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Abstract—Previous studies on the robustness of networks
against intentional attacks have suggested that protecting a
small fraction of important nodes in a network significantly
improves its robustness. In this paper, we analyze the ro-
bustness of networks under several strategic node protection
schemes. Strategic node protection schemes select a small
fraction of nodes as important nodes, using a network measure
such as node centrality, and protect the important nodes to
prevent them from being removed by intentional attacks. Our
simulation results indicate that (1) strategic node protection
significantly improves the robustness of networks with skewed
degree distributions, (2) the efficiency of strategic node pro-
tection schemes is affected by the strength of community
structure of the network being protected, and (3) strategic
node protection based on betweenness centrality can effectively
improve the robustness of networks regardless of the strength
of community structure.
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I. INTRODUCTION

Many real-world networks have been reported to have
skewed degree distributions, which means that most of the
nodes have a few links and a few of the nodes have many
links [1], [2]. For example, in the case of the World-Wide
Web (WWW), while only a small minority of site contain
millions of links, the majority of sites have only a few
links [3]. In particular, networks whose degree distribution
follows a power law are called scale-free networks.

Although scale-free networks are robust against random
failure (i.e., uniformly random removal of nodes) they
are vulnerable against intentional attack (i.e., intentional
removal of important nodes) [4]–[8]. This property is caused
by their skewed degree distributions. The connectivity of a
scale-free network is maintained by a few important nodes.
Consequently, when these nodes are removed, the network
becomes fragmented into many smaller subnetworks. Hence,
there is concern that real-world networks with skewed
degree distributions may also be vulnerable to intentional
attacks [8], [9].

In the real world, networks are required to be able
to maintain overall connectivity even when some of the
nodes fail [10]. The robustness of various networks against

intentional attack has thus already been studied [4], [11],
[12]. The robustness of a network indicates the ability
to tolerate random failure and intentional attack. Studying
the robustness of networks is expected to be useful for
building disaster-resistant social infrastructure and resilient
communication networks.

One topic that has been explored is how the robustness
of a network is affected by hiding information about the
topological properties of networks from an attacker who
aims to fragment the network. Wu et al. suggested that
hiding a small fraction of nodes in scale-free networks sig-
nificantly decreases the efficiency of intentional attacks [11].
Shang suggested that adding error to the degree of each node
improves the robustness of networks [12].

Previous studies have revealed that the robustness of
networks is improved by adding random error to the degree
of each node. This is because the added error prevents the
attacker from being able to correctly recognize and remove
nodes that are actually important. This brings us to the
idea that if we protect important nodes, we can significantly
improve the robustness of a network with a skewed degree
distribution.

In this paper, we analyze the robustness of networks
with skewed degree distributions by using strategic node
protection. Strategic node protection schemes consist of the
following steps: first, ranking nodes in descending order
of importance; next, protecting a small fraction of the top-
ranked nodes. We assume that protected nodes can be pre-
vented from being removed by network attacks. For instance,
in communication networks, strategic node protection cor-
responds to deploying security appliances to the important
nodes (e.g., routers) for preventing malicious attacks to
them.

In particular, we investigate the effectiveness of several
network measures for strategic node protection schemes
that improve the robustness of networks, and reveal which
measure is the most effective. We address this question
by performing intentional network attack simulations under
strategic node protection. In the intentional network attack
simulation, the nodes are sequentially attacked and removed
from the network in descending order of importance, except



for the small fraction of protected nodes, which are not
removed even if they are attacked. Our main contributions
are as follows.

(1) We show that strategic node protection significantly
improves the robustness of networks with skewed
degree distributions.

(2) We show that the efficiency of a strategic node protec-
tion scheme is related to the strength of the community
structure [13] of the network being protected. For
instance, we show that the protection scheme based
on degree centrality, which is effective for protecting
networks with a moderate community structure, is not
as effective for networks with a strong community
structure.

(3) We show that strategic node protection based on
betweenness centrality [14] can effectively improve
the robustness of networks regardless of the strength
of community structure.

The remainder of this paper is organized as follows.
Section 2 introduces work related to the robustness of
networks. Section 3 explains the experimental methodology
of the network attack simulation. Section 4 describes the
results and discussion of the simulation. Section 5 contains
our conclusions and a discussion of future work.

