

Large-scale Parallel Deep Convolutional Neural
Network on Image Classification

ZHONG RUI

Graduate School of Library, Information and Media
Studies University of Tsukuba

March 2016

	 2	

Table of Contents
1.	 INTRODUCTION	..	3	

2.	 RELATED WORKS	...	4	

3.	 NETWORK MODIFICATION	..	5	

3.1	 MODULARIZATION	..	5	

3.2	 CONTRASTIVE LEARNING	..	7	

4.	 EXPERIMENT	...	9	

4.1	 ARCHITECTURE	..	9	

4.2	 TRAINING METHODOLOGY	...	10	

4.3	 RESULTS	...	12	

5.	 CONCLUSIONS	...	14	

6.	 ACKNOWLEDGEMENT	..	14	

7.	 REFERENCES	...	14	

	 3	

1. Introduction
	
 In the area of machine learning and pattern recognition, artificial neural network is considered
as a competitive approach to automatically extract the features of the input data and finish recognition
task. The original inspiration of artificial neural network is to simulate the biological neural network
consisting of millions of neurons in animal’s brain [1]. This intuition suggests one can construct a neural
network with several neuron layers, each layer is equal to a nonlinear mapping function with a weight
matrix. One neuron layer could be trained by calculating the derivatives of specified loss function to
the weight, and update the weight value along the direction towards minimum loss. This is called the
gradient descent method. By stacking up several neuron layers one can construct an artificial neural
network, and adopt the dynamic programming to spread gradient information from higher layer to lower
one, which is called back-propagation [2], the whole neural network could be trained efficient with this
algorithm. The most important property of neural network is that it could extract the features at different
levels automatically, on the other hand traditional methods require researchers to decide the data
representation method, such as using SIFT [3] or HOG [4] feature extractors. Neural network would
automatically extract the features of the input data and store the learned features as weight matrices.
This property decreases the influence of the human factors during the learning process, and guarantee
the ability of generalization of the network.

 Convolutional neural network (CNN for short) is proposed by LeCun [5] and it shows great
potential for visual recognition tasks. The major difference between CNN and traditional multi-
perceptron neural network is the sharing weight in the convolutional layers. Most neurons in the same
convolutional layer of CNN shares the same weight values. This property encourage filters to detect
local patterns in the input image, which also satisfy the assumption that the most important feature for
object recognition is hidden in locality. Even before the deep learning revolution in machine learning,
CNN has already achieved significant results on image classification tasks, such as handwritten digit
recognition [6], in addition it kept state-of-the-art results on small image data sets [7]. According to
LeCun [5], they observed that the combination of convolutional layers and down sampling layers
achieved the best performance. They inserted several down sampling layers into convolutional layers
to create a CNN. The reason is that CNN has the similar structure and functionality compared to visual
cortex neural networks found in cat’s brain, which is mainly composed by simple cells, complex cells
and hyper-complex cells [8]. This convolution-pooling structure has been adopted as the basis for deep
neural networks specialized for visual tasks for a long period, also inherited in most visual deep learning
researches.

Deep architecture has been exploited on neural network models and showed outstanding
performance with tasks of image classification [9]. Adopting this novelty to traditional CNN further
improves the performance of image processing. Though CNNs show great advantages in this area, it is
until recently, due to the development of GPU computing, one could apply this architecture to a single
machine and achieve good recognition rate while not taking too much time to finish training phase.
Before deep learning revolution it has been proved very difficult to train a deep neural network without

	 4	

unsupervised training [10], also deep architectures require more computing resources. Because of these
limitations deep neural network were considered as unnecessary for image recognition tasks, until large
image data set such as ILSVRC2010 [11] has been used as benchmark. Also recently researchers
suggested the new activation function ReLU help back-propagation to spread the gradient information
to deeper layers, due to its linearity for the positive input [12]. Because of the scalability and great
ability for generalization, deep neural network has been widely adopted in variant recognition tasks.
Recent research focused on the architecture of deep neural network, the width and depth, also local
structures within one layer.

