef— 1)5\1/)\1 became separated frog} _; asp increases especially
whenn = 5. That is because the third term in (3.1) becomes largeinsreases. The NR estimator;,
gives a good approximation to the asymptotic distribution in such a case as well by removing the term as in
(3.2).
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Figure 3. (@) The histograms ofn — 1)1 /A, (left panels) andn — 1)1 /)1 (right panels) together with
the probability density of?_; and P(0.95) for p = 20, 100, 500 and 2500 whem = 5.
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Chapter 2

Applications of the First Eigenvalue

In this chapter, we give several applications of the first eigenvalue. This chapter is organized by Ishii et
al. [20].

In Section 1, we consider a confidence interval of the first contribution ratio. Since we analyzed the
asymptotic behavior of noise space in Chapter 1, we can construct the confidence interval. We also apply the
result to actual microarray data sets.

In Section 2, we consider the first eigenvector. As mentioned in Chapter 1, the first principal component
contains the most important information for high-dimensional data. We give asymptotic properties of the
conventional estimator and explain the reason why it behaves incorrectly in the HDLSS context. Instead, we
apply the NR method to the first eigenvector. We give asymptotic properties of the NR estimator and show
that it gives preferable performances.

In Section 3, we consider the first PC score. We give asymptotic properties of the NR estimator and show
that it gives preferable performances. We also give a method to check the validity of the assumption required
in Chapters 1-4.

In Section 4, we consider the one-sample test for a mean vector in the HDLSS context. We give a new
test procedure based on the noise space.

Finally in Section 5, we summarize simulation studies of the findings.
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1 Introduction

)Taj:

1,...,n, are independent and identically distributed (i.i.d.) astgamensional distribution with a mean vector

Suppose we havepax n data matrix,X ) = [€1(p), -+ Tn(p)]s WheErez ;) = (Z15(p), - Tpj(p)

w,, and covariance matrix, (> O). We assume: > 3. The eigen-decomposition &1, is given by, =
H,A,HT whereA, =diag(\;(,), ..., Ayy)) is a diagonal matrix of eigenvalues;,) > -+ > A, (=
0), andH,, = [hy(), .-, hy] is an orthogonal matrix of the corresponding eigenvectors. Xgf) —
[y e ] = HpA,l/QZ(p). Then,Z, is ap x n sphered data matrix from a distribution with the zero
mean and the identity covariance matrix. I&t,) = [2z1(,), - Zp(p)]” @NAZi() = (2i1(p)s --o» Zingp)) T @ =
L, ..., p. Note thatE (2, 2ij()) = 0 (i # i') and VaKz;,)) = I,,, wherel,, is then-dimensional identity
matrix. Thei-th true PC score of;,,) is given byhip)(:cj(p) — B, = /\i(/;)zij(p) (hereafter called;;,).
Note that Va(s;;,)) = A;(p) for all 7, j. Hereafter, the subscriptwill be omitted for the sake of simplicity
when it does not cause any confusion. kgt = z; — (%, ..., z)%, i = 1,...,p, wherez; = n=1 3"}, zi.
We assume that; has multiplicity one in the sense thiin inf, .. A\1/A2 > 1. Also, we assume that
limsup,, E(zfj) < oo for all ¢, j and P(limy, . ||z01]|| # 0) = 1. Note that if X is Gaussianz;;s
are i.i.d. as the standard normal distributidWi(0,1). Lets; = tr(X?) — 3! A2 = S°P_.. A2 for
1=1,...,p — 1. We consider the same assumptions in Chapter 1 for the first eigenvalue:

(A-) ;5\12 = o(1) asp — oo whenn is fixed; izz = o(1) asp — oo for some fixedi, (< p) when
1 1
n — oQ.

P oao MAsE{(22, — 1)(2%, — 1
(A-ii) r,522 i ;]2“ )z = D) = o(1) asp — oo either whem is fixed orn — oco.
nAY

Note that (A-i) implies the conditions that/\; — 0 asp — oo whenn is fixed andX;, +1/A\1 — 0

asp — oo for some fixedi, whenn — oo. Also, note that (A-ii) holds whedX is Gaussian and (A-

i) is met. See Remark 3.2 in Chapter 1. Let= " ,),. As mentioned in Chapter 1, we assume
liminf, .. k/A1 > 0. As necessary, we consider the following assumption for the normalized first PC
scoreszy; (= slj/)\}ﬂ),j =1,..,n:

(A-iily 215, j=1,...,n,areiid. asVv(0,1).

Note thatP(lim,_. ||ze1]| # 0) = 1 under (A-iii) from the fact that|z,1||? is distributed ag_,, where
x2 denotes a random variable distributed\@sdistribution with degrees of freedom. Let us write the
sample covariance matrix &= (n — 1)"'(X —= X)(X - X)" = (n - 1)7' 30 (z; — &)(z; — 2)7,
whereX = [z, ...,z] andz = > j—1®;/n. Then, we define the x n dual sample covariance matrix by
Sp=m-1)"1X-X)T(X -X). LetA\; >--- > \,_1 > 0 be the eigenvalues &p. Let us write the
eigen-decomposition & p asSp = Z?;l Xjajaf, whered; = (4,1, ..., 4j,)1 denotes a unit eigenvector
corresponding tcij. Note thatS andSp share non-zero eigenvalues. Also, note thg tr=tr(Sp).

Here, we emphasize that the first principal component is quite important for high-dimensional data be-

cause\; often becomes much larger than the other eigenvalugsraseases in the sense thgy/A; — 0
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asp — oo for all j > 2. See Figure 1 in Yata and Aoshima (2013) or Table 1 in Section 2 for example.

In other words, the first principal component contains much useful information about high-dimensional data
sets. In addition); andh; can be accurately estimated for high-dimensional data by using the NR method-
ology even whem is fixed. It is likely that the first principal component is applicable to high-dimensional
statistical inferences such as tests of mean vectors and covariance matrices. That is the reason why we focus
on the first principal component.

2 Confidence Interval of the First Contribution Ratio

We consider a confidence interval for the contribution ratio of the first principal component.aoeth
be constants satisfying(a < x2_; < b) = 1 — o, wherea € (0,1). Then, from Theorem 3.1 in Chapter
1, under (A-i) to (A-iii), it holds that

A (n—1)X (n—1)X
P<U’(;3) © [b/{ + En — 11)5\17 ak + (n — 11)5\1D

:P<a§(n—1)%§b):1—a+o(l) 2.1)
1

asp — oo whenn is fixed. We need to estimatein (2.1). Here, we give a consistent estimatordy
= (n—1)(tr(Sp) — A1)/(n —2) = tr(Sp) — A1. Then, we have the following results.

Lemma 2.1. Under (A-i) and (A-ii), it holds that

=140,(1) and — = 40,(1)

=

asp — oo either whem is fixed orn — oo.

Proof. By using Markov’s inequality, for any > 0, under (A-i) and (A-ii), we have that

P{(Z )\S{HZZ:LH_I)()Z - 1)})2 > 7‘}

s=2

{(Zp: As{(n—1) 354 (= sk_l)/n—Zkgék'Zsstk’/”}) >T}

— (n - 1)/\1

_ O{ fs>2)\ A E{( Rk )(sz -
nA?

D4 o) — 0

asp — oo either whem is fixed orn — oco. Thusitholds thatiSp) /A1 = k/ 1 +||z01/vn — 1|2 +0,(1)
from the fact that 1S p) = A\i1||zo1]|?/(n — 1) + >°7_, As||20s]|?/(n — 1). Then, from Proposition 3.1 in
Chapter 1 andim inf,, .., /A1 > 0, we can claim the results. O
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Theorem 2.1. Under (A-i) to (A-iii), it holds that

(tr)\l c [ (n— 1)\ (n— 1)\

(%) bh+m_1ﬂ;a@+m_1ﬂj)=1—a+dh (2.2)

asp — oo whenn is fixed.

Proof. From Theorem 3.1 in Chapter 1 and Lemma 2.1, under (A-i) to (A-iii), it holds that

A (n— 1)\ (n— 1)\
P(ME)E[M+wn—1ﬂfah+m—1ﬂJ>
B (n— 1)\ A (n— 1)\
B P(b/% +(n—1)X\ = tr(X) = ak + (n — 1)5\1)

(n — 1))\1 A1 (n — 1))\1 AR
=1—a+o(l)
asp — oo whenn is fixed. It concludes the result. |

Remark 2.1. From Theorem 3.1 in Chapter 1 and Lemma 2.1, under (A-i) and (A-ii), it holds (b ir/tr(X) =
(& + A1) /tr(Z) =1+ 0,(1) asp — oo andn — co. We have that

A A
50~ Lo

Remark 2.2. The constantéa, b) should be chosen for (2.2) to have the minimum length; Jfx = o(1),
the length of the confidence interval becomes closg(to— 1)\, /#}(1/a — 1/b) under (A-i) and (A-ii)
whenp — oo andn is fixed. Thus, we recommend to choose constént$) such that

argmin(1/a — 1/b) subjecttoG,_1(b) — Gp—1(a) =1 — a,
a,b

whereG,,_1(-) denotes the c.d.f. of2_;.

We used gene expression data sets and constructed a confidence interval for the contribution ratio of the
first principal component. The microarray data sets were as follows: Lymphoma da@ @fith= p) genes
consisting of diffuse large B-cell (DLBC) lymphoma (58 samples) and follicular lymphoma (19 samples)
given by Shipp et al. [29]; and prostate cancer data W2ti25 (= p) genes consisting of normal prostate (50
samples) and prostate tumor (52 samples) given by Singh et al. [30]. The data sets are given in Jeffery et al.
[23]. We standardized each sample so as to have the unit variance. Then, it holdsthatttr(Sp)) = p,
so that\; + & = p. We gave estimates of the first five eigenvalues\byand);s in Table 1. We observed
that the first eigenvalues are much larger than the others especially for prostate cancer data. We also observed
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that5\j was larger thar;ij forj =1,...,5, as expected theoretically from the fact tﬁgxﬁ\j > 0w.p.1 for all

j. We considered an estimator&fby 6, = W, — 5\% havingW,, by (4) in Aoshima and Yata [7], wheil&,

is an unbiased and consistent estimator @£#). We calculated that; /A\? = 0.163 for DLBC lymphoma,

61/X2 = —0.082 for follicular lymphoma,d; /A\? = —0.245 for normal prostate andy /\? = —0.235 for
prostate tumor. From these observations, we concluded that these data sets satisfy (A-i). In addition, from
Remark 4.1 given in Section 4, by using Jarque-Bera test, we could confirm that these data sets satisfy (A-iii)
with the level of significanc®.05. Hence, from Theorem 2.1, we constructe@bd; confidence interval of

the first contribution ratio for each data set by choogingb) as in Remark 2.2. The results are summarized

in Table 2.

