
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
1807

PAPER

An Approach for Solving SAT/MaxSAT-Encoded Formal
Verification Problems on FPGA

Kenji KANAZAWA†a) and Tsutomu MARUYAMA††b), Members

SUMMARY WalkSAT (WSAT) is one of the best performing stochastic
local search algorithms for the Boolean Satisfiability (SAT) and the Max-
imum Boolean Satisfiability (MaxSAT). WSAT is very suitable for hard-
ware acceleration because of its high inherent parallelism. Formal verifica-
tion of digital circuits is one of the most important applications of SAT and
MaxSAT. Structural knowledge such as logic gates and their dependencies
can be derived from SAT/MaxSAT instances generated from formal ver-
ification of digital circuits. Such that knowledge is useful to solve these
instances efficiently. In this paper, we first discuss a heuristic to utilize
the structural knowledge for solving these problems by using WSAT. Then,
we show its implementation on FPGA. The problem size of the formal
verification is typically very large, and most data have to be placed in off-
chip DRAMs. In this situation, the acceleration by FPGA is limited by the
throughput and access latency of the DRAMs. In our implementation, data
are carefully mapped on the on-chip memory banks and off-chip DRAMs
so that most data in the off-chip DRAMs can be continuously accessed us-
ing burst-read. Furthermore, a variable-way cache memory comprised of
the on-chip memory banks is used in order to hide the DRAM access la-
tency by caching the head portion of the continuous read from the DRAMs
and giving them to the circuit till the rest portion is started to be given by
the burst-read. We evaluate the performance of our proposed method by
changing configuration of the variable-way cache and the processing paral-
lelism, and discuss how much acceleration can be achieved.
key words: FPGA, SAT, MaxSAT, WalkSAT

1. Introduction

Given a set of variables and a set of clauses that are dis-
junctions of the variables and their negations, the goal of the
Boolean satisfiability (SAT) problem is to find a truth as-
signment to the variables in order to satisfy all clauses. The
Maximum satisfiability (MaxSAT) problem is a variant of
the SAT problem, and its goal is to find a truth assignment
that satisfies as many clauses as possible. Many real-world
applications can be encoded as SAT or MaxSAT problems.
Formal verification, which is one of the most important ap-
plications of the SAT problem, is a mathematical method to
verify the correctness of digital circuit systems.

WalkSAT (WSAT) and its variants [1], [2] are one of
the best performing Stochastic Local Search (SLS) algo-

Manuscript received December 9, 2016.
Manuscript revised April 4, 2017.
Manuscript publicized May 12, 2017.
†The author is with the Division of Information Engineering,

Faculty of Engineering, Information and Systems, University of
Tsukuba, Tsukuba-shi, 305–8573 Japan.
††The author is with the Division of Intelligent Interaction Tech-

nologies, Faculty of Engineering, Information and Systems, Uni-
versity of Tsukuba, Tsukuba-shi, 305–8573 Japan.

a) E-mail: kanazawa@cs.tsukuba.ac.jp
b) E-mail: maruyama@darwin.esys.tsukuba.ac.jp

DOI: 10.1587/transinf.2016EDP7487

rithms for SAT and MaxSAT problems. These algorithms
begin by considering a random truth assignment and a set of
unsatisfied clauses with the assignment. Then, an unsatis-
fied clause is chosen, and one of its literals is flipped from
false to true (a literal is a variable or its negation, and the
variable becomes false by this flipping when the literal is a
negation of the variable) to satisfy the clause. Clauses that
include the negation of the flipped literal are re-evaluated to
update the set of unsatisfied clauses. This procedure is re-
peated until all clauses are satisfied. The heuristic to choose
an unsatisfied clause and a literal to be flipped in it is the
most critical part of the algorithm. By choosing proper lit-
erals, larger problems can be solved efficiently in shorter
time. A problem of SAT and MaxSAT is typically given
as a propositional conjunctive normal form (CNF), and it is
known that the functional dependencies among the clauses
(namely, gates in the circuit) can be reconstructed from the
given CNF [7], [8], and it helps to solve those problems ef-
ficiently [18].

In [22], [23], we proposed a new heuristic for WSAT
algorithm that utilizes the structural knowledge in a given
CNF, and evaluated its performance using SAT-encoded for-
mal verification problems of digital circuits. The size of
formal verification problems is very large, and most of the
data have to be placed in off-chip DRAMs. Under this situa-
tion, the performance of the implementation is limited by the
throughput and access latency of the DRAMs. In [22], we
showed an implementation method of our heuristic leverag-
ing the high data transfer rate of DRAMs, and studied how
much speedup was possible using the memory throughput
and memory access latency as parameters. In [23], we eval-
uated its performance on SoC in order to get rid of the hard-
ware resource limitation of FPGA and verify the maximum
performance of the proposed implementation.

In [24], we introduced a variable-way cache (V-cache)
memory on FPGA in order to hide the DRAM access latency
by using the limited amount of on-chip memories efficiently.
The size of data blocks that are frequently fetched from the
DRAMs considerably varies in the WSAT algorithm. When
the block size is small enough, all data in the block are
cached in V-cache using several entries on the same line ac-
cording to the block size. When the block size exceeds the
total amount of the entries on one line, only a head portion
of the block is cached using all the cache entries on the line.
In the former case, data in the cache memory are simply sent
to the circuit. In the latter case, on the other hand, DRAM
access to the rest of the block data is immediately started,

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



1808
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

and until the first data from the DRAM arrives, the cached
data is sent to the circuit.

In this paper, we first show that our heuristic is effective
for MaxSAT problems as well as for SAT problems. Then,
we describe its FPGA implementation in detail (mainly data
mapping on on-chip and off-chip memory banks, and V-
cache), and evaluate the performance gain by our implemen-
tation using more benchmark problems. We also discuss
how much parallelism can be exploited under the resource
limitation of current largest FPGAs available and how much
acceleration can be achieved under this situation.

This paper is organized as follows. In Sect. 2, we de-
fine the SAT and MaxSAT problems, and we introduce the
related work in Sect. 3. In Sect. 4, our heuristic is described
and its performance is evaluated. Its FPGA implementa-
tion is described in Sect. 5 in detail. The performance of the
FPGA implementation is shown in Sect. 6. Section 7 gives
the conclusions and future work.

2. Satisfiability and Maximum Satisfiability Problems

The SAT problem is a well-known combinatorial problem.
An instance of the problem can be defined by a given
Boolean formula F(x1, x2, . . . , xn), and the question is to de-
termine if there exists an assignment of binary values to the
variables (x1, x2, . . . , xn) that makes the formula true. Typ-
ically, F is presented in conjunctive normal form (CNF),
which is a conjunction of a number of clauses, where a
clause is a disjunction of a number of literals. Each literal
represents either a Boolean variable or its negation. For ex-
ample, in the following formula in CNF that consists of four
clauses, {x1, x2, x3} = {1, 1, 0} satisfies all clauses:
F(x1, x2, x3) =
(¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3).

The MaxSAT problem, on the other hand, is an opti-
mization variant of the SAT problem, whose goal is to find
an assignment to the variables that maximizes the number
of satisfied clauses (i.e. minimizes the number of unsatis-
fied clauses). For instance, in the following CNF formula,
there exists no solution, but {x1, x2, x3} = {1, 1, 0}minimizes
the number of unsatisfied clauses:
F(x1, x2, x3) = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (x1 ∨ x3).

3. Related Work

Many algorithms and hardware solvers have been proposed
to date. Algorithms for solving the SAT problem can be di-
vided into two major groups: complete and incomplete. The
complete algorithms can always find a solution, or conclude
that the problem is unsatisfiable. When no solutions can be
found, the incomplete algorithms do not guarantee to find a
solution. When a solution can not be found by those algo-
rithms, it is impossible to determine whether the problem is
unsatisfiable, or the algorithms could not find the solution.
Nevertheless, these algorithms are of particular interest, be-
cause they are very effective on many large problems, and
can be used to solve the MaxSAT problem.