This research follows the inspiration that increasing the depth and well-designed local structure
could improve the performance of deep neural network. Thus, we analyzed the local structure within
one layer in the network, changed the size of filters, the number of channels and topology between
convolutional layers. In addition, we exploited the fact that there is a receptive field in animal’s retina
cells, which take advantages of contrastive inputs, i.e. only when the incoming light hit the central part
and avoid the contour part of one retina cell, this cell would fire a neural spike to others. After
implemented this feature as a pooling layer that strengthen the contrastive patches for the input data,
we see how this let us achieve better results.

2. Related work

Deep neural network was popularized since seminal work by Szegedy et al. [13]. They proposed

a general model for CNN architecture to achieve state-of-the-art results on ILSVRC 2012. Their main
contribution was implementation of CNN on multi-GPU machine and optimization techniques for
programming. Efficient implementation and carefully design for the network would let them train more
efficiently than others, additionally the combination of variant techniques, such as using ReLU
activation function, inserting dropout layers, adopting multi-GPU training, preparing data augmentation
and proper choice of learning rate update method let them achieve the best accuracy among the
participants. These methods became widely-used, and deep learning neural network showed the
potential for scalability to overcome the difficulties of traditional methods. Since then many deep
learning implementations have been brought to other tasks, such as object recognition, speech
recognition, image segmentation and so on.

The next milestone for deep neural network on image classification is led by the researchers
from Google in 2014, named project as GoogLeNet [14]. They increased the depth of the neural network
aggressively, finally achieved impressive performance with a 22-layers deep network, this novelty has
also been proved very effective by other team. To draw the conclusion, for large data set such as
ILSVRC 2012, increasing depth of network till 20 layers is very effective. Also such a deep network
could almost achieve human-level recognition results with a dense data augmentation training and
testing. Furthermore, GoogLeNet proposed the concept of inception module. Instead of using one
convolutional layer for one level of the network, they combined several convolutional layers having
different filter size together, also with pooling layer into one level. Their concept is that for one level

	 5	

of the network, it is natural to consider detecting patterns at different size, thus they set up convolutional
layers with filter size of 1*1, 3*3 and 5*5. With 1 stride for convolution and padding the input properly,
the outputs of these convolutional layers will be at the same size. This novelty also seems reasonable
and natural for one-layer convolutional network. The last contribution is that they widely adopted
convolutional layers with 1*1 size filter before convolutional layers of larger filter size, which they
explained with dimensional reduction. Because the numbers of convolutional layer output could be
configured, by setting these 1*1 convolutional layers one can aggregate the feature maps together, thus
prevent the dimension increase too rapidly while increase network depth. It is worth mentioning that
recent researches [15] also use 1*1 convolution to replace fully-connected layers for spatial flexibility.

Another remarkable deep learning network in 2014 is VGG-net, developed by Simonyan and
Zisserman [16]. Similar to GoogLeNet they also discovered deeper neural network could achieve better
accuracy on large image set. Their proposed model has 19 levels for convolutional and fully-connected
computation. In contrast to GoogLeNet, VGG team adopted the convolutional layers with the same size
at 3*3 for all levels. They described this strategy as for increasing the network depth as much as possible.
They also considered two 3*3 convolutional layers have the same function as one 5*5 layer but with
less parameters to train. In addition, they decrease the use of pooling layers, preventing down-sizing
the feature map too quickly, which also contribute to increasing the depth of network. Thus their model
mainly consists of dense small size convolutional computation, resulting in a very deep model. It is
surprising that mainly by increasing depth, they have achieved almost the same accuracy as GoogLeNet,
though latter has more carefully designed network details. In our experiment, because of lacking
dimensional reduction technique, the memory consumption of VGG-net is obviously much higher than
GoogLeNet model, and computation also heavier. Another contribution in their research is about the
training methodology of the network, including most details about image pre-process, multi-size
training and dense cropping test techniques. According to our experiment, such training methodology
is crucial for practical level accuracy, though these techniques could multiply the training time, they
would roughly increase accuracy for about 3% to 5%. Due to fewer implementation difficulties, many
researcher continue improving VGG-net model for object recognition tasks. Some achieved surpass
human-level image classification [17].

