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Preface

One of the features of modern data is the data has a high dimension and a low sample size. We call

such data “HDLSS” or “largep, small n” data wherep/n → ∞; herep is the data dimension andn is

the sample size. One can see HDLSS data in various areas of modern science such as genetic microarrays,

medical imaging, finance, chemometrics and so on. When we analyze HDLSS data, how should we treat

this type of data? We have a lot of theories and methodologies in multivariate analysis, however, we cannot

apply multivariate analysis to HDLSS data without consideration because multivariate analysis is based on

the large sample theory. We have to construct new theories and methodologies for HDLSS data.

Aoshima and Yata [2, 3] gave a broad perspective of high-dimensional statistical analysis such as given-

bandwidth confidence region, two-sample test, test of equality of two covariance matrices, classification,

variable selection, regression, pathway analysis and so on along with sample size determination to ensure

prespecified accuracy for each inference. In addition, Aoshima and Yata [4, 5] gave review articles cov-

ering this field of research. Aoshima and Yata [7] developed the theory of asymptotic normality in order

to ensure the accuracy for HDLSS data under mild conditions. As for the two-sample test, Aoshima and

Yata [9] discussed the optimality of the two-sample test for HDLSS data and created new test procedures

based on the eigenstructure of HDLSS data whenp → ∞ andn → ∞. As for the classification problem,

Aoshima and Yata [6] gave the distance-based classifier and developed the misclassification rate adjusted

classification which controls misclassification rates. Aoshima and Yata [8] gave the geometric classifier

which discriminates the classes by using the heteroscedasticity in addition to the difference of means. As for

the pathway analysis, Yata and Aoshima [39, 41] considered tests of the correlation matrix. As for the noise

of HDLSS data, the asymptotic behaviors of HDLSS data were studied by Hall et al. [18], Ahn et al. [1],

and Yata and Aoshima [38] whenp → ∞ while n is fixed. They found several geometric representations

of HDLSS data under some conditions. The HDLSS asymptotic study usually assumes either the normality

as the population distribution or aρ-mixing condition as the dependency of random variables in a sphered

data matrix. See Jung and Marron [25]. In a more general framework, Yata and Aoshima [35] showed that

the conventional principal component analysis (PCA) cannot give consistent estimators of eigenvalues and

eigenvectors in the HDLSS context. In order to overcome this inconvenience, Yata and Aoshima [38] devel-

oped the noise-reduction (NR) methodology for Gaussian type HDLSS data. Moreover, Yata and Aoshima

[36, 37, 40] created the cross-data-matrix (CDM) methodology for non-Gaussian type HDLSS data and in-
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vestigated its asymptotic properties throughly whenp → ∞ andn → ∞. Yata and Aoshima [42] considered

the reconstruction of a low-rank signal matrix for HDLSS data by using the methods.

In this thesis, we consider the two-sample problem for HDLSS data whenp → ∞ while n is fixed. We

investigate the eigenstructure of HDLSS data theoretically, and give new two-sample test procedures based

on the eigenstructure of HDLSS data. This thesis consists of four chapters.

In Chapter 1, we consider the estimation of the first (largest) eigenvalue. We summarize the findings by

Ishii et al. [19, 20] and Ishii [22]. The key point is the geometric representation of the noise space for HDLSS

data. In Section 2, we introduce the geometric representation given by Ishii et al. [19]. In Section 3, we

show that the conventional estimator does not work well for HDLSS data. According to Ishii et al. [20] and

Ishii [22], we provide asymptotic properties of the estimators given by the NR method and the CDM method

whenp → ∞ while n is fixed. In Section 4, we discuss the performance of the estimators numerically.

In Chapter 2, we consider applications of the first eigenvalue. We summarize the findings by Ishii et al.

[20]. In Section 2, we construct the confidence interval of the first contribution ratio. We apply the result to

actual microarray data sets. In Section 3, we consider the estimation of the first eigenvector. We show that

the conventional estimator leads to the inconsistency in the HDLSS context. We give asymptotic properties

of the NR estimator whenp → ∞ while n is fixed. In Section 4, we consider the estimation of the first PC

score. In Section 5, we consider the one-sample test for a mean vector. Finally, we discuss the performance

of the estimators numerically.

In Chapter 3, we consider the equality test of two covariance matrices. We summarize the findings by

Ishii et al. [20] and Ishii [22]. In Section 2, we consider the equality test of the first eigenvalues between two

classes. In Section 3, we consider the equality test of the first eigenspaces between two classes. By using the

test procedure given in this section, one can check the validity of the assumption required in Chapter 4. In

Section 4, we construct the equality test of two covariance matrices between two classes. By using the test

procedure given in this section, one can distinguish two high-dimensional covariance matrices even when

the sample sizes are fixed. Finally, we apply our test procedures to actual microarray data sets.

In Chapter 4, we consider the two-sample test for HDLSS data. We summarize the findings by Ishii

[21, 22]. A lot of papers consider this premier problem, however, they usually assume the equality of two

covariance matrices from technical reasons. We emphasize that assuming the equality of two covariance

matrices is quite unrealistic in actual data analyses. We rather utilize the difference of the two covariance

matrices and construct test procedures based on the eigenstructures. In Section 2, we introduce the test

procedure given by Ishii [21] for Gaussian type HDLSS data. In Section 3, we introduce the test procedure

given by Ishii [22] for non-Gaussian type HDLSS data. In Section 4, we discuss the performance of the test

procedures numerically. Finally, we apply our test procedures to actual microarray data sets.
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Chapter 1

Estimation of the First Eigenvalue in the

HDLSS Context

In this chapter, we consider estimation of the first eigenvalue in the HDLSS context. This chapter is

organized by Ishii et al. [19, 20] and Ishii [22].

In Section 2, we consider geometric representations of HDLSS data. The asymptotic behaviors of

HDLSS data were studied by Hall et al. [18], Ahn et al. [1], and Yata and Aoshima [38] whenp → ∞
while n is fixed. Hall et al. [18] discussed a geometric representation of high-dimensional data vectors

themselves. On the other hand, Ahn et al. [1], and Yata and Aoshima [38] discussed geometric representa-

tions of HDLSS data in a dual space. In this section, we first consider the case when the population mean is

known and introduce previous studies about geometric representations of HDLSS data in a dual space. Next,

according to Ishii et al. [19], we give another geometric representation of HDLSS data in a dual space when

the population mean is unknown.

In Section 3, we consider the estimation of the first eigenvalue of population covariance matrix. The

first eigenvalue is quite important for high-dimensional data and it often becomes much larger than the other

eigenvalues. We first show that the conventional estimator cannot estimate the first eigenvalue correctly in

the HDLSS context. In order to overcome this inconvenience, we introduce two estimators given by using

the NR method and the CDM method. We show that the NR estimator has asymptotic properties under a

mild condition and so does the bias corrected CDM estimator under a more relaxed condition.

Finally, in Section 4, we summarize simulation studies and discuss the performances of the findings.
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1 Introduction

Suppose we have ap×n data matrix,X(p) = [x1(p), ...,xn(p)], wherexj(p) = (x1j(p), ..., xpj(p))T , j =

1, ..., n, are independent and identically distributed (i.i.d.) as ap-dimensional distribution with mean vector

µp and covariance matrixΣp (≥ 0). We assumen ≥ 4. The eigen-decomposition ofΣp is given by

Σp = HpΛpH
T
p , whereΛp is a diagonal matrix of eigenvalues,λ1(p) ≥ · · · ≥ λp(p)(≥ 0), andHp =

[h1(p), ...,hp(p)] is an orthogonal matrix of the corresponding eigenvectors. LetX(p) − [µp, ...,µp] =

HpΛ
1/2
p Z(p). Then,Z(p) is a p × n sphered data matrix from a distribution with the zero mean and the

identity covariance matrix. Here, we writeZ(p) = [z1(p), ...,zp(p)]T andzj(p) = (zj1(p), ..., zjn(p))T , j =

1, ..., p. Note thatE(zji(p)zj′i(p)) = 0 (j ̸= j′) and Var(zj(p)) = In, whereIn is then-dimensional identity

matrix. Hereafter, the subscriptp will be omitted for the sake of simplicity when it does not cause any

confusion. We assume that the fourth moments of each variable inZ are uniformly bounded. Note that ifX

is Gaussian,zijs are i.i.d. asN(0, 1), whereN(0, 1) denotes the standard normal distribution.

2 Geometric Representations in a Dual Space

In this section, we consider geometric representations for Gaussian-type HDLSS data whenp → ∞
while n is fixed.

2.1 When the population mean vector is known

We assumeµ = 0 without loss of generality. Let us write the sample covariance matrix asSo =

n−1XXT . Then, we define then × n dual sample covariance matrix bySoD = n−1XT X. Let λ̂o1 ≥
· · · ≥ λ̂on ≥ 0 be the eigenvalues ofSoD. Then, we define the eigen-decomposition ofSoD by SoD =∑n

j=1 λ̂ojûojû
T
oj , whereûoj denotes a unit eigenvector corresponding toλ̂oj . Note thatSo andSoD share

the non-zero eigenvalues. We consider the following condition.

(A-i)
tr(Σ2)
tr(Σ)2

=
∑p

s=1 λ2
s

(
∑p

s=1 λs)2
→ 0, p → ∞.

Note that (A-i) is equivalent to the condition thatλ1/tr(Σ) → 0, p → ∞. Then, whenX is Gaussian orZ

is ρ-mixing, Ahn et al. [1] and Jung and Marron [25] showed a geometric representation as follows:

n

tr(Σ)
SoD

P−→ In, p → ∞. (2.1)

Let woj = {n/tr(Σ)}λ̂ojûoj andRon = {en ∈ Rn| ||en|| = 1}. Yata and Aoshima [38] showed that

woj ∈ Ron, j = 1, ..., n (2.2)
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in probability asp → ∞. On the other hand, whenX is non-Gaussian andZ is non-ρ-mixing, Yata and

Aoshima [38] showed another geometric representation as follows:

n

tr(Σ)
SoD

P−→ Dn, p → ∞ (2.3)

whereDn is a diagonal matrix whose diagonal elements are ofOP (1). Yata and Aoshima [38] considered a

boundary condition between (2.1) and (2.3) as follows:

(A-ii)
Var(||xk − µ||2)

tr(Σ)2
=

∑p
r,s≥1 λrλsE{(z2

rk − 1)(z2
sk − 1)}

(
∑p

s=1 λs)2
→ 0, p → ∞.

Then, they gave the following result.

Theorem 2.1(Yata and Aoshima [38]). Assume (A-i). If the elements ofZ satisfy (A-ii), we have (2.1) as

p → ∞. Otherwise, we have (2.3) asp → ∞.

2.2 When the population mean vector is unknown

Let us write the sample covariance matrix asS = (n−1)−1(X−X)(X−X)T = (n−1)−1
∑n

j=1(xj−
x̄)(xj − x̄)T , whereX = [x̄, ..., x̄] andx̄ =

∑n
j=1 xj/n. Then, we define then×n dual sample covariance

matrix bySD = (n − 1)−1(X − X)T (X − X). Let λ̂1 ≥ · · · ≥ λ̂n−1 ≥ 0 be the eigenvalues ofSD.

Let us write the eigen-decomposition ofSD asSD =
∑n−1

j=1 λ̂jûjû
T
j , whereûj denotes a unit eigenvector

corresponding tôλj . Note thatS andSD share the non-zero eigenvalues. Then, Ishii et al. [19] gave the

following results.

Theorem 2.2. Assume (A-i) and (A-ii). Then, we have asp → ∞ that

n − 1
tr(Σ)

SD
P−→ In − 1

n
1n1T

n ,

where1n = (1, ..., 1)T .

Proof. By using Chebyshev’s inequality, for anyτ > 0, we have asp → ∞ that

P
(∣∣∣ ||xk − µ||2

tr(Σ)
− 1
∣∣∣ > τ

)
≤ τ−2

∑p
r,s≥1 λrλsE{(z2

rk − 1)(z2
sk − 1)}

tr(Σ)2
→ 0;

P
(∣∣∣(xk − µ)T (xk′ − µ)

tr(Σ)

∣∣∣ > τ
)
≤ τ−2 tr(Σ2)

tr(Σ)2
→ 0 (k ̸= k′) (2.4)

under (A-i) and (A-ii). Then, we have(X − [µ, ...,µ])T (X − [µ, ...,µ])/tr(Σ) P−→ In. We note that

(X − [µ, ...,µ])(In − 1n1T
n/n) = X − X. Thus we write that

SD =
(In − 1n1T

n/n)(X − [µ, ...,µ])T (X − [µ, ...,µ])(In − 1n1T
n/n)

n − 1
.

3



Hence, we have that
(n − 1)SD

tr(Σ)
P−→ In − 1

n
1n1T

n .

It concludes the result. 2

Corollary 2.1. Letwj = {(n − 1)/tr(Σ)}λ̂jûj . Assume (A-i) and (A-ii). Then, we have that

(n − 1)λ̂i

tr(Σ)
=

(n − 1)ûT
i SDûi

tr(Σ)
P−→ 1, i = 1, ..., n − 1;

wj ∈ Rn, j = 1, ..., n − 1

in probability asp → ∞, whereRn = {en ∈ Rn| eT
n1n = 0, ||en|| = 1}.

Proof. From Theorem 2.2 it follows that rank(SD) = n − 1 asymptotically. By noting that̂uT
i 1n = 0 with

probability tending to1 for i = 1, ..., n − 1, it concludes the results. 2

From Corollary 2.1 the eigenspace spanned byûi, i = 1, ..., n−1, is close to the orthogonal complement

of 1n in Rn asp → ∞ and the direction of the eigenvectors is not uniquely determined. On the other hand,

the eigenvalues become deterministic but there becomes no difference among them. For these reasons, it is

difficult to estimate the eigenvalues and the eigenvectors by usingSD (or S) in conventional PCA.

Let us observe a geometric representation given by Corollary 2.1. Now, we consider an easy example

such asλ1 = · · · = λp = 1 andn = 3. In Fig. 1, we displayed scatter plots of 20 independent pairs of

±wj (j = 1, 2) that were generated fromNp(µ, Ip) for (a)p = 4, (b)p = 40, (c)p = 400 and (d)p = 4000.

We denotedw1 by andw2 by . We also denoted1n = (1, 1, 1)T by the dotted line. We observed that all

the plots ofw1 andw2 gather on the surface of the orthogonal complement of1n = (1, 1, 1)T in R3 when

p is large. Moreover, they appeared around the unit circle on the orthogonal complement of1n = (1, 1, 1)T

in R3 as expected by Corollary 2.1.
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(a)p = 4 (b) p = 40

(c) p = 400 (d) p = 4000

Figure 1. The geometric representation of 20 pairs of±wj(j = 1, 2) from Np(µ, Ip) whenp = 4, 40, 400 and4000.

We denotedw1 by , w2 by and1n = (1, 1, 1)T by the dotted line.

3 Estimation of the First Eigenvalue

In this section, we consider eigenvalue estimation and give asymptotic distributions for the first eigen-

value. In recent years, substantial work had been done on the asymptotic behavior of eigenvalues of the

sample covariance matrix in the limit asp → ∞, see Johnstone [24] and Paul [28] for Gaussian data and

Baik and Silverstein [11] for non-Gaussian, i.i.d. data. Those literatures handled the cases whenp andn

increase at the same rate, i.e.p/n → c > 0. The HDLSS asymptotic study usually assumes either the

normality as the population distribution or aρ-mixing condition as the dependency of random variables in

a sphered data matrix. For instance, see Jung and Marron [25]. Yata and Aoshima [35, 40] succeeded in

investigating the consistency properties of both eigenvalues and eigenvectors in a more general framework.

Yata and Aoshima [38] gave consistent estimators of both the eigenvalues and eigenvectors together with

5



the principal component (PC) scores by a method called thenoise-reduction (NR) methodology. Yata and

Aoshima [36, 39] created thecross-data-matrix (CDM) methodologythat provides a nonparametric method

for non-Gaussian HDLSS data.

3.1 Conventional estimator

Usually, one uses eigenvalues and eigenvectors of the sample covariance matrix,S = (n − 1)−1(X −
X)(X − X)T . Now, we recall the dual sample covariance matrix,SD = (n − 1)−1(X − X)T (X − X).

Note thatS andSD share the non-zero eigenvalues. In actual data analyses, we useSD to estimate the

target eigenvalues because of its low computational cost. Letδi = tr(Σ2) −
∑i

s=1 λ2
s =

∑p
s=i+1 λ2

s for

i = 1, ..., p − 1. Then, we consider the following assumptions for the first eigenvalue:

(A-iii)
δ1

λ2
1

= o(1) asp → ∞ whenn is fixed;
δi∗

λ2
1

= o(1) asp → ∞ for some fixedi∗ (< p) when

n → ∞.