Fig. 1 Procedure of WSAT algorithms

WSAT [1], [2] is one of the best performing incomplete
algorithms. Figure 1 shows the basic procedure of WSAT
algorithms. The procedure begins by considering a random
truth assignment to the variables. It searches for a solution
by repeatedly selecting an unsatisfied clause at random, and
then employing some heuristics to select a variable in that
clause to flip (change its truth value from true to false or
vice-versa). The heuristic to choose a literal to be flipped
is the key of the search, and determines the performance of
the algorithm. Many heuristics have been proposed for this
reason [1]–[4], [19], [20]. Among them, WSAT/SKC [1] is
the basis of our proposed method. Here, we introduce the
variable selection heuristic in WSAT/SKC:

For each variable in the randomly selected unsatisfied
clause, count the number of clauses that are true in the
current truth assignment, but that would become false
if the flip were made (called a break-value). If vari-
ables with break-value of 0 exist, pick any of them. If
not, with probability p, pick any variable, otherwise
pick a variable that gives the minimum break-value.

Several approaches to accelerate simple WSAT algo-
rithms by hardware systems have been proposed [9]–[11].
However, the size of the problems which can be solved by
those hardware solvers are very limited. This is because it is
not easy to solve large real-world problems using only sim-
ple WSAT algorithms. Sophisticated SLS algorithms such
as [3], [4], [19] have been proposed, but their control struc-
tures and the required memory access sequences are com-
plex, and it is not easy to implement them in hardware. In
[21], an FPGA solver for probSAT [20], one of the latest
SLS algorithms, is proposed. In probSAT, selecting next
flip variable is based only on probability distribution calcu-
lated by an elementary function. Using Xilinx XC7V690T,
this FPGA solver achieves up to 99 times speedup over
software running on Intel Core-i5 4670K with 32GB main
memory. However, the performance of this solver to formal
verification is not clear because benchmark problems used
in the evaluation are not based on real-world applications,
and their size are very small (up to 250 variables and 1065
clauses).

Several approaches based on complete algorithms have
been proposed [12], [13]. The performance of recent



KANAZAWA and MARUYAMA: AN APPROACH FOR SOLVING SAT/MAXSAT-ENCODED FORMAL VERIFICATION PROBLEMS ON FPGA
1809

complete algorithms [14]–[16] has been significantly im-
proved by introducing several techniques to prune the search
space [14]–[17]. However, these techniques also require
complicated control structure, which makes it difficult to
handle large real-world problems in hardware solvers.

4. Outline of Our Algorithm

In this section, we describe our heuristic for the WSAT al-
gorithm that is designed for formal verification problems of
digital circuits.

4.1 Gates and Dependencies

Formal verification is a mathematical method of verifying
hardware or software systems. In SAT/MaxSAT-encoded
formal verification of hardware systems, a design of the
hardware design (typically in gate-level) with its verifica-
tion specification is translated to a CNF instance. Here, we
describe several logic gates mainly used in CNF.

In the following discussion, we follow the terminology
used in [7] and [18]. First, we consider the following CNF
formula:

(¬x1 ∨ y) ∧ . . . ∧ (¬xn ∨ y) ∧ (x1 ∨ . . . ∨ xn ∨ ¬y)
This formula becomes true, when y is true and at least one
of x1, . . . , xn is true, or y is false and x1, . . . , xn are all false.
Namely, this formula shows an OR gate y = ∨(x1, . . . , xn).
In the same way, the following formula:

(x1 ∨ ¬y) ∧ . . . ∧ (xn ∨ ¬y) ∧ (¬x1 ∨ . . . ∨ ¬xn ∨ y)
means an AND gate y = ∧(x1, . . . , xn). In the formulas
above, y is an output variable of the gate, and x1, . . . , xn are
input variables. Another gate which is commonly used is
XOR y = ⊕(x1, x2), and can be described as follows:

(¬y∨¬x1∨¬x2)∧ (y∨ x1∨¬x2)∧ (y∨¬x1∨ x2)∧ (¬y∨
x1 ∨ x2).
An XNOR gate y =⇔(x1, x2) can be represented as follows:

(y∨ x1 ∨ x2) ∧ (¬y ∨ ¬x1 ∨ x2) ∧ (¬y ∨ x1 ∨ ¬x2) ∧ (y∨
¬x1 ∨ ¬x2)
Here, note that it is not possible to determine the output vari-
able from the clauses for XOR and XNOR.

Basically, by finding the sets of clauses corresponding
to any of above ones, we can find gates in the CNF (more
sophisticated approaches are necessary to detect more gates
as described in [7], [8]). An output variable of a gate be-
comes an input variable of the next gate. In order to make
the data dependencies among the gates clear, we define “in-
ternal gate”, “external gate” and “independent variable”. An
internal gate is any gate that can be recognized as∨,∧,⇔,⊕,
namely a set of clauses which corresponds to any of that de-
scribed above. An external gate is a clause which is not the
part of the internal gates. Any literals included in them is
not an input signal to other gates. It is considered that these
literals correspond to the output signals of the circuit [18].
Independent variable is a variable that is never found in in-
ternal and external gates. Namely, the independent variables
can be considered to the input signals to the circuit.

Figure 2 shows an example of gates, and their data de-

Fig. 2 Gates and their dependencies

pendencies. External gates have no output variables to other
parts in the given CNF, and the status of each external gate
becomes an output of the circuit. In our implementation,
AND/OR-type gates are detected first, and the input/output
of XOR and XNOR gates are inferred from the input/output
of AND and OR gates, so that no input/output conflicts hap-
pen among the gates using a simple back-tracking method
(the input/output variables of XOR and XNOR gates cannot
be known from only the clauses for the gate, though those of
AND and OR can be known). Then, a variable which is not
the output variable of any gate becomes an “independent”
variable.

4.2 Heuristic for Formal Verification Problems of Digital
Circuits

Figure 3 shows the procedure of our algorithm [22]–[24].
In this procedure, the parameters MAX-TRIES (the number
of new search sequences) and MAX-FLIPS (the maximum
number of flips per try) are used to control the maximum
run-time of the algorithm. Given a random truth assignment
to the variables, several clauses become unsatisfied. This
unsatisfiability of the clauses moves to the output side of the
circuit (namely, to the external gates) by flipping the output
variables (forward search). On the other hand, by flipping
the input variables of the gates, the unsatisfiability moves
to the input side (to the independent variables) (backward
search). The scenario of our search is as follows:

1. Flipping the output variables of the gates preferentially
(forward search).

2. All gates except for some external gates are satisfied.
3. Starting from the unsatisfied external gates, continue to

flip one of the input variables of the gates until some
of the independent variables are flipped (a series of
clauses to one of the independent variables which make
the external gate false are tracked) (backward search).

4. Then, repeat Steps 1 to 3.

According to our observations, by flipping the literals
that correspond to the output signals of the gates preferen-
tially, the search will converge very quickly to a local min-
imum. When the search is stuck in the local minimum, it
is possible to get out of the minimum by flipping the input
signals of the gates preferentially. Thus, by repeating these
two phases, better local minima can be found efficiently. In
Fig. 3, p decides the probability to choose the output signals
to be flipped, which is automatically adjusted by a noise pa-
rameter tuning mechanism [3] considering the period of be-



1810
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 1 The Number of Instances in benchmark suite for which solutions could be found

LIVENESS-SAT-1.0 VLIW-UNSAT-4.0 DLX-IQ-UNSAT-1.0
20/20 19/20 14/20 9/20 4/20 0/20 20/20 19/20 4/20 0/20 10/10 0/10

- 15/20 - 10/20 - 5/20 - 1/20 - 15/20 - 1/20
Ours 1 4 2 2 1 0 4 0 0 0 32 0
RSAPS 0 0 0 0 0 10 4 0 0 0 32 0
Sparrow 0 0 0 0 0 10 0 1 1 2 0 32
WSAT/SKC 0 0 0 0 0 10 0 0 3 1 0 32

Fig. 3 Procedure in our algorithm

ing stuck in a local minimum.