Table 1. Estimates of the first five eigenvalues bys and);s, for the microarray data sets.

no AL e A A s A Aey Asy Ay s

Lymphoma data wittT129 (= p) genes given by Shipp et al. [29]

DLBC 58 1862,564, 490, 398,324 1768,479, 412, 326, 257
Follicular 19 2476, 704, 614, 533, 369 2203, 457, 392, 333, 182

Prostate cancer data witR625 (= p) genes given by Singh et al [30]

Normal 50 6760, 562,426, 371,304 6637, 450, 320, 271, 209
Prostate 52 6106, 687,512, 462,298 5976, 568, 401, 359, 199

Table 2. The 95% confidence interval (Cl) of the first contribution ratio, together withand %, for the
microarray data sets.

(n,p) Cl A1 R
DLBC lymphoma  (58,7129) [0.183,0.322] 1768 5361
Follicular lymphoma (19,7129) [0.178,0.467] 2203 4926
Normal prostate  (50,12625) [0.422,0.622] 6637 5988
Prostate tumor  (52,12625) [0.374,0.569] 5976 6649

3 First PC Direction Vector

In this section, we give asymptotic properties of the first PC direction in the HDLSS contex# et
(21, ..., ), whereH is ap x p orthogonal matrix of the sample eigenvectors suchEiaS H = A having
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A = diag\y, ..., \,). We assumé h; > 0 w.p.1 for alli without loss of generality. Note thét; can be
calculated byh; = {(n — 1)A;}~Y/2(X — X),. First, we have the following resul.

Lemma 3.1. Under (A-i) and (A-ii), it holds that

~T K -1/2
hihi—(14+ ——= = 1
1741 ( + )‘le01H2> Op( )

asp — oo either whem is fixed orn — cc.

Proofs. With the help of Proposition 3.1 in Chapter 1, under (A-i) and (A-ii), it holds that from (4.1) in the
proof of Lemma 4.1

rp _PX-X)in - NLa |zl 40,01
P - DAY {(n- DAY {llzalP /A + 0p(n)} 2
1
— 1
Tt/ Oallza 3 T W)
asp — oo either whem is fixed orn — oo. It concludes the result. O

If k/(nA1) = o(1) asp — oo andn — oo, h, is a consistent estimator df; in the sense that
hihy = 1+ 0,(1). Whenn is fixed, h; is not a consistent estimator becatiseinf, .. #/A; > 0. In
order to overcome this inconvenience, we consider applying the NR methodology to the PC direction vector.
Leth; = {(n — 1)\ }"Y/2(X — X)d;. From Lemma 3.1 we have the following result.

Theorem 3.1. Under (A-i) and (A-ii), it holds that
hy hy =1+ 0y(1)
asp — oo either whem is fixed orn — ~c.

Proof. With the help of Theorem 3.1 in Chapter 1, under (A-i) and (A-ii), we have that from (4.1) in the
proof of Lemma 4.1

- hRT(X — X)i o 1/2
Thy = X=Xl zallTo,n D) L )
{(n =DM A{llzo1|[ + 0p(n)}/
asp — oo either whem is fixed orn — oo. It concludes the result. O

Note that||h||> = A1 /A; > 1 w.p.1. We emphasize that, is a consistent estimator &f, in the sense
of the inner product even whenis fixed thoughh, is not a unit vector. We give an application bf in
Chapter 3. Let us introduce an illustrative example of Lemma 3.1. In Fig.1, the sphere represents the space
of all possible sample eigenvectors with the first three eigenvectors as the coordinate axes. From Lemma 3.1
the angle ofh; andh; becomesr/2 in the worst case.
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Figure 1. Geometric representation of the first PC direction. The sphere represents the space of possible
sample eigenvectors. The first sample eigenvedtgrtends to lie in the red cone, with tieangle. In the
worst case, the angle become& as represented by the red solid lines.

4 First PC Score

In this section, we give asymptotic properties of the first PC score in HDLSS context. We consider the
first PC score that plays a decisive role for classification of HDLSS data. We note that the first PC score is
given bysy; = )&nzlj, j=1,..,n. Letzy; = z; — z forall i, ;. Note thatzo; = (2041, -, Zoin) " for all
i. First, we have the following result.

Lemma 4.1. Under (A-i) and (A-ii), it holds that
alj = Zolj/||zol|| + Op(l) fOI’j =1,...,n
asp — oo whenn is fixed.

Proof. We note that|z.1||>/n = 1 + 0,(1) asn — oo. From (3.5) in Chapter 1, under (A-i) and (A-ii), we
have that
i Zo1/||zo1|| = 1+ 0p(1) (4.1)

asp — oo either whem is fixed orn — oo, so thatit] 2,1 = ||z1]| + 0,(n'/?). Thus, we can claim the
result. O
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Remark 4.1. From Lemma 4.1, by using, ;s and the test of normality such as Jarque-Bera test, one can
check whether (A-iii) holds or not.

By applying the NR methodology to the first PC score, we obtain an estimaig by / (n — 1)5\1a1j, j=
1,...,n. A sample mean squared error of the first PC score is given by(M$E n~" 377, (515 — s15)°.
Then, from Theorem 3.1 in Chapter 1 and Lemma 4.1, we have the following result.

Theorem 4.1. Under (A-i) and (A-ii), it holds that

1, _ .
\/TT<Slj —81]') = —21+0p(1> forj=1,...,n
asp — oo whenn is fixed. Under (A-i) to (A-iii), it holds that
MSH s
)\ﬁ(élj —s1j) = N(0,1) forj=1,...,n; and nf(sl) =3
1 1

asp — oo whenn is fixed.

Proof. By combing Theorem 3.1 in Chapter 1 with Lemma 4.1, under (A-i) and (A-ii), we have that

§1/V 1 = daj\/ (n — DA/ A = dgl|z01]| + 0p(1) = 2015 + 0p(1)

asp — oo whenn is fixed. By noting that,:; = z1; — z; andz; is distributed asV (0, 1/n) under (A-iii),
we have the results. O

Remark 4.2. The conventional estimator of the first PC score is giverspy= /(n — 1)5\1&13», j =
1,...,n. From Theorems 8.1 and 8.2 in Yata and Aoshima [40], under (A-i) and (A-ii), it holds that as
p — oo andn — oo

MSE(4:)
A1

=o0y(1) if /(A1) =0(1), and I\/ISi(El) = o0p(1).

5 One-Sample Test for the Mean Vector

In this section, we consider the following one-sample test for the mean vector:

Hy: p=py vs. Hi: p#pg (5.1)

wherep, is a candidate mean vector suclygs= 0. Here, we have the following result.
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Lemma 5.1. Under (A-i), it holds that

|2 — pll> —tr(Sp)/n _ 2 _ za/vin = 1>
)\1 n

+ 0p(1)
asp — oo whenn is fixed.

Proof. We write that
p n
_ Zs - Zs
nHm—mF—tr(sD):ZAs( -y )
s=1 7j=1
Then, from (3.2) in the proof of Proposition 3.1 in Chapter 1 angl — "7 (25 — 25)°/(n — 1) =
> iz 2sjzsyr/ (n— 1) for all s, under (A-i), we have that

{llz = plP? = tr(Sp)/n}/M\ = 21 — |lzo1/Vn = 1| /n+ 0p(1)

asp — oo whenn is fixed. It concludes the result. O

Let B )
n||x — pol|* —tr(Sp)

M
Note thatE(Ay (Fy — 1)/n) = || — pol|?. Then, by combining Theorem 3.1 in Chapter 1 and Lemma 5.1,
we have the following result.

+ 1

Iy =

Theorem 5.1. Under (A-i) to (A-iii), it holds that
Fy = Fi ,—1 underHy in (5.1)

asp — oo whemn is fixed, wherd’,, ,,, denotes a random variable distributed Aslistribution with degrees
of freedomyy andvs.

Proof. Under (A-iii), we note that; andz,; are independent, and:? is distributed as¢?. Then, from
Theorem 3.1 in Chapter 1 and Lemma 5.1 we can conclude the result. a

For a given € (0,1/2) we test (5.1) by
rejectingHy <= Fy > F1 p—1(a),
whereF,, ., («) denotes the upper point of F' distribution with degrees of freedom, andw,. Then, under

(A-i) to (A-iii), it holds that
size=a +o(1)

asp — oo whenn is fixed.
For the same gene expression data as in Section 2, we tested (5.1 with0 anda = 0.05. We
observed that{, was rejected for all four data sets.
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6 Simulation Studies

In this section, we summarize the findings in Chapter 2 by using computer simulations.

6.1 Confidence interval of the first contribution ratio

In order to study the performance of the confidence interval of the contribution ratio for the first principal
component by (2.2), we used computer simulations. Our goal was to construct a 95% confidence interval by
(2.2), so we setr = 0.05,a = x2_,(0.975) andb = x2_,(0.025), wherex?(3) denotes the uppet point
of x2. We consider the cases pf= 20, 100, 500 and2500 whenn = 10. We set® = diag(\y, ..., Ap) With
A1 =p*3and\y = --- = )\, = 1. We consideree;, j = 1, ...,n, asz;; being distributed a®v (0, 1) and
Zij, © =2, ...,p, being i.i.d. ag,_1(0, I,—1,5), wherez;; and(zy;, ..., 2p;) are independent. Note that (A-i)
and (A-ii) hold, howevers/(nA1) = o(1)’ does not hold.

Independent pseudorandom 2089 {, say) observations of; and < were generated from the dis-
tribution. Let\;, and&, be therth observation of\; and & respectively, forr = 1,..., R. Let us sim-
ply write A\ = R1 Zle A\, andiz = R7! Zle kr. We also considered the Monte Carlo variabil-
ity. Letvar(A /A1) = (R— 1'% (M — M1)?/A2 and vati/k) = (R — 1)"' 8 (R, — 7)2/K2.