II. RELATED WORK

Albert et al. showed that, while scale-free networks are
tolerant to random failure, they are vulnerable to intentional
attack [4]. If we randomly and uniformly select some
fraction of nodes to remove from a scale-free network, the
probability of selecting nodes with small degree is high
since most of the nodes in a scale-free network have small
degree. Since removal of these nodes has almost no influence
on the connectivity of the whole network, the network is
able to maintain function even when random failures occur.
However, once a few important nodes that serve as hubs
are removed, the network becomes fragmented and loses
function [8].

If an attacker does not have any information about the
network topology, the attacker can only remove nodes ran-
domly. This is equivalent to random failure. For this reason,
it is thought that incompleteness of the information pos-
sessed by the attacker can degrade attack effectiveness and
improve the robustness of networks. There have been some
studies investigating the effects of incomplete information
of network topology on the robustness of networks [11],
[12].

Wu et al. [11] and Shang [12] analyzed the robustness
of scale-free networks against intentional attack with in-
complete information. Wu et al. [11] performed network
attack simulations in which a fraction of nodes are hidden
from the attacker. The simulation results show that the
robustness of scale-free networks is significantly improved
when only a small fraction of randomly selected nodes are
hidden. Shang [12] showed that attacks on nodes with high
degree can be interfered with by adding noise to the degree

information, and therefore, the effectiveness of the network
attack can be degraded.

Our work is based on these prior works, and contributes to
developing an efficient strategy for improving the robustness
of networks. Whereas these previous studies have investi-
gated the robustness of networks when important nodes are
indirectly protected from attackers via noise in the network
or hidden nodes, we select important nodes using several
measures of node importance and investigate the robustness
of networks when the important nodes are directly protected.

III. METHODOLOGY

In this study, we use the following graphs for the network
attack simulation. Note that the degree distributions of the
following graphs are skew, and some of them follow a power
law.

(a) Power grid [15]1

This graph represents the power transmission network
of the Western United States. Transmission towers
correspond to nodes and transmission lines correspond
to links.

(b) Internet2
This graph represents a snapshot of the partial struc-
ture of the Internet, reconstructed from BGP tables
posted by the University of Oregon Route Views
Project3. Autonomous systems correspond to nodes
and paths connecting autonomous systems corre-
sponds to links.

(c) Political blogs [16]4

This graph represents the blog and link relations
maintained by American politicians. Blogs correspond
to nodes and hyperlinks correspond to links. Although
this is a directed graph, direction is ignored in this
paper.

(d) BA graph [2]
This is a scale-free graph generated by the Barabási-
Albert model.

(e) CE graph [17] (δ = 0.2)
This graph has a moderate community structure gener-
ated by the model proposed by Kumpula. The param-
eter value δ = 0.2 was used. Although the model is
originally intended for generation of weighted undi-
rected graphs, the weight of the generated graph is
ignored and the graph is treated as an unweighted
undirected graph in this paper.

(f) CE graph (δ = 2.0)
This graph has a strong community structure. The pa-
rameter value δ = 2.0 was used. It can be understood
from the modularity values shown in Table I that the
community structure is enhanced as the value of δ
increases. This graph is also treated as an unweighted
undirected graph in this paper.

1<http://www-personal.umich.edu/˜mejn/netdata/power.zip>
2<http://www-personal.umich.edu/˜mejn/netdata/as-22july06.zip>
3<http://routeviews.org>
4<http://www-personal.umich.edu/˜mejn/netdata/polblogs.zip>



Table I
SEVERAL CHARACTERISTICS OF THE GRAPHS

number of nodes number of links clustering coefficient [15] Q-values
Power grid 4,941 6,594 0.10 0.93

Internet 22,963 48,436 0.01 0.63
Political blogs 1,490 19,090 0.23 0.42

BA graph 2,500 4,997 0.47× 10−2 0.53
CE graph (δ = 0.2) 2,500 8,060.80 0.30 0.69
CE graph (δ = 2.0) 2,500 7,044.66 0.38 0.85

Table I shows several characteristics of the graphs used
in this study. For BA graph, CE graph (δ = 0.2) and CE
graph (δ = 2.0), the average values for 50 graphs are shown.
Q-value, which is also known as modularity [13], evaluates
the strength of community structure of a graph. For Politica
blogs, the Q-value when communities are detected using the
Girvan-Newman method [18] is shown. For other graphs,
those when communities are detected by the Fast Newman
method [19] are shown.