4.3 Performance of the Proposed Heuristic

We compare the performance of our heuristic with four
algorithms: (1) Sparrow [19], one of the latest SLS al-
gorithms, (3) RSAPS [4], one of the best performing
WSAT variants for real-world problems, and (4) origi-
nal WSAT/SKC [1], using one satisfiable benchmark suite
in [25] named LIVENESS-SAT-1.0 (10 benchmarks), and
two unsatisfiable ones named VLIW-UNSAT-4.0 (4 bench-
marks) and DLX-IQ-UNSAT-1.0 (32 benchmarks). These
suites are from the formal verification of microprocessors.
Each instance in LIVENESS-SAT-1.0 and VLIW-UNSAT-
4.0 is evaluated 20 times, that in DLX-IQ-UNSAT-1.0 10

times, and each try is finished in 7200 seconds. All pro-
grams were executed on Intel Core i7-3770 3.4 GHz with
8 GB of main memory. The size of the benchmarks ranges
from 96K variables and 1.8M clauses to 773K variables and
12.0M clauses.

Table 1 shows the number of instances in each bench-
mark suite for which correct solutions could be found.
For example, ‘1’ in ‘20/20’ column in LIVENESS-SAT-1.0
means that the correct solutions could be found for one in-
stance in all the 20 tries, and ‘4’ in ‘19/20-15/20’ means that
the correct solution could be found for 4 instances in 15 to
19 tries out of the 20. For the two unsatisfiable suites, so-
lutions which can not satisfy only one clause are considered
as their correct solutions. As shown in this table, our heuris-
tic is comparable to RSAPS in the MaxSAT problems and
superior to all other heuristics in the SAT problems.

5. Hardware Architecture

In our system, first, (1) data arrays are generated from the
given CNF, (2) data dependencies in it are analyzed, and (3)
a random truth assignment for the variables and the initial
set of unsatisfied clauses are generated on the host computer.
Then, the data arrays, the random truth assignment and the
set of unsatisfied clauses are downloaded to the FPGA, and
the solution of the problems is searched on FPGA.

5.1 Data Arrays

Figure 4 shows tables used in our algorithm. Each en-
try of the clause table (c tbl[]) points to the element in
c arg tbl[]. c arg tbl[] holds the literals of clauses (called
argument literals). c sat tbl[] holds the number of true
literals in each clause. If its value is zero, it means that the
clause is not satisfied with the current assignment (other-
wise, it means that the clause is satisfied). usc buf[] holds
the clause numbers of the unsatisfied clauses. ref tbl[]
is a two-word width array, and both words point to the ele-
ment in c list tbl[]. ref tbl[] is accessed using a variable
number, and the first word is used for the variable, and the
other for its negation. c list tbl[] holds the list of clauses in-
clude a variable x (called clause list(x)), or its negation
(called clause list(¬x)), separately. v tbl[] holds the
truth values of the variables (1 for true, and 0 for false).

5.2 Processing Sequence

On the host computer,



KANAZAWA and MARUYAMA: AN APPROACH FOR SOLVING SAT/MAXSAT-ENCODED FORMAL VERIFICATION PROBLEMS ON FPGA
1811

Fig. 4 Tables used in our algorithm

1. generate c tbl[] and c arg tbl[] from a CNF file;
2. scan c tbl[] and c arg tbl[], and

a. find the output signals,
b. make the clause list(x) and the clause list(¬x),
c. store them in c list tbl[] and the references to

them in ref tbl[].

3. generate a truth assignment to variables at random;
4. evaluate all clauses using the truth assignment, and

a. count the number of true literals in each clause,
and store them in c sat tbl[],

b. put the clause number of the unsatisfied clauses in
usc buf[];

5. download the tables to the circuit.

The circuit on the FPGA executes the following steps:

1. choose an unsatisfied clause c from usc buf[] (if c is
satisfied, discard it and choose another one);

2. read argument literals of c from c arg tbl[] using
c tbl[c];

3. List ← φ;
4. for each literal l in c (here, all literals in c are false),

a. read out clause list(¬l) from c list tbl[] using
ref tbl[¬l] (¬l becomes false if l is flipped)

b. count the number of clauses whose c sat tbl[] = 1
in clause list(¬l) (these clauses become false if l is
flipped)

c. if the number of these clauses is zero, add l to List

5. if List is not empty, l f = any of literals in List;
otherwise,

with probability p, l f = any of literals in c;
with probability 1 − p, l f = the literal that repre-
sents the output signal of c;

6. flip l f (v tbl[variable number(l f )] =
¬ v tbl[variable number(l f )]);

7. read out clause list(¬l f ) from c list tbl[] using
ref tbl[¬l f ], and decrement their c sat tbl[]. If
c sat tbl[] becomes zero, add its clause number in
usc buf[];

8. read out clause list(l f ) from c list tbl[] using ref tbl[l f ],
and increment their c sat tbl[];

9. for the SAT problems, repeat Steps 1 − 8 until usc buf[]
becomes empty;
for the MaxSAT problems, repeat them until reaching

a solution with the target solution quality (the target
number of unsatisfied clauses);

5.3 Parallelism in the Circuit

The parallelism in the algorithm is very high. However,
throughput of off-chip DRAMs, namely, the number of
words (L) that are given in parallel by the off-chip DRAM
interface limits the circuit parallelism because most parts
of the tables have to be placed in the off-chip DRAMs (in
the following discussion, we call the L words given by the
DRAM interface in parallel “L-words”).

Suppose that the circuit on FPGA runs at fc MHz. The
databus of the DDR3-SDRAM operates at 4 × fc MHz and
transfers the data with double data rate operation. Therefore,
one DDR3-SDRAM bank of 32b word provides the data of
8 × 32b to the circuit in parallel. Then, up to 32 words can
be given to the circuit in parallel when it has four DRAM
banks of 32b width (many FPGA boards e.g. Xilinx VC709
have the DRAM interface of the same configuration). In our
circuit, most of the entries of the tables can be represented
by up to 26b, and it is reasonable to use a 32b word for each
entry of the tables except for some special cases (64b for
usc buf[], up to 18b for c sat tbl[] and 1b for v tbl[]).

5.4 Data Mapping and System Architecture

Next, we describe the mapping of the tables onto on-chip
and off-chip memory banks.

The width of v tbl[] is 1b, and the access to it is ran-
dom. With 64 on-chip memory banks (block RAMs) config-
ured as 16K × 1b, we can store truth values of 1M variables.
With this size of v tbl[], we can process all the benchmark
problems evaluated in Sect. 4.3.

c sat tbl[] is most frequently accessed, and the access
to this table is also random. The size of this table is propo-
tional to the number of clauses, and it is too large to map all
of the entries onto on-chip memory banks. In order to re-
duce the size of c sat tbl[] and to map it onto on-chip mem-
ory banks, the following two methods are used:

I. For clauses with two and three argument literals (called
2- and 3-arg clauses), the set of the argument liter-
als are used instead of clause numbers. For example, in
c list tbl[], the set of argument literals in 2- and 3-arg
clauses excluding literal l are placed in clause list(l) in-
stead of the clause numbers (l does not appear in clause
list(l) because it is obvious that all the clauses in clause
list(l) contain l). The truth of those clauses are evalu-
ated by the truth of the argument literals, and the truth
of the argument literals in clause list(l) are obtained by
referencing v tbl[], not by c sat tbl[]. The truth of l is
known in advance as mentioned in Sect. 5.2. With this
method, no entries are prepared for 2- and 3-arg clauses
in c sat tbl[].

