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1. Introduction 
	
 In the area of machine learning and pattern recognition, artificial neural network is considered 
as a competitive approach to automatically extract the features of the input data and finish recognition 
task. The original inspiration of artificial neural network is to simulate the biological neural network 
consisting of millions of neurons in animal’s brain [1]. This intuition suggests one can construct a neural 
network with several neuron layers, each layer is equal to a nonlinear mapping function with a weight 
matrix. One neuron layer could be trained by calculating the derivatives of specified loss function to 
the weight, and update the weight value along the direction towards minimum loss. This is called the 
gradient descent method. By stacking up several neuron layers one can construct an artificial neural 
network, and adopt the dynamic programming to spread gradient information from higher layer to lower 
one, which is called back-propagation [2], the whole neural network could be trained efficient with this 
algorithm. The most important property of neural network is that it could extract the features at different 
levels automatically, on the other hand traditional methods require researchers to decide the data 
representation method, such as using SIFT [3] or HOG [4] feature extractors. Neural network would 
automatically extract the features of the input data and store the learned features as weight matrices. 
This property decreases the influence of the human factors during the learning process, and guarantee 
the ability of generalization of the network. 

 Convolutional neural network (CNN for short) is proposed by LeCun [5] and it shows great 
potential for visual recognition tasks. The major difference between CNN and traditional multi-
perceptron neural network is the sharing weight in the convolutional layers. Most neurons in the same 
convolutional layer of CNN shares the same weight values. This property encourage filters to detect 
local patterns in the input image, which also satisfy the assumption that the most important feature for 
object recognition is hidden in locality. Even before the deep learning revolution in machine learning, 
CNN has already achieved significant results on image classification tasks, such as handwritten digit 
recognition [6], in addition it kept state-of-the-art results on small image data sets [7]. According to 
LeCun [5], they observed that the combination of convolutional layers and down sampling layers 
achieved the best performance. They inserted several down sampling layers into convolutional layers 
to create a CNN. The reason is that CNN has the similar structure and functionality compared to visual 
cortex neural networks found in cat’s brain, which is mainly composed by simple cells, complex cells 
and hyper-complex cells [8]. This convolution-pooling structure has been adopted as the basis for deep 
neural networks specialized for visual tasks for a long period, also inherited in most visual deep learning 
researches. 

Deep architecture has been exploited on neural network models and showed outstanding 
performance with tasks of image classification [9]. Adopting this novelty to traditional CNN further 
improves the performance of image processing. Though CNNs show great advantages in this area, it is 
until recently, due to the development of GPU computing, one could apply this architecture to a single 
machine and achieve good recognition rate while not taking too much time to finish training phase. 
Before deep learning revolution it has been proved very difficult to train a deep neural network without 
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unsupervised training [10], also deep architectures require more computing resources. Because of these 
limitations deep neural network were considered as unnecessary for image recognition tasks, until large 
image data set such as ILSVRC2010 [11]  has been used as benchmark. Also recently researchers 
suggested the new activation function ReLU help back-propagation to spread the gradient information 
to deeper layers, due to its linearity for the positive input [12]. Because of the scalability and great 
ability for generalization, deep neural network has been widely adopted in variant recognition tasks. 
Recent research focused on the architecture of deep neural network, the width and depth, also local 
structures within one layer. 

This research follows the inspiration that increasing the depth and well-designed local structure 
could improve the performance of deep neural network. Thus, we analyzed the local structure within 
one layer in the network, changed the size of filters, the number of channels and topology between 
convolutional layers. In addition, we exploited the fact that there is a receptive field in animal’s retina 
cells, which take advantages of contrastive inputs, i.e. only when the incoming light hit the central part 
and avoid the contour part of one retina cell, this cell would fire a neural spike to others. After 
implemented this feature as a pooling layer that strengthen the contrastive patches for the input data, 
we see how this let us achieve better results.  

 
2. Related work 

 
Deep neural network was popularized since seminal work by Szegedy et al. [13]. They proposed 

a general model for CNN architecture to achieve state-of-the-art results on ILSVRC 2012. Their main 
contribution was implementation of CNN on multi-GPU machine and optimization techniques for 
programming. Efficient implementation and carefully design for the network would let them train more 
efficiently than others, additionally the combination of variant techniques, such as using ReLU 
activation function, inserting dropout layers, adopting multi-GPU training, preparing data augmentation 
and proper choice of learning rate update method let them achieve the best accuracy among the 
participants. These methods became widely-used, and deep learning neural network showed the 
potential for scalability to overcome the difficulties of traditional methods. Since then many deep 
learning implementations have been brought to other tasks, such as object recognition, speech 
recognition, image segmentation and so on.  

