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Abstract

Wind power energy has been paid much attention recently for various reasons, and the
production of electricity with wind energy has been increasing rapidly for a few decades.
One of the most difficult issues for using wind power in practice is that the power output
largely depends on the wind condition, and as a result, the future output may be volatile or
uncertain. Therefore, the prediction of power output in the future is considered important
and is key to electric power generating industries making the wind power electricity market
work properly. However, the use of predictions may cause other problems due to “prediction
errors.”
In this work, we will propose a new type of weather derivatives based on the prediction
errors for wind speeds, and estimate their hedge effect on wind power energy businesses. At
first, we will investigate the correlation of prediction errors between the power output and
the wind speed in a Japanese wind farm, which is a collection of wind turbines that generate
electricity in the same location. Then we will develop a methodology that will optimally
construct a wind derivative based on the prediction errors using nonparametric regressions.
A simultaneous optimization technique of the loss and payoff functions for wind derivatives
is demonstrated based on the empirical data.

Keywords: Wind power energy, Prediction errors, Weather derivatives, Minimum variance
hedge, Non-parametric regression

1 Introduction

Predicting the future weather conditions is considered important in real businesses for many industries
including electricity producers and suppliers, because their profit or loss is largely affected by the
weather conditions. Under these circumstances, we may have a new risk when the prediction error
exists. In this work, we will propose a new type of weather derivative (see, e.g., [6] for the introduction
of weather derivatives) to effectively hedge the loss caused by prediction errors.

∗The author would like to thank H. Fukuda, R. Tanikawa, and N. Hayashi from Earth Science Department, ITOCHU

Techno-Solutions Corporation, for their helpful comments and discussions.
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This work is motivated by a critical issue in wind power energy markets, which is explained as
follows: In general, electricity companies must sell the output immediately because the electricity has
to be consumed as soon as it is produced. Therefore, sales contracts need to be written in advance.
However, in the case of electricity production using wind power energy, the power output largely
depends on wind conditions, and as a result, tradable volume is uncertain.

What we can do is to predict the future power outputs and quote them in advance. But, this
may cause another risk (or loss) associated with prediction errors of the power outputs. One of the
objectives of this work is to hedge this type of risk using weather derivatives based on prediction errors
on the wind condition. In contrast to the standard weather derivatives in which the underlying index
is given by weather data only (such as temperature [1, 2, 3, 4, 8, 9, 14, 15]), the proposed weather
derivative uses prediction data and the payoff depends on the difference between the actual data and
the prediction data.

Here we consider the power output from a wind farm (WF), which is a collection of wind tur-
bines that generate electricity in the same location. The power output is predicted using numerical
weather prediction and the power generating properties for turbines, where a public weather forecast-
ing company computes sophisticated values from Japan Meteorological Agency data. Because of this
prediction mechanism, we have both the wind and power predictions data.

A possible sales contract of the power output using the prediction may be described as follows: The
value of electricity generated by wind power is normally considered to be low due to the uncertainty
of the tradable volume. Here we assume that the electricity price without prediction is estimated
to be 3 yen per 1 kWh. On the other hand, the value of the electricity would be estimated to be
higher, if the tradable volume were quoted in advance by prediction, but the seller has to guarantee
the quoted volume or has to pay the penalty in case of shortages. Suppose that the value of electricity
with prediction is given as 7 yen per 1 kWh and that the penalty of the shortage is 10 yen per 1 kWh.
These assumptions are not so far from the current situation discussed in the prediction business [10].
In this case, the loss function caused by prediction errors is depicted in Fig. 1.1, which shows the
relation between the prediction error for the power output P − P̂ (the actual power output minus
its prediction) and the loss caused by the prediction error. Note that, even if the prediction error is
positive, we can also think of this situation as an opportunity loss to sell the output with a suitable
price.

Based on the above discussions, we will first consider the following problems:

P1) Given the loss function and the payoff function of wind derivatives, find the optimal volume
of wind derivative using a linear regression.

P2) Given the loss function, find the optimal payoff function of wind derivatives.

We will investigate the hedge effect of wind derivatives and show that using wind derivatives on
prediction error of wind speed is highly effective to hedge the loss caused by prediction errors of power
output.

Then we will consider a situation in which there already exists a standardized derivative contract
with a certain payoff function, but there is some room for improvement on the loss function, e.g., for
a WF owner. The problem can be thought of as a reverse problem of P2), which is given as follows:
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Figure 1.1: An example of loss function

P3) Given the payoff function of wind derivatives, find the optimal loss function against prediction
errors of power output.

Finally, we will formulate a simultaneous optimization problem of payoff and loss functions as P4)
below:

P4) Optimize the payoff function of wind derivatives and the loss function simultaneously.

The rest of this paper is organized as follows: In Section 2, we explain the definitions of loss and
payoff functions, and formulate the first problem, P1), as the standard minimum variance hedging
problem. After describing the motivation to introduce a non-parametric regression, we formulate the
payoff function optimization problem based on the generalized additive model (GAM) in Section 3. It
is shown that the loss function optimization problem may be solved using GAM as well in Section 4,
where a simultaneous optimization problem is also formulated and an iterative algorithm is proposed.
An empirical analysis and numerical experiments are performed in Section 5 to illustrate the hedge
effect of the proposed wind derivatives. Finally, we explain the multi-period case in Section 6, and
provide some concluding remarks in Section 7.