(A-iv)

∑p
r,s≥2 λrλsE{(z2

rk − 1)(z2
sk − 1)}

nλ2
1

= o(1) asp → ∞ either whenn is fixed orn → ∞.

Note that (A-iii) implies the conditions thatλ2/λ1 → 0 asp → ∞ whenn is fixed andλi∗+1/λ1 → 0 as

p → ∞ for some fixedi∗ whenn → ∞. Also, note that (A-iv) holds whenX is Gaussian and (A-iii) is met.

See Remark 3.2.

Remark 3.1. For a spiked model such as

λj = ajp
αj (j = 1, ..., m) and λj = cj (j = m + 1, ..., p)

with positive (fixed) constants,ajs, cjs andαjs, and a positive (fixed) integerm, (A-iii) holds under the

condition thatα1 > 1/2 andα1 > α2 whenn is fixed. Whenn → ∞, (A-iii) holds underα1 > 1/2 even if

α1 = αm. See Yata and Aoshima [38] for the details.

Remark 3.2. For several statistical inferences of high-dimensional data, Bai and Saranadasa [10], Chen and

Qin [13] and Aoshima and Yata [7] assumed a general factor model as follows:

xj = Γwj + µ

for j = 1, ..., n, whereΓ is a p × r matrix for somer > 0 such thatΓΓT = Σ, andwj , j = 1, ..., n,

are i.i.d. random vectors havingE(wj) = 0 and Var(wj) = Ir. As for wj = (w1j , ..., wrj)T , assume

thatE(w2
qjw

2
sj) = 1 andE(wqjwsjwtjwuj) = 0 for all q ̸= s, t, u. From Lemma 1 in Yata and Aoshima

[40], one can claim that (A-iv) holds under (A-iii) in the factor model. Also, we note that the factor model

naturally holds whenX is Gaussian.

Let κ = tr(Σ) − λ1 =
∑p

s=2 λs. Then, we have the following result.
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Proposition 3.1. Under (A-iii) and (A-iv), it holds that

λ̂1

λ1
− ||zo1/

√
n − 1||2 − κ

λ1(n − 1)
= op(1) (3.1)

asp → ∞ either whenn is fixed orn → ∞.

Proof. Let P n = In − 1n1T
n/n, where1n = (1, ..., 1)T . Also, let en = (e1, ..., en)T be an arbitrary

(random)n-vector such that||en|| = 1 andeT
n1n = 0. We assumeµ = 0 without loss of generality. We

write thatXT X =
∑i∗

s=1 λszsz
T
s +

∑p
s=i∗+1 λszsz

T
s for i∗ = 1 whenn is fixed, and for some fixed

i∗(≥ 1) whenn → ∞. Here, by using Markov’s inequality, for anyτ > 0, under (A-iii) and (A-iv), we have

that

P
{ n∑

j=1

( p∑
s=i∗+1

λs(z2
sj − 1)
nλ1

)2
> τ

}
≤
∑p

r,s≥2 λrλsE{(z2
rk − 1)(z2

sk − 1)}
τnλ2

1

→ 0

and P
{ n∑

j ̸=j′

( p∑
s=i∗+1

λszsjzsj′

nλ1

)2
> τ

}
≤ δi∗

τλ2
1

→ 0 (3.2)

asp → ∞ either whenn is fixed orn → ∞. Note that
∑n

j=1 e4
j ≤ 1 and

∑n
j ̸=j′ e

2
je

2
j′ ≤ 1. Then, under

(A-iii) and (A-iv), we have that∣∣∣ n∑
j=1

e2
j

p∑
s=i∗+1

λs(z2
sj − 1)
nλ1

∣∣∣ ≤ { n∑
j=1

e4
j

}1/2{ n∑
j=1

( p∑
s=i∗+1

λs(z2
sj − 1)
nλ1

)2}1/2

= op(1) and∣∣∣ n∑
j ̸=j′

ejej′

p∑
s=i∗+1

λszsjzsj′

nλ1

∣∣∣ ≤ { n∑
j ̸=j′

e2
je

2
j′

}1/2{ n∑
j ̸=j′

( p∑
s=i∗+1

λszsjzsj′

nλ1

)2}1/2

= op(1)

asp → ∞ either whenn is fixed orn → ∞. Thus, we claim that

eT
n

XT X

(n − 1)λ1
en = eT

n

∑i∗
s=1 λszsz

T
s

(n − 1)λ1
en +

κ

(n − 1)λ1
+ op(1) (3.3)

from the fact that
∑p

s=i∗+1 λs/{(n − 1)λ1} = κ/{(n − 1)λ1} + o(1) whenn → ∞. Note thateT
nP n =

eT
n and P nzs = zos for all s. Also, note thatzT

oszos′/n = op(1) for s ̸= s′ as n → ∞ from the

fact thatE{(zT
oszos′/n)2} = o(1) as n → ∞. Then, by noting thatP (limp→∞ ||zo1|| ≠ 0) = 1,

lim infp→∞ λ1/λ2 > 1 andzT
o11n = 0, it holds that

max
en

{
eT

n

∑i∗
s=1 λszsz

T
s

(n − 1)λ1
en

}
= max

en

{
eT

n

∑i∗
s=1 λszosz

T
os

(n − 1)λ1
en

}
= ||zo1/

√
n − 1||2 + op(1) (3.4)
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asp → ∞ either whenn is fixed orn → ∞. Note thatûT
1 1n = 0 andûT

1 P n = ûT
1 whenSD ̸= O. Then,

from (3.3), (3.4) andP nXT XP n/(n − 1) = SD, under (A-iii) and (A-iv), we have that

ûT
1

SD

λ1
û1 = ûT

1

XT X

(n − 1)λ1
û1 = ||zo1/

√
n − 1||2 +

κ

(n − 1)λ1
+ op(1) (3.5)

asp → ∞ either whenn is fixed orn → ∞. It concludes the result. 2

Remark 3.3. Jung et al. [26] gave a result similar to Proposition 3.1 whenX is Gaussian,µ = 0 andn is

fixed.

Now, we consider the asymptotic distribution of the conventional estimator,λ̂1 whenp → ∞ while n

is fixed. As necessary, we consider the following assumption for the normalized first PC scores,z1j (=

s1j/λ
1/2
1 ), j = 1, ..., n:

(A-v) z1j , j = 1, ..., n, are i.i.d. asN(0, 1).

Note thatP (limp→∞ ||zo1|| ̸= 0) = 1 under (A-v) from the fact that||zo1||2 is distributed asχ2
n−1, where

χ2
ν denotes a random variable distributed asχ2 distribution withν degrees of freedom. From (3.1) we have

the following result for the conventional estimatorλ̂1.

Corollary 3.1. Assume (A-v). Ifκ/λ1 = o(1) asp → ∞, it holds that asp → ∞

(n − 1)
λ̂1

λ1
⇒ χ2

n−1. (3.6)

Proof. If κ/λ1 = o(1) asp → ∞, from Proposition 3.1 it holds asp → ∞ thatλ̂1/λ1 = ||zo1/
√

n − 1||2 +

op(1). Note that||zo1||2 is distributed asχ2
n−1 under (A-v), whereχ2

n−1 denotes a random variable dis-

tributed asχ2 distribution withn − 1 degrees of freedom. It concludes the result. 2

Remark 3.4. Jung and Marron [25] gave (3.6) under different but still strict assumptions.

It holds thatE(||zo1/
√

n − 1||2) = 1 and||zo1/
√

n − 1||2 = 1 + op(1) asn → ∞. If κ/(nλ1) = o(1)

asp → ∞ andn → ∞, λ̂1 is a consistent estimator ofλ1. Whenn is fixed, the condition ‘κ/λ1 = o(1)’

is equivalent to ‘λ1/tr(Σ) = 1 + o(1)’ in which the contribution ratio of the first principal component

is asymptotically1. In that sense, ‘κ/λ1 = o(1)’ is quite strict condition in real high-dimensional data

analyses. Hereafter, we assumelim infp→∞ κ/λ1 > 0.
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3.2 Noise-reduction estimator

Yata and Aoshima [38] proposed a method for eigenvalue estimation called thenoise-reduction (NR)

methodologythat was brought by the geometric representation in (2.2). When we apply the NR methodology

to the case whenµ is unknown, the NR estimator ofλi is given by

λ̃i = λ̂i −
tr(SD) −

∑i
j=1 λ̂j

n − 1 − i
(i = 1, ..., n − 2). (3.7)

Note thatλ̃i ≥ 0 for i = 1, ..., n − 2. Also, note that the second term in (3.7) withi = 1 is an estimator

of κ/(n − 1). See Lemma 2.1 in Chapter 2 for the details. Yata and Aoshima [38, 40] showed thatλ̃i has

several consistency properties whenp → ∞ andn → ∞. On the other hand, Ishii et al. [19] gave asymptotic

properties of̃λ1 whenp → ∞ while n is fixed. The following theorem summarizes their findings:

Theorem 3.1(Yata and Aoshima [40], Ishii et al. [19]). Under (A-iii) and (A-iv), it holds that asp → ∞

λ̃1

λ1
=


||zo1/

√
n − 1||2 + op(1) whenn is fixed,

1 + op(1) whenn → ∞.

Under (A-iii) to (A-v), it holds that asp → ∞

(n − 1)
λ̃1

λ1
⇒ χ2

n−1 whenn is fixed,√
n − 1

2

( λ̃1

λ1
− 1
)
⇒ N(0, 1) whenn → ∞.

Here,“ ⇒ ” denotes the convergence in distribution.

Proof. Whenn → ∞, we can claim the results from Theorems 4.1, 4.2 and Corollary 4.1 in Yata and

Aoshima [40]. Whenn is fixed, by combining Proposition 3.1 with Lemma 2.1 in Chapter 2, we can claim

the results because||zo1||2 =
∑n

k=1 z2
1k − nz̄2

1 is distributed asχ2
n−1 under (A-v). 2

Remark 3.5. Let Var(z2
1k) = M1 (< ∞) and assumelim infp→∞ M1 > 0. Note thatM1 = 2 if z1j , j =

1, ..., n, are i.i.d. asN(0, 1). Whenp → ∞ andn → ∞, Yata and Aoshima [40] showed that under (A-iii)

and (A-iv) √
n − 1
M1

( λ̃1

λ1
− 1
)
⇒ N(0, 1).

On the other hand, ifκ/λ1 = o(1) asp → ∞, it holds asp → ∞ andn → ∞ that√
n − 1
M1

( λ̂1

λ1
− 1
)
⇒ N(0, 1).
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3.3 Bias corrected cross-data-matrix estimator

We consider the case when (A-iv) is not always met. In such cases, the NR methodology does not

ensure the asymptotic properties. Yata and Aoshima [36] proposed a method called thecross-data-matrix

(CDM) methodologyto proceed with eigenvalue estimation even in such cases. Letn(1) = ⌈n/2⌉ and

n(2) = n − n(1), where⌈x⌉ denotes the smallest integer≥ x. We divide the data matrixX into X(1) =

[x(1)1, ...,x(1)n(1)
] andX(2) = [x(2)1, ...,x(2)n(2)

] at random. We define a cross data matrix withX(1) and

X(2) by SD(1) = {(n(1) − 1)(n(2) − 1)}−1/2(X(1) − X(1))T (X(2) − X(2)), whereX(i) = [x̄(i), ..., x̄(i)]

havingp-vectorx̄(i) = n(i)
−1
∑n(i)

j=1 x(i)j (i = 1, 2). Let r = n(2) − 1. We calculate the singular value

decomposition ofSD(1) by SD(1) =
∑r

j=1 λ́jú(1)jú
T
(2)j , whereλ́1 ≥ · · · ≥ λ́r(≥ 0) denote singular values

of SD(1), andú(1)j (or ú(2)j) denotes a unit left- (or right-) singular vector corresponding toλ́j (j = 1, ..., r).

Yata and Aoshima [36, 40] showed thatλ́j enjoys several consistency properties to estimateλj without any

assumptions about the population distribution whenp → ∞ andn → ∞ even in the HDLSS context.

Let us writeX(i)−[µ, ...,µ] = HΛ1/2Z(i), whereZ(i) = [z(i)1, ...,z(i)p]T andz(i)j = (z(i)j1, ..., z(i)jn(i)
)T ,

i = 1, 2; j = 1, ..., p. Letzo(i)j = z(i)j−(z̄(i)j , ..., z̄(i)j)T , j = 1, ..., p, wherez̄(i)j = n−1
(i)

∑n(i)

k=1 z(i)jk (i =

1, 2; j = 1, ..., p). We assumeP (limp→∞ ||zo(i)1|| ̸= 0) = 1, i = 1, 2. We have that

√
(n(1) − 1)(n(2) − 1)SD(1) = λ1zo(1)1z

T
o(2)1 +

p∑
j=2

λjzo(1)jz
T
o(2)j . (3.8)

Here, for any(i, j) element of
∑p

j=2 λjzo(1)jz
T
o(2)j , it holds that asp → ∞

Var{
∑p

s=2 λs(z(1)si − z̄(1)s)(z(2)sj − z̄(2)s)}
λ2

1

=
(n(1) − 1)(n(2) − 1)

n(1)n(2)

tr(Σ2) − λ2
1

λ2
1

→ 0

under (A-iii). Hence, we can claim under (A-iii) that asp → ∞∑p
j=2 λjzo(1)jz

T
o(2)j

λ1

P−→ O. (3.9)

Let us observe (3.9) by using computer simulations. We tookn = 6 samples fromp-variatet-distribution,

tp(0,Σ, 5), with mean0, covariance matrixΣ = diag(λ1, λ2, ..., λp) havingλ1 = p2/3 andλ2 = · · · =

λp = 1, and5 degrees of freedom. We considered four cases:p = 6, 60, 600, 6000. For each case we

calculatedλ−1
1 {
√

(n(1) − 1)(n(2) − 1)SD(1) − λ1zo(1)1z
T
o(2)1} = (w1, w2, w3)T , wherewis are3 × 1

vectors. Note thatwjs are orthogonal to13 in view of (3.8). We plottedw1 (white triangle),w2 (black

circle) andw3 (cross mark) twenty times on the compliment space of13 in Fig. 2. One can observewis

converge to zero whenp is large as expected theoretically in (3.9).
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Figure 2. The behaviors ofλ−1
1 {

√
(n(1) − 1)(n(2) − 1)SD(1) − λ1zo(1)1z

T
o(2)1} = (w1, w2, w3)T on the compli-

ment space of13. We plottedw1 (white triangle),w2 (black circle) andw3 (cross mark) whenn = 6 samples are

taken fromtp(0,Σ, 5) with Σ = diag(λ1, λ2, ..., λp) havingλ1 = p2/3 andλ2 = · · · = λp = 1.

From (3.9) we have under (A-iii) that asp → ∞

λ́1

λ1
= úT

1(1)

SD(1)

λ1
ú1(2)

=
(
úT

1(1)zo(1)1/
√

n(1) − 1
)(

zT
o(2)1ú1(2)/

√
n(2) − 1

)
+ op(1). (3.10)

Then, we have the following result.

Theorem 3.2. It holds under (A-iii) that asp → ∞

λ́1

λ1
=


||zo(1)1/

√
n(1) − 1||||zo(2)1/

√
n(2) − 1|| + op(1) whenn is fixed,

1 + op(1) whenn → ∞.

Proof. Let e(j) = (e(j)1, ..., e(j)n(j)
)T , j = 1, 2, be arbitrary unitn(j)-vectors. From (3.8) and (3.9) we

11



have under (A-iii) that asp → ∞

λ−1
1 eT

(1)SD(1)e(2) = eT
(1)

zo(1)1z
T
o(2)1√

(n(1) − 1)(n(2) − 1)
e(2) + op(1).

Now we consider the first singular value ofSD(1). Then, it holds that asp → ∞

λ́1

λ1
= max

{
eT

(1)

(
zo(1)1/

√
n(1) − 1

)(
zT

o(2)1/
√

n(2) − 1
)

e(2) + op(1)
}

= ||zo(1)1/
√

n(1) − 1||||zo(2)1/
√

n(2) − 1|| + op(1). (3.11)

Note that||zo(i)1/
√

n(i) − 1|| = 1 + op(1), i = 1, 2, whenp → ∞ andn → ∞. Then, it concludes the

result. 2

Corollary 3.2. It holds under (A-iii) and (A-v) that asp → ∞

λ́1

λ1
⇒

√√√√χ2
(1)n(1)−1

n(1) − 1

√√√√χ2
(2)n(2)−1

n(2) − 1
, (3.12)

where“ ⇒ ” denotes the convergence in distribution, andχ2
(i)n(i)−1, i = 1, 2, are mutually independent

random variables distributed as the chi-squared distribution withn(i) − 1, degrees of freedom.