The next milestone for deep neural network on image classification is led by the researchers 
from Google in 2014, named project as GoogLeNet [14]. They increased the depth of the neural network 
aggressively, finally achieved impressive performance with a 22-layers deep network, this novelty has 
also been proved very effective by other team. To draw the conclusion, for large data set such as 
ILSVRC 2012, increasing depth of network till 20 layers is very effective. Also such a deep network 
could almost achieve human-level recognition results with a dense data augmentation training and 
testing. Furthermore, GoogLeNet proposed the concept of inception module. Instead of using one 
convolutional layer for one level of the network, they combined several convolutional layers having 
different filter size together, also with pooling layer into one level. Their concept is that for one level 



	 5	

of the network, it is natural to consider detecting patterns at different size, thus they set up convolutional 
layers with filter size of 1*1, 3*3 and 5*5. With 1 stride for convolution and padding the input properly, 
the outputs of these convolutional layers will be at the same size. This novelty also seems reasonable 
and natural for one-layer convolutional network. The last contribution is that they widely adopted 
convolutional layers with 1*1 size filter before convolutional layers of larger filter size, which they 
explained with dimensional reduction. Because the numbers of convolutional layer output could be 
configured, by setting these 1*1 convolutional layers one can aggregate the feature maps together, thus 
prevent the dimension increase too rapidly while increase network depth. It is worth mentioning that 
recent researches [15] also use 1*1 convolution to replace fully-connected layers for spatial flexibility. 

Another remarkable deep learning network in 2014 is VGG-net, developed by Simonyan and 
Zisserman [16]. Similar to GoogLeNet they also discovered deeper neural network could achieve better 
accuracy on large image set. Their proposed model has 19 levels for convolutional and fully-connected 
computation. In contrast to GoogLeNet, VGG team adopted the convolutional layers with the same size 
at 3*3 for all levels. They described this strategy as for increasing the network depth as much as possible. 
They also considered two 3*3 convolutional layers have the same function as one 5*5 layer but with 
less parameters to train. In addition, they decrease the use of pooling layers, preventing down-sizing 
the feature map too quickly, which also contribute to increasing the depth of network. Thus their model 
mainly consists of dense small size convolutional computation, resulting in a very deep model. It is 
surprising that mainly by increasing depth, they have achieved almost the same accuracy as GoogLeNet, 
though latter has more carefully designed network details. In our experiment, because of lacking 
dimensional reduction technique, the memory consumption of VGG-net is obviously much higher than 
GoogLeNet model, and computation also heavier. Another contribution in their research is about the 
training methodology of the network, including most details about image pre-process, multi-size 
training and dense cropping test techniques. According to our experiment, such training methodology 
is crucial for practical level accuracy, though these techniques could multiply the training time, they 
would roughly increase accuracy for about 3% to 5%. Due to fewer implementation difficulties, many 
researcher continue improving VGG-net model for object recognition tasks. Some achieved surpass 
human-level image classification [17].  

 
3. Network modification 

 
3.1 Modularization 
 
Though VGG-net is widely investigated because of its simplicity, in our research we used the 

architecture of GoogLeNet, because the memory consumption of the latter is much lower. Carefully 
designed architecture of GoogLeNet contributed to reducing the training time and memory consumption, 
while achieving the same performance. Also assumption of our research is related to the local structure 
of the neural network, which we name as the modularization. This inspiration is followed with the 
inception module of GoogLeNet [14]. They suggested that one should consider the different sizes of 
patterns hide in the feature map. For example, in the lower levels close to the input image network 
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should capture the large size patterns, thus using 5*5 or 7*7 convolutional layers will be better. But in 
the middle levels one should consider using mainly 1*1 and 3*3 convolutional layers, because in this 
level most features have abstract meaning and feature maps also become sparse. Though it has not 
reached high levels that feature map could be completely represented by fully-connect layer or 1*1 
convolutional layer, so one should adopt 1*1 and 3*3 convolution at the same layer to capture different 
size features, then concatenate the outputs.  

Based on such inspiration, GoogLeNet use inception modules for each level of the network 
instead of single convolutional layer. In one module they perform 1*1, 3*3 and 5*5 convolutions also 
with max-pooling. By setting stride of convolution to 1 and padding the input, one can guarantee the 
outputs of these filters have the same size. Using such module results in extracting general local 
structure, while by configuring the numbers of filters one can change the size of patterns needed to be 
learned. The figure of one module is shown in Figure 3.1. 