We use the following notation: For a sequence of observations of a variable, xn, n = 1, . . . , N , the
sample mean and the sample variance are denoted by Mean(xn) and Var(xn), respectively. Cov(xn, yn)
and Corr(xn, yn) represent the sample covariance and the sample correlation, respectively, where
yn, n = 1, . . . , N is a sequence of observations for another variable. The set of real number is denoted
by <, and an n×m matrix with real entries is denoted by A ∈ <n×m.

2 Standard minimum variance hedging problem

At first, we will explain loss and payoff functions, and then formulate the first problem, P1), as the
standard minimum variance hedging problem.
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2.1 Loss and payoff functions

For simplicity, consider a wind power energy trade between two basic positions, a seller and a buyer,
for the electricity output. Assume that the seller and the buyer carry out sales contracts based on the
prediction of the power output. Let n = 1, . . . , N be the time index (say, hourly index) and define the
following variables:

Pn: Total power output at time n

P̂n: Prediction of Pn (which is computed, e.g., 1 day in advance)

The buyer is willing to trade the power output by using the reference P̂n, and may require a penalty
if the prediction error exceeds a certain level.

Let εp,n (n = 1, . . . , N) be the prediction error of the power output at time n, which causes a loss
for the seller due to the penalty or opportunity loss to sell the output. Suppose that the loss associated
with the prediction error of the power output is defined using a loss function as φ (εp,n). For instance,
the loss function may be given as the one shown in Fig. 1.1 if the seller is a WF owner. Also, there
is a case in which the prediction is sufficiently accurate or the prediction error is less than a certain
(small) level. In this case, the seller can be thought of getting a bonus because of a higher price of
power output with prediction, which results in a profit for the seller and makes the loss negative, i.e.,
φ (εp,n) < 0. We assume that

Mean (φ (εp,n)) = 0 (2.1)

so that the sum of profit/loss is zero on average.
We will consider a situation in which the seller with φ (·) would like to compensate their loss on

εp,n using a weather derivative on the prediction error of the wind speed. To this end, define the
following variables:

Wn: Wind speed at time n

Ŵn: Prediction of Wn (which is computed, e.g., 1 day in advance)

Let εw,n be the prediction error of the wind speed, and assume that the payoff of the wind derivative
is defined by using a suitable payoff function of εw,n as ψ (εw,n). Also, suppose that the weather
derivative contract with a payoff function ψ (·) is carried out in advance without any cost and that
ψ (εw,n) satisfies the following condition:

Mean (ψ (εw,n)) = 0. (2.2)

Note that condition (2.2) indicates that the physical probability measure provides a risk neutral
probability measure, and that, in the case of simple forward contracts, ψ (εw,n) may be given as a
linear function, e.g.,

ψ (εw,n) = εw,n. (2.3)
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2.2 Minimum variance hedge

With the notation and definitions introduced in the previous subsection, the first optimization problem,
P1), is formulated as follows:

Contract volume optimization problem:

min
∆∈<

Var (φ (εp,n) + ∆ψ (εw,n)). (2.4)

The contract volume optimization problem may be considered as the standard “minimum variance
hedge,” and the optimal volume ∆∗ may be computed analytically as

∆∗ = −Cov (φ (εp,n) , ψ (εw,n))
Var (ψ (εw,n))

. (2.5)

To estimate the hedge effect, we define the variance reduction rate (VRR) as follows:

VRR :=
Var (φ (εp,n) + ∆∗ψ (εw,n))

Var (φ (εp,n))
. (2.6)

Because the minimum variance can be computed as

Var (φ (εp,n) + ∆∗ψ (εw,n))

= Var (φ (εp,n))
(
1− [Corr(φ (εp,n) , ψ (εw,n))]2

)
, (2.7)

we obtain
VRR = 1− [Corr(φ (εp,n) , ψ (εw,n))]2 . (2.8)

Note that VRR satisfies
0 ≤ VRR ≤ 1 (2.9)

and that a smaller VRR provides a better hedge effect in terms of minimum variance.
In the case of standard minimum variance hedge, the optimal volume is also found by solving

a linear regression problem, where φ (εp,n) is regressed with respect to ψ (εw,n), and the regression
coefficient gives the optimal volume for fixed loss and payoff functions. On the other hand, we
can expect to obtain a better hedge effect if we could optimize the payoff function of the weather
derivative directly. This can be done by applying non-parametric regression techniques introduced in
the next section, and we will find that using a non-parametric regression corresponds to optimizing
the derivative contract directly by choosing a suitable payoff function.

3 Minimum variance hedging using non-parametric regression

In this section, we first introduce a non-parametric regression technique, and then formulate the second
optimization problem, P2).