In the end of therth replication, we checked whetheg /tr(3) does (or does not) belong to the corre-
sponding confidence interval and definBd = 1 (or 0) accordingly. LetP(0.95) = R*lzle P,
which estimates the target coverage probability, having its estimated standard{@P(Or95)}, where
s2{P(0.95)} = R~'P(0.95)(1 — P(0.95)). In Table 3, we gavé®(0.95), s{P(0.95)}, A1 /A1, var(A; /A1),
%/ and vafz /). We observed from Table 3 th&(0.95)s become close @95 asp increases. In addition,
var(\; /)1 )s become close to Va2 _,/(n — 1)) = 2/(n — 1) ~ 0.222 asp increases.

Table 3. The coverage probability of the first contribution rati®(0.95), together withil/)\l, k/k and
their standard errors in parentheses.

p | P(0.95) 6{P(0.95)}) Ai/A (var(\i/\1)) &/k (var(i/k))
20 0.961 (0.00430) 1.032 (0.192)  0.973 (0.00245)
100 0.963 (0.00419) 1.053 (0.218)  0.993 (0.00113)
500 0.963 (0.00422) 1.025 (0.214)  0.997 (0.00050)
2500 0.957 (0.00453) 1.018 (0.221)  0.999 (0.00022)

6.2 Comparison of the NR estimator and the conventional estimator

In this section, we compared the performancé\pfﬁl andsy; with their conventional counterparts by
Monte Carlo simulations. We spt= 2% k = 3,...,11 andn = 10. We considered two cases fafs:
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@XN =pY'i=1,.,pand (b)\; = p/2*2) ; = 1, ... p. Note that\; = p for (a) and\; = p*/*
for (b). Also, note that (A-i) holds both for (a) and (b). Let = [p'/?], where[z] denotes the smallest
integer> z. We considered a non-Gaussian distribution as follogs;, ...,zp_p*j)T, j=1,..,n,are
ii.d. asNp—p, (0,I,—p.) @nd (2p—p.+1j, - 2pj) 15 4 = 1,...,n, are i.i.d. as the,-variatet-distribution,
tp.(0,I,,,10) with mean zero, covariance matty, and degrees of freedoid), where(z1, ..., zp—p. ;)
and (2p—p,+1js - zpj)T are independent for eagh Note that (A-ii) and (A-iii) hold both for (a) and (b)
from the fact thad =} ., M AsE{(27, — 1)(22, = 1)} =230 5" A2+ O(327 5 i1 ArAs) = o(A7).

The findings were obtained by averaging the outcomes 2000 (= R, say) replications. Under a
fixed scenario, suppose that theh replication ends with estimateleg, hy, MSE(s4),) and ON\”, Ry,
MSE(31),) (r = 1,..., R). Let us simply write\; = R-' 3% A and\, = R-1'SE A, We also
considered the Monte Carlo variability by &g /A\;) = (R—1)"' % (A, — A1)?/A? and vath, /A;) =
(R - 1)7' S (M — M1)?/)A2. Fig. 2 shows the behaviors ok(/A;, A\1/\;) in the left panel and
(var(f\l/)\l), var(5\1/>\1)) in the right panel for (a) and (b). We gave the asymptotic varianciqp,f\l by
Var{x2_,/(n — 1)} = 0.222 from Theorem 3.1 in Chapter 1 and showed it by the solid line in the right
panel. We observed that the sample mean and varianfcle/ af become close to those asymptotic values as
p increases.

Similarly, we plotted &, hi1, k. ki) and (vath, k1), var(h, h1)) in Fig. 3. Also, in Fig. 4, we plotted
(MSE(51)/A1, MSE(51)/A1) and (var(MSES;) /A1), var(MSES1)/A1)). From Theorem 4.1 we gave the
asymptotic mean of MSE1)/)\; by E(x?/n) = 0.1 and showed it by the solid line in the left panel of Fig.
4. We also gave the asymptotic variance of MSE/A; by Var(x3/n) = 0.02 in the right panel of Fig. 4.
Throughout, the estimators by the NR method gave good performances both for (a) and (p)isvlzge.
However, the conventional estimators gave poor performances especially for (b). This is probably because
the bias of the conventional estimatotg{(n — 1)\, }, is large for (b) compared to (a). See Proposition 3.1
in Chapter 1 for the details.
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Figure 2. The values of Af\l//\l and B:Xl/)\l are denoted by the dashed lines for (a) and by the dotted
lines for (b) in the left panel. The values of A: vai/\;) and B: vat\;/);) are denoted by the dashed
lines for (a) and by the dotted lines for (b) in the right panel. The asymptotic varianiﬁ’mf was given

by Var{x2_,/(n — 1)} = 0.222 and denoted by the solid line in the right panel.
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Figure 3. The values of AleTh,l and B:fthl are denoted by the dashed lines for (a) and by the dotted lines
for (b) in the left panel. The values of A: v(afrlThl) and B: va(leThl) are denoted by the dashed lines for
(a) and by the dotted lines for (b) in the right panel.
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Figure 4. The values of A: MSEs;)/\; and B: MSE3;)/)\; are denoted by the dashed lines for (a) and by

the dotted lines for (b) in the left panel. The values of A: var(M§E/\,) and B: var(MSEs;)/\;) are
denoted by the dashed lines for (a) and by the dotted lines for (b) in the right panel. The asymptotic mean
and variance of MSE;)/\; were given byE(x?/n) = 0.1 and Valx?/n) = 0.02 and denoted by the solid

lines in both panels.
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Chapter 3

Equality Tests of Two Covariance Matrices

In this chapter, we consider the test of equality of two covariance matrices in the HDLSS context. This
chapter is organized by Ishii et al. [20] and Ishii [21].

Nowadays, it becomes more important to analyze covariance matrix structures in the HDLSS context.
Even though there are a variety of tests to deal with covariance matricespvhenc andn — oo, there
seem to be no tests available in the HDLSS context sugh-asco while n is fixed. Some papers consider
this problem only for the special covariance matrix, such as the identity matrix and the diagonal matrix. From
these backgrounds we construct test procedures by using the asymptotic properties of the first eigenstructure.

In Section 2, we consider the equality of two first eigenvalues by using both of the NR method and the
CDM method. We give asymptotic distributions under the null hypothesis whemno while n is fixed.

In Section 3, we consider the equality of two first eigenspaces by using both of the NR method and the
CDM method. By using our test procedures, one can check the validity of the assumption that is required in
Chapter 4.

In Section 4, we consider the equality of two covariance matrices by using the NR method. We also apply
our test procedure to actual microarray data sets and compare another test procedures given by Srivastava
and Yanagihara [32].

Finally, in Section 5, we give a simulation study to check performances of our test procedures.
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1 Introduction

Suppose we have two classes ¢ = 1,2, and define independemt x n; data matrices X; =
[@i1, ..., Tin, ], © = 1,2, fromm;, i = 1,2, wherez;;, j = 1,...,n;, are independent and identically dis-
tributed (i.i.d.) as g-dimensional distribution with a mean vector and covariance matri¥; (> O).
We assumer; > 4, i = 1,2. The eigen-decomposition &; is given byX; = H;A,H!, where
A; = diag\giys 5 Ap)) having Ay > -+ > Ay (= 0) and H; = [hy(y), ..., by is an orthogo-
nal matrix of the corresponding eigenvectors. D&t — [w;, ..., u;] = HZ»A;/QZZ» fori = 1,2. Then,
Z; is ap x n; sphered data matrix from a distribution with the zero mean and identity covariance ma-
trix. Let Z; = [z1(), - 2p)]" @Ndz) = (Zj100) s Zjmai)) s 4 = 1,..,p, fori = 1,2. Note that
E(zjrayzw@y) = 0 (7 # j') and Vakz;;y) = In,, wherel,,, denotes they;-dimensional identity ma-
trix. Also, note that if X; is Gaussianz;,;s are i.i.d. as the standard normal distributidn(0, 1).
We assume that the fourth moments of each variabl& jrare uniformly bounded foi = 1,2. Let
Zoji) = Zi) — Ziys - Zi@) Ty 7 = 1,.p i = 1,2, wherez;y = n; ' S0 k). We as-
sume thatP(lim, . |[zo1(3)|| # 0) = 1 fori = 1,2, where|| - || denotes the Euclidean norm. We
define®;,, = Y70, @;j/ni and Sin, = 5% (®ij — Tin,) (@45 — Tin,)T/(n; — 1) fori = 1,2. Let
;) =tr(ZF) — A )\2 =3 i\ 2@ fori=1,2; j=1,..,p— 1. We consider the same assump-
tions in Chapter 1 and 2 for the first eigenvalue of each

O1(i . 0, (i .
(A-i) )\12( ) _ o(1) asp — oo whenn; is fixed,; J)\—é) = o(1) asp — oo for some fixedj, (< p) when
7 1
p Ari)‘SiE 22-—1 2,’2-—1
(A-ii) 2rs22 M) M50 {(A;’f(” )G =V o(1) asp — oo either whemy, is fixed orn; —
TiAY (1)
.

As necessary, we also consider the assumption (A-iii) for eaat Chapter 1 and 2:

(A-ii))  z150), 5 = 1,...,n;, areii.d. asN (0, 1).

2 Equality Tests Using the First Eigenvalues

We consider the following test for the first eigenvalues:

Hy: /\1(1) = /\1(2) vs. H,: )\1(1) #* )\1(2) (or oy : )\1( < )\1(2)). (2.2)

2.1 Gaussian type HDLSS data

We consider the test (2.1) for the Gaussian type HDLSS data in the sense that it holds (A§ii])(ui)Uase
the estimate ol ;) by the NR methodology as in (3.7) in Chapter 14@r From Theorem 3.1 in Chapter 1
we have the following result.
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Theorem 2.1. Under (A-i) to (A-iii), it holds that

A1y/ M)

T Fn —1,ny—1
A1)/ A2) e

asp — oo whenn;s are fixed.

Proof. From Theorem 3.1 in Chapter(d; — 1)5\1(1-)/)\1(,-) is distributed els(f”_1 whenp — oo while n; is
fixed fori = 1,2. Note thatz,; ;) andz,; () are independent. Then, it concludes the result. a

Let FNE = Xy (1)/Ay(2). For agiver € (0,1/2) we test (2.1) by

acceptingH, <= FN ¢ [{Fry_1m-1(a/2)} 1 Fuy 1y-1(a/2)] (2.2)
or acceptingd, <= F{"% < {F, 1, _1(a)} 7" (2.3)

Then, under (A-i) to (A-iii), it holds that
size=a +o(1)

asp — oo whenn;s are fixed.
Now, we consider a test by the conventional estima?tp(t;,). Letr; = tr(2;) — M) = Doa—o As(i) fOr
i = 1,2. From Proposition 3.1 in Chapter 1,4f/);(; = o(1) for i = 1, 2, under (A-iii) it holds that

Ay/ Ay R
2 n1—1nz—
A1)/ A12)

asp — oo whenn;s are fixed. As mentioned in Section 2 of Chapter 1, the conditipf\; ;) = o(1)

for i = 1,2’ is quite strict in real high-dimensional data analyses. See Table 2 in Chapter 2 for example.
Hereafter, we assumém inf,, . xi/Ai) > 0fori = 1,2.