Proof. Note that||zo(i)1||2 =
∑n(i)

k=1 z2
(i)1k − n(i)z̄

2
(i)1 is distributed asχ2

n(i)−1 for i = 1, 2, if z(i)1k, k =

1, ..., n(i), are i.i.d. asN(0, 1). Thus we can conclude the result. 2

From Corollary 3.2 we have that

E


√√√√χ2

(1)n(1)−1

n(1) − 1

√√√√χ2
(2)n(2)−1

n(2) − 1

 =
c√

(n(1) − 1)(n(2) − 1)

with c = 2Γ
(n(1)

2

)
Γ
(n(2)

2

)
Γ
(n(1) − 1

2

)−1
Γ
(n(2) − 1

2

)−1
,

whereΓ(·) denotes the gamma function. Thus we can give a bias-correction of the CDM estimator for the

first eigenvalue by

λ́1∗ =

√
(n(1) − 1)(n(2) − 1)

c
λ́1. (3.13)

Then, we have the following result.

Corollary 3.3. It holds under (A-iii) and (A-v) that asp → ∞

λ́1∗
λ1

⇒ 1
c

√
χ2

(1)n(1)−1

√
χ2

(2)n(2)−1 and E
( λ́1∗

λ1

)
→ 1.

Proof. From Corollary 3.2 and (3.13) we can conclude the result. 2
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4 Simulation Studies

In order to study the distributions ofλ̃1 andλ̂1, we used computer simulations. We setΣ = diag(λ1, ..., λp)

with λ1 = p2/3 andλ2 = · · · = λp = 1. We considered the cases ofp = 20, 100, 500 and2500 when

(a) n = 5 and (b)n = 25. We generatedxj , j = 1, ..., n, independently from thep-dimensional normal

distribution,Np(µ,Σ). Note that (A-iii) and (A-iv) hold, however, ‘κ/λ1 = o(1)’ does not hold. We de-

noted independent pseudorandom 2000 observations ofλ̃1 and λ̂1 by λ̃1r and λ̂1r for r = 1, ..., 2000. In

the end of therth replication, we checked whether the event,(n − 1)λ̃1r/λ1 ≤ an−1, is true (or false)

and definedPir = 1 (or 0) accordingly, wherean−1 is the upper0.05 point of χ2
n−1. We calculated

P (0.95) =
∑2000

r=1 Pr/2000 as an estimate ofP{(n − 1)λ̃1/λ1 ≤ an−1}. Note that the standard deviation

of the estimates is less than0.011. As for λ̂1 as well, we calculatedP (0.95) =
∑2000

r=1 Pr/2000 similarly as

an estimate ofP{(n − 1)λ̂1/λ1 ≤ an−1}.

In Fig. 3, we gave the histograms of(n − 1)λ̃1/λ1 (left panel) and(n − 1)λ̂1/λ1 (right panel) together

with P (0.95) for p = 20, 100, 500 and2500 when (a)n = 5 and (b)n = 25. From Corollary 3.1 and

Theorem 3.1, we displayed the asymptotic probability density of(n−1)λ̃1/λ1 (or (n−1)λ̂1/λ1) andχ2
n−1.

We observed that the histograms of(n − 1)λ̃1/λ1 become close toχ2
n−1 asp increases even whenn = 5.

On the other hand, the histograms of(n − 1)λ̂1/λ1 became separated fromχ2
n−1 asp increases especially

whenn = 5. That is because the third term in (3.1) becomes large asp increases. The NR estimator,λ̃1,

gives a good approximation to the asymptotic distribution in such a case as well by removing the term as in

(3.1).
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Figure 3. (a) The histograms of(n− 1)λ̃1/λ1 (left panels) and(n− 1)λ̂1/λ1 (right panels) together with

the probability density ofχ2
n−1 andP (0.95) for p = 20, 100, 500 and 2500 whenn = 5.
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Figure 3. (b) The histograms of(n− 1)λ̃1/λ1 (left panels) and(n− 1)λ̂1/λ1 (right panels) together with

the probability density ofχ2
n−1 andP (0.95) for p = 20, 100, 500 and 2500 whenn = 25.
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Chapter 2

Applications of the First Eigenvalue

In this chapter, we give several applications of the first eigenvalue. This chapter is organized by Ishii et

al. [20].

In Section 1, we consider a confidence interval of the first contribution ratio. Since we analyzed the

asymptotic behavior of noise space in Chapter 1, we can construct the confidence interval. We also apply the

result to actual microarray data sets.

In Section 2, we consider the first eigenvector. As mentioned in Chapter 1, the first principal component

contains the most important information for high-dimensional data. We give asymptotic properties of the

conventional estimator and explain the reason why it behaves incorrectly in the HDLSS context. Instead, we

apply the NR method to the first eigenvector. We give asymptotic properties of the NR estimator and show

that it gives preferable performances.

In Section 3, we consider the first PC score. We give asymptotic properties of the NR estimator and show

that it gives preferable performances. We also give a method to check the validity of the assumption required

in Chapters 1–4.

In Section 4, we consider the one-sample test for a mean vector in the HDLSS context. We give a new

test procedure based on the noise space.

Finally in Section 5, we summarize simulation studies of the findings.
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1 Introduction

Suppose we have ap×n data matrix,X(p) = [x1(p), ...,xn(p)], wherexj(p) = (x1j(p), ..., xpj(p))T , j =

1, ..., n, are independent and identically distributed (i.i.d.) as ap-dimensional distribution with a mean vector

µp and covariance matrixΣp (≥ O). We assumen ≥ 3. The eigen-decomposition ofΣp is given byΣp =

HpΛpH
T
p , whereΛp =diag(λ1(p), ..., λp(p)) is a diagonal matrix of eigenvalues,λ1(p) ≥ · · · ≥ λp(p)(≥

0), andHp = [h1(p), ...,hp(p)] is an orthogonal matrix of the corresponding eigenvectors. LetX(p) −
[µp, ...,µp] = HpΛ

1/2
p Z(p). Then,Z(p) is ap × n sphered data matrix from a distribution with the zero

mean and the identity covariance matrix. LetZ(p) = [z1(p), ...,zp(p)]T andzi(p) = (zi1(p), ..., zin(p))T , i =

1, ..., p. Note thatE(zij(p)zi′j(p)) = 0 (i ̸= i′) and Var(zi(p)) = In, whereIn is then-dimensional identity

matrix. Thei-th true PC score ofxj(p) is given byhT
i(p)(xj(p) − µp) = λ

1/2
i(p)zij(p) (hereafter calledsij(p)).

Note that Var(sij(p)) = λi(p) for all i, j. Hereafter, the subscriptp will be omitted for the sake of simplicity

when it does not cause any confusion. Letzoi = zi − (z̄i, ..., z̄i)T , i = 1, ..., p, wherez̄i = n−1
∑n

k=1 zik.

We assume thatλ1 has multiplicity one in the sense thatlim infp→∞ λ1/λ2 > 1. Also, we assume that

lim supp→∞ E(z4
ij) < ∞ for all i, j andP (limp→∞ ||zo1|| ≠ 0) = 1. Note that ifX is Gaussian,zijs

are i.i.d. as the standard normal distribution,N(0, 1). Let δi = tr(Σ2) −
∑i

s=1 λ2
s =

∑p
s=i+1 λ2

s for

i = 1, ..., p − 1. We consider the same assumptions in Chapter 1 for the first eigenvalue:

(A-i)
δ1

λ2
1

= o(1) asp → ∞ whenn is fixed;
δi∗

λ2
1

= o(1) asp → ∞ for some fixedi∗ (< p) when

n → ∞.

(A-ii)

∑p
r,s≥2 λrλsE{(z2

rk − 1)(z2
sk − 1)}

nλ2
1

= o(1) asp → ∞ either whenn is fixed orn → ∞.

Note that (A-i) implies the conditions thatλ2/λ1 → 0 asp → ∞ whenn is fixed andλi∗+1/λ1 → 0

asp → ∞ for some fixedi∗ whenn → ∞. Also, note that (A-ii) holds whenX is Gaussian and (A-

i) is met. See Remark 3.2 in Chapter 1. Letκ =
∑p

s=2 λs. As mentioned in Chapter 1, we assume

lim infp→∞ κ/λ1 > 0. As necessary, we consider the following assumption for the normalized first PC

scores,z1j (= s1j/λ
1/2
1 ), j = 1, ..., n:

(A-iii) z1j , j = 1, ..., n, are i.i.d. asN(0, 1).

Note thatP (limp→∞ ||zo1|| ̸= 0) = 1 under (A-iii) from the fact that||zo1||2 is distributed asχ2
n−1, where

χ2
ν denotes a random variable distributed asχ2 distribution withν degrees of freedom. Let us write the

sample covariance matrix asS = (n − 1)−1(X − X)(X − X)T = (n − 1)−1
∑n

j=1(xj − x̄)(xj − x̄)T ,

whereX = [x̄, ..., x̄] andx̄ =
∑n

j=1 xj/n. Then, we define then × n dual sample covariance matrix by

SD = (n− 1)−1(X −X)T (X −X). Let λ̂1 ≥ · · · ≥ λ̂n−1 ≥ 0 be the eigenvalues ofSD. Let us write the

eigen-decomposition ofSD asSD =
∑n−1

j=1 λ̂jûjû
T
j , whereûj = (ûj1, ..., ûjn)T denotes a unit eigenvector

corresponding tôλj . Note thatS andSD share non-zero eigenvalues. Also, note that tr(S) = tr(SD).

Here, we emphasize that the first principal component is quite important for high-dimensional data be-

causeλ1 often becomes much larger than the other eigenvalues asp increases in the sense thatλj/λ1 → 0
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asp → ∞ for all j ≥ 2. See Figure 1 in Yata and Aoshima (2013) or Table 1 in Section 2 for example.

In other words, the first principal component contains much useful information about high-dimensional data

sets. In addition,λ1 andh1 can be accurately estimated for high-dimensional data by using the NR method-

ology even whenn is fixed. It is likely that the first principal component is applicable to high-dimensional

statistical inferences such as tests of mean vectors and covariance matrices. That is the reason why we focus

on the first principal component.

2 Confidence Interval of the First Contribution Ratio

We consider a confidence interval for the contribution ratio of the first principal component. Leta andb

be constants satisfyingP (a ≤ χ2
n−1 ≤ b) = 1 − α, whereα ∈ (0, 1). Then, from Theorem 3.1 in Chapter

1, under (A-i) to (A-iii), it holds that

P
( λ1

tr(Σ)
∈
[ (n − 1)λ̃1

bκ + (n − 1)λ̃1

,
(n − 1)λ̃1

aκ + (n − 1)λ̃1

])
= P

(
a ≤ (n − 1)

λ̃1

λ1
≤ b
)

= 1 − α + o(1) (2.1)

asp → ∞ whenn is fixed. We need to estimateκ in (2.1). Here, we give a consistent estimator ofκ by

κ̃ = (n − 1)(tr(SD) − λ̂1)/(n − 2) = tr(SD) − λ̃1. Then, we have the following results.

Lemma 2.1. Under (A-i) and (A-ii), it holds that

κ̃

κ
= 1 + op(1) and

κ̃

λ1
=

κ

λ1
+ op(1)

asp → ∞ either whenn is fixed orn → ∞.

Proof. By using Markov’s inequality, for anyτ > 0, under (A-i) and (A-ii), we have that

P
{( p∑

s=2

λs{||zos||2 − (n − 1)}
(n − 1)λ1

)2
> τ

}
= P

{( p∑
s=2

λs{(n − 1)
∑n

k=1(z
2
sk − 1)/n −

∑n
k ̸=k′ zskzsk′/n}

(n − 1)λ1

)2
> τ

}
= O

{∑p
r,s≥2 λrλsE{(z2

rk − 1)(z2
sk − 1)}

nλ2
1

}
+ O{δ1/(nλ1)2} → 0

asp → ∞ either whenn is fixed orn → ∞. Thus it holds that tr(SD)/λ1 = κ/λ1+||zo1/
√

n − 1||2+op(1)

from the fact that tr(SD) = λ1||zo1||2/(n − 1) +
∑p

s=2 λs||zos||2/(n − 1). Then, from Proposition 3.1 in

Chapter 1 andlim infp→∞ κ/λ1 > 0, we can claim the results. 2
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Theorem 2.1. Under (A-i) to (A-iii), it holds that

P
( λ1

tr(Σ)
∈
[ (n − 1)λ̃1

bκ̃ + (n − 1)λ̃1

,
(n − 1)λ̃1

aκ̃ + (n − 1)λ̃1

])
= 1 − α + o(1) (2.2)

asp → ∞ whenn is fixed.

Proof. From Theorem 3.1 in Chapter 1 and Lemma 2.1, under (A-i) to (A-iii), it holds that

P
( λ1

tr(Σ)
∈
[ (n − 1)λ̃1

bκ̃ + (n − 1)λ̃1

,
(n − 1)λ̃1

aκ̃ + (n − 1)λ̃1

])
= P

( (n − 1)λ̃1

bκ̃ + (n − 1)λ̃1

≤ λ1

tr(Σ)
≤ (n − 1)λ̃1

aκ̃ + (n − 1)λ̃1

)
= P

( aκ̃

(n − 1)λ̃1

≤ κ

λ1
≤ bκ̃

(n − 1)λ̃1

)
= P

(
a ≤ (n − 1)

λ̃1κ

λ1κ̃
≤ b
)

= 1 − α + o(1)

asp → ∞ whenn is fixed. It concludes the result. 2

Remark 2.1. From Theorem 3.1 in Chapter 1 and Lemma 2.1, under (A-i) and (A-ii), it holds that tr(SD)/tr(Σ) =

(κ̃ + λ̃1)/tr(Σ) = 1 + op(1) asp → ∞ andn → ∞. We have that

λ̃1

tr(SD)
=

λ1

tr(Σ)
{1 + op(1)}.

Remark 2.2. The constants(a, b) should be chosen for (2.2) to have the minimum length. Ifλ1/κ = o(1),

the length of the confidence interval becomes close to{(n − 1)λ̃1/κ̃}(1/a − 1/b) under (A-i) and (A-ii)

whenp → ∞ andn is fixed. Thus, we recommend to choose constants(a, b) such that

argmin
a,b

(1/a − 1/b) subject toGn−1(b) − Gn−1(a) = 1 − α,

whereGn−1(·) denotes the c.d.f. ofχ2
n−1.

We used gene expression data sets and constructed a confidence interval for the contribution ratio of the

first principal component. The microarray data sets were as follows: Lymphoma data with7129 (= p) genes

consisting of diffuse large B-cell (DLBC) lymphoma (58 samples) and follicular lymphoma (19 samples)

given by Shipp et al. [29]; and prostate cancer data with12625 (= p) genes consisting of normal prostate (50

samples) and prostate tumor (52 samples) given by Singh et al. [30]. The data sets are given in Jeffery et al.

[23]. We standardized each sample so as to have the unit variance. Then, it holds that tr(S) (= tr(SD)) = p,

so thatλ̃1 + κ̃ = p. We gave estimates of the first five eigenvalues byλ̂js andλ̃js in Table 1. We observed

that the first eigenvalues are much larger than the others especially for prostate cancer data. We also observed
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thatλ̂j was larger thañλj for j = 1, ..., 5, as expected theoretically from the fact thatλ̂j/λ̃j ≥ 0 w.p.1 for all

j. We considered an estimator ofδ1 by δ̃1 = Wn− λ̃2
1 havingWn by (4) in Aoshima and Yata [7], whereWn

is an unbiased and consistent estimator of tr(Σ2). We calculated that̃δ1/λ̃2
1 = 0.163 for DLBC lymphoma,

δ̃1/λ̃2
1 = −0.082 for follicular lymphoma,δ̃1/λ̃2

1 = −0.245 for normal prostate and̃δ1/λ̃2
1 = −0.235 for

prostate tumor. From these observations, we concluded that these data sets satisfy (A-i). In addition, from

Remark 4.1 given in Section 4, by using Jarque-Bera test, we could confirm that these data sets satisfy (A-iii)

with the level of significance0.05. Hence, from Theorem 2.1, we constructed a95% confidence interval of

the first contribution ratio for each data set by choosing(a, b) as in Remark 2.2. The results are summarized

in Table 2.

Table 1. Estimates of the first five eigenvalues byλ̂js andλ̃js, for the microarray data sets.

n λ̂1, λ̂2, λ̂3, λ̂4, λ̂5 λ̃1, λ̃2, λ̃3, λ̃4, λ̃5

Lymphoma data with7129 (= p) genes given by Shipp et al. [29]

DLBC 58 1862, 564, 490, 398, 324 1768, 479, 412, 326, 257

Follicular 19 2476, 704, 614, 533, 369 2203, 457, 392, 333, 182

Prostate cancer data with12625 (= p) genes given by Singh et al [30]

Normal 50 6760, 562, 426, 371, 304 6637, 450, 320, 271, 209

Prostate 52 6106, 687, 512, 462, 298 5976, 568, 401, 359, 199

Table 2. The 95% confidence interval (CI) of the first contribution ratio, together withλ̃1 and κ̃, for the

microarray data sets.