II. For the clauses with more than three literals (called
k-arg clauses), the clause numbers are used, and



1812
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 2 Statistical information of benchmark problems

#args length of clause list
2 3 average max

LIVENESS 88.5 ∼ 91.7% 3.5 ∼ 6.0% 21.9∼27.4 33161
VLIW 62.0 ∼ 65.0% 30.9 ∼ 34.5% 27.5∼35.7 75980
DLX 87.5 ∼ 93.4% 4.0 ∼ 8.2% 19.0∼34.2 19777

c sat tbl[] is used only for these clauses. c sat tbl[] has
different width according to the number of literals in
the clauses in order to implement c sat tbl[] with less
block RAMs. For this approach, all clauses are sorted
according to the number of their literals before giving
them their clause numbers, and the data width of the
first portion of c sat tbl[] for less number of arguments
is narrower, and that of the last portion for more argu-
ments is wider.

Table 2 shows some statistic information about the number
of argument literals per clause and the length of the clause
lists of our tested benchmark suites (their names are abbre-
viated). #args 2 and 3 show the percentage of the clauses
with two and three literals. As shown in this table, the per-
centage of the clauses with two and three literals account for
about 97% of all the clauses. By applying the two methods
above, we can reduce the size of c sat tbl[] drastically and
make c sat tbl[] small enough to implement on the on-chip
memory banks.

The size of the other tables is very large, and these ta-
bles have to be placed in off-chip memory banks. Among
them, the accesses to c list tbl[] can be continuous because
the processing of a clause list is repeated for #args (the num-
ber of argument literals) + 2 times, and many elements are
read from c list tbl[] continuously (19 to 36 on average,
75980 at a maximum) in each repetition. Thus, the burst-
read of DRAMs can work efficiently for c list tbl[].

c tbl[], c arg tbl[], and ref tbl[] are also mapped on off-
chip memory banks, and these tables are accessed at ran-
dom. However, the overhead caused by the accesses to these
tables are relatively small, because

1) for each access to ref tbl[], c list tbl[] is also accessed
following the access to ref tbl[], and

2) for each access to c arg tbl[] using c tbl[c], 1) is re-
peated for each argument literal in c arg tbl[c tbl[c]],
where c is an unsatisfied clause fetched from usc buf[].

A small part of usc buf[] is placed in the on-chip mem-
ory banks and is accessed preferentially than the other part
placed in the off chip memory banks. When the usc buf[] on
on-chip memory banks is empty, a part of unsatisfied clauses
are moved from usc buf[] in off-chip memory banks to that
in on-chip memory banks by single burst read access. For 2-
and 3-arg clauses in usc buf[], the set of the argument liter-
als is used instead of the clause number. Unlike c list tbl[],
all the argument literals are included in the set.

Figure 5 shows a block diagram of our circuit when we
have four off-chip DDR3-SDRAM banks of 32b word. The
circuit runs at 1/8 of the DRAM data transfer rate. By decid-
ing how to map the tables into the DRAMs, the architecture

Fig. 5 System overview

of the circuit is almost fixed. In the mapping in Fig. 5, four
DRAM banks work as one large bank, and 32(= 4×8) words
are given from the DRAM interface to the circuit in parallel.
As shown in Fig. 5, The width of c sat tbl[] is changed from
4b to 18b (4b, 6b and 18b for clauses with up to 15, 63 and
more literals respectively) in order to use the block RAMs
efficiently. In our tested benchmarks, the maximum num-
ber of k-arg clauses is 408055 (for iq54 a). By this variable
width approach, entries for up to 544K k-arg clauses can be
supported with 192 18Kb block RAMs, which is enough for
our target FPGA.

On this architecture, up to 32 unsatisfied clauses may
be generated at the same time (though much fewer on av-
erage). These unsatisfied clauses are first put in the FIFOs
(depth = 32), and then moved to the usc buf[] on on-chip
memory banks (called cached usc buf) via FIFOs connected
as a baseline network. If the cached usc buf[] are already
fulfilled, all of its entries are flushed into the usc buf[] on
off-chip memory banks before moving the entries in the
FIFO-network to the cached usc buf[].

5.5 Parallel Evaluation of the Clauses

In our circuit, off-chip DRAMs are accessed as one larger
memory bank for simplifying the memory access control,
and up to L words are given to the circuit in parallel. As de-
scribed above, the processing of a clause list is repeated for
#args + 2 times, and occupies the most of the computation
time. Therefore, the parallelism in our circuit mainly exists
in the processing of the clause lists given from c list tbl[].

Each clause list consists of three parts: (1) 2-arg
clauses, (2) 3-arg clauses, and (3) k-arg clauses. As de-
scribed in Sect. 5.4, v tbl[] is used for evaluating 2- and
3-arg clauses, while c sat tbl[] is used for evaluating k-arg
clauses. These three types of clauses are arranged in each L-
words in a clause list so that the maximum parallelism can



KANAZAWA and MARUYAMA: AN APPROACH FOR SOLVING SAT/MAXSAT-ENCODED FORMAL VERIFICATION PROBLEMS ON FPGA
1813

Fig. 6 v tbl[]

be achieved. In c list tbl[], one word is required for repre-
senting one argument literal or one clause number. There-
fore, 3-arg clauses have to be placed on double-word bound-
ary, while 2- and k-arg clauses can be placed any slots in the
L-words. Thus, up to L/2 clauses can be evaluated in paral-
lel for 3-arg clauses, while up to L for 2- and k-arg clauses.

In order to evaluate argument literals in 2- or 3-arg
clauses, we need to refer v tbl[] to obtain the truth values of
the variables used as the argument literals. Figure 6 shows
the details of v tbl[] (L = 8 for simplicity). v tbl[] consists
of 64 banks, each of which includes a block RAM, an ad-
dress encoder and two decoders. The truth values of the vari-
ables are stored in one of the 64 block RAMs. To read the
truth value of a variable, the bank number (to choose one of
the block RAMs) and the address of the block RAM are re-
quired. In our implementation, the least-significant six bits
of the variable number are used as the bank number (called
bank-index), and the rest bits are used as the address of
the block RAM (called bank-address).

Argument literals of 2- or 3-arg clauses in L-words
given from c list tbl[] are divided into two groups accord-
ing to their positions in L-words (even and odd). We call
these groups literal-groups. The two argument liter-
als of each 3-arg clause are always assigned to the different
literal-groups, and the values of the two argument literals
can be accessed at the same time utilizing the dual port ac-
cess of the block RAMs. Clauses with argument literals for
which the accesses to the same block RAM are required can
not be assigned to the same L-words, and they are placed in
different L-words to avoid the memory access conflict.

The variable numbers of the argument literals in
the two literal-group are broadcasted to all of the banks
along with their positions in the literal-groups (called
source-positions) as shown in Fig. 6. Each bank has
its own bank number (for example, 0b000000 is shown in
Fig. 6), and in each bank, the bank-indexes of the broad-
casted variables are compared with its bank number in the
the address encoder. Through this comparison, the bank-
indexes and source positions of the variables that do not

match the bank number are masked to zero, and those in
the same literal-group are ORed. Then, the bank-address
of the ORed is used to access the block RAM. At the same
time, the source position of the ORed is decoded. The truth
value from the block RAM is masked by the decoder out-
puts. Its results (4 results for each literal-group in Fig. 5)
from 64 block RAMs are ORed, and delivered back to the
source positions. With this implementation, we can obtain
up to L truth values in parallel from 64 block RAMs.

k-arg clauses are evaluated by reading out the number
of their satisfied argument literals from c sat tbl[] as de-
scribed in Sect. 5.2. k-arg clauses have to be placed in the
fixed positions of L-words, because each entry of c sat tbl[]
is placed in the fixed position.