 

Figure 3.1 Inception module 

It is noticeable that they also followed the trend of using 1*1 convolutions to do the dimensional 
reduction. Considering that on higher levels 3*3 and 5*5 convolution could be expensive for computing, 
apply 1*1 convolution before them would help to aggregate the overabundant channels together. Also 
it will make unimportant feature maps sparse and further reduce the cost. In our research this feature is 
considered as an important method to control the computation cost, as well as a pruning strategy that 
provide us more possibility to exploit the topology of deep neural network. That is to say, by inserting 
1*1 convolutions between the branches, we encourage the network to shape itself automatically. Since 
it is known that deep learning network has great potential for extracting the feature from input 
automatically, we expected that with proper degree of freedom the network would also search for the 
best topology automatically.  

Additionally, we noticed in other researches that the convolution at 5*5 size is considered as 
unnecessary. This is because two 3*3 convolutional layers have the same pattern recognition effect and 
less parameters to learn [16]. Thus we propose a local module structure without 5*5 convolutions. 
Instead we stack up 3*3 convolutions and concatenate their output feature map together. The intuition 
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is straight forward that by increasing the depth of the network could improve the performance, along 
with reducing the convolutional computing cost. Especially Szegedy et al. [14] suggested that 5*5 
convolution in high levels are very expensive. We therefore propose insert another 3*3 convolution 
layer already existing one. We proposed our canal module as indicated in Figure 3.2. 

 

Figure 3.2 naïve canal module 

Another feature of our proposal is using 1*1 convolutions as pruning and information aggregate 
method in the module. We could add other branches in the module with 1*1 convolution to reduce the 
dimension of feature maps. Also it is noticeable that in next level 1*1 convolution is performed before 
3*3 convolution, which aggregates the results together from different channels. Thus the output of this 
new module consists of 3 parts. The first part comes from 1*1 convolutions and could be seen as the 
weighted input information; the second part comes from once 3*3 convolutional computing; the last 
part comes from second 3*3 convolutions which is aiming at capturing advanced features. During the 
experiment we configure the numbers of 1*1 convolutions more than the others parts, because we 
consider them as a prune method which encourages the network to become sparse. This could help the 
network to form different topology depending on input data, while we add more branches to the network 
than actual need. It could be difficult to train at the beginning, but our goal is to research about the 
topology, this strategy is worth trying. 

 
3.2 Contrastive learning 

 
Another important feature of our proposal is extracting the contrastive information, which react 

like real visual cortex neurons having receptive fields. Receptive field [18] is one of the most important 
features existing in the visual cells of retina and cortex. For neurons in those area most of them have 
two parts which can receive stimuli, generally the circle central part and the remaining part around 
central circle. Scientists found only when one part receives stimuli while another part doesn’t, the 
neuron will be activated and generate spikes (action potentials) frequently. For example, some of 
neurons at retina activate when light stimulates the center while the surrounding part has not been 
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stimulated. They are called center cells. Another type behaves the opposite way, only fire when light 
stimulate the surrounding part. They are called off center cells. Both center cells and off center cells 
will not be activated in the total dark or bright environment where center and surrounding area are 
stimulated by light at the same time. That is to say, the existence of receptive field suggests neuron 
should only be activated when the information is contrastive within their sensory space. The explanation 
of this feature suggests during the evolution process, detecting the change in the environment was the 
key to survival, thus sensory system evolved to activate only when receiving contrastive information. 
Notice that deep convolutional neural networks could automatically extract features in the images, and 
after training one can find the filters of convolutional layers will contain contrastive weight values if 
visualize them. This also proved the importance of contrastive information during recognition. Our 
visualization of filters in lowest layer is indicated in Figure 3.2. 

 

Figure 3.2 first conv layer filters 

In this work we aim at combining contrastive learning method into existing CNN architecture. 
We consider this could improve the accuracy along with accelerating the learning process. We also 
hope by reducing convolutions on feature maps contain less contrastive information would contribute 
to improving performance. Our implementation of contrastive learning is to use a new type of pooling 
layer, which we called contrastive pooling. First we separately apply max-pooling and min-pooling on 
the same patch, then we compute the output by subtracting the result of max-pooling map with min-
pooling map. For 𝒙 is the input local patch of the input, the contrastive pooling is calculated as follows. 