(n, p) CI λ̃1 κ̃

DLBC lymphoma (58, 7129) [0.183, 0.322] 1768 5361

Follicular lymphoma (19, 7129) [0.178, 0.467] 2203 4926

Normal prostate (50, 12625) [0.422, 0.622] 6637 5988

Prostate tumor (52, 12625) [0.374, 0.569] 5976 6649

3 First PC Direction Vector

In this section, we give asymptotic properties of the first PC direction in the HDLSS context. LetĤ =

[ĥ1, ..., ĥp], whereĤ is ap×p orthogonal matrix of the sample eigenvectors such thatĤ
T
SĤ = Λ̂ having
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Λ̂ = diag(λ̂1, ..., λ̂p). We assumehT
i ĥi ≥ 0 w.p.1 for all i without loss of generality. Note that̂hi can be

calculated bŷhi = {(n − 1)λ̂i}−1/2(X − X)ûi. First, we have the following result.

Lemma 3.1. Under (A-i) and (A-ii), it holds that

ĥ
T

1 h1 −
(
1 +

κ

λ1||zo1||2
)−1/2

= op(1)

asp → ∞ either whenn is fixed orn → ∞.

Proofs. With the help of Proposition 3.1 in Chapter 1, under (A-i) and (A-ii), it holds that from (4.1) in the

proof of Lemma 4.1

hT
1 ĥ1 =

hT
1 (X − X)û1

{(n − 1)λ̂1}1/2
=

λ
1/2
1 zT

o1û1

{(n − 1)λ̂1}1/2
=

||zo1|| + op(n1/2)
{||zo1||2 + κ/λ1 + op(n)}1/2

=
1

{1 + κ/(λ1||zo1||2)}1/2
+ op(1)

asp → ∞ either whenn is fixed orn → ∞. It concludes the result. 2

If κ/(nλ1) = o(1) as p → ∞ and n → ∞, ĥ1 is a consistent estimator ofh1 in the sense that

ĥ
T

1 h1 = 1 + op(1). Whenn is fixed, ĥ1 is not a consistent estimator becauselim infp→∞ κ/λ1 > 0. In

order to overcome this inconvenience, we consider applying the NR methodology to the PC direction vector.

Let h̃i = {(n − 1)λ̃i}−1/2(X − X)ûi. From Lemma 3.1 we have the following result.

Theorem 3.1. Under (A-i) and (A-ii), it holds that

h̃
T
1 h1 = 1 + op(1)

asp → ∞ either whenn is fixed orn → ∞.

Proof. With the help of Theorem 3.1 in Chapter 1, under (A-i) and (A-ii), we have that from (4.1) in the

proof of Lemma 4.1

hT
1 h̃1 =

hT
1 (X − X)û1

{(n − 1)λ̃1}1/2
=

||zo1|| + op(n1/2)
{||zo1||2 + op(n)}1/2

= 1 + op(1)

asp → ∞ either whenn is fixed orn → ∞. It concludes the result. 2

Note that||h̃1||2 = λ̂1/λ̃1 ≥ 1 w.p.1. We emphasize thath̃1 is a consistent estimator ofh1 in the sense

of the inner product even whenn is fixed thoughh̃1 is not a unit vector. We give an application ofh̃1 in

Chapter 3. Let us introduce an illustrative example of Lemma 3.1. In Fig.1, the sphere represents the space

of all possible sample eigenvectors with the first three eigenvectors as the coordinate axes. From Lemma 3.1

the angle of̂h1 andh1 becomesπ/2 in the worst case.
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Figure 1. Geometric representation of the first PC direction. The sphere represents the space of possible

sample eigenvectors. The first sample eigenvector,ĥ1, tends to lie in the red cone, with theθ angle. In the

worst case, the angle becomesπ/2 as represented by the red solid lines.

4 First PC Score

In this section, we give asymptotic properties of the first PC score in HDLSS context. We consider the

first PC score that plays a decisive role for classification of HDLSS data. We note that the first PC score is

given bys1j = λ
1/2
1 z1j , j = 1, ..., n. Let zoij = zij − z̄i for all i, j. Note thatzoi = (zoi1, ..., zoin)T for all

i. First, we have the following result.

Lemma 4.1. Under (A-i) and (A-ii), it holds that

û1j = zo1j/||zo1|| + op(1) for j = 1, ..., n

asp → ∞ whenn is fixed.

Proof. We note that||zo1||2/n = 1 + op(1) asn → ∞. From (3.5) in Chapter 1, under (A-i) and (A-ii), we

have that

ûT
1 zo1/||zo1|| = 1 + op(1) (4.1)

asp → ∞ either whenn is fixed orn → ∞, so thatûT
1 zo1 = ||zo1|| + op(n1/2). Thus, we can claim the

result. 2
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Remark 4.1. From Lemma 4.1, by usinĝu1js and the test of normality such as Jarque-Bera test, one can

check whether (A-iii) holds or not.

By applying the NR methodology to the first PC score, we obtain an estimate bys̃1j =
√

(n − 1)λ̃1û1j , j =

1, ..., n. A sample mean squared error of the first PC score is given by MSE(s̃1) = n−1
∑n

j=1(s̃1j − s1j)2.

Then, from Theorem 3.1 in Chapter 1 and Lemma 4.1, we have the following result.

Theorem 4.1. Under (A-i) and (A-ii), it holds that

1√
λ1

(s̃1j − s1j) = −z̄1 + op(1) for j = 1, ..., n

asp → ∞ whenn is fixed. Under (A-i) to (A-iii), it holds that√
n

λ1
(s̃1j − s1j) ⇒ N(0, 1) for j = 1, ..., n; and n

MSE(s̃1)
λ1

⇒ χ2
1

asp → ∞ whenn is fixed.

Proof. By combing Theorem 3.1 in Chapter 1 with Lemma 4.1, under (A-i) and (A-ii), we have that

s̃1j/
√

λ1 = û1j

√
(n − 1)λ̃1/λ1 = û1j ||zo1|| + op(1) = zo1j + op(1)

asp → ∞ whenn is fixed. By noting thatzo1j = z1j − z̄1 andz̄1 is distributed asN(0, 1/n) under (A-iii),

we have the results. 2

Remark 4.2. The conventional estimator of the first PC score is given byŝ1j =
√

(n − 1)λ̂1û1j , j =

1, ..., n. From Theorems 8.1 and 8.2 in Yata and Aoshima [40], under (A-i) and (A-ii), it holds that as

p → ∞ andn → ∞

MSE(ŝ1)
λ1

= op(1) if κ/(nλ1) = o(1), and
MSE(s̃1)

λ1
= op(1).

5 One-Sample Test for the Mean Vector

In this section, we consider the following one-sample test for the mean vector:

H0 : µ = µ0 vs. H1 : µ ̸= µ0 (5.1)

whereµ0 is a candidate mean vector such asµ0 = 0. Here, we have the following result.
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Lemma 5.1. Under (A-i), it holds that

||x̄ − µ||2 − tr(SD)/n

λ1
= z̄2

1 − ||zo1/
√

n − 1||2

n
+ op(1)

asp → ∞ whenn is fixed.

Proof. We write that

n||x̄ − µ||2 − tr(SD) =
p∑

s=1

λs

(
nz̄2

s −
n∑

j=1

(zsj − z̄s)2

n − 1

)
.

Then, from (3.2) in the proof of Proposition 3.1 in Chapter 1 andnz̄2
1 −

∑n
j=1(zsj − z̄s)2/(n − 1) =∑n

j ̸=j′ zsjzsj′/(n − 1) for all s, under (A-i), we have that

{||x̄ − µ||2 − tr(SD)/n}/λ1 = z̄2
1 − ||zo1/

√
n − 1||2/n + op(1)

asp → ∞ whenn is fixed. It concludes the result. 2

Let

F0 =
n||x̄ − µ0||2 − tr(SD)

λ̃1

+ 1.

Note thatE(λ̃1(F0 − 1)/n) = ||µ − µ0||2. Then, by combining Theorem 3.1 in Chapter 1 and Lemma 5.1,

we have the following result.

Theorem 5.1. Under (A-i) to (A-iii), it holds that

F0 ⇒ F1,n−1 underH0 in (5.1)

asp → ∞ whenn is fixed, whereFν1,ν2 denotes a random variable distributed asF distribution with degrees

of freedom,ν1 andν2.

Proof. Under (A-iii), we note that̄z1 andzo1 are independent, andnz̄2
1 is distributed asχ2

1. Then, from

Theorem 3.1 in Chapter 1 and Lemma 5.1 we can conclude the result. 2

For a givenα ∈ (0, 1/2) we test (5.1) by

rejectingH0 ⇐⇒ F0 > F1,n−1(α),

whereFν1,ν2(α) denotes the upperα point ofF distribution with degrees of freedom,ν1 andν2. Then, under

(A-i) to (A-iii), it holds that

size= α + o(1)

asp → ∞ whenn is fixed.

For the same gene expression data as in Section 2, we tested (5.1) withµ0 = 0 andα = 0.05. We

observed thatH0 was rejected for all four data sets.
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6 Simulation Studies

In this section, we summarize the findings in Chapter 2 by using computer simulations.

6.1 Confidence interval of the first contribution ratio

In order to study the performance of the confidence interval of the contribution ratio for the first principal

component by (2.2), we used computer simulations. Our goal was to construct a 95% confidence interval by

(2.2), so we setα = 0.05, a = χ2
n−1(0.975) andb = χ2

n−1(0.025), whereχ2
ν(β) denotes the upperβ point

of χ2
ν . We consider the cases ofp = 20, 100, 500 and2500 whenn = 10. We setΣ = diag(λ1, ..., λp) with

λ1 = p2/3 andλ2 = · · · = λp = 1. We consideredxj , j = 1, ..., n, asz1j being distributed asN(0, 1) and

zij , i = 2, ..., p, being i.i.d. astp−1(0, Ip−1, 5), wherez1j and(z2j , ..., zpj) are independent. Note that (A-i)

and (A-ii) hold, however ‘κ/(nλ1) = o(1)’ does not hold.

Independent pseudorandom 2000 (= R, say) observations of̃λ1 and κ̃ were generated from the dis-

tribution. Let λ̃1r and κ̃r be therth observation of̃λ1 and κ̃ respectively, forr = 1, ..., R. Let us sim-

ply write λ̃1 = R−1
∑R

r=1 λ̃1r and κ̃ = R−1
∑R

r=1 κ̃r. We also considered the Monte Carlo variabil-

ity. Let var(λ̃1/λ1) = (R − 1)−1
∑R

r=1(λ̃1r − λ̃1)2/λ2
1 and var(κ̃/κ) = (R − 1)−1

∑R
r=1(κ̃r − κ̃)2/κ2.

In the end of therth replication, we checked whetherλ1/tr(Σ) does (or does not) belong to the corre-

sponding confidence interval and definedPr = 1 (or 0) accordingly. LetP (0.95) = R−1
∑R

r=1 Pr,

which estimates the target coverage probability, having its estimated standard errors{P (0.95)}, where

s2{P (0.95)} = R−1P (0.95)(1 − P (0.95)). In Table 3, we gaveP (0.95), s{P (0.95)}, λ̃1/λ1, var(λ̃1/λ1),

κ̃/κ and var(κ̃/κ). We observed from Table 3 thatP (0.95)s become close to0.95 asp increases. In addition,

var(λ̃1/λ1)s become close to Var(χ2
n−1/(n − 1)) = 2/(n − 1) ≈ 0.222 asp increases.

Table 3. The coverage probability of the first contribution ratio,P̄ (0.95), together with̃λ1/λ1, κ̂/κ and

their standard errors in parentheses.

p P̄ (0.95) (s{P (0.95)}) λ̃1/λ1 (var(λ̃1/λ1)) κ̃/κ (var(κ̃/κ))

20 0.961 (0.00430) 1.032 (0.192) 0.973 (0.00245)

100 0.963 (0.00419) 1.053 (0.218) 0.993 (0.00113)

500 0.963 (0.00422) 1.025 (0.214) 0.997 (0.00050)

2500 0.957 (0.00453) 1.018 (0.221) 0.999 (0.00022)

6.2 Comparison of the NR estimator and the conventional estimator

In this section, we compared the performance ofλ̃1, h̃1 ands̃1j with their conventional counterparts by

Monte Carlo simulations. We setp = 2k, k = 3, ..., 11 andn = 10. We considered two cases forλis:
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(a) λi = p1/i, i = 1, ..., p and (b)λi = p3/(2+2i), i = 1, ..., p. Note thatλ1 = p for (a) andλ1 = p3/4

for (b). Also, note that (A-i) holds both for (a) and (b). Letp∗ = ⌈p1/2⌉, where⌈x⌉ denotes the smallest

integer≥ x. We considered a non-Gaussian distribution as follows:(z1j , ..., zp−p∗j)T , j = 1, ..., n, are

i.i.d. asNp−p∗(0, Ip−p∗) and(zp−p∗+1j , ..., zpj)T , j = 1, ..., n, are i.i.d. as thep∗-variatet-distribution,

tp∗(0, Ip∗ , 10) with mean zero, covariance matrixIp∗ and degrees of freedom10, where(z1j , ..., zp−p∗j)T

and(zp−p∗+1j , ..., zpj)T are independent for eachj. Note that (A-ii) and (A-iii) hold both for (a) and (b)

from the fact that
∑p

r,s≥2 λrλsE{(z2
rk − 1)(z2

sk − 1)} = 2
∑p−p∗

s=2 λ2
s + O(

∑p
r,s≥p−p∗+1 λrλs) = o(λ2

1).

The findings were obtained by averaging the outcomes from2000 (= R, say) replications. Under a

fixed scenario, suppose that ther-th replication ends with estimates, (λ̂1r, ĥ1r, MSE(ŝ1)r) and (̃λ1r, h̃1r,

MSE(s̃1)r) (r = 1, ..., R). Let us simply writeλ̂1 = R−1
∑R

r=1 λ̂1r and λ̃1 = R−1
∑R

r=1 λ̃1r. We also

considered the Monte Carlo variability by var(λ̂1/λ1) = (R−1)−1
∑R

r=1(λ̂1r − λ̂1)2/λ2
1 and var(λ̃1/λ1) =

(R − 1)−1
∑R

r=1(λ̃1r − λ̃1)2/λ2
1. Fig. 2 shows the behaviors of (λ̂1/λ1, λ̃1/λ1) in the left panel and

(var(λ̂1/λ1), var(λ̃1/λ1)) in the right panel for (a) and (b). We gave the asymptotic variance ofλ̃1/λ1 by

Var{χ2
n−1/(n − 1)} = 0.222 from Theorem 3.1 in Chapter 1 and showed it by the solid line in the right

panel. We observed that the sample mean and variance ofλ̃1/λ1 become close to those asymptotic values as

p increases.

Similarly, we plotted (̂h
T

1 h1, h̃
T
1 h1) and (var(ĥ

T

1 h1), var(h̃
T
1 h1)) in Fig. 3. Also, in Fig. 4, we plotted

(MSE(ŝ1)/λ1, MSE(s̃1)/λ1) and (var(MSE(ŝ1)/λ1), var(MSE(s̃1)/λ1)). From Theorem 4.1 we gave the

asymptotic mean of MSE(s̃1)/λ1 by E(χ2
1/n) = 0.1 and showed it by the solid line in the left panel of Fig.

4. We also gave the asymptotic variance of MSE(s̃1)/λ1 by Var(χ2
1/n) = 0.02 in the right panel of Fig. 4.

Throughout, the estimators by the NR method gave good performances both for (a) and (b) whenp is large.

However, the conventional estimators gave poor performances especially for (b). This is probably because

the bias of the conventional estimators,κ/{(n− 1)λ1}, is large for (b) compared to (a). See Proposition 3.1

in Chapter 1 for the details.

A: λ̂1/λ1 and B:λ̃1/λ1 A: var(λ̂1/λ1) and B: var(λ̃1/λ1)

Figure 2. The values of A:̂λ1/λ1 and B:λ̃1/λ1 are denoted by the dashed lines for (a) and by the dotted

lines for (b) in the left panel. The values of A: var(λ̂1/λ1) and B: var(λ̃1/λ1) are denoted by the dashed

lines for (a) and by the dotted lines for (b) in the right panel. The asymptotic variance ofλ̃1/λ1 was given

by Var{χ2
n−1/(n − 1)} = 0.222 and denoted by the solid line in the right panel.
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A: ĥ
T

1 h1 and B:h̃
T

1 h1 A: var(ĥ
T

1 h1) and B: var(h̃
T

1 h1)

Figure 3.The values of A:̂h
T

1 h1 and B:h̃
T
1 h1 are denoted by the dashed lines for (a) and by the dotted lines

for (b) in the left panel. The values of A: var(ĥ
T

1 h1) and B: var(h̃
T
1 h1) are denoted by the dashed lines for

(a) and by the dotted lines for (b) in the right panel.