2.2 Non-Gaussian type HDLSS data

Now, we consider testing (2.1) when (A-ii) is not always met. ng) be the estimator ok, ;) by using
the CDM method. From Corollary 3.2 in Chapter 1 we have the following result.

Theorem 2.2. Under (A-i) and (A-iii), it holds a® — oo that

A/
A12)/A1(2)

whenn;s are fixed, wherd,, ,,, denotes a random variable distributed Asdistribution with (v, v2) de-

1/2
= {Fn(1)1—17n(1)2—1 X Fn(g)l—l,n(g)g—l} / (2'4)

grees of freedom anﬂ’n(l)l,l,n(l)rl anan(Q)l,l,n(Z)rl are mutually independent.

Proof. Similar to Theorem 2.1, the result is obtained from Corollary 3.2 in Chapter 1. O
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Let FCPM = X, 1)/ A1 (). For agivera € (0,1/2), let g() be the upper point of (2.4). Then, one can
test (2.1) by

acceptingd, in (2.1) <= FPM & {4(1 — «/2), g(a/2)} (2.5)

or acceptingd, <= F'PM < ¢(1 —a). (2.6)
Then, under (A-i) and (A-iii), it holds that gs— oo
size(FCPM) = o+ o(1)

whenn;s are fixed.

3 Equality Tests Using the First Eigenspace

In this section, we consider the equality test of the first eigenspaces. We consider the following test:
Hy : ()\1(1)7h1(1)) = (>\1(2)7h1(2)) VS. Hy : ()\1(1)7 h1(1)) # ()\1(2)7h1(2))' (3.1)

3.1 Gaussian type HDLSS data

Let fh(i) be the estimator of the first PC direction for by the NR methodology given in Section 2 of
Chapter 2. We assur‘rielT(i)le(i) > 0w.p.1lfori = 1,2, without loss of generality. Here, we have the
following result.

Lemma 3.1. Under (A-i) to (A-iii), it holds ap — oo that

~T ~ T

hiyhi) = hygyhie) +op(l)
either whem;;s are fixed om; — oo.

Proof. LetZ; = [z, -, zp(i)]T be a sphered data matrixoffor i = 1,2, wherez ;) = (zj1(3), - Zjni(i))T
forj =1,...,p. We assumgt;, = u, = 0 without loss of generality. Le,; = (As(l)At(Q))l/Qhﬁl)ht@) for
all 5,t. Letj, be afixed constant such the?_, ., Ag(i)/A%(i) = o(1) asp — oo fori = 1, 2. Note thatj,
exists under (A-i). We write that

4
XriFXQ = Z ﬁstzsu)zfg)‘i‘ Z 5stzs(1)zz£2)

S,tSj* Sthj*‘i‘l
p J* JI* p
T T
+ E E BstZs(1)Z4(2) + E E BstZs(1)Z4(2)-
s=j«+1t=1 s=1t=j,+1
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Note that

E{( Zp: iﬁstzsk(l)ztk’(Z))Q}

s=jx+1 t=1

P A
T T .
ZU( > )\s(l)h’s(l)hs(l)ZAt(2)ht(2)ht(2)> < e +11)A1(2)

.S:j*“l‘l t=1

for all k&, &’. Also, note that

E{( S Bz )= R Ryl S A Rl

$,t>7,+1 s=jx+1 t=7++1
p p
1/2
2 2
S( > N X At<2)>
S:j*—l-l t:j*+1

for all k, k’. Then, by using Markov’s inequality, for amy> 0, under (A-i), we have that

ny n2

PN (3 Yl )t ),

k=1 k=1  s=jo41 =1 (n1n2Ai

ny n2

PSS 3 e ) )

k=1 k=1  s—1t=j, , (mn2i

niy n2

andP{ Z Z ( Z BstZsk(1) ;112;22))1/2)2 > r} —0

k=1 k=1  s,t>je+1 (nin2Ai

asp — oo either whenn; is fixed orn; — oo fori = 1,2. Let P, = I,,, — 1,,1] /n;, wherel,, =
(1,..,1)T. Also, lete,, = (e1,...,es,)T be an arbitrary (random);-vector such thatle,,|| = 1 and
e}fi 1,, =0. Lety; =n; — 1 fori = 1,2. Similar to (3.3) in the proof of Proposition 3.1, it holds that

T xvT T T
ele Xoen, €ny 2us,t<j, ﬂstzs(l)zt(g)eng

(A di@)/? (a1 Ai2)/?

+ 0p(1).

Note thate Pn = e andP iZ1(i) = Zol(i) fori = 1,2, Wherezol() = Z1(4) — (El(i), ...,El(i))T and

Zi) = Ny D z1(7)- Also, note thatX; P,,, = (X; — X;) fori = 1,2, whereX; = [&;, ..., Z;] and

Ti=) Ty z)/n,- Leta, ;) be the first (unit) eigenvector ¢fX; — X;)* (X; — X;) fori = 1,2. Note

thatfaf(i)Pn = ul( ) when(X; — - X)T(X; — X;) # Ofori=1,2. Then, under (A-i), we have that
af) (X1 = X0)T (X2 = X)) i1y X pe, BstZos(1) Z ey B1(2)

- » +op(1 (3.2)
(V1V2)\1(1))\1(2))1/2 (V1V2)\1(1)/\1(2))1/2 (1)

asp — oo either whem; is fixed orn; — oo for i = 1,2. Note thath, ;y = {1} V(X — X))t
for i = 1,2. Also, note thatzz;(i)zos/(i)/m = 0p(1) (s # §') whenn; — oo fori = 1,2. Then, by
combining (3.2) with Theorem 3.1 in Chapter 1 and (4.1) in the proof of Lemma 4.1 of Chapter 2, we can
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claim the result. O

We note that undeH in (3.1)

Hence, one may consider a test statistic sucﬁf§§|ﬁﬂl)ﬁ1(2)| or F{VR\leT(l)le(g)\*l. From Theorem 2.1
and Lemma 3.F{VR|ﬁlT(l)ﬁ1(2)] andF{VR\fzil)ﬁm)\—l are asymptotically distributed &,, 1 ,,,1. Let

h = max{|fb{(1)ﬁ1(2)|, |hy1yhi(2)| 7} Note thath > 1 w.p.1. Then, in view of the power, we give a test
statistic for (3.1) as follows:

53
V>
=
>
=

= —2h, (= F{"%h,),
where
}NZ h if A1(1) > )‘1(2)5
h=! otherwise

From Lemma 3.1 we have the following result.
Theorem 3.1. Under (A-i) to (A-iii), it holds agp — oo that

FNR = Fo, 1,1 underHy in (3.1)
whenn;s are fixed.

Proof. By combining Theorem 2.1 and (3.3), we can claim the result. O

From Theorem 3.1 we consider testing (3.1) by (2.2) With? instead of {2, Then, the size becomes
close toa asp increases.

3.2 Non-Gaussian type HDLSS data

Now, we consider testing (3.1) when (A-ii) is not always met. We estimate the first PC score by using
the CDM method as follows: Let(;); = [n;/2] andny); = n; — n(y, for i = 1,2. For each class we
divide the data matriXX’; into X (;); : p X n(j); and X 9); : p X n(y); at random. Similar to Section 3.3 in
Chapter 1, we construct the cross data matrix by usMng,; and X (,);, and calculate the first singular value
5\1(7;) and the corresponding unit left- (or right-) singular veciior,; (or % (s)1;) for each class. Similarly,
let z,(;)1; be the centered first PC vector for tfi# division of class. We assumé(limy, .o ||24¢)15l| 7
0) =1fori =1,2; 5 = 1,2. According to Yata and Aoshima [36], we also calculé@)li = {(ngy —

1)5\1(i)}—1/2(X(j)i — X (jyi)h; fori = 1,2; j = 1,2. Then, we have the following result.
Lemma 3.2. Under (A-i), it holds that agp — oo

, P . .

Uy — Zo(j)1i/ l|Zoyuill for i=1,2; j=1,2

whenn;s are fixed.
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Proof. We note thatu(])1Z ney = 0, 4= 1,2, with probability tending ta underP(limy, . |[z,(;)1il| #
0) = 1fori =1,2andj = 1,2. Also, note that: o()1i In ()
to Theorem 3.2 in Chapter 1, we have the result. O

=0fori=1,2and;j = 1, 2. Hence, similar

From Lemma 3.2 one can check the validity of (A-iii) by applying the test of the normality such as the
Jarque-Bera test t,; for the non-Gaussian type HDLSS data.
We also have the following results for the first PC direction vector.

Lemma 3.3. Under (A-i), it holds that ag — oo

1/4
(ngn1 = D(ngnz = DllZogal*l1ze a)12”2} hT

T ,
hiyithye = hi2) +op(1
bz {(mj)l—l)(n(m Dol izl [ 100 * o)

for j =1,2; j # 7/, whenn;s are fixed.

Proof.Let v(;); = n(j); — 1fori =1,2andj = 1,2. Similar to Lemma 3.1, under (A-i), we have that
, T ~ ~
i (X = X)) (X = Xgp)tgne

O

4l B112zo(; 112T ; )12
_ %omn (1)11%06(4)12 1(/‘72) +op(1) (3.4)
{vgivgrrmre

asp — oo whenny;; is fixed fori = 1,2 andj = 1,2. Note thathgy; = {v(tie} V2 (X g —
X(j)i) i fori =1,2andj = 1,2. By combining (3.4) with Theorem 3.2 in Chapter 1 and Lemma 3.2
for eachr;, we can conclude the result. O

Lemma 3.4. Under (A-i), it holds that ap — oo
(h‘(j)llh’(k)l?)(h‘(j nbniz) = {h] ki) ) + op(1)
forj, k =1,2; (j, k) # (j', k'), whenn;s are fixed.

Proof. From Lemma 3.3 it concludes the result straightforwardly. a

Leth = {( Hh( )11 )(ﬁ(Tz)llfL(z)lz)}l/? andhyay, = max{h, h='}. From Theorem 2.2 and Lemma
3.4, we con5|der the test statistic:

FQCDM _ )"1(1) ]:L*’
A1(2)
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where
; Bmax When)"l(l) > ),\1(2)7
hye =
1/ hmax  Otherwise.