The scheduling of these three kinds of clauses for
avoiding bank conflict is executed on the host computer in
advance. There exists no data dependency in this schedul-
ing, and most of the L-words can be filled.

5.6 Variable-Way Cache Memory

As mentioned in the previous section, parallel processing of
the clause lists is the main source of performance gain. It
can be considered that L = 32 gives a good balance point of
the performance and the hardware resource usage because
the average length of the clause list is 19 to 36. However,
for each access to the clause list, the idle time by DRAM ac-
cess latency becomes the main factor that limits the system
performance.

Let f be the operational frequency of the FPGA, the
number of the cycles of row address to column address la-
tency RCD (the cycles required between activation of a row
and reading the first data from that row), its time TRCD, the
number of the cycles of CAS latency CL, its time TCL, and
the latency by DRAM interface TIF. The total access latency
is given by

Td = TIF + TRCD + TCL 	 TIF + 2 × TCL.

Here, note that TRCD equals TCL. The number of clock cy-
cles in Td is given by

Cd = TIF × f + 2 × TCL × f = TIF × f + CL/2

because TCL equals CL/(4 × f ) (I/O bus clock frequency of
DDR3-SDRAM is 4 × f ). If we can hold the first L × Cd

words of all clause lists on FPGA, we can completely hide
the access latency to c list tbl[]. Here, let L = 32, TIF =

50 ns, f = 100 MHz and CL = 6 (for DDR3-800). Then
32 × (50 × 10−9 × (100 × 106) + 6/2) = 256 words have
to be cached for each clause list to hide its access latency.
The total number of the clause lists is 2 × Nv (the number of
variables), and it is impossible to cache all clause lists even
with the current largest FPGAs.

Figure 7 shows a block diagram of a simple direct map
cache memory for c list tbl[] (called F-cache). The F-cache
consists of D blocks, each of which holds k lines. The data
width of each line is L, and these L words can be read out



1814
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Fig. 7 F-cache (direct map)

Table 3 Clock cycles to read whole clause list

1 ≤ 16 ≤ 32

SAT bug1 92.2% 99.5% 99.8%
bug7 91.1% 99.4% 99.7%

MaxSAT iq3 C1 84.8% 99.7% 99.8%
iq54 a 80.8% 99.3% 99.5%

in parallel. In Fig. 7, data width of one word is 21b, which
is wide enough to represent literal numbers and clause num-
bers for our target benchmarks. By holding Cd lines in each
block (k = Cd), the access latency of DRAMs can be com-
pletely hidden as shown at the lower right corner in Fig. 7.
To realize this data access sequence, first, the F-cache is
looked up. If it hits, the clause list in the DRAMs are read
from (L×Cd)th words to read out the uncached part. Other-
wise, it is read from the first to read out the whole clause list.
The F-cache is looked up using log2 D−1 bits of the variable
number and its negation bit as the cache index, and the rest
bits as the tag. The reason for using the negation bit as a part
of the address is to avoid the cache conflict caused by x and
¬x. This F-cache can be easily extended to a set-associative
cache.

This simple approach, however, does not work well.
Table 3 shows the ratio of FPGA clock cycles to read the
clause list excluding the access latency in four benchmarks
(see Table 4 for their problem size). In Table 3, for the
benchmark ‘bug1’, 92.2% of the clause lists can be given
to the FPGA in only one FPGA clock cycle, and 99.5% of
the clause lists can be given within 16 FPGA clock cycles.
This means that most of the clause list can be read within the
DRAM access latency. Furthermore, 80 to 90% of them can
be stored in one line of the F-cache in Fig. 7, which means
that the rest k − 1 lines in the block are wasted.

Figure 8 shows our approach (called V-cache) against
this problem. In Fig. 8, the cache memory is constructed
using 8 banks (8-way set associative). Each bank consists
of N blocks, and each block has k lines of L-word width.
Like F-cache, log2 N − 1 bits of the variable number are
used as the cache index (block address), and rest bits as the
tag. As shown in Fig. 8, if the clause list ‘A’ and ‘B’ are
short enough, only one block of the V-cache is assigned to

Fig. 8 Data mapping onto Variable-way cache (V-cache)

Fig. 9 Details of V-cache

cache whole of them. In this case, the set of the blocks that
store ‘A’ and ‘B’ and other blocks on the same block address
works as 8-way set associative. If a clause list is very long,
on the other hand, up to first L × Cd words of that have to
be cached. When the clause list is longer than the size of
a block (like ‘C’ and ‘D’), all blocks of on the same block
address are used to cache it, and this set of the blocks works
as direct map.

In V-cache, first, the target clause list is looked up, and
if cache hits, a flag in the cache block (DRAM access flag
shown in Fig. 9) is checked to decide whether to start the
DRAM access or not. When the whole clause list is cached,
the DRAM access is not started, and otherwise, the DRAM
access is started to read the uncached part.

5.6.1 Cache Block Replacement

Figure 9 shows the detail structure of V-cache (the maxi-
mum associativity = 8). In Fig. 9, ‘data’ indicates the data
caching field. ‘cache mode’ represents whether the cache
blocks are used as direct map or set associative. ‘lru’ con-
tains the usage history of the corresponding data. All of
the lrus are initialized by zero. ‘valid bit’ represents if the
cached data on the corresponding line is valid or not.

The behavior of the cache replacement depends on the
cache mode. In direct map, blocks for the same index are
simply overwritten by the new cached data (before caching
the new data, all of the valid bits for the same index are
set to zero in order to invalidate the old data. Whenever
changing the cache mode, all of the valid bits for the same
index are set to zero before caching new data). In set as-
sociative, on the other hand, the cache replacement is ex-
ecuted in LRU policy. When a read or write access to a
block is occurred, lrus whose values are smaller than that



KANAZAWA and MARUYAMA: AN APPROACH FOR SOLVING SAT/MAXSAT-ENCODED FORMAL VERIFICATION PROBLEMS ON FPGA
1815

for the read/written block are incremented, and that for the
read/written one is set to zero. Hence, it follows that the
block with the biggest value of lru is the least-recent-used
among those for the same index. The maximum value of
lru is at most Na − 1, where Na is the maximum associa-
tivity. Therefore, data width of lru is log2 Na. When the
replacement of the block becomes necessary, the block with
the biggest value of lru is selected. Then, the lru for the re-
placed block is set to zero, and these for other blocks are
incremented.

6. Performance Evaluation

The circuit size for L = 32 without F- or V-cache is 90K
LUTs, 42K flipflops (FFs) and 303 18Kb block RAMs.
These block RAMs are used mainly for v tbl[], c sat tbl[],
and usc buf[]. The size of the control logic for the cache is
17K LUTs, 2.6K FFs and 54 18Kb block RAMs (mainly
used for the tags and the lrus) when its maximum asso-
ciativity, k and L are 16, 2 and 32, respectively. In total,
106.5K LUTs, 45K FFs and 387 block RAMs are required,
which is feasible for all of the devices in Xilinx Virtex-7
series FPGA. The size for the data field of F- or V-cache
are limited by the amount of the block RAMs on FPGA.
XC7V1140T, the largest FPGA in Virtex-7 series, has 3760
18Kb block RAMs. Therefore, more than 3000 18Kb block
RAMs can be still utilized. In the following evaluation, 3072
18Kb block RAMs are used for the data field in F- or V-
cache.