In the previous section, we showed that the contract volume optimization problem is formulated
as standard minimum variance hedging and can be solved by applying linear regression. A similar
idea may be employed to solve the payoff function optimization problem of P2) (or the loss function
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optimization problem of P3)) by introducing a non-parametric regression technique. Since we will
apply a non-parametric regression to find a payoff function (or loss function) by assuming that a loss
function (or payoff function) is fixed, it may be useful to specify which function is given explicitly. To
this end, we use overlines as

φ(·) = φ(·) (or ψ(·) = ψ(·))
to indicate that the loss function (or payoff function) is given.

3.1 Generalized additive models

The non-parametric regression technique introduced here is to find a (cubic) smoothing spline that
minimizes the so-called penalized residual sum of squares (PRSS) among all regression spline functions
with two continuous derivatives. Let yn and xn be dependent and independent variables, respectively,
and express yn as

yn = h (xn) + εn, Mean (εn) = 0 (3.1)

using a smooth function h(·) and residuals εn. Here the function h (·) is a (cubic) smoothing spline
that minimizes the following PRSS,

PRSS =
N∑

n=1

(yn − h (xn))2 + λ

∫ ∞

−∞

(
h′′(x)

)2 dx (3.2)

among all functions h(·) with two continuous derivatives, where λ is a given parameter. In (3.2), the
first term measures closeness to the data while the second term penalizes curvature in the function.
Note that, if λ = 0 and h (·) is given by a polynomial function, the problem is reduced to the
standard regression polynomial and is solved by the least squares method. It is shown that (3.2)
has an explicit and unique minimizer and that a candidate of optimal λ may be found by using the
so-called generalized cross validation criteria (See Appendix A). Note that regression splines can be
extended to the multivariable case with additive sums of smoothing splines, known as generalized
additive models (GAMs; see e.g., [7]). Also note that GAMs can be computed using free software
“R (http://cran.r-project.org/),” and we will refer to the class of smoothing splines for non-
parametric regression as GAMs in this paper. We will apply GAMs to solve P2)–P4) and estimate
the hedge effect of wind derivatives.

Note that, instead of writing the problem as an unconstrained optimization problem, we can
reformulate it as an optimization problem constrained on h (·) as follows:

min
h(·)

N∑

n=1

(yn − h (xn))2

s.t.
∫ ∞

−∞

(
h′′(x)

)2 dx ≤ α

(3.3)

where α is a given parameter. Based on the similar argument to that in Appendix A, we can verify
that the objective function of problem (3.3) is quadratic subject to a convex constraint and that the
minimization problem (3.3) is equivalent to the following problem,

max
λ>0

{
min
h(·)

{
N∑

n=1

{yn − h (xn)}2 + λ

(∫ {
h′′(x)

}2 dx− α

)}}
, (3.4)
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using a Lagrange multiplier λ > 0. Therefore, we see that fixing λ in (3.2) corresponds to fixing α in
(3.3) and that the non-parametric regression problem using GAM may be recast as a minimization
problem of the sample variance with a smooth constraint.

3.2 Optimization of derivative contracts

It is in a position to formulate the the second optimization problem, i.e., the payoff function op-
timization problem, in the context of minimum variance hedge using non-parametric regression as
follows:

Payoff function optimization problem:

min
ψ(·)

Var
(
φ (εp,n) + ψ (εw,n)

)

s.t.
∫ ∞

−∞

(
ψ′′(x)

)2 dx ≤ α.

(3.5)

The minimization problem (3.5) may be recast as (3.3) by taking yn = φ (εp,n), xn = εw,n, and
h (·) = −ψ (·), and therefore, can be solved by applying GAM. Let ψ∗(·) be the optimal payoff
function. Then VRR may be defined as

VRR :=
Var

(
φ (εp,n) + ψ∗ (εw,n)

)

Var
(
φ (εp,n)

) . (3.6)

Although it is possible to find the optimal payoff function by solving GAM once, it may be
worthwhile to mention that we have a slight improvement by applying a linear regression after finding
the optimal payoff function ψ∗(·) as

min
a∈<

Var
(
φ (εp,n) + aψ∗ (εw,n)

)
. (3.7)

In this case, VRR may be given as

VRR =
Var

(
φ (εp,n) + a∗ψ∗ (εw,n)

)

Var (φ (εp,n))
. (3.8)

or equivalently,
VRR = 1− [

Corr(φ (εp,n) , ψ∗ (εw,n))
]2

. (3.9)

where a∗ ∈ < is the regression coefficient to solve (3.7). Note that (3.9) is independent of a∗, or any
scaling parameter to ψ∗ (εw,n), and that it can be computed if ψ∗ (·) is specified. Therefore, we use
the right hand side of (3.9) as a proxy of VRR. It is readily confirmed that VRR in (3.6) is actually
an upper bound of (3.9). However, as indicated in the end of Subsection 5.2, the gap between (3.6)
and (3.9) is very small from our numerical experience.
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4 Optimization with loss functions and simultaneous optimization

4.1 Optimal loss function

Next, we will consider a case in which a payoff function of wind derivative is given but we would like
to find a loss function that is desirable for using the wind derivative, i.e., in a case where there already
exists a standardized derivative contract with a certain payoff function, but there is some room for
improvement on the loss function, e.g., for a WF owner. We assume that possible losses on εp,n,
φ (εp,n), has the same mean and variance, i.e., φ (εp,n) satisfies

Mean (φ (εp,n)) = 0, (4.1)

Var (φ (εp,n)) = c. (4.2)

We will compute an optimal loss function satisfying (4.2).
The loss function optimization problem is formulated as follows:

Loss function optimization problem:

min
φ(·)

Var
(
φ (εp,n) + ψ (εw,n)

)

s.t.
∫ ∞

−∞

(
φ′′(x)

)2 dx ≤ α,

Var (φ (εp,n)) = c.