In these graphs, we first estimate the importance of
each node, and rank all the nodes in descending order of
estimated importance. The importance of the nodes are esti-
mated by using betweenness centrality (betweenness) [14],
degree centrality (degree) [14], closeness centrality (close-
ness) [14], PageRank [20], and collective influence (CI) [21].
Betweenness, degree, closeness and PageRank are widely
used [22] [23]. CI is a recently proposed measure, and has
been shown to be effective for network attacks [21]. The CI
of node vi is defined as,

CIl(vi) = (ki − 1)
∑

j∈∂Ball(i,l)

(kj − 1) (1)

where ∂Ball(i, l) is the set of nodes that are reachable
within just l hops from node vi along the shortest path, and
ki is the degree of node vi. In this paper, we used l = 3 as
the parameter for CI.

We next determine the nodes to be protected using a
ranking based on their importance. Specifically, the top
⌊Np⌋ nodes in the ranking are protected, where p is a
parameter that specifies the fraction of protected nodes, and
N is the number of nodes.

We then remove nodes based on the importance ranking.
Specifically, we remove the top ⌊Nr⌋ nodes in the ranking
except for the ⌊Np⌋ protected nodes, where r is a parameter
representing the fraction of removed nodes.

Finally, we calculate the relative size of giant component
g(r, p) for each graph and for each combination of the
node importance measures used for node protection and
node removal. The value of g(r, p) is the number of nodes
belonging to the giant component normalized by the number
of remaining nodes after each removal. For BA graph, CE
graph (δ = 0.2), and CE graph (δ = 2.0), the simulation
results are the average of 50 independent simulation runs.
For the fixed value of r, the higher the value of g(r, p), the
more robust the network.

IV. RESULTS AND DISCUSSION

We first investigate the effectiveness of strategic node
protection for improving the robustness of each network.
For comparison, we also performed simulations using the
random protection scheme in which the protected nodes are
selected randomly and also performed simulations without
strategic node protection, which are denoted nothing.

Fig. 1 shows that the relative size of g(r, p) as a function
of r from 0.1 to 0.8 in steps of 0.1 when the nodes are
removed based on degree. We set p = 0.1 for Power grid, CE
graph (δ = 0.2), and CE graph (δ = 2.0), and p = 0.01 for
all other graphs. The values of g(r, p) are compared among
each measure used for strategic node protection.

The results show that strategic node protection can sig-
nificantly improve the value of g(r, p) in each of the graphs
(Fig. 1). Note that the value of g(r, p) does not decrease
monotonically as the value of r increases since g(r, p) is
normalized by the number of remaining nodes but the num-
ber of nodes in the original network. As discussed below,
even when the nodes are removed based on measures other
than degree, the robustness of the networks also improves
similarly. Moreover, we find that the value of g(r, p) does
not improve in any of graphs when the protected nodes are
selected randomly.

For instance, we focus attention on the value of g(r, p)
when 30% of nodes are removed in descending order of
degree from the graphs. For Power grid, Internet and BA
graph, the value of g(r, p) is greatly improved by strategic
node protection. In contrast, when the nodes are removed
without any node protection, the value of g(r, p) falls to
almost zero. In the case of the Internet where the value of
g(r, p) is most improved by strategic node protection among
the graphs, the value of g(r, p) increases from approximately
0 to 0.7. For other graphs, we can also see the improvement
in the value of g(r, p). From Fig. 1, we conclude that the
robustness of networks with skewed degree distributions is
improved by strategic node protection.