A Hardware simulator is used for the following per-
formance evaluation in order to facilitate changing the con-
figuration of F-/V-cache and the circuit parallelism. This
simulator simulates the hardware in logic circuit level and
counts the number of the FPGA clock cycles. It also counts
the number of the access to the off-chip DRAMs, calculates

Table 4 Performance gain over CPU

Our algorithm on Core i7-3770 3.4 GHz FPGA
ratio tave tfave ratio no cache 16-way (V-Cache)

instance Nv Nc (%) #flips(M) (sec) (usec/flip) (%) #flips(M) Xt X f Xt X f XVC hdn (%)
SAT bug1 171648 2614464 85 22.5 301.8 13.4 60 5.68 10.2 2.58 12.8 3.24 1.26 58.8

bug2 196655 3068742 65 35.2 574.01 16.3 80 14.5 6.87 2.82 8.44 3.47 1.23 52.1
bug3 224920 3596474 80 15.8 298.5 18.9 85 4.19 11.2 2.98 13.6 3.59 1.20 54.7
bug4 256697 4205986 75 5.35 141.1 26.4 85 18.1 1.18 3.99 1.41 4.79 1.20 49.7
bug5 292249 4906188 70 9.48 304.5 32.1 85 18.8 2.45 4.86 2.90 5.74 1.18 47.0
bug6 331848 5706594 75 13.5 482.9 35.8 55 10.1 6.40 4.78 7.48 5.59 1.17 48.4
bug7 375775 6617342 55 7.83 377.2 48.2 70 34.1 1.54 6.72 1.78 7.75 1.15 44.0
bug8 424320 7649214 45 16.7 1084.2 57.4 45 25.8 5.44 7.63 5.75 8.07 1.06 40.6
bug9 477782 8813656 20 30.0 2048.7 68.4 5 74.6 2.54 6.32 2.82 7.01 1.11 32.8
bug10 536469 10122798 40 59.2 5067.6 85.6 5 29.6 13.8 6.87 15.0 7.50 1.09 30.2

MaxSAT 9vliw C1 96177 1814189 100 0.0724 2.11 29.2 100 0.066 1.25 1.14 1.27 1.16 1.02 46.5
iq3 C1 333336 8122058 100 0.358 53.5 149.4 100 0.309 4.08 3.52 4.14 3.57 1.01 39.1
iq33 a 143519 1877765 100 0.555 3.55 6.39 100 0.338 1.96 1.87 2.18 2.08 1.11 56.2
iq37 a 245646 4568332 100 0.799 17.4 21.8 100 0.487 4.35 2.94 4.64 3.14 1.07 50.4
iq48 a 365189 5250970 100 1.54 20.7 13.5 100 0.836 3.86 2.72 4.17 2.93 1.08 49.3
iq53 a 471429 6952455 100 2.02 32.3 16.0 100 1.12 4.33 2.84 4.66 3.06 1.08 47.2
iq54 a 663574 15489863 100 2.24 113.45 50.6 100 1.24 7.59 4.33 7.89 4.50 1.04 43.4
iq59 a 623700 9457051 100 2.73 53.2 19.5 100 1.48 5.06 3.00 5.43 3.22 1.07 45.0
iq63 a 720715 11606548 100 3.53 110.7 31.4 100 1.87 7.44 4.69 8.04 5.07 1.08 48.2
iq64 a 773005 11974186 100 3.34 72.1 21.6 100 1.78 5.45 3.07 5.81 3.27 1.07 43.7

the total amount of the DRAM access latency and converts
that to the number of the FPGA clock cycles. In the simu-
lation, four DRAM banks of 32b word are used as one bank
as described in Sect. 5. We consider the DRAM through-
put to be that of DDR3-2133 (11-11-11) which is the fastest
speed grade in JEDEC’s standard. Each DRAM has inter-
nal memory banks in it, and data with continuous addresses
can be read out by burst-read. The operational frequency
of the FPGA is 1/8 of the memory data transfer rate of the
DRAMs. DRAM interface latency is assumed to be 100
nsec.

6.1 Performance Comparison Over Software

First, we evaluate the system performance over software us-
ing the 20 benchmarks used in Sect. 4.3. In this experiment,
L, k and the maximum associativity in V-cache are fixed to
32, 2 and 16, respectively based on the experiment described
in the next subsection.

Table 4 shows the results of this evaluation (the aver-
ages of 20 runs). Nv and Nc are the number of variables and
clauses respectively. ‘ratio’ shows the ratio that the correct
solutions could be found in 20 runs with 227 flips at a max-
imum. Two ratios on each line should be same because the
same algorithm is used, but they are different. Because they
depend on random numbers. #flips is the number of flips
required to find the solutions. tave is the average of the to-
tal execution time (the processing time on the host computer
and the time for data downloading are included), and tfave is
the average execution time per flip. Xf shows the speedup
over our algorithm on CPU (Intel Core i7-3770 3.4 GHz
with 8GB main memory) per flip, and Xt shows the speedup
of total execution time (Xt does not necessarily give the true
performance because it depends on random numbers). The
execution time of our algorithm on CPU is used as the base



1816
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 5 Speedup with variable-way cache over CPU

fixed-way cache (F-cache) variable-way cache (V-cache)
4-way 8-way 16-way 32-way 4-way 8-way 16-way 32-way

k hit hdn X f hit hdn X f hit hdn X f hit hdn X f hit hdn X f hit hdn X f hit hdn X f hit hdn X f

bug1

1 86.2 30.3 2.88 86.9 30.6 2.88 87.2 30.8 2.99 87.5 30.9 2.99 74.7 44.7 3.05 70.2 46.6 3.07 65.5 50.6 3.12 60.5 54.3 3.17
2 78.1 40.6 3.00 78.7 41.0 3.00 79.0 41.2 3.01 79.1 41.3 3.03 71.8 48.1 3.09 69.0 53.8 3.17 65.5 58.8 3.24 62.0 56.3 3.19
8 63.0 39.1 2.98 63.5 39.5 2.99 63.7 39.6 2.99 63.7 39.6 2.99 56.8 50.9 3.13 54.3 49.3 3.11 51.7 46.8 3.08 48.9 44.3 3.04

32 48.4 43.3 3.03 48.8 43.6 3.03 48.9 43.7 3.04 48.9 43.7 3.04 44.8 40.6 3.00 43.2 39.2 2.98 41.5 37.6 2.96 39.7 36.0 2.94
64 42.3 38.3 2.97 42.6 38.7 2.98 42.8 38.8 2.98 42.8 38.8 2.98 39.7 35.9 2.94 38.7 35.1 2.93 37.5 34.0 2.92 36.6 33.2 2.91

bug7

1 70.3 20.3 7.16 70.7 20.5 7.17 71.0 20.6 7.17 71.1 20.6 7.17 58.9 31.4 7.43 55.0 33.0 7.47 51.5 37.3 7.58 48.0 42.8 7.72
2 61.1 26.4 7.31 61.5 26.6 7.31 61.7 26.7 7.31 61.7 26.7 7.31 54.7 32.7 7.46 52.1 37.9 7.59 49.4 44.0 7.75 46.6 42.3 7.71
8 47.8 25.4 7.28 48.1 25.5 7.29 48.2 25.6 7.29 48.3 25.6 7.29 41.8 37.2 7.58 39.7 36.0 7.54 37.2 33.7 7.49 34.6 31.3 7.43