Then, we have the following result.

Theorem 3.2. Assume (A-iii). Under (A-i), it holds that

FSPM - (|, E, }/2 underHy in (3.1)

W1—Lnap—1 X (2)1—L,n(2)2—1

asp — oo whenn;s are fixed.
Proof. From (3.3) by combining Theorem 2.2 with Lemma 3.4, we can get the result. O

From Theorem 3.2 we consider testing (3.1) by (2.5) #ifh? instead oft'"”M. Then, the size becomes

close toa asp increases.

4 Equality Test of Two Covariance Matrices
In this section, we consider equality test of two covariance matrices. We consider the following test:
Ho X1 =29 VS. H,:3X; 75 . (41)

Whenp — oo andn;s are fixed, one can estimakg ;s andh, ;s by the NR methodology and the CDM
methodology, however, one cannot estimaig s andh ;s forj = 2, ..., p. Instead, we consider estimating

Ki = > b, As(i)S by using the NR methodology. As for the CDM methodology, we cannot estimate
because they go to zero automatically. Then, we consider the test (4.1) by using the NR methodology for
Gaussian-type HDLSS data. L#tp, be the dual sample covariance matrix for We estimates; by

ki = tr(Sp,) — 5\1@) fori = 1,2. From Lemma 2.1 in Chapter 2, under (A-i) and (A-ii) for eagh ;s

are consistent estimators efs in the sense that;/x; = 1 + 0,(1) asp — oo whenn;s are fixed. Let

7 = max{F&1 ke, k2/F1}. Similar to F{¥F, we give a test statistic for (4.1) as follows:

A .
MR = W5, (= YRS,
1(2)

where
- ¥ if Ay = M),
4~1  otherwise

Then, we have the following result.
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Theorem 4.1. Under (A-i) to (A-iii) for eachr;, it holds that
FNE = F,, 1,1 underHy in (4.1)
asp — oo whenn;s are fixed.

Proof. By combining Theorem 3.1 in Chapter 1, Lemmas 2.1 in Chapter 2 and 3.1, we can claim the result.
O

From Theorem 4.1 we consider testing (4.1) by (2.2) with”? instead of V2. Then, the size becomes
close toa asp increases.

We analyzed lymphoma data given by Shipp et al. [29] and prostate cancer data given by Singh et al. [30]
which are the same gene expression data as in Section 2 in Chapter 2. When each sample is standardized, we
note thati, ~ &a if A\y(;)/k; = o(1),4 = 1,2, since t{Sp,) = tr(Sp,) = p, so that one loses information
about the difference between andx,. Hence, we did not standardize each sample. We:set0.05. We
considered two cases: ) : DLBC lymphoma .; = 58) andm : follicular lymphoma €2 = 19) and (I1)

71 : normal prostater(; = 50) and : prostate tumorr(y = 52). We compared the performance Bf'?

with two other test statistic€)3 and7%, by Srivastava and Yanagihara [32]. The results are summarized in
Table 1. We observed th&'f acceptedd, for (1) and H, for (1), namely, F{' ¥ rejectedH, in (4.1) for

(). On the other handy3 and 7% did not work for these data sets beca@eand7? are established under

the severe conditions that< lim, . tr(2%)/p < oo (i = 1,...,4) andp'/?/n = o(1). As observed in

Table 1, the conditions seem not to hold for these data sets. Hence, there is no theoretical guarantee for the
results byQ? and7%.

Table 1. Tests ofHy : X1 = Xs vs. H, : X1 # X5 with size0.05 for two data sets: (1) lymphoma data
with p = 7129 given by Shipp et al. [29] and (lI) prostate cancer data with 12625 given by Singh et al.
[30].

H,by F'®  H,byQ3 H,byTs
(I) m: DLBC, 7o Follicular Accept Accept Reject

(1) 71: Normal,ms: Tumor Reject Reject Reject

5 Simulation Study

We used computer simulations to study the performance of the test procedures by (2.2)"Witior
(2.1), FNE for (3.1) andF{¥ E for (4.1). We setv = 0.05. Independent pseudo-random normal observations
were generated from; : N,(0,%;), 7 = 1,2. We set(ni,ns) = (15,25). Lety; =n; — 1 fori =1,2. We
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considered the cases= 2%, k =4, ...,12, and

hIF Os.,_
3 = RO S I ) (5.1)
Op22 %09

whereOy,; is thek x | zero matrix,X; ;) = diag(p®/4,p'/2) and %5 = (0.317!I). When considered the
alternative hypotheses, we set

[ Yv2 o1v2 , 3/4 oy [ 1/V2 O 1/V2
22(1) = ( 1/\/5 _1/\/5 > dlaq3p , L.bp ) 1/\/5 _1/\/5 (52)

andXy o) = 1.5(0. 3ls=). Note thath;(9)/ A1) = 3, k2/k1 = 1.5 andhl(l)hm) = 1/4/2. Also, note that
(A-i) to (A-iii) hold for each ;. Leth = max{|h yhial, |h yhi) ™ 1 andy = max{k1/ka, ka/K1}.
From Lemmas 2.1 in Chapter 2 and 3.1, it holds that h+o0,(1) andy = y+4o0,(1). Thus, from Theorems
2.1, 3.1 and 4.1, we obtained the asymptotic powes/of', F)VE and FiVE with (h., %) = (h~',7~') as
follows:

POWG(FlNR = P{ /\1 //\1 )f ¢ [{Fm 1,ni— 1(0‘/2)} n1 1ng— 1(04/2)]} = 0.577,
Powe(Fy ) = P{h™ (A1(1)/M@2)f & [{Fro—1.m1— 1(04/2)} L Ey 1ne—1(/2)]} = 0.823
and PowefFy' ? :P{7 " vy /A@) f ¢ KB a—1m-1(0/2)} Y Fy 1 np—1(e/2)] } = 0.963,

wheref denotes a random variable distributecFadistribution with degrees of freedom; — 1 andns — 1.
Note that Powdi ' ') and PowefF;}' ) give lower bounds of the asymptotic powers when= 1! and
Aw =L

In Fig. 1, we summarized the findings obtained by averaging the outcomes from(40@0 say)
replications. Here, the fir&X000 replications were generated by settilg = ¥; as in (5.1) and the last
2000 replications were generated by settlg as in (5.2). LetF N (i = 1,2, 3) be therth observation of
FNEforr = 1,...,4000. We definedP, = 1 (or0) whenH, was falsely rejected (or not) fer= 1, ..., 2000,
and H, was falsely rejected (or not) for= 2001, ..., 4000. We definedy = (R/2)~ ZR/2 P, to estimate
the sizeand — 3 =1— (R/2)"! Zf:R/QH P, to estimate the power. Their standard deviations are less
than0.011. Whenp is not sufficiently large, we observed that the sizeg$f* and F¥# are quite higher
thanca. This is probably because. (> 1) andq, (> 1) are much larger than 1. Actually, the sizes became

close toa asp increases. Whenis large, ' gave excellent performances both for the size and power.
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Figure 1. The values ofy are denoted by the dashed lines in the left panel and the valdes of are denoted by the
dashed lines in the right panel f6¥ %, FN and 5V . The asymptotic powers were given by Powgél ) = 0.577,
Powel F)V 1) = 0.823 and Powe(F{' ) = 0.963 which were denoted by the solid lines in the right panel.
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Chapter 4

Two-Sample Tests for HDLSS Data under
the SSE Model

In this chapter, we consider two-sample tests for HDLSS data. This chapter is organized by Ishii [21]
and Ishii [22].

We usually use the Hotelling’®? test statistic in Multivariate analysis. Since the sample covariance
matrix is singular, one cannot use the test statistic in HDLSS context. For example, Dempster [15, 16],
Srivastava [31] and Srivastava et al. [33] considered the two-sample test under the assumptipaldat
mo are Gaussian. When, andr, are non-Gaussian, Bai and Saranadasa [10] and Cai et al. [12] considered
the two-sample test under homoscedastidiy, = 5. Chen and Qin [13] and Aoshima and Yata [2, 7]
considered the two-sample test under heteroscedas®ity~ 3. Particularly, Aoshima and Yata [2]
proposed a two-sample test procedure to ensure prespecified accuracies regarding both the size and power.
We note that the above literatures considered constructing two-sample test procedures under the eigenvalue
condition named the “non-strongly spiked eigenvalue (NSSE) model” by Aoshima and Yata [9]. Aoshima
and Yata [9] also considered the other eigenvalue condition named the “strongly spiked eigenvalue (SSE)
model”. They proposed to develop high-dimensional inference not only for the NSSE model but also for the
SSE model.

In this chapter, we focus on the SSE model and constructed test procedureg whea while n;s are
fixed.

In Section 2, we consider this problem for Gaussian type HDLSS data.

In Section 3, we constructed a test procedure for non-Gaussian type HDLSS data.

In Section 4, we show some simulation results.

In Section 5, we demonstrate the test procedure by using an actual microarray data set.

Finally, in Section 6, we give the concluding remark of this thesis.
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1 Introduction

Suppose we have two classes ¢ = 1,2, and define independemt x n; data matrices X; =
[@i1, ..., Tin, ], © = 1,2, fromm;, i = 1,2, wherez;;, j = 1,...,n;, are independent and identically dis-
tributed (i.i.d.) as g-dimensional distribution with a mean vector and covariance matri¥; (> O).