(4.3)

Note that the constraint Var (φ (εp,n)) = c is also quadratic if φ is given by a cubic natural spline
function, and hence, the problem might be reformulated as an unconstrained optimization problem
by introducing another Lagrangian term for the variance constraint. On the other hand, we can still
apply GAM directly to solve the problem without the variance constraint (i.e., Var (φ (εp,n)) = c),
similar to the payoff function optimization problem (3.5). Then we can scale the minimizing function
so that it satisfies the variance constraint (4.2).

Let φ̂ (·) be the optimizer of problem (4.3) without the variance constraint (i.e., Var (φ (εp,n)) = c),
which can be computed by applying GAM. By scaling φ̂ (·) to satisfy (4.2), we obtain the optimal loss
function φ∗ (·) as follows:

φ∗ (·) =
c

Var
(
φ̂ (εp,n)

) φ̂ (·) . (4.4)

Note that the optimal volume of wind derivative with the given payoff and loss functions, ψ(·) and
φ∗(·), will be found by solving the standard minimum variance hedging problem as in Subsection 2.2,
and VRR may be computed as

VRR = 1− [
Corr

(
φ∗ (εp,n) , ψ (εw,n)

)]2
. (4.5)

4.2 Simultaneous optimization

It may be interesting to consider a simultaneous optimization of the payoff and loss functions, ψ (εw,n)
and φ (εp,n). Recall that VRR can be computed using the correlation between the payoff function and
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the loss function as
1− [Corr (φ (εp,n) , ψ (εw,n))]2 .

Since the larger correlation the smaller VRR, the minimization of VRR boils down to the maximization
of correlation between φ (εp,n) and ψ (εw,n). Therefore, the simultaneous optimization of the payoff
and the loss functions may be formulated as follows:

Simultaneous optimization problem:

max
φ(·),ψ(·)

Corr (φ (εp,n) , ψ (εw,n))

s.t.
∫ ∞

−∞

(
φ′′(x)

)2 dx ≤ αφ,

∫ ∞

−∞

(
ψ′′(x)

)2 dx ≤ αψ,

Var (φ (εp,n)) = c.

(4.6)

The simultaneous optimization problem may be solved using an iterative algorithm by solving the
payoff function optimization problem with φ(·) = φ(·) fixed, or the loss function optimization problem
with ψ(·) = ψ(·) fixed, at each step. The following is the iterative algorithm:

Iterative algorithm:

1. Given φ(·) = φ(·), find ψ(·) to solve the payoff function optimization problem. Let ψ∗(·)
be the optimal function, and let ψ(·) = ψ∗(·).

2. Given ψ(·) = ψ(·), find φ(·) to solve the loss function optimization problem. Let φ∗(·) be
the optimal loss function and let φ(·) = φ∗(·).

3. Repeat Steps 2 and 3 until the objective function in (4.6) does not change.

Note that the optimal loss function obtained from the above iterative algorithm satisfies (4.2) and
that we can consider additional constraints to take more realistic situations into account for the loss
and payoff functions.

Remark 1 The above iterative algorithm is formally in the class of so-called “Alternating Condi-
tional Expectations (ACE) algorithm (see, e.g., Chapter 7 of [7]).” The ACE algorithm seeks optimal
transformations of θ(Y ) and f(X) for two random variables X and Y so that the squared error loss

E
[
(θ(Y )− f(X))2

]

is minimized. Since the zero functions trivially minimize the square error, ACE has a constraint so
that θ(Y ) has unit variance at each step, which is exactly the same as our variance constraint (4.2).

Note that the convergence of ACE algorithm is also discussed in [7], although we omit the details
for brevity. Also note that, for solving the iterative algorithm, we may need to specify αθ and αφ.
However, in stead of fixing these parameters a priori in the algorithm, an optimal selection of smoothing
parameters for φ(·) and ψ(·) may be applicable at each step by using GAMs (See Appendix A).
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5 Empirical analysis and numerical experiment

In this section, we demonstrate the solutions P1)–P4) and estimate their hedge effect using empirical
data for the power output, wind speed, and their predictions. Here we consider the power output
from a wind farm (WF) located in Japan, where the power output from the WF is predicted based
on the numerical weather prediction and the power generating properties for turbines. The numerical
weather prediction consists of the following two steps:

• Japan Meteorological Agency announces the hourly data of regional spectral models for the next
51 hours twice a day (9am and 9pm).

• Using them as initial and boundary values, a public weather forecasting company computes more
sophisticated values for the next day’s hourly data by 12pm.