A: MSE(ŝ1)/λ1 and B: MSE(s̃1)/λ1 A: var(MSE(ŝ1)/λ1) and B: var(MSE(s̃1)/λ1)

Figure 4. The values of A: MSE(ŝ1)/λ1 and B: MSE(s̃1)/λ1 are denoted by the dashed lines for (a) and by

the dotted lines for (b) in the left panel. The values of A: var(MSE(ŝ1)/λ1) and B: var(MSE(s̃1)/λ1) are

denoted by the dashed lines for (a) and by the dotted lines for (b) in the right panel. The asymptotic mean

and variance of MSE(s̃1)/λ1 were given byE(χ2
1/n) = 0.1 and Var(χ2

1/n) = 0.02 and denoted by the solid

lines in both panels.
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Chapter 3

Equality Tests of Two Covariance Matrices

In this chapter, we consider the test of equality of two covariance matrices in the HDLSS context. This

chapter is organized by Ishii et al. [20] and Ishii [21].

Nowadays, it becomes more important to analyze covariance matrix structures in the HDLSS context.

Even though there are a variety of tests to deal with covariance matrices whenp → ∞ andn → ∞, there

seem to be no tests available in the HDLSS context such asp → ∞ while n is fixed. Some papers consider

this problem only for the special covariance matrix, such as the identity matrix and the diagonal matrix. From

these backgrounds we construct test procedures by using the asymptotic properties of the first eigenstructure.

In Section 2, we consider the equality of two first eigenvalues by using both of the NR method and the

CDM method. We give asymptotic distributions under the null hypothesis whenp → ∞ while n is fixed.

In Section 3, we consider the equality of two first eigenspaces by using both of the NR method and the

CDM method. By using our test procedures, one can check the validity of the assumption that is required in

Chapter 4.

In Section 4, we consider the equality of two covariance matrices by using the NR method. We also apply

our test procedure to actual microarray data sets and compare another test procedures given by Srivastava

and Yanagihara [32].

Finally, in Section 5, we give a simulation study to check performances of our test procedures.
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1 Introduction

Suppose we have two classesπi, i = 1, 2, and define independentp × ni data matrices,Xi =

[xi1, ...,xini ], i = 1, 2, from πi, i = 1, 2, wherexij , j = 1, ..., ni, are independent and identically dis-

tributed (i.i.d.) as ap-dimensional distribution with a mean vectorµi and covariance matrixΣi (≥ O).

We assumeni ≥ 4, i = 1, 2. The eigen-decomposition ofΣi is given byΣi = H iΛiH
T
i , where

Λi = diag(λ1(i), ..., λp(i)) havingλ1(i) ≥ · · · ≥ λp(i)(≥ 0) andH i = [h1(i), ...,hp(i)] is an orthogo-

nal matrix of the corresponding eigenvectors. LetXi − [µi, ...,µi] = H iΛ
1/2
i Zi for i = 1, 2. Then,

Zi is a p × ni sphered data matrix from a distribution with the zero mean and identity covariance ma-

trix. Let Zi = [z1(i), ...,zp(i)]T andzj(i) = (zj1(i), ..., zjni(i))
T , j = 1, ..., p, for i = 1, 2. Note that

E(zjk(i)zj′k(i)) = 0 (j ̸= j′) and Var(zj(i)) = Ini , whereIni denotes theni-dimensional identity ma-

trix. Also, note that ifXi is Gaussian,zjk(i)s are i.i.d. as the standard normal distribution,N(0, 1).

We assume that the fourth moments of each variable inZi are uniformly bounded fori = 1, 2. Let

zoj(i) = zj(i) − (z̄j(i), ..., z̄j(i))T , j = 1, ..., p; i = 1, 2, where z̄j(i) = n−1
i

∑ni
k=1 zjk(i). We as-

sume thatP (limp→∞ ||zo1(i)|| ̸= 0) = 1 for i = 1, 2, where || · || denotes the Euclidean norm. We

definexini =
∑ni

j=1 xij/ni and Sini =
∑ni

j=1(xij − xini)(xij − xini)
T /(ni − 1) for i = 1, 2. Let

δj(i) = tr(Σ2
i ) −

∑j(i)
s=1 λ2

s(i) =
∑p

s=j+1 λ2
s(i) for i = 1, 2; j = 1, ..., p − 1. We consider the same assump-

tions in Chapter 1 and 2 for the first eigenvalue of eachπi:

(A-i)
δ1(i)

λ2
1(i)

= o(1) asp → ∞ whenni is fixed;
δj∗(i)

λ2
1

= o(1) asp → ∞ for some fixedj∗ (< p) when

ni → ∞.

(A-ii)

∑p
r,s≥2 λr(i)λs(i)E{(z2

rk(i) − 1)(z2
sk(i) − 1)}

niλ2
1(i)

= o(1) asp → ∞ either whenni is fixed orni →

∞.

As necessary, we also consider the assumption (A-iii) for eachπi in Chapter 1 and 2:

(A-iii) z1j(i), j = 1, ..., ni, are i.i.d. asN(0, 1).

2 Equality Tests Using the First Eigenvalues

We consider the following test for the first eigenvalues:

H0 : λ1(1) = λ1(2) vs. Ha : λ1(1) ̸= λ1(2) (or Hb : λ1(1) < λ1(2)). (2.1)

2.1 Gaussian type HDLSS data

We consider the test (2.1) for the Gaussian type HDLSS data in the sense that it holds (A-ii). Letλ̃1(i) be

the estimate ofλ1(i) by the NR methodology as in (3.7) in Chapter 1 forπi. From Theorem 3.1 in Chapter 1

we have the following result.
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Theorem 2.1. Under (A-i) to (A-iii), it holds that

λ̃1(1)/λ1(1)

λ̃1(2)/λ1(2)

⇒ Fn1−1,n2−1

asp → ∞ whennis are fixed.

Proof. From Theorem 3.1 in Chapter 1(ni − 1)λ̃1(i)/λ1(i) is distributed asχ2
ni−1 whenp → ∞ while ni is

fixed for i = 1, 2. Note thatzo1(1) andzo1(2) are independent. Then, it concludes the result. 2

Let FNR
1 = λ̃1(1)/λ̃1(2). For a givenα ∈ (0, 1/2) we test (2.1) by

acceptingHa ⇐⇒ FNR
1 /∈ [{Fn2−1,n1−1(α/2)}−1, Fn1−1,n2−1(α/2)] (2.2)

or acceptingHb ⇐⇒ FNR
1 < {Fn2−1,n1−1(α)}−1. (2.3)

Then, under (A-i) to (A-iii), it holds that

size= α + o(1)

asp → ∞ whennis are fixed.

Now, we consider a test by the conventional estimator,λ̂1(i). Let κi = tr(Σi) − λ1(i) =
∑p

s=2 λs(i) for

i = 1, 2. From Proposition 3.1 in Chapter 1, ifκi/λ1(i) = o(1) for i = 1, 2, under (A-iii) it holds that

λ̂1(1)/λ1(1)

λ̂1(2)/λ1(2)

⇒ Fn1−1,n2−1

asp → ∞ whennis are fixed. As mentioned in Section 2 of Chapter 1, the condition ‘κi/λ1(i) = o(1)

for i = 1, 2’ is quite strict in real high-dimensional data analyses. See Table 2 in Chapter 2 for example.

Hereafter, we assumelim infp→∞ κi/λ1(i) > 0 for i = 1, 2.

2.2 Non-Gaussian type HDLSS data

Now, we consider testing (2.1) when (A-ii) is not always met. Letλ́1(i) be the estimator ofλ1(i) by using

the CDM method. From Corollary 3.2 in Chapter 1 we have the following result.

Theorem 2.2. Under (A-i) and (A-iii), it holds asp → ∞ that

λ́1(1)/λ1(1)

λ́1(2)/λ1(2)

⇒ {Fn(1)1−1,n(1)2−1 × Fn(2)1−1,n(2)2−1}1/2 (2.4)

whennis are fixed, whereFν1,ν2 denotes a random variable distributed asF -distribution with(ν1, ν2) de-

grees of freedom andFn(1)1−1,n(1)2−1 andFn(2)1−1,n(2)2−1 are mutually independent.

Proof. Similar to Theorem 2.1, the result is obtained from Corollary 3.2 in Chapter 1. 2
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Let FCDM
1 = λ́1(1)/λ́1(2). For a givenα ∈ (0, 1/2), let g(α) be the upperα point of (2.4). Then, one can

test (2.1) by

acceptingHa in (2.1)⇐⇒ FCDM
1 ̸∈ {g(1 − α/2), g(α/2)} (2.5)

or acceptingHb ⇐⇒ FCDM
1 < g(1 − α). (2.6)

Then, under (A-i) and (A-iii), it holds that asp → ∞

size(FCDM
1 ) = α + o(1)

whennis are fixed.

3 Equality Tests Using the First Eigenspace

In this section, we consider the equality test of the first eigenspaces. We consider the following test:

H0 : (λ1(1), h1(1)) = (λ1(2), h1(2)) vs. Ha : (λ1(1), h1(1)) ̸= (λ1(2),h1(2)). (3.1)

3.1 Gaussian type HDLSS data

Let h̃1(i) be the estimator of the first PC direction forπi by the NR methodology given in Section 2 of

Chapter 2. We assumehT
1(i)h̃1(i) ≥ 0 w.p.1 for i = 1, 2, without loss of generality. Here, we have the

following result.

Lemma 3.1. Under (A-i) to (A-iii), it holds asp → ∞ that

h̃
T
1(1)h̃1(2) = hT

1(1)h1(2) + op(1)

either whennis are fixed orni → ∞.

Proof. LetZi = [z1(i), ...,zp(i)]T be a sphered data matrix ofπi for i = 1, 2, wherezj(i) = (zj1(i), ..., zjni(i))
T

for j = 1, ..., p. We assumeµ1 = µ2 = 0 without loss of generality. Letβst = (λs(1)λt(2))1/2hT
s(1)ht(2) for

all s, t. Let j⋆ be a fixed constant such that
∑p

s=j⋆+1 λ2
s(i)/λ2

1(i) = o(1) asp → ∞ for i = 1, 2. Note thatj⋆

exists under (A-i). We write that

XT
1 X2 =

∑
s,t≤j⋆

βstzs(1)z
T
t(2) +

p∑
s,t≥j⋆+1

βstzs(1)z
T
t(2)

+
p∑

s=j⋆+1

j⋆∑
t=1

βstzs(1)z
T
t(2) +

j⋆∑
s=1

p∑
t=j⋆+1

βstzs(1)z
T
t(2).
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Note that

E
{( p∑

s=j⋆+1

j⋆∑
t=1

βstzsk(1)ztk′(2)

)2}

= tr
( p∑

s=j⋆+1

λs(1)hs(1)h
T
s(1)

j⋆∑
t=1

λt(2)ht(2)h
T
t(2)

)
≤ j⋆λj⋆+1(1)λ1(2)

for all k, k′. Also, note that

E
{( p∑

s,t≥j⋆+1

βstzsk(1)ztk′(2)

)2}
= tr

( p∑
s=j⋆+1

λs(1)hs(1)h
T
s(1)

p∑
t=j⋆+1

λt(2)ht(2)h
T
t(2)

)
≤
( p∑

s=j⋆+1

λ2
s(1)

p∑
t=j⋆+1

λ2
t(2)

)1/2

for all k, k′. Then, by using Markov’s inequality, for anyτ > 0, under (A-i), we have that

P
{ n1∑

k=1

n2∑
k′=1

( p∑
s=j⋆+1

j⋆∑
t=1

βstzsk(1)ztk′(2)

(n1n2λ1(1)λ1(2))1/2

)2
> τ

}
→ 0,

P
{ n1∑

k=1

n2∑
k′=1

( j⋆∑
s=1

p∑
t=j⋆+1

βstzsk(1)ztk′(2)

(n1n2λ1(1)λ1(2))1/2

)2
> τ

}
→ 0

andP
{ n1∑

k=1

n2∑
k′=1

( p∑
s,t≥j⋆+1

βstzsk(1)ztk′(2)

(n1n2λ1(1)λ1(2))1/2

)2
> τ

}
→ 0

asp → ∞ either whenni is fixed orni → ∞ for i = 1, 2. Let P ni = Ini − 1ni1
T
ni

/ni, where1ni =

(1, ..., 1)T . Also, let eni = (e1, ..., eni)
T be an arbitrary (random)ni-vector such that||eni || = 1 and

eT
ni

1ni = 0. Let νi = ni − 1 for i = 1, 2. Similar to (3.3) in the proof of Proposition 3.1, it holds that

eT
n1

XT
1 X2en2

(ν1ν2λ1(1)λ1(2))1/2
=

eT
n1

∑
s,t≤j⋆

βstzs(1)z
T
t(2)en2

(ν1ν2λ1(1)λ1(2))1/2
+ op(1).

Note thateT
ni

P ni = eT
ni

andP niz1(i) = zo1(i) for i = 1, 2, wherezo1(i) = z1(i) − (z̄1(i), ..., z̄1(i))T and

z̄1(i) = n−1
i

∑ni
k=1 z1k(i). Also, note thatXiP ni = (Xi − Xi) for i = 1, 2, whereXi = [x̄i, ..., x̄i] and

x̄i =
∑ni

k=1 xk(i)/ni. Let û1(i) be the first (unit) eigenvector of(Xi − Xi)T (Xi − Xi) for i = 1, 2. Note

thatûT
1(i)P ni = ûT

1(i) when(Xi − Xi)T (Xi − Xi) ̸= O for i = 1, 2. Then, under (A-i), we have that

ûT
1(1)(X1 − X1)T (X2 − X2)û1(2)

(ν1ν2λ1(1)λ1(2))1/2
=

ûT
1(1)

∑
s,t≤j⋆

βstzos(1)z
T
ot(2)û1(2)

(ν1ν2λ1(1)λ1(2))1/2
+ op(1) (3.2)

asp → ∞ either whenni is fixed orni → ∞ for i = 1, 2. Note thath̃1(i) = {νiλ̃1(i)}−1/2(Xi − Xi)û1(i)

for i = 1, 2. Also, note thatzT
os(i)zos′(i)/ni = op(1) (s ̸= s′) whenni → ∞ for i = 1, 2. Then, by

combining (3.2) with Theorem 3.1 in Chapter 1 and (4.1) in the proof of Lemma 4.1 of Chapter 2, we can
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claim the result. 2

We note that underH0 in (3.1)

(λ1(i)h1(i))
T (λ−1

1(j)h1(j)) = 1 for i = 1, 2; j ̸= i. (3.3)

Hence, one may consider a test statistic such asFNR
1 |h̃T

1(1)h̃1(2)| or FNR
1 |h̃T

1(1)h̃1(2)|−1. From Theorem 2.1

and Lemma 3.1FNR
1 |h̃T

1(1)h̃1(2)| andFNR
1 |h̃T

1(1)h̃1(2)|−1 are asymptotically distributed asFn1−1,n2−1. Let

h̃ = max{|h̃T
1(1)h̃1(2)|, |h̃

T
1(1)h̃1(2)|−1}. Note that̃h ≥ 1 w.p.1. Then, in view of the power, we give a test

statistic for (3.1) as follows:

FNR
2 =

λ̃1(1)

λ̃1(2)

h̃∗ (= FNR
1 h̃∗),

where

h̃∗ =

h̃ if λ̃1(1) ≥ λ̃1(2),

h̃−1 otherwise.

From Lemma 3.1 we have the following result.

Theorem 3.1. Under (A-i) to (A-iii), it holds asp → ∞ that

FNR
2 ⇒ Fn1−1,n2−1 underH0 in (3.1)

whennis are fixed.

Proof. By combining Theorem 2.1 and (3.3), we can claim the result. 2

From Theorem 3.1 we consider testing (3.1) by (2.2) withFNR
2 instead ofFNR

1 . Then, the size becomes

close toα asp increases.