3. Network modification

3.1 Modularization

Though VGG-net is widely investigated because of its simplicity, in our research we used the

architecture of GoogLeNet, because the memory consumption of the latter is much lower. Carefully
designed architecture of GoogLeNet contributed to reducing the training time and memory consumption,
while achieving the same performance. Also assumption of our research is related to the local structure
of the neural network, which we name as the modularization. This inspiration is followed with the
inception module of GoogLeNet [14]. They suggested that one should consider the different sizes of
patterns hide in the feature map. For example, in the lower levels close to the input image network

	 6	

should capture the large size patterns, thus using 5*5 or 7*7 convolutional layers will be better. But in
the middle levels one should consider using mainly 1*1 and 3*3 convolutional layers, because in this
level most features have abstract meaning and feature maps also become sparse. Though it has not
reached high levels that feature map could be completely represented by fully-connect layer or 1*1
convolutional layer, so one should adopt 1*1 and 3*3 convolution at the same layer to capture different
size features, then concatenate the outputs.

Based on such inspiration, GoogLeNet use inception modules for each level of the network
instead of single convolutional layer. In one module they perform 1*1, 3*3 and 5*5 convolutions also
with max-pooling. By setting stride of convolution to 1 and padding the input, one can guarantee the
outputs of these filters have the same size. Using such module results in extracting general local
structure, while by configuring the numbers of filters one can change the size of patterns needed to be
learned. The figure of one module is shown in Figure 3.1.

Figure 3.1 Inception module

It is noticeable that they also followed the trend of using 1*1 convolutions to do the dimensional
reduction. Considering that on higher levels 3*3 and 5*5 convolution could be expensive for computing,
apply 1*1 convolution before them would help to aggregate the overabundant channels together. Also
it will make unimportant feature maps sparse and further reduce the cost. In our research this feature is
considered as an important method to control the computation cost, as well as a pruning strategy that
provide us more possibility to exploit the topology of deep neural network. That is to say, by inserting
1*1 convolutions between the branches, we encourage the network to shape itself automatically. Since
it is known that deep learning network has great potential for extracting the feature from input
automatically, we expected that with proper degree of freedom the network would also search for the
best topology automatically.

Additionally, we noticed in other researches that the convolution at 5*5 size is considered as
unnecessary. This is because two 3*3 convolutional layers have the same pattern recognition effect and
less parameters to learn [16]. Thus we propose a local module structure without 5*5 convolutions.
Instead we stack up 3*3 convolutions and concatenate their output feature map together. The intuition

	 7	

is straight forward that by increasing the depth of the network could improve the performance, along
with reducing the convolutional computing cost. Especially Szegedy et al. [14] suggested that 5*5
convolution in high levels are very expensive. We therefore propose insert another 3*3 convolution
layer already existing one. We proposed our canal module as indicated in Figure 3.2.

Figure 3.2 naïve canal module

Another feature of our proposal is using 1*1 convolutions as pruning and information aggregate
method in the module. We could add other branches in the module with 1*1 convolution to reduce the
dimension of feature maps. Also it is noticeable that in next level 1*1 convolution is performed before
3*3 convolution, which aggregates the results together from different channels. Thus the output of this
new module consists of 3 parts. The first part comes from 1*1 convolutions and could be seen as the
weighted input information; the second part comes from once 3*3 convolutional computing; the last
part comes from second 3*3 convolutions which is aiming at capturing advanced features. During the
experiment we configure the numbers of 1*1 convolutions more than the others parts, because we
consider them as a prune method which encourages the network to become sparse. This could help the
network to form different topology depending on input data, while we add more branches to the network
than actual need. It could be difficult to train at the beginning, but our goal is to research about the
topology, this strategy is worth trying.