5.1 Preliminary

5.1.1 Data description

In this paper, we use the prediction data obtained from the Local Circulation Assessment and Predic-
tion System (LOCALS) developed by the ITOCHU Techno-Solutions Corporation for the wind speed
and the power output of a wind farm in Japan [5]. The data set is given as follows:1

Data specifications:
Realized and predicted values of total power output for the WF, and those of wind speed for
the observation tower in the WF.

Data period:
2002–2003 (1 year), hourly data, everyday

Total number of data:
8,000 for each variable excluding missing values

Let n = 1, . . . , N be the time index (where N ' 8, 000), and assume that the actual power output
and the wind speed at time n are, respectively, denoted by Pn and Wn. Also, let P̂n and Ŵn be the
predictions of the corresponding power output and the wind speed obtained from LOCALs, which are
computed by noon one day before the actual data is observed. Fig. 5.1 shows a scatter diagram for
the wind speed Wn and the power output Pn, where the power output Pn is normalized so that its
maximum equals 100. From Fig. 5.1, we can see that:

• The generator starts providing the power output when the wind speed exceeds around 2 [m/s].

• The power output increases with the wind speed between 5–15 [m/s].

Also note that, because each electricity generator is controlled so that the maximum output does not
exceed a certain value, the total output is also bounded as shown in Fig. 5.1.

1All the data used in this paper were provided by ITOCHU Techno-Solutions Corporation.
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Figure 5.1: Wind speed Wn [m/s] vs. Power output Pn [W]

5.1.2 Prediction error of the wind speed

Fig. 5.2 shows a partial residual plot for

Wn = awŴn + bw + εw,n, n = 0, . . . , N, Mean (εw,n) = 0 (5.1)

i.e., the scatter diagram of
(
Ŵn, Wn − bw

)
, where aw and bw are a regression coefficient and intercept,

respectively, and εw,n is a residual satisfying Mean (εp,n) = 0. The partial regression line is depicted
using a solid straight line shown in Fig. 5.2. In this case, the sample variance of residuals is found to
be

Var (εw,n) ' 5.12. (5.2)

On the other hand, the regression spline f(·) to fit the same data of Fig. 5.2 is shown as a solid
line in Fig. 5.3, where f (·) satisfies

Wn = f
(
Ŵn

)
+ εw,n. (5.3)

using GAM. In this case, the sample variance of the residuals is

Var (εw,n) ' 4.95 (5.4)

Noting that the sample variance of the measured values is computed as “11.0,” we can say that the
variance of the wind speed is reduced by 50% (from “11.0” to “5.12”) using the predicted value and
the linear regression, and it is improved a little using GAM, i.e., from “5.12” to “4.95.” In this section,
we define the prediction error of the wind speed as the one given by GAMs, i.e., εw,n in (5.3).

5.1.3 Prediction error of the power output

Similarly, we can draw a partial residual plot for the power output Pn with respect to the predicted
value P̂n as shown in Fig. 5.4, where the solid line is obtained from a linear regression for partial
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Figure 5.2: Predicted vs. Measured values for
the wind speed
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Figure 5.3: Spline regression function for the
wind speed

residuals. In this case, the sample variance of the residuals is found to be “249.” The solid line in Fig.
5.5 refers to the regression spline function g (·) satisfying

Pn = g
(
P̂n

)
+ εp,n, n = 0, . . . , N (5.5)

using GAM. Note that the sample variance of residuals in this case is given as “239,” whereas the
sample variance of the measured value of the power output is “504.” Similar to the wind speed case,
we can say that the variance of the wind speed is reduced to less than half (from “504” to “249”)
using the predicted value and the linear regression, and it is improved a little using GAM, i.e., “249”
to “239.”

Although we should be able to define the prediction error of the power output using the residual
in (5.5), it might be worthwhile to mention that there is another way to define the prediction error
of the power output. As stated in the beginning of this section, the power output is predicted using
numerical weather prediction, and therefore, we can define a regression model such that the power
output Pn is a dependent variable and the wind speed prediction Ŵn is an independent variable, i.e.,

Pn = h
(
Ŵn

)
+ εp,n, (5.6)

where h(·) is a regression spline that minimizes PRSS.
Fig. 5.6 shows the relation between the predicted values of the wind speed and the measured

values for the power output, where the solid line in Fig. 5.7 is the regression spline h(·). In this case,
the sample variance of the residuals is computed as

Var (εp,n) ' 254 (5.7)

which is, in fact, higher than the one given by (5.5). However, it will turn out that using the prediction
error in (5.6) provides not only a better hedge effect but also a smaller variance of the hedged loss
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Figure 5.4: Predicted vs. Measured values for
the power output

0 20 40 60 80 100

-
2
0

0
2
0

4
0

6
0

Predicted value of the power output [W (Nomalized)]
g
(
P
r
e
d
i
c
t
e
d
 
v
a
l
u
e
)

Figure 5.5: Spline regression function for the
power output

when combining with the optimal wind derivative. Therefore, we will use the residual εp,n in (5.6)
to define the prediction error of the power output. An empirical analysis using the prediction error
defined by the residual in (5.5) may be found in [13].