We assumey; > 4, i = 1,2. The eigen-decomposition &, is given byY; = H;A,H!, where

A; = diag\giys 5 Ap)) having Ay > -+ > Ay (= 0) and H; = [hy(y), ..., by is an orthogo-
nal matrix of the corresponding eigenvectors. D&t — [w;, ..., u;] = HZ»A;/QZZ» fori = 1,2. Then,
Z; is ap x n; sphered data matrix from a distribution with the zero mean and identity covariance ma-
trix. Let Z; = [z1(), - 2p)]" @Ndz) = (Zj100) s Zjmai)) s 4 = 1,..,p, fori = 1,2. Note that
E(zjrayzw@y) = 0 (7 # j') and Vakz;;y) = In,, wherel,,, denotes they;-dimensional identity ma-
trix. Also, note that if X; is Gaussianz;,;s are i.i.d. as the standard normal distributidn(0, 1).
We assume that the fourth moments of each variabl& jrare uniformly bounded foi = 1,2. Let
Zoj(i) = Zj) — (Zjys - Zi) T, § = 1,.py i = 1,2, wherez;;y = n; ' >3 2y We assume
that P(limy—.co ||201(5)|| # 0) = 1fori = 1,2, where|| - || denotes the Euclidean norm. We define
Tin, = ijl x;;/n; andS;,, = ZJ (@ij — Tin, ) (@i — Tin,) T /(ni — 1) fori = 1, 2.
Aoshima and Yata [9] proposed the “non-strongly spiked eigenvalue (NSSE) model” defined by
Al

0 as oo fori=1,2. 1.1
=2 P (¢

However, (1.1) sometimes fails in actual high-dimensional analyses. See Aoshima and Yata [9] for the
details. Aoshima and Yata [9] also proposed the “strongly spiked eigenvalue (SSE) model” defined by

M
. (4)
hprggéf{ (22)} >0 fori=1or2. 1.2)

As for the SSE model, Ma et al. [27] considered a two-sample test for the factor modelXyhen3,.
Aoshima and Yata [9] considered the class of test statistics and constructed test procedurgs-when
andn;s — oo.
Ishii [21, 22] consider the following assumption:
tr(=3) — A}

32 16 _ =o(l), p— oc.
1(i)

The above eigenvalue model is regarded as a strongly spiked eigenvalue model which was proposed by
Aoshima and Yata [9].
We consider the following test:

(A-))

Ho: py=py VS, py # py (1.3)
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We start with the following test statistic:

2
T = |[@1n, — §2n2||2 - Ztr(sim)/ni'
=1

Note thatT;,, was discussed by Chen and Qin [13] and Aoshima and Yata [2, 7] under the NSSE model. We
considerT,, under the SSE model, (A-i). We assume the following assumption:

(A- ||)

)\ =1+4o0(1) and th(l)hl(Q) =1+o0o(1) asp — oc.
1(2)

(A-ii) means that the two classes share the first eigenspace wisdarge. One can check (A-ii) by using
the test statistic&y'* or F{'PM given in Chapter 3. As necessary, we also consider the same assumption
(A-iii) for each r; as in Chapter 1 and 2:

(A-ii))  z15¢), 5 =1,...,n;, are ii.d. asN (0, 1).
Let nyin = min{ni, na}. Then, we have the following result fa, .
Lemma 1.1. Under Hy in (1.3), (A-i) and (A-ii), it holds ap — oo that

T
A1(1)

_ _ 2 ||zol || 1
= (Z11) — 21(2))” — ; o — 1) + 0p(Nyin)

either whenn,;, is fixed orng;, — oo.

Proof. By using Chebyshev’s inequality, for amy> 0, under (A-i), we have that far= 1, 2

P(‘ Z Z ng(z Zsj! (i ) _ O<Z§2 A?(i)) -0 (1.4)
ni(n; — 1) 7‘2)\% .
J#J =2 (4)

asp — oo either whem;; is fixed orn; — oco. We write that

B znz Hzosi‘P
|Zin: — pall” = Z)‘S ’>( W(T(il)>

Here, z ) —|Zos(i) |12/ {ni(ni — 1)} = Z#j, Zsj(i)Zsj(i)/{ni(ni — 1)} for all 4, s. Then, from (1.4) under
(A-i), we have that

[Zin, — pil > = tr(Sin,) /i 2 120103 ||

— i — 4o nl._l 1.5
Mo 0 gy — 1) p(n; ) (1.5)

asp — oo either wher; is fixed orn; — co. Let By = (A1) Ay2)) /> xhsT(l)ht(g) for all s,¢. Then, we

write that

(T1n, — Hl)T@Qng — 1)

p p
= Z BstZs(1)Z(2) = Br1ziq)z12) + 2&123(1)51(2)
s,t>1 s=2
P P
+ Z Biez1(1)Ze(2) + Z BstZs(1)Z1(2)- (1.6)
t—2 5,62
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Let iw = >80 y Asiyhsiyh ;) for i = 1,2. Here, we have that

{<Zﬁslz ))2} _ Mg PRAICLED)

— ning ning
p o 2 /\1(1)h{(1)22*h1(1) >\1(1))\2(2)
E{(Z/@Itzl(l)zt@)) }: ning = ning ;
t=2

d L3, tr(Z2,)tr(X3,)
E{( Z 5st53(1)5t(2))2} _ tr(X1.204) < 1 2 '

nin nin
5,t>2 1702 1762

Then, by using Chebyshev’s inequality, for any- 0, under (A-i) and (A-ii), it holds that

p
_ _ )‘1 2 >‘2 1
P( 253125(1)21(2)’ > T)‘l(l)/nmin) < % — 0;
=2 A1)
p
_ _ )‘1 1 )‘2
P( Zﬁuzl(l)zt(z)‘ > T>\1(1)/nmin> < % — 0;
t=2 1(1)
& tr(zl*)tr(zg*)
P ( > ﬂstisu)?t(z)\ >Th/ ”min) < 2 —0
5,4>2 A1)
asp — oo either whenn; is fixed orn; — oo for i = 1,2. Note thatz;(1)z;(2) = Op(n,},). Hence, from
(1.6), under (A-i) and (A-ii), we have that
(flnl — NI)T(EZIZQ — “’2) _ 51121(1)21(2) + Op(nr;iln)
A1(1) A1(1)
= 21(1)21(2) + op(n;l}n) (17)
asp — oo either whem;; is fixed orn; — oo for i = 1, 2. Here, we write that
@10, — j2n2|’2 = Z @i, — Nz‘HZ = 2(T1p, — N’l)T(E%z )
=1
+201o{ (Z1n, — 1) — (Tany, — o)} + |12 (1.8)
Then, by combining (1.5) with (1.7) and (1.8), we can get the result. O

Letu, = 1/n1 + 1/ne. From Lemma 1.1, undéfi in (1.3), (A-i) and (A-ii), we have that

Zo1(0) |12 _ _
( + A1) Z i _) ) ) uy (Z11) — Z1(2)) + 0p(1) (1.9

M( 1)Un

asp — oo either whenmn,;, is fixed orng,i,, — co. Note that we assume thﬂt(sz(i))'s are uniformly
bounded. Then, it holds that
u, 2 (z Zi1y — Z1(2)) = N(0,1)
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asnmpin — oo by Lyapunov’s central limit theorem. Hence, from (1.9), it holds thapas> oo and

Nmin — OO
2

Hzol(i)H2 2
=1

)\1(1)Un

underH, in (1.3), (A-i) and (A-ii), wherey? denotes a random variable distributedy@sdistribution with

k degrees of freedom. On the other hand, under (A-iii), we noted]jé@(zl(l) — Zy(2)) is distributed as
N(0,1) even whem,;, is fixed. Hence, from (1.9), we have (1.10)as~ oo whenn,,;, is fixed under
Hy in (1.3) and (A-i) to (A-iii).

2 Gaussian Type HDLSS Data

In this section, we consider the test (1.3) for Gaussian- type HDLSS data. We also consider the following

assumption:
P oo M s E{(22 o — 1)(2% ., — 1
(A-iv) w22 Zri) 7o) {(A;’“(” ) = DI — o(1) asp — oo either whemn; is fixed orn; —
LT0)
Q.

Letv = n; +ny — 2. Letus WriteXl(i) fori = 1,2 as the NR estimator of,;. Then, we have the
following result.

Lemma 2.1. Under (A-i) to (A-iv), it holds that ap — oo whenv is fixed

S (i — 1)5\1(2')
A1(1)

= x>
Under (A-i), (A-ii) and (A-iv), it holds that as — oo andv — o~

S (i — 1)5\1(2')
I/Al(l)

=14 o0p(1).
In addition, from Theorem 3.1 in Chapter 1, we can estimate
2 2
[|Zo13) |
by - N
1(1) ; nl(nl — 1)

in (1.9) by>"7_ Aygiy/m

Proof. Under (A-iii), we note that,,;(;) andz,;(y) are independent, adﬁzo1(1)|!2 is distributed aS(ii,l
fori = 1,2. Hence, from Theorem 3.1 in Chapter 1 we can conclude the results. O
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Then, Ishii [21] give a new test procedure by using the NR method. We consider the following test

statistic. , .
Fyp = u=lL Hizlm B CI’2712”2 B Zi:l(tr(sini) - Al(i))/ni
" (nl + ng — 2)71 Z?zl(ni — 1))\1(1)

2.1)

Then, we have the following result.
Theorem 2.1. Under (A-i) to (A-iv), it holds a® — oo that

Fi, whenv is fixed

FNRé

X3  Wwhenv — cc.

Corollary 2.1. Under (A-i), (A-ii) and (A-iv), it holds that ag — oo andnyi, — oo
Fxg = x5 underHy in (1.3).

Proofs of Theorem 2.1. and Corollary 2.1Under (A-iii), we note that, ;) andz,,(; are independent for
1 = 1,2. By combining (1.10) with Theorem 3.1 in Chapter 1 and Lemma 2.1, we can conclude the results.
O

Note thatr — oo either whem; — oo orns — oo. From Corollary 2.1 one can claim the result without
(A-iii) if nyin — oo (i.e.,n; — oo fori =1,2).
For a givernx € (0,1/2) we test (1.3) by

rejectingHy in (1.3) <= Fngr > F1 (), (2.2)

whereFy, 1, («) denotes the upper point of £ distribution with degrees of freedorh; andk,. Note that
Fi,(a) — x3(a) asv — oo, wherey? («) denotes the upper point of x? distribution withk degrees of
freedom. Then, under the conditions in Theorem 2.1 (or Corollary 2.1), it holds that

size=a +o(1)

asp — oo either wherv is fixed orv — oo. Hence, one can use the test procedure even weare fixed.
Next, we consider the power of the test by (2.2). gt = p; — py. UnderH; in (1.3), we consider
the following condition:

YIS 39
(Ay) mnki i
1(1)

Then, we have the following result.

— 0 asp — oo either whemy;, is fixed ornyi, — oo.

Lemma 2.2. Under (A-i), (A-ii) and (A-v), it holds that

T oy — syt = S0 JE0IE
)\1(1) 1(1) 1(2) pt nz(nz—l) )\1(1) P\""min

asp — oo either whenn,;, is fixed o, — oc.
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Proof. We write that

S > (Sw)) . T
T, :Z [Zin, — sl — . [ 2(T1n, — )" (T2n, — H2)

i=1 v

+2u5{(Z1n, — 11) — (@2ny — o)} + || 110] > (2.3)

Under (A-v), by using Chebyshev's inequality, for any- 0 we have that

T
- Nomin 19237 b
P (”1T2(33ini — i) > T /Nmin) = O (21)\2212> — 0. (2.4)
a0
Then, by combining (2.4) with (2.3) and Lemma 1.1, it concludes the result. O

By using the above lemma, we have the following result.