32 38.2 34.0 7.49 38.5 34.2 7.50 38.7 34.3 7.50 38.7 34.4 7.50 34.1 30.9 7.42 32.4 29.3 7.38 30.4 27.6 7.33 28.4 25.8 7.29
64 34.4 31.2 7.42 34.7 31.5 7.43 34.9 31.6 7.43 34.9 31.7 7.44 31.4 28.5 7.36 30.2 27.4 7.33 29.0 26.3 7.30 27.9 25.3 7.28

iq3 C1

1 53.9 16.1 3.54 53.9 16.1 3.54 53.8 16.0 3.54 53.8 16.0 3.54 48.9 24.0 3.55 48.2 27.5 3.56 47.1 32.7 3.56 46.0 40.6 3.57
2 48.7 19.6 3.55 48.8 19.6 3.55 48.8 19.6 3.55 48.8 19.5 3.55 46.2 25.7 3.55 45.3 31.0 3.56 44.3 39.1 3.57 42.9 38.9 3.57
8 43.5 22.9 3.55 43.6 23.0 3.55 43.7 23.1 3.55 43.8 23.1 3.55 41.5 36.6 3.57 40.4 36.7 3.57 38.2 34.6 3.57 35.9 32.5 3.56

32 39.7 34.9 3.57 39.9 35.1 3.57 40.0 35.2 3.57 40.0 35.2 3.57 36.2 32.9 3.56 34.4 31.1 3.56 30.4 27.6 3.56 28.3 25.7 3.55
64 37.8 34.2 3.57 37.9 34.3 3.57 38.0 34.5 3.57 38.1 34.5 3.57 33.4 30.2 3.56 29.6 26.9 3.56 27.7 25.1 3.55 25.8 23.4 3.55

iq54 a

1 73.0 21.8 4.41 73.6 22.0 4.41 73.9 22.2 4.41 74.1 22.2 4.41 60.0 31.3 4.45 55.7 35.3 4.47 51.7 38.6 4.48 48.4 43.1 4.50
2 64.7 26.3 4.43 65.9 26.5 4.43 66.5 26.6 4.43 66.8 26.7 4.43 55.1 34.8 4.46 51.7 38.6 4.48 48.7 43.4 4.50 46.3 42.0 4.49
8 52.7 31.4 4.45 53.1 31.6 4.45 53.3 31.6 4.45 53.4 31.7 4.45 45.6 40.7 4.49 43.9 39.8 4.48 42.2 38.2 4.48 39.7 36.0 4.47

32 42.7 37.9 4.48 42.7 38.0 4.48 42.8 38.0 4.48 42.8 38.0 4.48 38.6 35.0 4.47 36.3 32.9 4.46 34.4 31.2 4.45 33.7 30.1 4.45
64 46.7 35.7 4.47 46.8 35.7 4.47 46.9 35.8 4.47 46.9 35.8 4.47 35.2 32.0 4.45 33.4 30.2 4.45 33.2 30.1 4.44 33.0 30.0 4.44

of this comparison, because it finds the solutions faster and
more frequently than the other WSAT variants as described
in Sect. 4.3. XVC is the speedup by V-cache (the ratio of Xf

with no cache and with V-cache). Hdn is the ratio that the
idle time could be hidden by the V-cache. In these values,
those of the runs that failed to find the solutions are not in-
cluded.

As shown in Table 4, our system with V-cache achieves
1.16 to 8.07 times of speedup over CPU in the execution
time per flip, and the enhancement by V-cache is up to 26%
(XVC). The two lowest speedup, 1.16 and 2.08 are given
by the two smallest benchmarks, and the speedup for other
problems is 3 to 8 approximately, which is fast enough con-
sidering that the performance is limited by DRAM through-
put. The idle time hidden by V-cache is about 50%. This is
not so high, but it is reasonable considering the size ratio of
V-cache and c list tbl[].

For bug9 and bug10, ‘ratio’s seem to be inferior in our
FPGA solver than those in the software. We are now try-
ing to make the reason clear, but it probably comes from the
selection method of an unsatisfied clause and the accuracy
of the random number in our solver, and the problem size.
When selecting an unsatisfied clauses, our FPGA solver
selects from usc buf[] on the block RAMs, and gradually
moves unsatisfied clauses from the DRAMs when usc buf[]
on the block RAMs becomes empty. This may cause un-
fair selection of an unsatisfied clause. In addition, the lower
accuracy of the random number generation may cause the
degradation (our solver uses a linear congruential generator
whereas the software solver uses Mersenne twister). When
the problem size becomes larger, the influence of these fac-
tors may not be able to negligible.

6.2 Performance by Changing V-Cache Configuration

For deciding the optimal configuration of V-cache (k and
the associativity), we have evaluated the performance of F-
cache and V-cache using four benchmarks used in Table 2.
Table 5 shows the cache hit ratio (hit), ratio of the idle time
that could be hidden (hdn), and the performance gain (Xf ,
which is same as Xf in Table 4). The values in Table 5 are
the average of 20 runs with 227 flips at a maximum.

The left half of Table 5 shows the results of the F-cache.
The hit ratio decreases as k is increased (this is because the
number of entries in the cache decreases as k is increased).
The performance, however, becomes better as k is increased.
The peak (shown by bold font) is given when k = 32 in most
cases, and it does not depend on the associativity. In the F-
cache, for example, when k = 1, only one line (up to 32
words) of a clause list can be cached. This works well for
short clause lists that can be stored in one line, but does not
work well for long clause lists, because their access latency
can be hidden by only one clock cycle. When k = 32, the
access latency is hidden by 32 clock cycles, and it showed
the best balance of the cache hit ratio and access latency
hiding.

The right half of Table 5 shows the results of V-cache.
Larger k shows lower hit ratio as with F-cache. Unlike F-
cache, higher associativity also brings lower hit ratio. In
the V-cache, several entries on the same horizontal line in
the cache memory are used to cache a long clause list as
shown in Fig. 8. With higher associativity, more entries are
used to cache a longer clause list, and all short clause lists
that have already been cached in these entries are wiped out.
This is the reason of lower hit ratio for higher associativity.
However, the lower hit ratio does not mean the lower perfor-
mance gain as shown in the table (for the same value of k).



KANAZAWA and MARUYAMA: AN APPROACH FOR SOLVING SAT/MAXSAT-ENCODED FORMAL VERIFICATION PROBLEMS ON FPGA
1817

Fig. 10 Performance gain by enhancing parallelism

The best performance is given by V-cache when k = 2 and
the associativity is 16. In this case, 32 lines (32 × L words)
can be cached for each long clause list, and it is enough to
hide the DRAM access latency.

The interesting point here is that in both F- and V-
cache, the maximum number of lines to be cached to achieve
the highest performance is the same (32 in this experiment).
In this situation, hit ratio and hdn of V-cache are always 5 to
10% higher than those of F-cache, and then the performance
of V-cache always outperforms that of the F-cache. This in-
dicates that V-cache can utilize the same space of caching
more efficiently than F-cache.

6.3 Performance with More Parallelism

The latest FPGAs support more hardware resources than
Virtex-7 series FPGAs. Therefore, we can increase the per-
formance by the following two approaches: executing dif-
ferent problems in parallel by copying the circuit or acceler-
ating the same problem by enlarging L. Here, we consider
the second approach. Xilinx XCVU13P, the largest FPGA in
Virtex Ultrascale+ series, has about three times of logic cells
and six times of on-chip memory banks than XC7V1140T.
Its number of High Performance I/Os (HP I/Os), which are
required for high speed transfer between DDR3-SDRAMs
and FPGA, are a bit less than that of XC7V1140T, but still
large enough to support L = 96.

Figure 10 shows the speedup of the four benchmarks
by changing L from 32 to 96. The improvement by enlarg-
ing L is not so high, because the average length of the clause
list is at most 36 in the tested benchmarks as shown in Ta-
ble 2. However, the performance continues to be improved
by enlarging L except for iq3 C1. This is probably because
the length of the frequently fetched clause lists is longer than
the average. To make it clear, we need to analyze the length
of the clause lists which are actually fetched in the search in
detail. The performance improvement by using larger FPGA
is not so high, but it can be effective when it is allowed to
use larger FPGA.