5.2 Construction of wind derivatives and their hedge effect

Next, we will construct wind derivatives and demonstrate their hedge effect on wind power energy
businesses.

5.2.1 Linear function’s case

We first solve the minimum variance hedging problem for the simplest case where the loss and the
payoff functions are both linear. Let

φ (εp,n) = εp,n, ψ (εw,n) = εw,n (5.8)

without loss of generality. In this case, the problem is reduced to solving a linear regression for the
following regression function:

εp,n = awεw,n + ηn, (5.9)

where ηn is a residual. Since the linear regression computes aw that minimizes variance of ηn =
εp,n − awεw,n, the regression coefficient provides the optimal volume as

∆∗ = −aw (5.10)

in the problem (2.4) under condition (5.8), where

aw =
Cov (εp,n, εw,n)

Var (εw,n)
. (5.11)
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Figure 5.6: Predicted value of the wind speed
vs. Measured values for the power output
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Figure 5.7: Spline regression function for the
power output using the wind speed prediction

Fig. 5.8 shows a scatter plot of εw,n vs. εp,n with a linear regression line. The sample correlation is
computed as

Corr (εp,n, εw,n) ' 0.76. (5.12)

and VRR as
VRR = 1− Corr(εp,n, εw,n)2 ' 0.43. (5.13)

We see that the prediction errors of the wind speed and the power output, εw,n and εp,n, are highly
correlated and that the sample variance is reduced to 43% from the original one using the wind
derivative in the case where the loss and the payoff functions are both linear.

Now, we apply GAMs to compute an optimal payoff function. The solid line in Fig. 5.9 shows the
optimal payoff curve obtained by solving the optimization problem (3.5) when φ(·) is linear. In this
case, the VRR is computed as

VRR =
Var (εp,n + ψ∗ (εw,n))

Var (εp,n)
' 0.407. (5.14)

where ψ∗ (·) is the optimal payoff function. Moreover, the variance of the hedged loss εp,n + ψ∗ (εw,n)
is computed as

Var (εp,n + ψ∗ (εw,n)) ' 103. (5.15)

The above variance is actually lower than that of the hedged loss using (5.5) with the optimal wind
derivative, which is computed as “119.” Therefore, we see that, even though the variance of the original
loss might be larger, it can be reduced more effectively by combining it with the wind derivative if we
define the prediction error by (5.6) instead of (5.5).
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Figure 5.8: Wind speed prediction error (εw,n)
vs. Power output prediction error (εp,n)
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Figure 5.9: Optimal payoff function on εw,n

5.2.2 Piecewise linear function’s case

Next, we will consider the case in which the loss function φ(·) = φ(·) is given as shown in Fig. 1.1
with zero mean constraint (2.1), i.e.,

φ (εp,n) := 4 |εp,n|+ + 10 |εp,n|− − µ (5.16)

where
µ := Mean

(
4 |εp,n|+ + 10 |εp,n|−

)
.

and |·|+ and |·|− are defined as

|x|+ := max (x, 0) , |x|− := min (x, 0)

for x ∈ <. The solid line in Fig. 5.10 shows the optimal payoff function to solve the problem (3.5). In
this case, VRR in (3.6) is computed as

VRR = 0.5461946 · · · (5.17)

whereas the right hand side of (3.9) is found to be

1− [Corr(φ (εp,n) , ψ∗ (εw,n))]2 = 0.5461927 · · · . (5.18)

From this example, we see that VRR can be approximated by (3.9) with high accuracy.
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Figure 5.10: Optimal payoff function on the wind speed prediction error εw,n

5.3 Optimal loss function and simultaneous optimization

In this subsection, we first provide an illustrative example of solving P3) to compute an optimal loss
function, and then solve the simultaneous optimization problem of P4).

Since the linear correlation between εp,n and εw,n is high in this example, it would be more inter-
esting to consider the case where a payoff function is non-linear with respect to εw,n. Therefore, we
assume that there already exists a derivative contract with the payoff being proportional to the size
of the wind speed prediction error, |εw,n|. Noting that ψ (εw,n) satisfies (2.2), such a payoff function
may be given as

ψ (εw,n) = ψ (εw,n) := |εw,n| −Mean (|εw,n|) , (5.19)

Fig. 5.11 shows the payoff function with respect to εw,n given in (5.19).
Now we will solve P3) with the given payoff function in (5.19). Assume that the sample variance

of the loss, φ (εp,n), satisfies
Var (φ (εp,n)) = Var (εp,n) (5.20)

and we solve the problem (4.3) with the assumption that the optimal loss function satisfies the above
variance constraint. The solid line in Fig. 5.12 shows the optimal loss function, which is obtained by
applying GAM and scaling the minimizing function as in (4.4). In this case, VRR is found to be

VRR ' 0.56. (5.21)

Next, we demonstrate the simultaneous optimization of P4). Here we also introduce a nonlinearity
using the absolute value of εw,n. Assume that the payoff of the wind derivative is a function of |εw,n|,
and consider a maximization problem of

Corr (φ (εp,n) , ψ (|εw,n|)) . (5.22)
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iteration
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We apply the iterative algorithm for a fixed loss function φ (·) or a fixed payoff function ψ (·) at each
step to maximize (5.22). Assume that the payoff function is initially set to the one given in (5.19)
and we solve the loss function optimization problem. The initial loss function in this case is given by
the one shown in Fig. 5.12. We repeatedly apply Steps 1 and 2 in the iterative algorithm until the
objective function does not change or the relative change of the values of the objective function is less
than a sufficiently small number. In this example, we obtained

VRR = 0.53, (5.23)

after the 8th iteration. Fig. 5.13 shows the optimal loss function after the 8th iteration, where the
loss function is scaled to satisfy the variance constraint (5.20). We see that the loss function became
smoother compared to the one given in Fig. 5.12.