3.2 Non-Gaussian type HDLSS data

Now, we consider testing (3.1) when (A-ii) is not always met. We estimate the first PC score by using

the CDM method as follows: Letn(1)i = ⌈ni/2⌉ andn(2)i = ni − n(1)i for i = 1, 2. For each class we

divide the data matrixXi into X(1)i : p × n(1)i andX(2)i : p × n(2)i at random. Similar to Section 3.3 in

Chapter 1, we construct the cross data matrix by usingX(1)i andX(2)i, and calculate the first singular value

λ́1(i) and the corresponding unit left- (or right-) singular vectorú(1)1i (or ú(2)1i) for each class. Similarly,

let zo(j)1i be the centered first PC vector for thejth division of classi. We assumeP (limp→∞ ||zo(j)1i|| ̸=
0) = 1 for i = 1, 2; j = 1, 2. According to Yata and Aoshima [36], we also calculateh́(j)1i = {(n(j)i −
1)λ́1(i)}−1/2(X(j)i − X(j)i)ú(j)1i for i = 1, 2; j = 1, 2. Then, we have the following result.

Lemma 3.2. Under (A-i), it holds that asp → ∞

ú(j)1i
P−→ zo(j)1i/||zo(j)1i|| for i = 1, 2; j = 1, 2

whennis are fixed.
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Proof. We note that́uT
(j)1i1n(j)i

= 0, i = 1, 2, with probability tending to1 underP (limp→∞ ||zo(j)1i|| ̸=
0) = 1 for i = 1, 2 andj = 1, 2. Also, note thatzT

o(j)1i1n(j)i
= 0 for i = 1, 2 andj = 1, 2. Hence, similar

to Theorem 3.2 in Chapter 1, we have the result. 2

From Lemma 3.2 one can check the validity of (A-iii) by applying the test of the normality such as the

Jarque-Bera test tóu(j)1i for the non-Gaussian type HDLSS data.

We also have the following results for the first PC direction vector.

Lemma 3.3. Under (A-i), it holds that asp → ∞

h́
T

(j)11h́(j)12 =

{
(n(j′)1 − 1)(n(j′)2 − 1)||zo(j)11||2||zo(j)12||2

(n(j)1 − 1)(n(j)2 − 1)||zo(j′)11||2||zo(j′)12||2

}1/4

hT
1(1)h1(2) + op(1)

for j = 1, 2; j ̸= j′, whennis are fixed.

Proof.Let ν(j)i = n(j)i − 1 for i = 1, 2 andj = 1, 2. Similar to Lemma 3.1, under (A-i), we have that

úT
(j)11(X(j)1 − X(j)1)T (X(j)2 − X(j)2)ú(j)12

{ν(j)1ν(j)2λ1(1)λ1(2)}1/2

=
úT

(j)11β11zo(j)11z
T
o(j)12ú(j)12

{ν(j)1ν(j)2λ1(1)λ1(2)}1/2
+ op(1) (3.4)

asp → ∞ whenn(j)i is fixed for i = 1, 2 andj = 1, 2. Note thath́(j)1i = {ν(j)iλ́1(i)}−1/2(X(j)i −
X(j)i)ú(j)1i for i = 1, 2 andj = 1, 2. By combining (3.4) with Theorem 3.2 in Chapter 1 and Lemma 3.2

for eachπi, we can conclude the result. 2

Lemma 3.4. Under (A-i), it holds that asp → ∞

(h́
T

(j)11h́(k)12)(h́
T

(j′)11h́(k′)12) = {hT
1(1)h1(2)}2 + op(1)

for j, k = 1, 2; (j, k) ̸= (j′, k′), whennis are fixed.

Proof.From Lemma 3.3 it concludes the result straightforwardly. 2

Let h́ = {(h́T

(1)11h́(2)11)(h́
T

(2)11h́(2)12)}1/2 andh́max = max{h́, h́−1}. From Theorem 2.2 and Lemma

3.4, we consider the test statistic:

FCDM
2 =

λ́1(1)

λ́1(2)

h́∗,
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where

h́∗ =


h́max whenλ́1(1) ≥ λ́1(2),

1/h́max otherwise.

Then, we have the following result.

Theorem 3.2. Assume (A-iii). Under (A-i), it holds that

FCDM
2 ⇒ {Fn(1)1−1,n(1)2−1 × Fn(2)1−1,n(2)2−1}1/2 underH0 in (3.1)

asp → ∞ whennis are fixed.

Proof.From (3.3) by combining Theorem 2.2 with Lemma 3.4, we can get the result. 2

From Theorem 3.2 we consider testing (3.1) by (2.5) withFCDM
2 instead ofFCDM

1 . Then, the size becomes

close toα asp increases.

4 Equality Test of Two Covariance Matrices

In this section, we consider equality test of two covariance matrices. We consider the following test:

H0 : Σ1 = Σ2 vs. Ha : Σ1 ̸= Σ2. (4.1)

Whenp → ∞ andnis are fixed, one can estimateλ1(i)s andh1(i)s by the NR methodology and the CDM

methodology, however, one cannot estimateλj(i)s andhj(i)s forj = 2, ..., p. Instead, we consider estimating

κi =
∑p

s=2 λs(i)s by using the NR methodology. As for the CDM methodology, we cannot estimateκis

because they go to zero automatically. Then, we consider the test (4.1) by using the NR methodology for

Gaussian-type HDLSS data. LetSDi be the dual sample covariance matrix forπi. We estimateκi by

κ̃i = tr(SDi) − λ̃1(i) for i = 1, 2. From Lemma 2.1 in Chapter 2, under (A-i) and (A-ii) for eachπi, κ̃is

are consistent estimators ofκis in the sense that̃κi/κi = 1 + op(1) asp → ∞ whennis are fixed. Let

γ̃ = max{κ̃1/κ̃2, κ̃2/κ̃1}. Similar toFNR
2 , we give a test statistic for (4.1) as follows:

FNR
3 =

λ̃1(1)

λ̃1(2)

h̃∗γ̃∗ (= FNR
2 γ̃∗),

where

γ̃∗ =

γ̃ if λ̃1(1) ≥ λ̃1(2),

γ̃−1 otherwise.

Then, we have the following result.
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Theorem 4.1. Under (A-i) to (A-iii) for eachπi, it holds that

FNR
3 ⇒ Fn1−1,n2−1 underH0 in (4.1)

asp → ∞ whennis are fixed.

Proof.By combining Theorem 3.1 in Chapter 1, Lemmas 2.1 in Chapter 2 and 3.1, we can claim the result.

2

From Theorem 4.1 we consider testing (4.1) by (2.2) withFNR
3 instead ofFNR

1 . Then, the size becomes

close toα asp increases.

We analyzed lymphoma data given by Shipp et al. [29] and prostate cancer data given by Singh et al. [30]

which are the same gene expression data as in Section 2 in Chapter 2. When each sample is standardized, we

note that̃κ1 ≈ κ̃2 if λ1(i)/κi = o(1), i = 1, 2, since tr(SD1) = tr(SD2) = p, so that one loses information

about the difference betweenκ1 andκ2. Hence, we did not standardize each sample. We setα = 0.05. We

considered two cases: (I)π1 : DLBC lymphoma (n1 = 58) andπ2 : follicular lymphoma (n2 = 19) and (II)

π1 : normal prostate (n1 = 50) andπ2 : prostate tumor (n2 = 52). We compared the performance ofFNR
3

with two other test statistics,Q2
2 andT 2

2 , by Srivastava and Yanagihara [32]. The results are summarized in

Table 1. We observed thatFNR
3 acceptedHa for (I) andH0 for (II), namely,FNR

3 rejectedH0 in (4.1) for

(I). On the other hand,Q2
2 andT 2

2 did not work for these data sets becauseQ2
2 andT 2

2 are established under

the severe conditions that0 < limp→∞ tr(Σi)/p < ∞ (i = 1, ..., 4) andp1/2/n = o(1). As observed in

Table 1, the conditions seem not to hold for these data sets. Hence, there is no theoretical guarantee for the

results byQ2
2 andT 2

2 .

Table 1. Tests ofH0 : Σ1 = Σ2 vs. Ha : Σ1 ̸= Σ2 with size0.05 for two data sets: (I) lymphoma data

with p = 7129 given by Shipp et al. [29] and (II) prostate cancer data withp = 12625 given by Singh et al.

[30].

Ha by FNR
3 Ha by Q2

2 Ha by T 2
2

(I) π1: DLBC, π2: Follicular Accept Accept Reject

(II) π1: Normal,π2: Tumor Reject Reject Reject

5 Simulation Study

We used computer simulations to study the performance of the test procedures by (2.2) withFNR
1 for

(2.1),FNR
2 for (3.1) andFNR

3 for (4.1). We setα = 0.05. Independent pseudo-random normal observations

were generated fromπi : Np(0,Σi), i = 1, 2. We set(n1, n2) = (15, 25). Let νi = ni − 1 for i = 1, 2. We
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considered the cases:p = 2k, k = 4, ..., 12, and

Σi =

(
Σi(1) O2,p−2

Op−2,2 Σi(2)

)
, i = 1, 2, (5.1)

whereOk,l is thek × l zero matrix,Σ1(1) = diag(p3/4, p1/2) andΣ1(2) = (0.3|s−t|). When considered the

alternative hypotheses, we set

Σ2(1) =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
diag(3p3/4, 1.5p1/2)

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
(5.2)

andΣ2(2) = 1.5(0.3|s−t|). Note thatλ1(2)/λ1(1) = 3, κ2/κ1 = 1.5 andhT
1(1)h1(2) = 1/

√
2. Also, note that

(A-i) to (A-iii) hold for eachπi. Let h = max{|hT
1(1)h1(2)|, |hT

1(1)h1(2)|−1} andγ = max{κ1/κ2, κ2/κ1}.

From Lemmas 2.1 in Chapter 2 and 3.1, it holds thath̃ = h+op(1) andγ̃ = γ+op(1). Thus, from Theorems

2.1, 3.1 and 4.1, we obtained the asymptotic powers ofFNR
1 , FNR

2 andFNR
3 with (h̃∗, γ̃∗) = (h−1, γ−1) as

follows:

Power(FNR
1 ) = P

{
(λ1(1)/λ1(2))f /∈ [{Fn2−1,n1−1(α/2)}−1, Fn1−1,n2−1(α/2)]

}
= 0.577,

Power(FNR
2 ) = P

{
h−1(λ1(1)/λ1(2))f /∈ [{Fn2−1,n1−1(α/2)}−1, Fn1−1,n2−1(α/2)]

}
= 0.823

and Power(FNR
3 ) = P

{
γ−1h−1(λ1(1)/λ1(2))f /∈ [{Fn2−1,n1−1(α/2)}−1, Fn1−1,n2−1(α/2)]

}
= 0.963,

wheref denotes a random variable distributed asF distribution with degrees of freedom,n1 − 1 andn2 − 1.

Note that Power(FNR
2 ) and Power(FNR

3 ) give lower bounds of the asymptotic powers whenh̃∗ = h−1 and

γ̃∗ = γ−1.

In Fig. 1, we summarized the findings obtained by averaging the outcomes from 4000(= R, say)

replications. Here, the first2000 replications were generated by settingΣ2 = Σ1 as in (5.1) and the last

2000 replications were generated by settingΣ2 as in (5.2). LetFNR
ir (i = 1, 2, 3) be therth observation of

FNR
i for r = 1, ..., 4000. We definedPr = 1 (or0) whenH0 was falsely rejected (or not) forr = 1, ..., 2000,

andHa was falsely rejected (or not) forr = 2001, ..., 4000. We definedα = (R/2)−1
∑R/2

r=1 Pr to estimate

the size and1 − β = 1 − (R/2)−1
∑R

r=R/2+1 Pr to estimate the power. Their standard deviations are less

than0.011. Whenp is not sufficiently large, we observed that the sizes ofFNR
2 andFNR

3 are quite higher

thanα. This is probably becausẽh∗ (≥ 1) andγ̃∗ (≥ 1) are much larger than 1. Actually, the sizes became

close toα asp increases. Whenp is large,FNR
3 gave excellent performances both for the size and power.
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Sizes ofFNR
1 , FNR

2 andFNR
3 Powers ofFNR

1 , FNR
2 andFNR

3

Figure 1. The values ofα are denoted by the dashed lines in the left panel and the values of1 − β are denoted by the

dashed lines in the right panel forFNR
1 , FNR

2 andFNR
3 . The asymptotic powers were given by Power(FNR

1 ) = 0.577,

Power(FNR
2 ) = 0.823 and Power(FNR

3 ) = 0.963 which were denoted by the solid lines in the right panel.
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Chapter 4

Two-Sample Tests for HDLSS Data under

the SSE Model

In this chapter, we consider two-sample tests for HDLSS data. This chapter is organized by Ishii [21]

and Ishii [22].

We usually use the Hotelling’sT 2 test statistic in Multivariate analysis. Since the sample covariance

matrix is singular, one cannot use the test statistic in HDLSS context. For example, Dempster [15, 16],

Srivastava [31] and Srivastava et al. [33] considered the two-sample test under the assumption thatπ1 and

π2 are Gaussian. Whenπ1 andπ2 are non-Gaussian, Bai and Saranadasa [10] and Cai et al. [12] considered

the two-sample test under homoscedasticity,Σ1 = Σ2. Chen and Qin [13] and Aoshima and Yata [2, 7]

considered the two-sample test under heteroscedasticity,Σ1 ̸= Σ2. Particularly, Aoshima and Yata [2]

proposed a two-sample test procedure to ensure prespecified accuracies regarding both the size and power.

We note that the above literatures considered constructing two-sample test procedures under the eigenvalue

condition named the “non-strongly spiked eigenvalue (NSSE) model” by Aoshima and Yata [9]. Aoshima

and Yata [9] also considered the other eigenvalue condition named the “strongly spiked eigenvalue (SSE)

model”. They proposed to develop high-dimensional inference not only for the NSSE model but also for the

SSE model.

In this chapter, we focus on the SSE model and constructed test procedures whenp → ∞ while nis are

fixed.

In Section 2, we consider this problem for Gaussian type HDLSS data.

In Section 3, we constructed a test procedure for non-Gaussian type HDLSS data.

In Section 4, we show some simulation results.

In Section 5, we demonstrate the test procedure by using an actual microarray data set.

Finally, in Section 6, we give the concluding remark of this thesis.
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1 Introduction

Suppose we have two classesπi, i = 1, 2, and define independentp × ni data matrices,Xi =

[xi1, ...,xini ], i = 1, 2, from πi, i = 1, 2, wherexij , j = 1, ..., ni, are independent and identically dis-

tributed (i.i.d.) as ap-dimensional distribution with a mean vectorµi and covariance matrixΣi (≥ O).

We assumeni ≥ 4, i = 1, 2. The eigen-decomposition ofΣi is given byΣi = H iΛiH
T
i , where

Λi = diag(λ1(i), ..., λp(i)) havingλ1(i) ≥ · · · ≥ λp(i)(≥ 0) andH i = [h1(i), ...,hp(i)] is an orthogo-

nal matrix of the corresponding eigenvectors. LetXi − [µi, ...,µi] = H iΛ
1/2
i Zi for i = 1, 2. Then,

Zi is a p × ni sphered data matrix from a distribution with the zero mean and identity covariance ma-

trix. Let Zi = [z1(i), ...,zp(i)]T andzj(i) = (zj1(i), ..., zjni(i))
T , j = 1, ..., p, for i = 1, 2. Note that

E(zjk(i)zj′k(i)) = 0 (j ̸= j′) and Var(zj(i)) = Ini , whereIni denotes theni-dimensional identity ma-

trix. Also, note that ifXi is Gaussian,zjk(i)s are i.i.d. as the standard normal distribution,N(0, 1).

We assume that the fourth moments of each variable inZi are uniformly bounded fori = 1, 2. Let

zoj(i) = zj(i) − (z̄j(i), ..., z̄j(i))T , j = 1, ..., p; i = 1, 2, wherez̄j(i) = n−1
i

∑ni
k=1 zjk(i). We assume

that P (limp→∞ ||zo1(i)|| ≠ 0) = 1 for i = 1, 2, where|| · || denotes the Euclidean norm. We define

xini =
∑ni

j=1 xij/ni andSini =
∑ni

j=1(xij − xini)(xij − xini)
T /(ni − 1) for i = 1, 2.

Aoshima and Yata [9] proposed the “non-strongly spiked eigenvalue (NSSE) model” defined by

λ2
1(i)

tr(Σ2
i )

→ 0 asp → ∞ for i = 1, 2. (1.1)

However, (1.1) sometimes fails in actual high-dimensional analyses. See Aoshima and Yata [9] for the

details. Aoshima and Yata [9] also proposed the “strongly spiked eigenvalue (SSE) model” defined by

lim inf
p→∞

{ λ2
1(i)

tr(Σ2
i )

}
> 0 for i = 1 or 2. (1.2)

As for the SSE model, Ma et al. [27] considered a two-sample test for the factor model whenΣ1 = Σ2.

Aoshima and Yata [9] considered the class of test statistics and constructed test procedures whenp → ∞
andnis → ∞.