7. Conclusions and Future Work

In this paper, we have shown an FPGA solver for large
SAT/MaxSAT-encoded formal verification problems of dig-
ital circuits. To solve large real-world problems efficiently
on FPGA, first, we have proposed a new heuristic for WSAT
algorithms that is simple enough to realize it on a hard-
ware circuit, and we have showed its implementation on the
FPGA that uses off-chip DRAM banks to hold the main data.
The performance gain by our system is approximately 3 to 8
times for large problems. This speedup is not so drastic, but
it is fast enough when we consider that it is limited by the
throughput and access latency of the off-chip DRAMs and
that the search time on CPU that is sometimes longer than
one hour can be reduced to 1/3 to 1/8. In this system, all the
on-chip memory banks that are not used to store data arrays
are used to configure the specialized cache memory for the
search, and the performance can be improved up to 26%. We
have also evaluated the system performance when the par-
allelism is enlarged in order to clarify how much speedup
could be possible by using largest FPGA available.

It will be possible to improve the performance of our
heuristics by analyzing the relation between the unsatisfied
external gates and the values of the independent variables
when the search is stuck, so that the search can get out from
the local minima more easily. The search can be also im-
proved by managing the history of the flipped variables, and
by choosing the next variable to be flipped using the his-
tory. These improvements requires run-time analysis and
management of the relation of the variables. To implement
these improvements on hardware is our future work.

References

[1] B. Selman, H. Kautz, and B. Cohen, “Noise Strategies for Improving
Local Search,” AAAI-94, pp.337–343, 1994.

[2] D. McAllester, B. Selman, and H. Kautz, “Evidence for invariants in
local search,” AAAI-97, pp.321–326, 1997.

[3] H.H. Hoos, “An adaptive noise mechanism for WalkSAT,” AAAI-
02, pp.655–660, 2002.

[4] F. Hutter, D.A.D. Tompkins, and H.H. Hoos, “Scaling and proba-
bilistic smoothing: Efficient dynamic local search for SAT,” CP-02,
vol.2470, pp.233–248, 2002.

[5] C.M. Li, W. Wei, and H. Zhang, “Combining adaptive noise and
look-ahead in local search for SAT,” SAT-07, pp.121–133, 2007.

[6] A. Belov and Z. Stachniak, “Improving Variable Selection Process
in Stochastic Local Search for Propositional Satisfiability,” SAT-09,
vol.5584, pp.258–264, 2009.

[7] R. Ostrowski, É. Grégoire, B. Mazure, and L. Sais, “Recovering
and exploiting structural knowledge from CNF formulas,” CP-02,
vol.2470, pp.185–199, 2002.

[8] É. Grégoire, R. Ostrowski, B. Mazure, and L. Sais, “Auto-
matic Extraction of Functional Dependencies,” SAT-05, vol.3542,
pp.122–132, 2005.

[9] P.H.W. Leong, C.W. Sham, W.C. Wong, H.Y. Wong, Y.S. Yuen, and
M.P. Leong, “A Bitstream reconfigurable FPGA implementation of
the WSAT algorithm,” IEEE Transaction on Very Large Scale Inte-
gration Systems, vol.9. no.1, pp.197–201, 2001.

[10] R. Yap, S. Wang, and M. Henz, “Real-time Reconfigurable Hard-
ware WSAT Variants,” FPL-03, pp.488–496, 2003.

http://dx.doi.org/10.1090/dimacs/026/25
http://dx.doi.org/10.1007/3-540-46135-3_16
http://dx.doi.org/10.1007/978-3-642-02777-2_25
http://dx.doi.org/10.1007/3-540-46135-3_13
http://dx.doi.org/10.1007/11527695_10
http://dx.doi.org/10.1109/92.920833


1818
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

[11] K. Kanazawa and T. Maruyama, “An Approach for Solving Large
SAT Problems on FPGA,” Trans. ACM TRETS, vol.4, no.1, Article
No.10, 2010.

[12] M. Safer, M.W. El-Kharashi, M. Shalan, and A. Salem, “A Recon-
figurable, Pipelined, Conflict Directed Jumping Search SAT Solver,”
DATE-11, pp.1–6, 2011.

[13] T. Ivan and E.M. Aboulhamid, “An Efficient Hardware Implemen-
tation of a SAT Problem Solver on FPGA,” DSD-13, pp.209–216,
2013.

[14] J.P. Marques-Silva and K. Sakallah, “GRASP: A search algorithm
for propositional satisfiability,” IEEE Transactions on Computers,
vol.48, no.5, pp.506–521, 1999.

[15] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” DAC-01, pp.530–535

[16] N. Eén and N. Sörensson, “An extensible SAT-solver,” SAT-04,
vol.2919, pp.502–518, 2004.

[17] L. Zhang, C.F. Madigan, M.H. Moskewicz, and S. Malik, “Efficient
conflict driven learning in a boolean satisfiability solver,” ICCAD-
01, pp.279–285, 2001.

[18] D.N. Pham, J. Thornton, and A. Sattar, “Building structure into local
search for SAT,” IJCAI-07, pp.2359–2364, 2007.

[19] A. Balint and A. Fröhlich, “Improving Stochastic Local Search
for SAT with A New Probability Distribution,” SAT-10, vol.6175,
pp.10–15, 2010.

[20] A. Balint and U. Schöning, “Choosing Probability Distributions
for Stochastic Local Search and the Role of Make Versus Break,”
SAT-2012, vol.7317, pp.16–29, 2012.

[21] A.A. Sohanghpurwala and P. Athanas, “An Effective Probability
Distribution SAT Solver on Reconfigurable Hardware,” ReConFig-
16, pp.1–6, 2016.

[22] K. Kanazawa and T. Maruyama, “An FPGA Solver for SAT-encoded
Formal Verification Problems,” FPL-11, pp.38–43, 2011.

[23] K. Kanazawa and T. Maruyama, “Solving SAT-encoded Formal Ver-
ification Problems on SoC Based on a WSAT Algorithm with a New
Heuristic for Hardware Acceleration,” MCSoC-13, pp.101–106,
2013.

[24] K. Kanazawa and T. Maruyama, “FPGA Acceleration of SAT/Max-
SAT Solving using Variable-way Cache,” FPL-14, pp.1–4, 2014.

[25] http://www.miroslav-velev.com/sat benchmarks.html

Kenji Kanazawa received his PhD from
University of Tsukuba in 2012. He is cur-
rently an assistant professor at Faculty of En-
gineering, Information and Systems, University
of Tsukuba. His research interests are reconfig-
urable accelerator and hardware algorithms for
hard computation problems including combina-
torial optimization.

Tsutomu Maruyama received his PhD
from University of Tokyo in 1987. He is cur-
rently a professor at Faculty of Engineering, In-
formation and Systems, University of Tsukuba.
His research interest is reconfigurable accelera-
tor for applications including image processing,
bioinformatics and combinatorial problems.

http://dx.doi.org/10.1145/1857927.1857937
http://dx.doi.org/10.1109/date.2011.5763199
http://dx.doi.org/10.1109/dsd.2013.31
http://dx.doi.org/10.1109/12.769433
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1109/iccad.2001.968634
http://dx.doi.org/10.1007/978-3-642-14186-7_3
http://dx.doi.org/10.1007/978-3-642-31612-8_3
http://dx.doi.org/10.1109/reconfig.2016.7857150
http://dx.doi.org/10.1109/fpl.2011.18
http://dx.doi.org/10.1109/mcsoc.2013.24
http://dx.doi.org/10.1109/fpl.2014.6927405