6 Extension to multi-period case

In the previous sections, we have implicitly assumed that the same contract volume and/or payoff
functions may be used at each time period in a day, i.e., ∆ is independent of time period in a
day. On the other hand, if we carry out a wind derivatives contract based on the multiple time
periods in a day (e.g., the prediction errors for 1pm, 2pm, and 3pm), we might need to consider a
different contract volume for each time period. Since these volume may also depend on the correlation
between prediction errors of different time periods, another new problem formulation in a multi-period
framework is required. With this consideration in mind, here we consider the multi-period case where
the wind derivative contract is carried out based on prediction errors of multiple time periods.

We will introduce a special notation to define the multi-period case as follows, where n denotes a
daily time index and i an hourly time index satisfying i = 0, 1, . . . , 23.

P
(i)
n : The average power output between i o’clock and i + 1 o’clock at day n

P̂
(i)
n : Prediction of P

(i)
n , which is computed by 12 o’clock at day n− 1.

W
(i)
n : The average wind speed between i o’clock and i + 1 o’clock at day n

Ŵ
(i)
n : Prediction of W

(i)
n , which is computed by 12 o’clock at day n− 1.

6.1 Contract volume optimization problem of wind derivatives

Let ε
(i)
p,n and ε

(i)
w,n be prediction errors of the power output and the wind speed (with day and time

indices, n and i), respectively. Here the prediction errors may be computed similar to the previous
sections. For instance, ε

(i)
w,n is obtained by regressing W

(i)
n with respect to Ŵ

(i)
n , e.g.,

W (i)
n = a(i)

w Ŵ (i)
n + b(i)

w + ε(i)w,n (6.1)

where a
(i)
w and b

(i)
w are regression coefficients.

Also, let φ(i) (·) and ψ(i) (·) be loss and payoff functions which define the loss on the prediction
error ε

(i)
p,n of the power output and the payoff of wind derivative on ε

(i)
w,n, respectively. Then, we can

formulate the contract volume optimization problem for the multi-period case as follows, where s is a
start time and u is an end time of the contract satisfying 0 ≤ s ≤ u ≤ 23:
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Contract volume optimization problem (multi-period case):

min
∆s,...,∆u

Var

[
u∑

i=s

φi

(
ε(i)p,n

)
+

u∑

i=s

∆iψi

(
ε(i)w,n

)]
(6.2)

Note that the contract volume optimization problem may be solved by applying the linear multiple
regression to find the optimal volume

∆∗
i ∈ <, i ∈ {s, . . . , u}.

Similarly, we can formulate the payoff function optimization problem by applying GAM.

6.2 Autocorrelation of the errors and illustrative example

At first, we examine the daily auto-correlation of wind speed prediction errors. Let us consider the
wind speed in the period of i = 12, 13, 14, 15. In these periods, we can suppose that the electricity
consumption would be maximum in a day. Given the same data set as in Section 5, we compute the
prediction errors of the wind speed for i = 12, 13, 14, 15 using the linear regression as follows,

W (i)
n = a(i)

w Ŵ (i)
n + b(i)

w + ε(i)w,n, i = 12, 13, 14, 15. (6.3)

where a
(i)
w and b

(i)
w are regression coefficients and are given as

a(12)
w = 0.872, a(13)

w = 0.881, a(14)
w = 0.880, a(15)

w = 0.844

b(12)
w = 0.794, b(13)

w = 0.771, b(14)
w = 0.677, b(15)

w = 0.793.

Figs. 6.1–6.4 show the (daily) autocorrelation functions (ACFs) for ε
(12)
w,n , ε

(13)
w,n , ε

(14)
w,n and ε

(15)
w,n ,

where the dashed lines denote the 95% confidence intervals. From these figures, we see that the
autocorrelations of the prediction errors for wind speed are very small and within the confidence
intervals (except for lags 8 of ε

(13)
w,n and 1 of ε

(14)
w,n ).

We solve the contract volume optimization problem for the simplest case in which the loss and the
payoff functions are given as

φ
(
ε(i)p,n

)
= ε(i)p,n, φ

(
ε(i)w,n

)
= ε(i)w,n, i = 12, 13, 14, 15.