𝐹 𝒙 	= 𝑎	 ∗ max 𝒙 − (1 − 𝑎) ∗ 	min 𝒙  

 

Figure 3.3 contrastive pooling 
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Though this is a naïve implementation of contrastive learning, it would guarantee the output 
feature map will response at local area with contrastive input. Additionally, this is easy to implement 
using existing libraries. Considering the performance of computation, implementing contrastive 
learning as pooling layer is more practical than adding regularization items to convolutional layers. 
While latter is more intuitive and effective by adopting Lagrange multipliers to update equation of 
convolution filters, we can also encourage convolutional filters to learn contrastive patterns. However, 
the implementation could be cumbersome and inefficient based on present deep learning frameworks. 
Moreover, complicated convolutional computing would have deteriorating impact on performance. Our 
implementation could not contribute to form fixed-shape receptive fields, but also amplify contrastive 
signals along with training the neurons that contribute to this contrastive output. Because we implement 
this new pooling layer with max-pooling and min-pooling layers, through back-propagation algorithm 
we would only train the neurons contribute to the max and min value. Computation cost is nearly the 
same as a single max-pooling layer. 

 
4. Experiment 

 
4.1 Architecture 

 
Now we introduce the whole architecture of our model. We choose to build a very deep 

architecture similar to GoogLeNet [14]. Specifically, after first 3 convolutional layers, we exchange the 
inception modules with our canal modules. It can be seen that we reduced the filter size of these 
convolutions, in order to keep more information to the high level of the model, along with increasing 
the depth. We have 22 weighted layers in total, which is the same as GoogLeNet. Also we adopted the 
early output branches for fast training [14]. This follows the GoogLeNet, which will contribute to spread 
gradient information for back-propagation, by inducing such output branches to the lower levels. This 
is the basic architecture for our model but not the only one. We experimented many different 
combinations based on this network. Since we modularized the network with several feature extracting 
convolutional layers, canal module and output module, we exploit the topology of deep neural network 
by adding and deleting branches.  

Also based on the canal module, we experiment the effect of adding new 3*3 convolutions at 
higher level or as a new branch. Our principle follows GoogLeNet [14] that the computing cost of 
network should be below 1.5 billion ops for one input to go through to output. This guarantee that we 
can apply this architecture to practical implementation instead of in-lab research. We will describe the 
details of these modules in the result section. 

Before every output branches we also insert max-pooling layers to reducing the computation 
cost. Inside the canal module we adopt contrastive pooling instead of max-pooling. With overlapped 
filters we guarantee the outputs have the same size as convolutional layers.  
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4.2 Training methodology 

 
All our experiments are trained and tested on ILSVRC 2014 data set, which is almost the same 

as ILSVRC 2012. We only tested on image classification task so far, and plan to continue our research 
on object detection task in future research.  

It is worth mentioning that we did not adopt any dense cropping methods to apply data 
augmentation for classification task, because such techniques would require large amount of computing 
resources, and increase the training time dramatically. For example in [14] researchers increased 
computing cost for 10 times than the original model, which only improved accuracy by 0.94%. In our 
research we could also use such training method for increasing accuracy, but we consider these method 
is not only time consuming but also impractical for application of deep neural network. Our aim is 
increasing the accuracy by improving the topology of deep architectures, rather than increasing 
computing cost which would limit the deployment of network on embedded systems.  

Thus we used original GoogLeNet one crop model as the baseline, which is implemented with 
open source deep learning library Caffe [19]. The only pre-process of image data is mean subtraction, 
i.e. subtract the mean value of all input to every pixel. Since the width and height of original data set is 
variant, we simply resize the longer edge of all input images to 224 pixels while keeping the image ratio 
unchanged, and padding the stride edge with noise pixels. Also in order to increase the accuracy we 
applied the bounding boxes to the images, because for a large amount of the images in ILSVRC 2012 
data set, we found unrelated background interferes the object of images, e.g. in images under the class 
‘fish’ one could found many images contain the fishing man. We consider these images obviously have 
different abstract feature from those only containing one fish filling the whole image. For image 
classification task this method could improve the accuracy a little bit, and we consider the localization 
of the object is not contained in this task.  

Our learning rate update method follows polynomial learning policy, which is known to be the 
faster learner for the architecture. This method greatly reduced the iterations until the network 
converges while achieving almost the same accuracy as the original SGD policy. The equation is 
described below. 