Ishii [21, 22] consider the following assumption:

(A-i)
tr(Σ2

i ) − λ2
1(i)

λ2
1(i)

= o(1), p → ∞.

The above eigenvalue model is regarded as a strongly spiked eigenvalue model which was proposed by

Aoshima and Yata [9].

We consider the following test:

H0 : µ1 = µ2 vs. µ1 ̸= µ2 (1.3)
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We start with the following test statistic:

Tn = ||x1n1 − x2n2 ||2 −
2∑

i=1

tr(Sini)/ni.

Note thatTn was discussed by Chen and Qin [13] and Aoshima and Yata [2, 7] under the NSSE model. We

considerTn under the SSE model, (A-i). We assume the following assumption:

(A-ii)
λ1(1)

λ1(2)
= 1 + o(1) and hT

1(1)h1(2) = 1 + o(1) asp → ∞.

(A-ii) means that the two classes share the first eigenspace whenp is large. One can check (A-ii) by using

the test statisticsFNR
2 or FCDM

2 given in Chapter 3. As necessary, we also consider the same assumption

(A-iii) for eachπi as in Chapter 1 and 2:

(A-iii) z1j(i), j = 1, ..., ni, are i.i.d. asN(0, 1).

Let nmin = min{n1, n2}. Then, we have the following result forTn.

Lemma 1.1. UnderH0 in (1.3), (A-i) and (A-ii), it holds asp → ∞ that

Tn

λ1(1)
= (z̄1(1) − z̄1(2))

2 −
2∑

i=1

||zo1(i)||2

ni(ni − 1)
+ op(n−1

min)

either whennmin is fixed ornmin → ∞.

Proof.By using Chebyshev’s inequality, for anyτ > 0, under (A-i), we have that fori = 1, 2

P
(∣∣∣ ni∑

j ̸=j′

p∑
s=2

λs(i)zsj(i)zsj′(i)

ni(ni − 1)

∣∣∣ > τλ1(i)/ni

)
= O

(∑p
s=2 λ2

s(i)

τ2λ2
1(i)

)
→ 0 (1.4)

asp → ∞ either whenni is fixed orni → ∞. We write that

||x̄ini − µi||2 −
tr(Sini)

ni
=

p∑
s=1

λs(i)

(
z̄2
s(i) −

||zos(i)||2

ni(ni − 1)

)
.

Here,z̄2
s(i) − ||zos(i)||2/{ni(ni − 1)} =

∑ni
j ̸=j′ zsj(i)zsj′(i)/{ni(ni − 1)} for all i, s. Then, from (1.4) under

(A-i), we have that

||x̄ini − µi||2 − tr(Sini)/ni

λ1(i)
= z̄2

1(i) −
||zo1(i)||2

ni(ni − 1)
+ op(n−1

i ) (1.5)

asp → ∞ either whenni is fixed orni → ∞. Let βst = (λs(1)λt(2))1/2 ×hT
s(1)ht(2) for all s, t. Then, we

write that

(x1n1 − µ1)
T (x2n2 − µ2)

=
p∑

s,t≥1

βstz̄s(1)z̄t(2) = β11z̄1(1)z̄1(2) +
p∑

s=2

βs1z̄s(1)z̄1(2)

+
p∑

t=2

β1tz̄1(1)z̄t(2) +
p∑

s,t≥2

βstz̄s(1)z̄t(2). (1.6)
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Let Σi∗ =
∑p

s=2 λs(i)hs(i)h
T
s(i) for i = 1, 2. Here, we have that

E
{( p∑

s=2

βs1z̄s(1)z̄1(2)

)2}
=

λ1(2)h
T
1(2)Σ1∗h1(2)

n1n2
≤

λ1(2)λ2(1)

n1n2
;

E
{( p∑

t=2

β1tz̄1(1)z̄t(2)

)2}
=

λ1(1)h
T
1(1)Σ2∗h1(1)

n1n2
≤

λ1(1)λ2(2)

n1n2
;

E
{( p∑

s,t≥2

βstz̄s(1)z̄t(2)

)2}
=

tr(Σ1∗Σ2∗)
n1n2

≤

√
tr(Σ2

1∗)tr(Σ
2
2∗)

n1n2
.

Then, by using Chebyshev’s inequality, for anyτ > 0, under (A-i) and (A-ii), it holds that

P
(∣∣∣ p∑

s=2

βs1z̄s(1)z̄1(2)

∣∣∣ > τλ1(1)/nmin

)
≤

λ1(2)λ2(1)

τ2λ2
1(1)

→ 0;

P
(∣∣∣ p∑

t=2

β1tz̄1(1)z̄t(2)

∣∣∣ > τλ1(1)/nmin

)
≤

λ1(1)λ2(2)

τ2λ2
1(1)

→ 0;

P
(∣∣∣ p∑

s,t≥2

βstz̄s(1)z̄t(2)

∣∣∣ > τλ1(1)/nmin

)
≤

√
tr(Σ2

1∗)tr(Σ
2
2∗)

τ2λ2
1(1)

→ 0

asp → ∞ either whenni is fixed orni → ∞ for i = 1, 2. Note thatz̄1(1)z̄1(2) = Op(n−1
min). Hence, from

(1.6), under (A-i) and (A-ii), we have that

(x1n1 − µ1)T (x2n2 − µ2)
λ1(1)

=
β11z̄1(1)z̄1(2)

λ1(1)
+ op(n−1

min)

= z̄1(1)z̄1(2) + op(n−1
min) (1.7)

asp → ∞ either whenni is fixed orni → ∞ for i = 1, 2. Here, we write that

||x̄1n1 − x̄2n2 ||2 =
2∑

i=1

||x̄ini − µi||2 − 2(x1n1 − µ1)
T (x2n2 − µ2)

+ 2µT
12{(x̄1n1 − µ1) − (x̄2n2 − µ2)} + ||µ12||2. (1.8)

Then, by combining (1.5) with (1.7) and (1.8), we can get the result. 2

Let un = 1/n1 + 1/n2. From Lemma 1.1, underH0 in (1.3), (A-i) and (A-ii), we have that

1
λ1(1)un

(
Tn + λ1(1)

2∑
i=1

||zo1(i)||2

ni(ni − 1)

)
= u−1

n (z̄1(1) − z̄1(2)) + op(1) (1.9)

asp → ∞ either whennmin is fixed ornmin → ∞. Note that we assume thatE(z4
1k(i))’s are uniformly

bounded. Then, it holds that

u−1/2
n (z̄1(1) − z̄1(2)) ⇒ N(0, 1)
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as nmin → ∞ by Lyapunov’s central limit theorem. Hence, from (1.9), it holds that asp → ∞ and

nmin → ∞
1

λ1(1)un

(
Tn + λ1(1)

2∑
i=1

||zo1(i)||2

ni(ni − 1)

)
⇒ χ2

1 (1.10)

underH0 in (1.3), (A-i) and (A-ii), whereχ2
k denotes a random variable distributed asχ2 distribution with

k degrees of freedom. On the other hand, under (A-iii), we note thatu
−1/2
n (z̄1(1) − z̄1(2)) is distributed as

N(0, 1) even whennmin is fixed. Hence, from (1.9), we have (1.10) asp → ∞ whennmin is fixed under

H0 in (1.3) and (A-i) to (A-iii).

2 Gaussian Type HDLSS Data

In this section, we consider the test (1.3) for Gaussian- type HDLSS data. We also consider the following

assumption:

(A-iv)

∑p
r,s≥2 λr(i)λs(i)E{(z2

rk(i) − 1)(z2
sk(i) − 1)}

niλ2
1(i)

= o(1) asp → ∞ either whenni is fixed orni →

∞.

Let ν = n1 + n2 − 2. Let us writeλ̃1(i) for i = 1, 2 as the NR estimator ofλ1(i). Then, we have the

following result.

Lemma 2.1. Under (A-i) to (A-iv), it holds that asp → ∞ whenν is fixed∑2
i=1(ni − 1)λ̃1(i)

λ1(1)
⇒ χ2

ν .

Under (A-i), (A-ii) and (A-iv), it holds that asp → ∞ andν → ∞∑2
i=1(ni − 1)λ̃1(i)

νλ1(1)
= 1 + op(1).

In addition, from Theorem 3.1 in Chapter 1, we can estimate

λ1(1)

2∑
i=1

||zo1(i)||2

ni(ni − 1)

in (1.9) by
∑2

i=1 λ̃1(i)/ni.

Proof. Under (A-iii), we note thatzo1(1) andzo1(2) are independent, and||zo1(1)||2 is distributed asχ2
ni−1

for i = 1, 2. Hence, from Theorem 3.1 in Chapter 1 we can conclude the results. 2
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Then, Ishii [21] give a new test procedure by using the NR method. We consider the following test

statistic.

FNR = u−1
n

||x̄1n1 − x̄2n2 ||2 −
∑2

i=1(tr(Sini) − λ̃1(i))/ni

(n1 + n2 − 2)−1
∑2

i=1(ni − 1)λ̃1(i)

(2.1)

Then, we have the following result.

Theorem 2.1. Under (A-i) to (A-iv), it holds asp → ∞ that

FNR ⇒


F1,ν whenν is fixed,

χ2
1 whenν → ∞.

Corollary 2.1. Under (A-i), (A-ii) and (A-iv), it holds that asp → ∞ andnmin → ∞

FNR ⇒ χ2
1 underH0 in (1.3).

Proofs of Theorem 2.1. and Corollary 2.1.Under (A-iii), we note that̄z1(i) andzo1(i) are independent for

i = 1, 2. By combining (1.10) with Theorem 3.1 in Chapter 1 and Lemma 2.1, we can conclude the results.

2

Note thatν → ∞ either whenn1 → ∞ or n2 → ∞. From Corollary 2.1 one can claim the result without

(A-iii) if nmin → ∞ (i.e.,ni → ∞ for i = 1, 2).

For a givenα ∈ (0, 1/2) we test (1.3) by

rejectingH0 in (1.3)⇐⇒ FNR > F1,ν(α), (2.2)

whereFk1,k2(α) denotes the upperα point of F distribution with degrees of freedom,k1 andk2. Note that

F1,ν(α) → χ2
1(α) asν → ∞, whereχ2

k(α) denotes the upperα point of χ2 distribution withk degrees of

freedom. Then, under the conditions in Theorem 2.1 (or Corollary 2.1), it holds that

size= α + o(1)

asp → ∞ either whenν is fixed orν → ∞. Hence, one can use the test procedure even whennis are fixed.

Next, we consider the power of the test by (2.2). Letµ12 = µ1 − µ2. UnderH1 in (1.3), we consider

the following condition:

(A-v)
nminµ

T
12Σiµ12

λ2
1(1)

→ 0 asp → ∞ either whennmin is fixed ornmin → ∞.

Then, we have the following result.

Lemma 2.2. Under (A-i), (A-ii) and (A-v), it holds that

Tn

λ1(1)
= (z̄1(1) − z̄1(2))

2 −
2∑

i=1

||zo1(i)||2

ni(ni − 1)
+

||µ12||2

λ1(1)
+ op(n−1

min)

asp → ∞ either whennmin is fixed ornmin → ∞.
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Proof. We write that

Tn =
2∑

i=1

{
||x̄ini − µi||2 −

tr(Sini)
ni

}
− 2(x̄1n1 − µ1)

T (x̄2n2 − µ2)

+ 2µT
12{(x̄1n1 − µ1) − (x̄2n2 − µ2)} + ||µ12||2. (2.3)

Under (A-v), by using Chebyshev’s inequality, for anyτ > 0 we have that

P
(
µT

12(x̄ini − µi) > τλ1(i)/nmin

)
= O

(
nminµ

T
12Σiµ12

τ2λ2
1(i)

)
→ 0. (2.4)

Then, by combining (2.4) with (2.3) and Lemma 1.1, it concludes the result. 2

By using the above lemma, we have the following result.

Theorem 2.2. Under (A-i) to (A-v), the test by (2.2) holds asp → ∞ andν → ∞ that

Power = 1 − Fχ2
1

(
χ2

1(α) − u−1
n ||µ12||2

λ1(1)

)
+ o(1)

, whereFχ2
1
(·) denotes the cumulative distribution function of the chi-squared distribution with1 degree of

freedom.

Proof.Note thatF1,ν(α) → χ2
1(α) asν → ∞. From Lemmas 2.1 and 2.2, under (A-i) to (A-v), we have that

asp → ∞ andν → ∞

P
(
u−1

n

Tn +
∑2

i=1 λ̃1(i)/ni

ν−1
∑2

i=1(ni − 1)λ̃1(i)

> F1,ν(α)
)

= P
(
χ2

1 > χ2
1(α) − ||µ12||2

unλ1(1)
+ op(1)

)
= 1 − Fχ2

1

(
χ2

1(α) − ||µ12||2

unλ1(1)

)
+ o(1).

It concludes the result. 2

Remark 2.1. If u−1
n ||µ12||2/λ1(1) → ∞ as p → ∞, the test by (2.2) holds under (A-i) to (A-v) that

Power = 1 + op(1) asp → ∞ even whenν is fixed orν → ∞.

3 Non-Gaussian Type HDLSS Data

We provide a new test procedure by using the CDM method when (A-iv) is not always met. Under

(A-ii), we can estimateλ1(1) by using the CDM method as follows: We regardX1 = [x11, ...,x1n1 ] and
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X2 = [x21, ...,x2n2 ] asX(1) andX(2) in the CDM method, respectively. We define the cross data matrix

by SDn1 = {(n1 − 1)(n2 − 1)}−1/2(X1 − X1)T (X2 −X2). We define the singular value decomposition

by SDn1 =
∑nmin−1

j=1 λ́jnújn1ú
T
jn2

. Then, from Theorem 3.2 in Chapter 1, we have the following result.

Lemma 3.1. Under (A-i) and (A-ii), it holds asp → ∞ that

λ́1n

λ1(1)
=

{
||zo1(1)/

√
n1 − 1||||zo1(2)/

√
n2 − 1|| + op(1) whennis are fixed

1 + op(1) whennmin → ∞.

Proof.Let νi = ni − 1. Also, letP ni = Ini − n−1
i 1ni1

T
ni

for i = 1, 2. Similar to Lemma 3.1 in Chapter 3,

it holds that
P n1X

T
1 X2P n2

(ν1ν2λ1(1)λ1(2))1/2
=

P n1β11z1(1)z
T
1(2)P n2

(ν1ν2λ1(1)λ1(2))1/2
+ op(1).

Note thatXiP ni = (Xi − Xi) andúT
1ni

P ni = ú1ni for i = 1, 2, when(X1 − X1)T (X2 − X2) ̸= O.

Then, under (A-i) and (A-ii), we have that

úT
1n1

(X1 − X1)T (X2 − X2)ú1n2

(ν1ν2)1/2λ1(1)

=
úT

1n1
β11zo1(1)z

T
o1(2)ú1n2

(ν1ν2)1/2λ1(1)

+ op(1)

=
||zo1(1)||||zo1(2)||

(ν1ν2)1/2
+ op(1)

asp → ∞ either whenni is fixed orni → ∞ for i = 1, 2. Note that||zo1(i)||/ν
1/2
i = 1 + op(1) when

ni → ∞ for i = 1, 2. Then, we can claim the result. 2

From Lemmas 1.1 and 3.1 we consider the following test statistic:

FCDM = u−1
n Tn/λ́1n + 1. (3.1)

By using the above lemma, we have the following result.

Theorem 3.1. Assume (A-iii). Under (A-i), (A-ii) andH0 in (1.3), it holds that asp → ∞

FCDM ⇒



νnχ2
1 − {(n1 + n2)νn}−1

∑2
i ̸=i′ ni′(ni′ − 1)χ2

ni−1√
χ2

n1−1χ
2
n2−1

+ 1 (3.2)

whennis are fixed,

χ2
1 whennmin → ∞, (3.3)

whereνn =
√

(n1 − 1)(n2 − 1) and χ2
1, χ2

n1−1 and χ2
n2−1 are mutually independent random variables

distributed as the chi-squared distribution with degrees of freedom,1, n1 − 1 andn2 − 1, respectively.

Proof. Under (A-iii), un(z̄1(1) − z̄1(2))2 is distributed asχ2
1. We note that̄z1(i) andzo1(i) (i = 1, 2) are

independent under (A-iii). Then, by combining Corollary 3.2 in Chapter 1 with Lemma 1.1 and Lemma 3.1,

it concludes the result. 2

46



Remark 3.1. Whenp → ∞ andnmin → ∞, the result in Theorem 3.1 holds without (A-iii).

For a givenα ∈ (0, 1/2) let fn1,n2(α) be the upperα point of (3.2). From Theorem 3.1 one can test

(1.3) by

rejectingH0 in (1.3)⇐⇒ F ≥ fn1,n2(α). (3.4)

Then, it holds under (A-i) to (A-iii) that

size = α + o(1).