3.2 Contrastive learning

Another important feature of our proposal is extracting the contrastive information, which react

like real visual cortex neurons having receptive fields. Receptive field [18] is one of the most important
features existing in the visual cells of retina and cortex. For neurons in those area most of them have
two parts which can receive stimuli, generally the circle central part and the remaining part around
central circle. Scientists found only when one part receives stimuli while another part doesn’t, the
neuron will be activated and generate spikes (action potentials) frequently. For example, some of
neurons at retina activate when light stimulates the center while the surrounding part has not been

	 8	

stimulated. They are called center cells. Another type behaves the opposite way, only fire when light
stimulate the surrounding part. They are called off center cells. Both center cells and off center cells
will not be activated in the total dark or bright environment where center and surrounding area are
stimulated by light at the same time. That is to say, the existence of receptive field suggests neuron
should only be activated when the information is contrastive within their sensory space. The explanation
of this feature suggests during the evolution process, detecting the change in the environment was the
key to survival, thus sensory system evolved to activate only when receiving contrastive information.
Notice that deep convolutional neural networks could automatically extract features in the images, and
after training one can find the filters of convolutional layers will contain contrastive weight values if
visualize them. This also proved the importance of contrastive information during recognition. Our
visualization of filters in lowest layer is indicated in Figure 3.2.

Figure 3.2 first conv layer filters

In this work we aim at combining contrastive learning method into existing CNN architecture.
We consider this could improve the accuracy along with accelerating the learning process. We also
hope by reducing convolutions on feature maps contain less contrastive information would contribute
to improving performance. Our implementation of contrastive learning is to use a new type of pooling
layer, which we called contrastive pooling. First we separately apply max-pooling and min-pooling on
the same patch, then we compute the output by subtracting the result of max-pooling map with min-
pooling map. For 𝒙 is the input local patch of the input, the contrastive pooling is calculated as follows.

𝐹 𝒙 	= 𝑎	 ∗ max 𝒙 − (1 − 𝑎) ∗ 	min 𝒙

Figure 3.3 contrastive pooling

	 9	

Though this is a naïve implementation of contrastive learning, it would guarantee the output
feature map will response at local area with contrastive input. Additionally, this is easy to implement
using existing libraries. Considering the performance of computation, implementing contrastive
learning as pooling layer is more practical than adding regularization items to convolutional layers.
While latter is more intuitive and effective by adopting Lagrange multipliers to update equation of
convolution filters, we can also encourage convolutional filters to learn contrastive patterns. However,
the implementation could be cumbersome and inefficient based on present deep learning frameworks.
Moreover, complicated convolutional computing would have deteriorating impact on performance. Our
implementation could not contribute to form fixed-shape receptive fields, but also amplify contrastive
signals along with training the neurons that contribute to this contrastive output. Because we implement
this new pooling layer with max-pooling and min-pooling layers, through back-propagation algorithm
we would only train the neurons contribute to the max and min value. Computation cost is nearly the
same as a single max-pooling layer.

4. Experiment

4.1 Architecture

Now we introduce the whole architecture of our model. We choose to build a very deep

architecture similar to GoogLeNet [14]. Specifically, after first 3 convolutional layers, we exchange the
inception modules with our canal modules. It can be seen that we reduced the filter size of these
convolutions, in order to keep more information to the high level of the model, along with increasing
the depth. We have 22 weighted layers in total, which is the same as GoogLeNet. Also we adopted the
early output branches for fast training [14]. This follows the GoogLeNet, which will contribute to spread
gradient information for back-propagation, by inducing such output branches to the lower levels. This
is the basic architecture for our model but not the only one. We experimented many different
combinations based on this network. Since we modularized the network with several feature extracting
convolutional layers, canal module and output module, we exploit the topology of deep neural network
by adding and deleting branches.