Theorem 2.2. Under (A-i) to (A-v), the test by (2.2) holds as— oo andv — oo that
-1 2
Power =1— F | x3(a) — U |pl” +o(1)
. M)
, whereFX%)(-) denotes the cumulative distribution function of the chi-squared distribution wdégree of

freedom.

Proof. Note thatF, , (o) — x3(a) asv — oo. From Lemmas 2.1 and 2.2, under (A-i) to (A-v), we have that

asp — oo andv — oo

P(u‘l T, + Z?:l 5\1(1)/7%
2D DA TR DAy

2
7
= (x> v - A2 1o 1)

FL,,(oz))

2
—1_F 2 _HNlQH 1)
e (@) %Mmymm

It concludes the result. O

Remark 2.1. If u;!|py5][*/ A1) — oo @sp — oo, the test by (2.2) holds under (A-i) to (A-v) that
Power =1+ o0,(1) asp — oo even wherv is fixed orv — oo.
3 Non-Gaussian Type HDLSS Data

We provide a new test procedure by using the CDM method when (A-iv) is not always met. Under
(A-ii), we can estimate\;(;) by using the CDM method as follows: We regakth = [x11, ..., Z1,,| and
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X = [T21, ..., Tan,] @S X (1) and X (9) in the CDM method, respectively. We define the cross data matrix
by Spn, = {(n1 —1)(ne — 1)} /3(X1 — X1)T (X2 — X). We define the singular value decomposition

by Spn, = ngiln’l /ijnﬁjmﬁfm. Then, from Theorem 3.2 in Chapter 1, we have the following result.

Lemma 3.1. Under (A-i) and (A-ii), it holds ap — oo that
An { 2Zo1()/ V1 — 1|l Zo1(2)/v/P2 — 1]| + 0p(1)  whenn;s are fixed

A1(1) 14 0p(1) whenn;, — oo.

Proof.Lety; = n; — 1. Also, letP,,, = I,,, — n;11m1gi fori = 1,2. Similar to Lemma 3.1 in Chapter 3,
it holds that .
Pm)(?,XQPn2 Pn1ﬂ11z1(1)z1(2)Pn2
172 1/2 +0p(1)-
(12 A(2) (riaAi(yAi2)
Note thatX;P,, = (X; — X;) anda{, P,, = 11, fori = 1,2, when(X; — X )7 (X, — X>) # O.
Then, under (A-i) and (A-ii), we have that

g, (X1 — X1)"(Xo — Xo)than, _ Ui, F11201(1) 201 (2) Uins
(1112) V2 X (1) (r112) V2 (1)

_ HZ01(1)|\HZ01(2)H
(v112) /2

+ 0p(1)

+ 0p(1)

asp — oo either whemn; is fixed orn; — oo for i = 1,2. Note thatHzol(i)H/u;/Q = 1+ op(1) when
n; — oo for7 = 1, 2. Then, we can claim the result. O

From Lemmas 1.1 and 3.1 we consider the following test statistic:
Fopwm :ungn/;\ln—Fl. (3.1)
By using the above lemma, we have the following result.

Theorem 3.1. Assume (A-iii). Under (A-i), (A-ii) and, in (1.3), it holds that ap — oo

_ 2
VnX% - {(nl + nZ)Vn} ! Zi#i’ ni’(ni’ - 1)X7%i_1 +1 (3.2)
Fepum = whenn;s are fixed,
X3 whenn,,;, — o, (3.3)

wherev, = /(n1 —1)(n2 — 1) and x3, x2,_, and x2,_, are mutually independent random variables
distributed as the chi-squared distribution with degrees of freedomy, — 1 andns — 1, respectively.

Proof. Under (A-iii), u,(Z1(1) — Z1(2))? is distributed as¢j. We note thatz;;) andz,(;) (i = 1,2) are
independent under (A-iii). Then, by combining Corollary 3.2 in Chapter 1 with Lemma 1.1 and Lemma 3.1,
it concludes the result. O
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Remark 3.1. Whenp — oo andn,,,;, — oo, the result in Theorem 3.1 holds without (A-iii).

For a givena € (0,1/2) let f,, »,(a) be the upperr point of (3.2). From Theorem 3.1 one can test
(1.3) by
rejectingHy in (1.3) <= F > fp, n,(a). (3.4)
Then, it holds under (A-i) to (A-iii) that

size = a+ o(1).
Next, we consider the power of the test by (3.4). From Lemma 2.2 we have the following result.

Theorem 3.2. Under (A-i), (A-ii) and (A-v), the test by (3.4) holds thatias+ oo andn,,;, — oo
-1 2
Power =1—F.» [ x3(a) — U] + o(1),
. M)
whereFX%(-) denotes the cumulative distribution function of the chi-squared distribution Witegree of
freedom.

Proof. Note thatf,,, n,(a) — x3(a) @Snmin — oo. From Remark 3.1 and Lemmas 3.1 and 2.2, under (A-i),
(A-ii) and (A-v), we have that

71Tn
P <u§\ +1> fnl,nz(a)>

in

ur_Ll 2
=P (x> o) - el )
1(1)

-1 2
—1- 2 _ U llpaal”
=1-Fp <X1(a) Ao +o(1).

It concludes the result. O

Remark 3.2. If u,!||p15|?/A11) — o0 asp — oo, the test by (3.4) holds under (A-i), (A-ii), (A-iii) and
(A-v) that Power= 1 + o(1) asp — oo either whem;s are fixed ot,,,;,, — 0.

Remark 3.3. In view of Theorem 3.2, one can consider the sample size determination so as to satisfy the
probability requirement:

Asymptotic power> 1 — 3 whenever|u,||* > Ag

for given € (0,1 — ) andA( > 0. If we consider minimizing the total sample size + n2, one would

obtain the following:

~2{d (@) = X7 (1 = B) P

= Ag )

One may estimatg, ;) by using the bias-corrected CDM estimator in Chapter 1.

ny = ny
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4 Simulation Studies
In this section, we summarize simulation studies of the findings by using computer simulations.

4.1 Gaussian type HDLSS data

We used computer simulations to study the performance of the test procedure by (2.2). We also checked
the performance of the test procedure by

rejectingHy < T,,/K"/* > za, (4.1)

wherez, is a constant such th&(N(0,1) > z,) = « and

2
~ Wm. tr(Slm S2n2>
K=2 ' 4
;”i( 1) e

with Wi, = {n;(n;—1)} ! Z;L;k(:cgznlk)z —2{ni(n;—1)(n;—2)} ! x Dkl mgmlkxﬁm,l+{m(nl—
D(ni = 2)(ni = 3)} 1 0y s T ®ik®] @i, Here, Wiy, is an unbiased estimator of E7) given by
Chen et al. [14]. See Srivastava et al. [34] for detail$lGf,. Note that Aoshima and Yata [2] and Yata and
Aoshima [39] gave a different unbiased estimator (Efr). From Theorems 1 and 2 in Chen and Qin [13]
or Corollary 1 in Aoshima and Yata [9], under (1.1) and the factor model given in Remark 3.2 in Chapter 1,
the test procedure by (4.1) has sizenx + o(1) asp — oo andn; — oo, i = 1,2. If (1.2) is met orn;s are
fixed, we cannot claim “size « + o(1)” for the test procedure by (4.1).
We also considered the case when we use the conventional eigenvalue esﬁ@@gto‘ﬂjhen, one can

obtain the following test statistic:
P u_lTn + Z?Zl j\l(i)/ni
b (= DA
and checked the performance of the test procedure by

rejectingHo <= F' > F1 n, 1ny—2(c). (4.2)
We seta = 0.05, u; = 0 and
b} Os,_
3, = S = ) (4.3)
Op22 ;X9

whereOy; is thek x [ zero matrix, Sy = diag(p”, p'/?), Sy = (0.37"*) and (c1, e2) = (1,1.5).
Note that (A-i) is met whem > 1/2. Also, note that (A-ii) is met.

First, we considered the case wher> oo while n;s are fixed. Independent pseudo-random observations
were generated from; : N,(u;, 3;), ¢ = 1,2. We consider the following two cases:
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(@p=2°fors=3,...,11, (n1,n2) = (10,15) andr = 1, and
(b)p =2°fors =3,...,11, (ny1,n2) = (10,15) andr = 2/3.

We considereg, = 0 for Hy andu, = (0,...,0,1,...,1)” for H; whose lastp”| elements are 1, where

[x] denotes the smallest integerx. For each case, we checked the performance as follows: We defined
P, = 1 (or0) whenH, was falsely rejected (or not) fer= 1, ..., 2000, and definedr = >>>*%" P, /2000 to
estimate the size. We also definBd= 1 (or 0) when H; was falsely rejected (or not) for= 1, ..., 2000,

and defined — 3 = 1 — 32%% P, /2000 to estimate the power. Note that their standard deviations are less
than0.011. In Fig. 1, we plottedy (left panel) and. — 3 (right panel) for the test procedure by (2.2) in each
of (a) and (b). We also plotted them for the test procedure by (4.1) and (4.2) in each case.

Size

The test procedure by (4.1) Power The test procedure by (4.1)
Wl e T e
. - et e, 09 I i SR, bt
0.07} . POt
The test procedure by (2.2) N e

0.05 _a---..,g—‘\ AT . ”;"'T The test procedure by (2.2)

L
003k v et The test procedure by (4.2)

The test procedure by (4.2) o8

0.01f a5

T s 6 7 s 9 w0 mlo®P T4 s 6 7 s e 10 08P

(@p=2°fors=3,...,11, (n1,n2) = (10,15) andr = 1.
Size Pow
ower

ool The test procedure by (4.1) LE The test procedure by (4.1) N
i '.! . L ] 8-
onl® TR £ o .‘L-""':-,-.—-—*"A

by zThe testprocedureby (2 2) osl e ioer -7

PpE————— L - LA

0.05 Ly = o7 --* " The test procedure by (2.2)
0.03} ""-.,‘ The test procedure ———
: -ll by (4.2) 06 e KThe test procedure
001} R ) I e . by (4.2)

I T 2 N S S S B BT B TR TR 2T

(b)p =2°fors =3,...,11, (n1,n2) = (10, 15) andr = 2/3.