𝐹 𝑖 = 𝑙 ∗ (1 −
𝑖
𝑚
)3 

In this equation, 𝑖 is the present iteration, 𝑚 = 2400000 is the max iteration, 𝑙 = 0.01 is the 
initial learning rate and 𝑝 = 0.5 is the decay power parameter. It can be seen when reaching max 
iteration, the learning rate becomes 0.  
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figure 4.1 network architecture 
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4.3 Results 
 
In the first experiment we focused on topology of deep neural network, and inspect the 

influence of each part in inception module of GoogLeNet [14]. We observed that by applying cropping 
and resizing of training images using their bounding-boxes would help accelerate the training process, 
which greatly shortening the training time for the network to reach 75% accuracy. In all experiments 
we used these revised training data and used GoogLeNet we implemented on our environment as the 
baseline, and achieved a final accuracy of 89.39%. Due to experiment resource limitation we could only 
achieve results for early training phases. We stopped these models at nearly 420000 iterations (about 
11 epochs). To our surprise, during the early phase these modifications did not bring big impact on 
network accuracy. 

 

Figure 4.1 experiment on inception module 

The training process is illustrated in Figure 4.1. The x-axis indicates the training process, which 
tests accuracy for every 4000 iterations during training, and y-axis is test accuracy. Based on original 
GoogLeNet, we first tested the learning process not using bounding boxes to crop and resize the image 
(model B), it shows at the beginning accuracy increase slower. Then we tested the network without the 
5*5 convolutional layers (model C) or max-pooling layers (model D) in inception module, which is to 
our surprise achieved almost the same accuracy as the original network. At last we experimented 
exchanging 5*5 to 3*3 convolutions (model A), which increased 0.5% recognition rate after 420000 
iterations, while original GoogLeNet also reached 75% accuracy. 

For the second experiment we inspect the effect of 5*5 convolution in inception module. We 
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changed all 5*5 convolution layers in inception module to 3*3 convolutions. We observed almost no 
difference on final accuracy, though it decreased for 0.4% but also indicated that 3*3 convolution can 
replace 5*5 convolution in higher layers. We also proposed a model where two 3*3 convolutional layers 
is replaced by one 5*5 and we denote this as CanalNet-A. Finally, we experimented topology described 
in Figure 3.2, it has been shown that adopting two stacked 3*3 convolutional layers can improve 
performance with fewer weight parameters. We denote this model as CanalNet-B. These experiment 
are listed in Table 4.2. Notice that we finished training this time, which took nearly 40 epochs for our 
fast learning method. 

model top-5 error 

GoogLeNet-reported [14] 10.07% 

GoogLeNet-ours 10.61% 

CanalNet-A 9.58% 

CanalNet-B 1* 

Table 4.2 module modification 

As we could see by removing 5*5 and stack up two 3*3 convolutions improved performance 
for 1.02% after finish the training process. This indicated that in such a deep neural network, large size 
convolution filters become unnecessary. Also by further increasing depth of the module could 
contribute to improving performance on large data set.  

In the last experiment we test our proposal for contrastive learning and branch-increasing 
network. We choose the best result of our second experiment, CanalNet-B as our basic network 
architecture. Based on topology of CanalNet-B, we exchanged the max-pooling layers to our 
contrastive-pooling, and we denote this new model as CanalNet-C. In addition, we add several branches 
to CanalNet-C in order to observe the influence on such topology. We denote this network as CanalNet-
D. The results are listed in table 4.3. 

model top-5 error 

CanalNet-A 9.58% 

CanalNet-C 2* 

CanalNet-D 3* 

Table 4.3 contrastive learning 

																																																								
*1,2,3 These experiments are not finish now, the results will be added in future version. 
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5. Conclusions 

 
This research aims at increasing deep convolutional neural network performance by exploiting 

the network topology and improving the accuracy with implementation for contrastive learning. Our 
proposal focus on increasing depth of local network module, and replacing expensive large filter size 
convolution with stacked small size ones, adding branches in order to help network search for best 
topology automatically. In addition, we proposed a new pooling method for fast contrastive learning, 
by implementing the feature of receptive field to accelerate the learning process along with further 
reducing cost. We achieved better results compare to previous research without increasing computing 
cost by applying complicated training methodology, thus our model could use for practical applications. 
Finally our conclusion on exploiting network topology is compatible to all data augmentation methods 
that contributed to present state-of-the-art results. In future work we are expecting to experiment on 
such conditions and achieve better results. 
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