Also based on the canal module, we experiment the effect of adding new 3*3 convolutions at
higher level or as a new branch. Our principle follows GoogLeNet [14] that the computing cost of
network should be below 1.5 billion ops for one input to go through to output. This guarantee that we
can apply this architecture to practical implementation instead of in-lab research. We will describe the
details of these modules in the result section.

Before every output branches we also insert max-pooling layers to reducing the computation
cost. Inside the canal module we adopt contrastive pooling instead of max-pooling. With overlapped
filters we guarantee the outputs have the same size as convolutional layers.

	 10	

4.2 Training methodology

All our experiments are trained and tested on ILSVRC 2014 data set, which is almost the same

as ILSVRC 2012. We only tested on image classification task so far, and plan to continue our research
on object detection task in future research.

It is worth mentioning that we did not adopt any dense cropping methods to apply data
augmentation for classification task, because such techniques would require large amount of computing
resources, and increase the training time dramatically. For example in [14] researchers increased
computing cost for 10 times than the original model, which only improved accuracy by 0.94%. In our
research we could also use such training method for increasing accuracy, but we consider these method
is not only time consuming but also impractical for application of deep neural network. Our aim is
increasing the accuracy by improving the topology of deep architectures, rather than increasing
computing cost which would limit the deployment of network on embedded systems.

Thus we used original GoogLeNet one crop model as the baseline, which is implemented with
open source deep learning library Caffe [19]. The only pre-process of image data is mean subtraction,
i.e. subtract the mean value of all input to every pixel. Since the width and height of original data set is
variant, we simply resize the longer edge of all input images to 224 pixels while keeping the image ratio
unchanged, and padding the stride edge with noise pixels. Also in order to increase the accuracy we
applied the bounding boxes to the images, because for a large amount of the images in ILSVRC 2012
data set, we found unrelated background interferes the object of images, e.g. in images under the class
‘fish’ one could found many images contain the fishing man. We consider these images obviously have
different abstract feature from those only containing one fish filling the whole image. For image
classification task this method could improve the accuracy a little bit, and we consider the localization
of the object is not contained in this task.

Our learning rate update method follows polynomial learning policy, which is known to be the
faster learner for the architecture. This method greatly reduced the iterations until the network
converges while achieving almost the same accuracy as the original SGD policy. The equation is
described below.

𝐹 𝑖 = 𝑙 ∗ (1 −
𝑖
𝑚
)3

In this equation, 𝑖 is the present iteration, 𝑚 = 2400000 is the max iteration, 𝑙 = 0.01 is the
initial learning rate and 𝑝 = 0.5 is the decay power parameter. It can be seen when reaching max
iteration, the learning rate becomes 0.

	 11	

figure 4.1 network architecture

input	

conv	

max	

LRN	

conv	

conv	

LRN	

contra
s	

canal	

canal	

canal	

canal	

canal	

canal	

canal	

canal	

canal	

output	2	

output	3	

output	1		

	 12	

4.3 Results

In the first experiment we focused on topology of deep neural network, and inspect the

influence of each part in inception module of GoogLeNet [14]. We observed that by applying cropping
and resizing of training images using their bounding-boxes would help accelerate the training process,
which greatly shortening the training time for the network to reach 75% accuracy. In all experiments
we used these revised training data and used GoogLeNet we implemented on our environment as the
baseline, and achieved a final accuracy of 89.39%. Due to experiment resource limitation we could only
achieve results for early training phases. We stopped these models at nearly 420000 iterations (about
11 epochs). To our surprise, during the early phase these modifications did not bring big impact on
network accuracy.