In this case, the total loss is defined by the sum of ε
(i)
p,n and the problem can be rewritten as follows:

min
∆12,...,∆15∈<

Var
[
Ln + ∆12ε

(12)
w,n + ∆13ε

(13)
w,n + ∆14ε

(14)
w,n + ∆15ε

(15)
w,n

]
, Ln :=

15∑

i=12

ε(i)p,n (6.4)

Here we computed the prediction errors of the power outputs, ε
(i)
p,n, by using the linear regression,

P (i)
n = a(i)

p Ŵ (i)
n + b(i)

p + ε(i)p,n, i = 12, 13, 14, 15. (6.5)

similar to the numerical experiments in Section 5. After solving the problem (6.4), we obtained

VRR = 0.414. (6.6)

Note that we can extend the above results to address more sophisticated loss and payoff functions,
although we omit the details for brevity.

19



0 5 10 15 20 25

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Lag

A
C
F

Series  Wind12.res

Figure 6.1: ACF for ε
(12)
w,n
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Figure 6.2: ACF ε
(13)
w,n

0 5 10 15 20 25

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Lag

A
C
F

Series  Wind14.res

Figure 6.3: ACF for ε
(14)
w,n
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Figure 6.4: ACF for ε
(15)
w,n
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7 Concluding remarks

In this work, we have proposed a new type of weather derivatives based on the prediction errors
for wind speeds and estimated their hedge effect on wind power energy businesses. At first, we
explained some properties of the loss for a WF caused by prediction errors of the power output, and
characterized it using a loss function on the error. We then formulated four types of optimization
problems: 1) Contract volume optimization problem, 2) Payoff function optimization problem, 3)
Loss function optimization problem, and 4) Simultaneous optimization problem. It was shown that
the contract volume optimization problem may be reduced to the standard minimum variance hedge
and is solved by applying linear regression. The idea of standard minimum variance hedging was
generalized to the payoff function optimization problem by introducing a non-parametric regression
technique based on smooth splines (or GAMs). We also showed that the loss function optimization
problem may be solved by applying GAMs, and a simultaneous optimization technique of the loss and
payoff functions for wind derivatives was demonstrated by applying GAMs iteratively. An empirical
analysis and numerical experiments were performed to illustrate the hedge effect of the proposed wind
derivatives.

The main contribution of this paper is summarized as follows:

• The paper is the first to provide a type of weather derivative contracts based on the prediction
errors, which might be applicable for other situations (or businesses) and/or other indices such
as temperature, rain falls, and so on.

• The paper provides an application of non-parametric regression techniques in the context of
minimum variance hedge using smooth functions, which can be thought of a generalization of
the standard minimum variance hedge based on linear regression.

Although we assumed that the payoff functions are just smooth, the approximation of these functions
using the standard payoff functions for puts or calls may be required in practice when the standardized
derivative contracts are only available. Also, the convergence of the iterative algorithm for simulta-
neous optimization is an important issue. These are interesting topics to be discussed further in the
future work.
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Appendix

A Solution method and selection of smoothing parameters

It is known that the smoothing spline function that minimizes PRSS is given by a cubic natural spline
of the following form [11, 12]:

h(x) = c0 + c1x +
1
12

N∑

n=1

wn |x− xn|3 , (A.1)

where c0, c1, and wn, n = 1, . . . , N are parameters to be found by minimizing PRSS for given λ > 0.
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Let

y := [y1, y2, . . . , yN ]> ∈ <N , Q :=




x1 1
x2 1
...

...
xN 1



∈ <N×2,

R :=




0 |x1−x2|3
12

|x1−x3|3
12 · · · |x1−xN |3

12
|x2−x1|3

12 0 |x2−x3|3
12 · · · |x2−xN |3

12
...

...
...

. . .
...

|xN−x1|3
12

|xN−x2|3
12

|xN−x3|3
12 · · · 0



∈ <N×N .

Then PRSS in (3.2) may be recast as follows:

PRSS = (y −Qc −Rw)> (y −Qc −Rw) + λ

∫ ∞

−∞

(
h′′(x)

)2 dx, (A.2)

where
c := [c0, c1]

> ∈ <2, w := [w1, . . . , wN ]> ∈ <N .

We see that the first term of the right hand side of equation (A.2) is quadratic with respect to c ∈ <2

and w ∈ <N .
Moreover, as shown in [11], the second term (related to the smoothing condition) may also be

represented as a quadratic function, i.e.,

λ

∫ ∞

−∞

(
h′′(x)

)2 dx = λw>Rw .

As a result, PRSS is given by

PRSS = (y −Qc −Rw)> (y −Qc −Rw) + λw>Rw . (A.3)

Therefore, for any given λ > 0, the minimization of PRSS may be solved as a convex quadratic
optimization problem.

For choosing the smoothing parameter λ, the cross validation criteria may be constructed by
leaving points (xn, yn) out one at a time and estimating the smooth at xn based on the remaining
N − 1 points as

CV (λ) =
1
N

N∑

n=1

(
yn − ĥ−n

λ (xn)
)2

(A.4)

where ĥ−n
λ (xn) indicates the fit at xn, computed by leaving out the nth data point as shown in [7].

We can use CV (λ) for searching the minimizing λ and set it as a candidate of optimal λ in the sense
of cross validation. Note that in the algorithm implemented in “R,” the so-called generalized cross
validation criteria is used for computing an optimal λ more efficiently.
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