Next, we consider the power of the test by (3.4). From Lemma 2.2 we have the following result.

Theorem 3.2. Under (A-i), (A-ii) and (A-v), the test by (3.4) holds that asp → ∞ andnmin → ∞

Power = 1 − Fχ2
1

(
χ2

1(α) − u−1
n ||µ12||2

λ1(1)

)
+ o(1),

whereFχ2
1
(·) denotes the cumulative distribution function of the chi-squared distribution with1 degree of

freedom.

Proof.Note thatfn1,n2(α) → χ2
1(α) asnmin → ∞. From Remark 3.1 and Lemmas 3.1 and 2.2, under (A-i),

(A-ii) and (A-v), we have that

P

(
u−1

n Tn

λ́1n

+ 1 > fn1,n2(α)
)

= P

(
χ2

1 > χ2
1(α) − u−1

n ||µ12||2

λ1(1)
+ op(1)

)
= 1 − Fχ2

1

(
χ2

1(α) − u−1
n ||µ12||2

λ1(1)

)
+ o(1).

It concludes the result. 2

Remark 3.2. If u−1
n ||µ12||2/λ1(1) → ∞ asp → ∞, the test by (3.4) holds under (A-i), (A-ii), (A-iii) and

(A-v) that Power= 1 + o(1) asp → ∞ either whennis are fixed ornmin → ∞.

Remark 3.3. In view of Theorem 3.2, one can consider the sample size determination so as to satisfy the

probability requirement:

Asymptotic power≥ 1 − β whenever||µ12||2 ≥ ∆0

for givenβ ∈ (0, 1 − α) and∆0 > 0. If we consider minimizing the total sample sizen1 + n2, one would

obtain the following:

n1 = n2 =
2{χ2

1(α) − χ2
1(1 − β)}λ1(1)

∆0
.

One may estimateλ1(1) by using the bias-corrected CDM estimator in Chapter 1.
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4 Simulation Studies

In this section, we summarize simulation studies of the findings by using computer simulations.

4.1 Gaussian type HDLSS data

We used computer simulations to study the performance of the test procedure by (2.2). We also checked

the performance of the test procedure by

rejectingH0 ⇐⇒ Tn/K̂1/2 > zα, (4.1)

wherezα is a constant such thatP (N(0, 1) > zα) = α and

K̂ = 2
2∑

i=1

Wini

ni(ni − 1)
+ 4

tr(S1n1S2n2)
n1n2

with Wini = {ni(ni−1)}−1
∑ni

j ̸=k(x
T
ijxik)2−2{ni(ni−1)(ni−2)}−1 ×

∑ni
j ̸=k ̸=l x

T
ijxikx

T
ikxil+{ni(ni−

1)(ni − 2)(ni − 3)}−1
∑ni

j ̸=k ̸=l ̸=m xT
ijxikx

T
ilxim. Here,Wini is an unbiased estimator of tr(Σ2

i ) given by

Chen et al. [14]. See Srivastava et al. [34] for details ofWini . Note that Aoshima and Yata [2] and Yata and

Aoshima [39] gave a different unbiased estimator of tr(Σ2
i ). From Theorems 1 and 2 in Chen and Qin [13]

or Corollary 1 in Aoshima and Yata [9], under (1.1) and the factor model given in Remark 3.2 in Chapter 1,

the test procedure by (4.1) has size= α + o(1) asp → ∞ andni → ∞, i = 1, 2. If (1.2) is met ornis are

fixed, we cannot claim “size= α + o(1)” for the test procedure by (4.1).

We also considered the case when we use the conventional eigenvalue estimator,λ̂1(i). Then, one can

obtain the following test statistic:

F̂ = u−1
n

Tn +
∑2

i=1 λ̂1(i)/ni∑2
i=1(ni − 1)λ̂1(i)

and checked the performance of the test procedure by

rejectingH0 ⇐⇒ F̂ > F1,n1+n2−2(α). (4.2)

We setα = 0.05, µ1 = 0 and

Σi =

(
Σ(1) O2,p−2

Op−2,2 ciΣ(2)

)
, i = 1, 2, (4.3)

whereOk,l is thek × l zero matrix,Σ(1) = diag(pτ , p1/2), Σ(2) = (0.3|i−j|1/2
) and(c1, c2) = (1, 1.5).

Note that (A-i) is met whenτ > 1/2. Also, note that (A-ii) is met.

First, we considered the case whenp → ∞ whilenis are fixed. Independent pseudo-random observations

were generated fromπi : Np(µi,Σi), i = 1, 2. We consider the following two cases:
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(a)p = 2s for s = 3, ..., 11, (n1, n2) = (10, 15) andτ = 1, and

(b) p = 2s for s = 3, ..., 11, (n1, n2) = (10, 15) andτ = 2/3.

We consideredµ2 = 0 for H0 andµ2 = (0, ..., 0, 1, ..., 1)T for H1 whose last⌈pτ⌉ elements are 1, where

⌈x⌉ denotes the smallest integer≥ x. For each case, we checked the performance as follows: We defined

Pr = 1 (or 0) whenH0 was falsely rejected (or not) forr = 1, ..., 2000, and definedα =
∑2000

r=1 Pr/2000 to

estimate the size. We also definedPr = 1 (or 0) whenH1 was falsely rejected (or not) forr = 1, ..., 2000,

and defined1 − β = 1 −
∑2000

r=1 Pr/2000 to estimate the power. Note that their standard deviations are less

than0.011. In Fig. 1, we plottedα (left panel) and1− β (right panel) for the test procedure by (2.2) in each

of (a) and (b). We also plotted them for the test procedure by (4.1) and (4.2) in each case.

(a)p = 2s for s = 3, ..., 11, (n1, n2) = (10, 15) andτ = 1.

(b) p = 2s for s = 3, ..., 11, (n1, n2) = (10, 15) andτ = 2/3.

Figure 1. The performances of the three test procedures by (2.2), (4.1) and (4.2). Independent pseudo-random obser-

vations were generated fromπi : Np(µi,Σi), i = 1, 2. The values ofα are denoted by the dashed lines in the left

panels and the values of1 − β are denoted by the dashed lines in the right panels.

We observed that the test procedure by (2.2) gave better performances compared to (4.1) regarding the size.

The size by (4.1) did not become close toα. This is probably becauseTn does not hold the asymptotic

normality under the SSE model, (1.2). One may think that (4.1) gave better performances compared to (2.2)

regarding the power. This is because (4.1) cannot control the size under the SSE model. On the other hand,

the test procedure by (4.2) gave quite bad performances for (b). The power was much lower than that of

(2.2). The main reason must be thatλ̂1(i) was strongly inconsistent for (b).
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Next, we considered the case whenni → ∞ for i = 1, 2. Independent pseudo-random observa-

tions were generated fromNp−p∗(0, Ip−p∗) for (z1j(i), ..., zp−p∗j(i))T , j = 1, ..., ni, and fromp∗-variate

t-distribution, tp∗(0, Ip∗ , ν) for (zp−p∗+1j(i), ..., zpj(i))T , j = 1, · · · , ni, i = 1, 2. Let p∗ = ⌈p1/2⌉.
Note that (A-iv) holds from the fact that

∑p
r,s≥2 λr(i)λs(i)E{(z2

rk(i) − 1)(z2
sk(i) − 1)} = 2

∑p−p∗
s=2 λ2

s(i) +

O(
∑p

r,s≥p−p∗+1 λr(i)λs(i)) = o(λ2
1(i)) for i = 1, 2. We consider the following two cases:

(c) p = 200, n1 = 4s for s =, n2 = 1.5n1 andτ = 3/4, and

(d) p = 1000, n1 = 4s for s = 2, ..., 10, n2 = 1.5n1 andτ = 3/4.

We setµ2 = (0, ..., 0, 1, ..., 1)T for H1 whose last⌈5unλ1(1)⌉ elements are1 for each case. Note that

||µ12||2 = ⌈5unλ1(1)⌉ for H1. Then, it holds that

Fχ2
1
{χ2

1(α) − ||µ12||2/(unλ1(1))} = 0

for H1. Thus from Theorem 2.2 the test by (2.2) hasPower = 1 + o(1) asp → ∞ andni → ∞, i = 1, 2.

Similarly, we calculatedα and1 − β. In Fig. 2, we plotted these values for the test procedures by (2.2) and

(5.5) in Aoshima and Yata [9].

(c) p = 200, n1 = 4s for s =, n2 = 1.5n1 andτ = 3/4.

(d) p = 1000, n1 = 4s for s = 2, ..., 10, n2 = 1.5n1 andτ = 3/4.

Figure 2. The performances of the two test procedures by (2.2) and (5.5) in Aoshima and Yata [9]. Independent

pseudo-random observations were generated fromNp−p∗(0, Ip−p∗) for (z1j(i), ..., zp−p∗j(i))T , j = 1, ..., ni, and from

p∗-variatet-distribution,tp∗(0, Ip∗ , ν) for (zp−p∗+1j(i), ..., zpj(i))T , j = 1, · · · , ni, i = 1, 2, wherep∗ = ⌈p1/2⌉.

The values ofα are denoted by the dashed lines in the left panels and the values of1 − β are denoted by the dashed
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lines in the right panels.

We observed that the test procedure by (2.2) gave better performances compared to the test procedure by

Aoshima and Yata [9] regarding the size whennis are very small. The test procedure by Aoshima and Yata

[9] became close toα asnis increase. In addition, the test procedure by Aoshima and Yata [9] gave better

performances compared to (2.2) regarding the power. This is probably because the asymptotic variance of

the test statistic by Aoshima and Yata [9] is smaller than Var(Tn) in this high-dimensional settings. See

Section 5.1 in Aoshima and Yata [9] for the details. Hence, we recommend to use the test procedure by (2.2)

for Gaussian type HDLSS data whennis are very small (e.g.nis are about 10) under the SSE model.

4.2 Non-Gaussian type HDLSS data

We used computer simulations to study the performance of the test procedure by (3.4). We setα = 0.05,

µ1 = 0. We considered the same setting as (4.3) forΣi and setΣ(1) = diag(p3/4, p1/2). Note that (A-i) is

met.

Independent pseudo-random observations were generated fromNp−p∗(0, Ip−p∗) for (z1j(i), ..., zp−p∗j(i))T ,

j = 1, ..., ni, and fromp∗-variatet-distribution,tp∗(0, Ip∗ , ν) for (zp−p∗+1j(i), ..., zpj(i))T , j = 1, · · · , ni, i =

1, 2. We considered three cases:

(a)p = 2s for s = 3, ..., 11, p∗ = p − 1, ν = 5 and(n1, n2) = (10, 10),

(b) p = 2s for s = 3, ..., 11, p∗ = ⌈p1/2⌉, ν = 10 and(n1, n2) = (12, 7), and

(c) p = 1000, p∗ = ⌈p1/2⌉, ν = 10 andn1 = n2 = 3 + 6s for s = 1, ..., 9.

Note that (A-iv) is not satisfied for (a). We consideredµ2 = 0 for H0 andµ2 = (0, ..., 0, 1, ..., 1)T for

H1 whose lastη elements are 1. We setη = ⌈1.5λ1(1)⌉ for (a), η = ⌈1.4λ1(1)⌉ for (b) andη = ⌈6λ1(1)⌉
for (c), where⌈x⌉ denotes the smallest integer≥ x. For each case we checked the performance as follows:

We definedPr = 1 (or 0) whenH0 was falsely rejected (or not) forr = 1, ..., 2000, and definedα =∑2000
r=1 Pr/2000 to estimate the size. We also definedPr = 1 (or 0) whenH1 was falsely rejected (or not)

for r = 1, ..., 2000, and defined1− β = 1−
∑2000

r=1 Pr/2000 to estimate the power. Note that their standard

deviations are less than0.011. In Fig. 3, we plottedα (left panel) and1 − β (right panel) for the test

procedure by (3.4) in each of (a), (b) and (c). We also plotted them for the test procedure by (2.2) in (a) and

(b), and for the test procedure by (5.5) in Aoshima and Yata [9] in (c). One can observe from (a), (b) and (c)

that the test procedure by (3.4) gave good performances for largep even whennis are fixed. Contrary to that,

the test procedure by (2.2) gave a bad performance for (a) with respect to the power whenp is large. This

is probably because (A-iv) is not met in (a) whenν is small. On the other hand, it gave a good performance

for (b) whenp is large. The test procedure by Aoshima and Yata [9] gave a good performance when bothp

andnis are large. We recommend to use the test procedure by (3.4) when the data is non-Gaussian and the

sample size is quite small.
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(a)p = 2s for s = 3, ..., 11, p∗ = p − 1, ν = 5 and(n1, n2) = (10, 10).

(b) p = 2s for s = 3, ..., 11, p∗ = ⌈p1/2⌉, ν = 10 and(n1, n2) = (12, 7).

(c) p = 1000, p∗ = ⌈p1/2⌉, ν = 10 andn1 = n2 = 3 + 6s for s = 1, ..., 9.

Figure 3. The performances of the three test procedures by (3.4), (2.2) and (5.5) in Aoshima and Yata [9]. Independent

pseudo-random observations were generated fromNp−p∗(0, Ip−p∗) for (z1j(i), ..., zp−p∗j(i))T , j = 1, ..., ni and from

p∗-variatet-distribution,tp∗(0, Ip∗ , ν) for (zp−p∗+1j(i), ..., zpj(i))T , j = 1, · · · , ni, i = 1, 2. The values ofα are

denoted by the solid lines in the left panels and the values of1 − β are denoted by the solid lines in the right panels.

5 Demonstration

In this section, we demonstrate the test procedure (3.4) by using actual microarray data set. We used acute

myeloid leukemia data with22283 (= p) genes consisting of four classes: acute promyelocytic leukemia

(APL) with t(15;17) (10 samples), acute myelogenous leukemia (AML) with inv(16) (4 samples), monocytic

leukemia (ML) (7 samples) and nonmonocytic leukemia (NL) (22 samples). See Gutierrez et al. [17] for

the details. The data set is available at NCBI Gene Expression Omunibus. First, we checked (A-iii) for
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each class. As for each class, we divided the sample into two groups: the first⌈ni/2⌉ samples and the

remaining samples. Then, we constructed the cross data matrixSD(i) for each class. We calculated́λ1(i)

and estimatedδ =
∑p

s=2 λ2
s(i)/λ2

1(i) by δ̂ = {tr(SD(i)S
T
D(i))}/λ́2

1(i). We hadδ̂ = 0.013 for APL, δ̂ = 0

for AML, δ̂ = 0.171 for ML and δ̂ = 0.034 for NL. From these observations we concluded that each class

satisfies (A-i). In addition, from Lemma 3.2, we could confirm that each class satisfies (A-iii) with the level

of significance 0.05. We also checked (A-ii) for six pairs out of the four classes and tested (3.1) in Chapter

3 by using the test statisticFCDM
2 with the level of significance 0.05. We had P-values as0.481 for (APL,

AML), 0.187 for (APL, ML), 0.902 for (APL, NL), 0.52 for (AML, ML), 0.746 for (AML, NL) and 0.920

for (ML, NL). From these observations, we applied the two-sample test procedure (3.4) to all the cases. We

tested (1.3) with the level of significance 0.05. Then,H0 in (1.3) was rejected for (APL, ML), (APL, NL),

(AML, NL) and (ML, NL). The results are summarized in Table 1.

Table 1. The upper0.05 point,fn1,n2(0.05), of (3.4) and the value ofFCDM given by (3.1) for all the pairs

from Gutierrez et al. [17]’s data sets havingp = 22283.

(APL, AML) (APL, ML) (APL, NL) (AML, ML) (AML, NL) (ML, NL)

(n1, n2) (10, 4) (10, 7) (10, 22) (4, 7) (4, 22) (7, 22)

fn1,n2(0.05) 5.94 4.91 4.38 6.05 5.76 4.71

FCDM 2.39 13.22 12.26 4.31 6.04 19.37

6 Conclusion

As pointed out in Aoshima and Yata [9], we should choose a suitable test procedure reflected by the

eigenstructures. In this thesis, we focused on the SSE model. In high-dimensional settings, it is unrealistic

to assume the equality of the covariance matrices between the two classes. However, when analysing mi-

croarray data sets, we sometimes observe that the two covariance matrices share the first eigenspace at least.

In such situations, we positively make use of the common eigenspace as a ground to compare the two class

means. From this point of view, we provided two-sample test procedures by using both the NR method and

the CDM method. Also, we discussed how to check the validity of the assumptions. Through the simulation

studies, the proposed test procedures by (2.2) and (3.4) gave good performances when the dimension is large

while the sample-size is quite small.
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