Figure 4.1 experiment on inception module

The training process is illustrated in Figure 4.1. The x-axis indicates the training process, which
tests accuracy for every 4000 iterations during training, and y-axis is test accuracy. Based on original
GoogLeNet, we first tested the learning process not using bounding boxes to crop and resize the image
(model B), it shows at the beginning accuracy increase slower. Then we tested the network without the
5*5 convolutional layers (model C) or max-pooling layers (model D) in inception module, which is to
our surprise achieved almost the same accuracy as the original network. At last we experimented
exchanging 5*5 to 3*3 convolutions (model A), which increased 0.5% recognition rate after 420000
iterations, while original GoogLeNet also reached 75% accuracy.

For the second experiment we inspect the effect of 5*5 convolution in inception module. We

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 21 41 61 81 101

Ac
cu
ra
cy
	(%

)

test	time	(for	every	4000	iteration)

Inception	Module	Experiment

All	3*3	conv	(A) original	GoogLeNet without	bounding-box(B)

remove	5*5	conv	(C) remove	max-pooling	(D)

	 13	

changed all 5*5 convolution layers in inception module to 3*3 convolutions. We observed almost no
difference on final accuracy, though it decreased for 0.4% but also indicated that 3*3 convolution can
replace 5*5 convolution in higher layers. We also proposed a model where two 3*3 convolutional layers
is replaced by one 5*5 and we denote this as CanalNet-A. Finally, we experimented topology described
in Figure 3.2, it has been shown that adopting two stacked 3*3 convolutional layers can improve
performance with fewer weight parameters. We denote this model as CanalNet-B. These experiment
are listed in Table 4.2. Notice that we finished training this time, which took nearly 40 epochs for our
fast learning method.

model top-5 error

GoogLeNet-reported [14] 10.07%

GoogLeNet-ours 10.61%

CanalNet-A 9.58%

CanalNet-B 1*

Table 4.2 module modification

As we could see by removing 5*5 and stack up two 3*3 convolutions improved performance
for 1.02% after finish the training process. This indicated that in such a deep neural network, large size
convolution filters become unnecessary. Also by further increasing depth of the module could
contribute to improving performance on large data set.

In the last experiment we test our proposal for contrastive learning and branch-increasing
network. We choose the best result of our second experiment, CanalNet-B as our basic network
architecture. Based on topology of CanalNet-B, we exchanged the max-pooling layers to our
contrastive-pooling, and we denote this new model as CanalNet-C. In addition, we add several branches
to CanalNet-C in order to observe the influence on such topology. We denote this network as CanalNet-
D. The results are listed in table 4.3.

model top-5 error

CanalNet-A 9.58%

CanalNet-C 2*

CanalNet-D 3*

Table 4.3 contrastive learning

																																																								
*1,2,3 These experiments are not finish now, the results will be added in future version.

	 14	

5. Conclusions

This research aims at increasing deep convolutional neural network performance by exploiting

the network topology and improving the accuracy with implementation for contrastive learning. Our
proposal focus on increasing depth of local network module, and replacing expensive large filter size
convolution with stacked small size ones, adding branches in order to help network search for best
topology automatically. In addition, we proposed a new pooling method for fast contrastive learning,
by implementing the feature of receptive field to accelerate the learning process along with further
reducing cost. We achieved better results compare to previous research without increasing computing
cost by applying complicated training methodology, thus our model could use for practical applications.
Finally our conclusion on exploiting network topology is compatible to all data augmentation methods
that contributed to present state-of-the-art results. In future work we are expecting to experiment on
such conditions and achieve better results.

6. Acknowledgement

 I would like to appreciate my associate professor advisor, he helped me with the experiment
preparation and provided countless valuable inspirations for my research. Also I want to thank to my
associate advisor and all professors who gave their precious advices and opinions to this research. At
last I would like to thank every committer and researcher who shared their effort for developing deep
learning frameworks, without their selfless contributions this research could not be brought.