Focusing on the differences between measures used for
strategic node protection, we find that strategic node pro-
tection based on betweenness is the most effective for most
of the graphs (Fig. 1). Strategic node protection based on
betweenness significantly improves the values of g(r, p) in
particular for Power grid and CE graph (δ = 2.0). In
contrast, strategic node protection based on degree is less
effective than that based on betweenness for Power grid
and CE (δ = 2.0), while the degree is comparable with



Figure 1. Fraction of removed nodes r versus relative size of giant component g(r, p) in each graph when nodes are removed based on degree: (a) Power
grid (b) Internet (c) Political blogs (d) BA graph (e) CE graph (δ = 0.2) (f) CE graph (δ = 2.0). p = 0.1 for (a), (e) and (f). p = 0.01 for (b), (c) and
(d).

Figure 2. Fraction of removed nodes r versus relative size of giant component g(r, p) in Power grid when the nodes are removed based on (i) betweenness,
(ii) closeness, (iii) PageRank, and (iv) CI (p = 0.01)



Figure 3. Fraction of protected nodes p versus relative size of giant component g(r, p) in each graph when nodes are removed based on degree: (a)
Power grid (b) Internet (c) Political blogs (d) BA graph (e) CE graph (δ = 0.2) (f) CE graph (δ = 2.0). (r = 0.3)

betweenness in other graphs.
The differences in the effectiveness among measures used

for strategic node protection can be explained by the strength
of the community structure of the graphs. From Fig. 1,
we can see that the differences in the effectiveness among
measures are particularly large in Power grid and CE graph
(δ = 2.0). Table I shows that these graphs have high
Q-values, which indicates that these graphs have strong
community structure. In a graph with strong community
structure, both nodes connected to nodes inside the same
community and node connected to nodes in different com-
munities are important for maintaining the network connec-
tivity. Measures such as betweenness that can successfully
identify such important nodes are effective for improving
the robustness of the networks whereas measures that fail to
identify such important nodes may degrade their effective-
ness for improving the robustness.

Next, we investigate the effectiveness of strategic node
protection for improving the robustness of networks against
intentional attacks based on measures other than degree.
Fig. 2 shows g(r, p) as a function of r from 0.1 to 0.8 in
steps of 0.1 for the measures other than degree in Power
grid and in the case of p = 0.1. The values of g(r, p) are
compared in terms of the measures used for strategic node
protection.

From Fig. 2, we see that the value of g(r, p) is remarkably
increased by node protection based on betweenness in all
cases of intentional attack based on any measure. Hence,
we find that node protection based on betweenness is an

effective way to improve the robustness of networks.
Finally, we investigate the relationship between fraction

of protected nodes p and robustness of the network. Fig. 3
shows g(r, p) as a function of p from 0 to 0.1 in steps of
0.01 when the nodes ranked among top 30% of degree are
removed. The values of g(r, p) are compared in terms of the
measures used for strategic node protection.

From Fig. 3, we find that the values of g(r, p) are
increased by protecting only a small percent of nodes. In
particular for Internet, Political blogs, and BA graph, the
values of g(r, p) are increased to between 0.4 to 0.7 by
protecting only the top 1% of nodes based on betweenness.
(Fig. 3(b), Fig. 3(c), Fig. 3(d)). These results suggest that
only protecting a few percent of nodes using measures
of node importance significantly improves the robustness
of networks with skewed degree distributions. We should
note that although we also found similar tendencies for
intentional attacks using measures other than degree, the
results are not shown in this paper due to space limitations.

V. CONCLUSION AND FUTURE WORKS

We investigated the robustness of real networks and
networks generated by model by using strategic node pro-
tection, which uses measures identifying the most important
nodes within a network and protects a small fraction of
nodes in descending order of importance. Through extensive
simulations, we showed the effectiveness of strategic node
protection for improving the robustness of networks. Our
main conclusions can be summarized as follows.



(1) Strategic node protection significantly improves the ro-
bustness of networks with skewed degree distributions.

(2) The effectiveness of strategic node protection is sug-
gested to depend on the strength of community struc-
ture of the network being protected.

(3) Strategic node protection based on betweenness can
effectively improve the robustness of networks regard-
less of the strength of community structure.

In future work, we are planning to investigate the relation-
ship between the structural characteristics of a network and
the effectiveness of strategic node protection in the network.
Moreover, we also plan to analyze the minimum fraction of
nodes that need to be protected in order to maintain a given
level of network connectivity. Designing a strategic node
protection scheme for dynamically changing networks such
as peer-to-peer networks and mobile ad hoc networks is also
important future work.
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