Figure 1. The performances of the three test procedures by (2.2), (4.1) and (4.2). Independent pseudo-random obser-
vations were generated from : N,(u;,3;), ¢ = 1,2. The values ofy are denoted by the dashed lines in the left

panels and the values bf- 3 are denoted by the dashed lines in the right panels.

We observed that the test procedure by (2.2) gave better performances compared to (4.1) regarding the size.
The size by (4.1) did not become closedo This is probably becausg, does not hold the asymptotic
normality under the SSE model, (1.2). One may think that (4.1) gave better performances compared to (2.2)
regarding the power. This is because (4.1) cannot control the size under the SSE model. On the other hand,
the test procedure by (4.2) gave quite bad performances for (b). The power was much lower than that of
(2.2). The main reason must be tﬁagi) was strongly inconsistent for (b).
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Next, we considered the case when — oo for i = 1,2. Independent pseudo-random observa-
tions were generated from,_,-(0, I,_,~) for (zlj(,-) o> Zp—p*j(i )) , j = 1,...,n;, and fromp*-variate
t-distribution, ¢+ (0, Iy, v) for (z,_p«11(i)s ---» pj(-)) v Jo=1-,n i =12 Letp, = [p I/QW
Note that (A-iv) holds from the fact th@r s>2 M) As() B (22 — D (22 — 1} = 227028 A2 +
O(Zf,SZp—p*—l-l Ar()As(i)) = o(Af(i)) fori =1,2. We conS|der the following two cases:

(¢)p =200, n; = 4sfor s =, ng = 1.5ny andr = 3/4, and
(d) p = 1000, ny =4sfors =2,...,10, no = 1.5ny andr = 3/4.

We setpu, = (0,...,0,1,...,1)" for H; whose last/5un A (1)] elements ard for each case. Note that
lp12][? = [5unAi(1)] for Hy. Then, it holds that

Fea{xi () = ||p1a] */ (wn A1)} = 0

for H,. Thus from Theorem 2.2 the test by (2.2) Haswer = 1 + o(1) asp — oo andn; — oo, i = 1, 2.
Similarly, we calculatedr and1 — 3. In Fig. 2, we plotted these values for the test procedures by (2.2) and
(5.5) in Aoshima and Yata [9].

S

e Power
0.15}

b, B T il St ST T S Y
0.13F %,
o1l €= Aoshimaand Yata [9] 05l Aoshimaand Yata [9] e

‘l.__ ’b-._.__...——-r”
0.09+ . -’ 1’
007} osp T
) Rt N - -~ The test procedure by (2.2)
0.05 = it S T3 Lt _|*
- L] w x 07}
0.03}
001 The test procedure by (2.2) 06+
10 15 2 25 % 3w 1 10 15 20 25 % 3 w0 1
() p =200, ny = 4sfor s =, ny = 1.5n1 andr = 3/4.
Size Aoshima and Yata [9]
0151 Power r Aoshimaand Yata
Liesemtm=nnn i =eeeheenen SRRl L RLELE TR

0.13F .

5.‘ _..__.___.,.
0a1f ) osl L Aee--

", €— Aoshima and Yata [9] -

0.09} . R

08" The test procedure by (2.2)

ootk The test procedure by (2.2) 06l

L L : L ) L n A . L ) L .
10 15 20 25 30 35 40 ! 10 15 20 25 30 35 40

mny
(d) p = 1000, ny = 4sfor s = 2,...,10, ny = 1.5n; andr = 3/4.

Figure 2. The performances of the two test procedures by (2.2) and (5.5) in Aoshima and Yata [9]. Independent

pseudo-random observations were generated gm,- (0, I,,_,-) for (215, .- Jj=1,...,n;,andfrom

 Zp—p*j(i )) )
p*-variatet-distribution, ¢+ (0, I -, v) for (zp_p« 110y, - 2pji)) T 4 = 1,-++ ,ni, i = 1,2, wherep* = [p'/2].

The values ofx are denoted by the dashed lines in the left panels and the valles ofare denoted by the dashed
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lines in the right panels.

We observed that the test procedure by (2.2) gave better performances compared to the test procedure by
Aoshima and Yata [9] regarding the size whes are very small. The test procedure by Aoshima and Yata

[9] became close ta: asn;s increase. In addition, the test procedure by Aoshima and Yata [9] gave better
performances compared to (2.2) regarding the power. This is probably because the asymptotic variance of
the test statistic by Aoshima and Yata [9] is smaller than(¥ay in this high-dimensional settings. See
Section 5.1 in Aoshima and Yata [9] for the details. Hence, we recommend to use the test procedure by (2.2)
for Gaussian type HDLSS data wheys are very small (e.gq;s are about 10) under the SSE model.

4.2 Non-Gaussian type HDLSS data

We used computer simulations to study the performance of the test procedure by (3.4) d\We G6b,
p, = 0. We considered the same setting as (4.3)8pand set ;) = diag(p®/*, p'/2). Note that (A-i) is
met.

Independent pseudo-random observations were generatedirop(0, I, ) for (21, -, zp,p*j(i))T,
j = 1,...,n;, and fromp™-variatet-distribution,t, (0, I« v) for (z,_p« 115, ...,zpj(i))T, j=1,- m 1=
1,2. We considered three cases:

@p=2%fors=3,..,11,p* =p—1,v =5and(ni,n2) = (10, 10),
(b)p = 2% fors = 3,..., 11, p* = [p'/?], v = 10 and(ny,n2) = (12,7), and
(c) p = 1000, p* = [p'/?],v =10 andn; =ny =3 +6sfors=1,....9.

Note that (A-iv) is not satisfied for (a). We considerggl = 0 for Hy andu, = (0,...,0,1,...,1)T for

H,; whose last) elements are 1. We sgt= [1.5);(1)] for (a),n = [1.4)\;(] for (b) andn = [6A;()]

for (c), where|z| denotes the smallest integerx. For each case we checked the performance as follows:
We definedP, = 1 (or 0) when H, was falsely rejected (or not) for = 1,...,2000, and definedv =

S22099 P, /2000 to estimate the size. We also definBd= 1 (or 0) when H; was falsely rejected (or not)

forr = 1,...,2000, and defined — 5 = 1 — 2% P, /2000 to estimate the power. Note that their standard
deviations are less than011. In Fig. 3, we plottedy (left panel) andl — 3 (right panel) for the test
procedure by (3.4) in each of (a), (b) and (c). We also plotted them for the test procedure by (2.2) in (a) and
(b), and for the test procedure by (5.5) in Aoshima and Yata [9] in (c). One can observe from (a), (b) and (c)
that the test procedure by (3.4) gave good performances forpargen whem;s are fixed. Contrary to that,

the test procedure by (2.2) gave a bad performance for (a) with respect to the powey isHarge. This

is probably because (A-iv) is not met in (a) wheiis small. On the other hand, it gave a good performance

for (b) whenp is large. The test procedure by Aoshima and Yata [9] gave a good performance when both
andn;s are large. We recommend to use the test procedure by (3.4) when the data is hon-Gaussian and the
sample size is quite small.
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Figure 3. The performances of the three test procedures by (3.4), (2.2) and (5.5) in Aoshima and Yata [9]. Independent
pseudo-random observations were generated figm,- (0, I, ) for (z1;¢), .- zp_p*j(,»))T, j=1,...,n; and from
p*-variatet-distribution, ¢, (0, I ,-, v) for (zp,p*ﬂj(i),...,zm-(i))T, j=1,---,n; i =1,2. The values ofx are

denoted by the solid lines in the left panels and the valuds-of are denoted by the solid lines in the right panels.

5 Demonstration

In this section, we demonstrate the test procedure (3.4) by using actual microarray data set. We used acute
myeloid leukemia data witR2283 (= p) genes consisting of four classes: acute promyelocytic leukemia
(APL) with t(15;17) (L0 samples), acute myelogenous leukemia (AML) with inv(463&mples), monocytic
leukemia (ML) (¢ samples) and nonmonocytic leukemia (NRR (samples). See Gutierrez et al. [17] for
the details. The data set is available at NCBI Gene Expression Omunibus. First, we checked (A-iii) for

52



each class. As for each class, we divided the sample into two groups: thénfif&] samples and the
remaining samples. Then, we constructed the cross data n#ix for each class. We calculatéq(l-)

and estimated = Y°0_, A2, /A%,y by & = {tr(Sp@:)Sh;))} /A%, We hadd = 0.013 for APL, § = 0

for AML, 6 = 0.171 for ML and § = 0.034 for NL. From these observations we concluded that each class
satisfies (A-i). In addition, from Lemma 3.2, we could confirm that each class satisfies (A-iii) with the level
of significance 0.05. We also checked (A-ii) for six pairs out of the four classes and tested (3.1) in Chapter
3 by using the test statisties’ M with the level of significance 0.05. We had P-value®ds1 for (APL,

AML), 0.187 for (APL, ML), 0.902 for (APL, NL), 0.52 for (AML, ML), 0.746 for (AML, NL) and 0.920

for (ML, NL). From these observations, we applied the two-sample test procedure (3.4) to all the cases. We
tested (1.3) with the level of significance 0.05. Thék,in (1.3) was rejected for (APL, ML), (APL, NL),

(AML, NL) and (ML, NL). The results are summarized in Table 1.

Table 1. The uppe.05 point, f,, »,(0.05), of (3.4) and the value afp s given by (3.1) for all the pairs
from Gutierrez et al. [17]'s data sets having= 22283.

(APL, AML) (APL, ML) (APL,NL) (AML, ML) (AML, NL) (ML, NL)

(n1, n2) (10,4) (10,7)  (10,22)  (4,7) (4,22) (7,22)
Faine(0.05) | 5.94 491 438 6.05 576 471
Fepwm 2.39 13.22 1226 431 6.04  19.37

6 Conclusion

As pointed out in Aoshima and Yata [9], we should choose a suitable test procedure reflected by the
eigenstructures. In this thesis, we focused on the SSE model. In high-dimensional settings, it is unrealistic
to assume the equality of the covariance matrices between the two classes. However, when analysing mi-
croarray data sets, we sometimes observe that the two covariance matrices share the first eigenspace at least
In such situations, we positively make use of the common eigenspace as a ground to compare the two class
means. From this point of view, we provided two-sample test procedures by using both the NR method and
the CDM method. Also, we discussed how to check the validity of the assumptions. Through the simulation
studies, the proposed test procedures by (2.2) and (3.4) gave good performances when the dimension is large
while the sample-size is quite small.
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