7. References
	
[1]		 K.	Hornik,	M.	Stinchcombe	and	H.	White,	"Multilayer	feedforward	networks	are	

universal	approximators,"	Neural	networks,	vol.	2(5),	pp.	395-366,	1989.		
[2]		 D.	C.	Plaut	and	G.	E.	Hinton,	"Learning	sets	of	filters	using	back-propagation,"	

Computer	Speech	&	Language,	vol.	2(1),	pp.	35-61,	1987.		
[3]		 D.	G.	Lowe,	"Distinctive	image	features	from	scale-invariant	keypoints,"	International	

journal	of	computer	vision,	vol.	60(2),	pp.	91-110,	2004.		
[4]		 N.	Dalal	and	B.	Triggs,	"Histograms	of	oriented	gradients	for	human	detection,"	in	

Computer	Vision	and	Pattern	Recognition,	2005.		
[5]		 Y.	LeCun	and	Y.	Bengio,	"Convolutional	networks	for	images,	speech,	and	time	series,"	

The	handbook	of	brain	theory	and	neural	networks,	vol.	3361(10),	1995.		
[6]		 Y.	LeCun,	C.	Cortes	and	C.	J.	C.	Burges,	"The	MNIST	database	of	handwritten	digits,"	

[Online].	Available:	http://yann.lecun.com/exdb/mnist/.	
[7]		 A.	Krizhevsky,	"The	CIFAR-10	dataset,"	2009.	[Online].	Available:	

https://www.cs.toronto.edu/~kriz/cifar.html.	

	 15	

[8]		 A.	M.	Sillito,	"Inhibitory	processes	underlying	the	directional	specificity	of	simple,	
complex	and	hypercomplex	cells	in	the	cat's	visual	cortex,"	The	Journal	of	physiology,	
vol.	271(3),	pp.	699-720,	1977.		

[9]		 Y.	Bengio,	"Learning	deep	architectures	for	AI,"	Foundations	and	trends®	in	Machine	
Learning,	vol.	2(1),	pp.	1-127,	2009.		

[10]		Y.	Bengio,	P.	Lamblin,	D.	Popovici	and	H.	Larochelle,	"Greedy	layer-wise	training	of	
deep	networks,"	Advances	in	neural	information	processing	systems,	vol.	19,	p.	153,	
2007.		

[11]		A.	Berg,	J.	Deng	and	F.-F.	Li,	"Large	Scale	Visual	Recognition	Challenge	2010,"	Stanford	
Vision	Lab,	2010.	[Online].	Available:	http://image-
net.org/challenges/LSVRC/2010/index.	

[12]		N.	V	and	H.	G	E,	"Rectified	linear	units	improve	restricted	boltzmann	machines,"	in	
Proceedings	of	the	27th	International	Conference	on	Machine	Learning,	2010.		

[13]		A.	Krizhevsky,	I.	Sutskever	and	G.	E.	Hinton,	"Imagenet	classification	with	deep	
convolutional	neural	networks,"	in	Advances	in	neural	information	processing	systems,	
2012.		

[14]		C.	Szegedy,	W.	Liu,	Y.	Jia	and	et	al,	"Going	deeper	with	convolutions,"	arXiv	preprint	
arXiv:	1409.4842,	2014.		

[15]		P.	Sermanet,	D.	Eigen,	X.	Zhang	and	et	al,	"Overfeat:	Integrated	recognition,	
localization	and	detection	using	convolutional	networks[,"	arXiv	preprint	
arXiv:1312.6229,	2013.		

[16]		K.	Simonyan	and	A.	Zisserman,	"Very	deep	convolutional	networks	for	large-scale	
image	recognition,"	arXiv	preprint	arXiv:1409.1556,	2014.		

[17]		K.	He,	X.	Zhang,	S.	Ren	and	et	al,	"Delving	deep	into	rectifiers:	Surpassing	human-level	
performance	on	imagenet	classification,"	arXiv	preprint	arXiv:1502.01852,	2015.		

	
	

