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Abstract

In this paper , we study well-posedness issues in the weighted L2

space for the Cauchy problem for the wave equation of the form ∂2
t u−

a(t, x)∂2
xu = 0. We give the condition a(t, x) > 0 for all (t, x) ∈

[0, T ] × Rx which is between the strictly hyperbolic condition and
weakly hyperbolic one, and allows the decaying coefficient a(t, x) such
that lim|x|→∞ a(t, x) = 0 for all t ∈ [0, T ]. Our concerns are the loss
of derivatives and decays of the solutions.
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1 Introduction

We consider the Cauchy problem on [0, T ]×Rx{
∂2
t u− a(t, x)∂2

xu = 0,
u(0, x) = u0(x), ∂tu(0, x) = u1(x),

(1.1)

where the real coefficient a(t, x) satisfies

a(t, x) > 0 for all (t, x) ∈ [0, T ]×Rx. (1.2)

A standard hyperbolic condition is usually given as follows:

a(t, x) ≥ cT for all (t, x) ∈ [0, T ]×Rx. (1.3)
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For the cases cT > 0 and cT = 0, we call strictly hyperbolic and weakly
hyperbolic respectively. So, the condition (1.2) is between the strictly hyper-
bolic condition and weakly hyperbolic one, and allows the decaying coeffi-
cient a(t, x) such that lim|x|→∞ a(t, x) = 0 for all t ∈ [0, T ] like an integrable
function on Rx. Then we shall assume that

a(t, x) ∈ C1
(
[0, T ]× C2(Rx)

)
. (1.4)

In the strictly hyperbolic case, more relaxed assumptions can be considered
(see [2], [7]). But, the assumption (1.4) is not enough to show the well-
posedness in the weakly hyperbolic case. Therefore, we also assume that

|∂ta(t, x)| ≤ M(t)a(t, x) with M(t) ∈ L1(0, T ) for (t, x) ∈ [0, T ]×Rx. (1.5)

Remark 1.1 The assumption (1.5) under the (standard) weakly hyperbolic
condition (1.3) with cT = 0 would be strong (see [10]), but the assumption
(1.5) (under the condition (1.2)) is not so restrictive. Indeed, when the
coefficient has the form a(t, x) = a1(t)a2(x) (including the case independent
of t), thanks to (1.2) there exists a constant M(≡ M(t)) such that

|∂ta(t, x)| = |∂ta1(t)|a2(x) ≤ Ca2(x) ≤ Ma1(t)a2(x) = Ma(t, x),

here we used the fact that a1(t) must satisfies a1(t) ≥ cT > 0 on the compact
set [0, T ] (since a1(t0) = 0 for some t0 ∈ [0, T ] contradicts (1.2)).

The assumption (1.5) plays a similar role as the regularity assumption Ck

under the (standard) weakly hyperbolic condition (1.3) with cT = 0 (see [5],
[6], [8], [9], [12], etc.). Actually, defining the energy

E(t)2 := ∥∂tu∥2L2(Rx) +
∥∥∥a(t, x)1/2∂xu∥∥∥2

L2(Rx)
+ δ∥u∥2L2(Rx), (1.6)

a standard argument gives the energy inequality E(t)2 ≤ E(0)2 which can
be translated into the following estimate of the solution:

∥∂tu∥2L2(Rx) + δ∥u∥2L2(Rx) ≤ E(t)2 ≤ E(0)2 ≤ ∥u1∥2L2(Rx) + (A+ δ)∥u0∥2H1(Rx),

where A := sup(t,x)∈[0,T ]×Rx
a(t, x). The usual loss of derivatives means the

decreasing weight functions in the Fourier space (see [11], etc.). Though this
estimate does not include a weight function, it can be regarded as the second
type of loss of derivatives, since ∥u0∥2H1(Rx)

in the righthand side corresponds

to not ∥u∥2H1(Rx)
but ∥u∥2L2(Rx)

in the lefthand side. In this paper we shall
propose a new kind of the energy to avoid such a loss of derivatives.
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Remark 1.2 If we suppose that the initial data have (fixed) compact sup-
ports, from the finite propagation property, we may use just the energy E(t)2

with δ = 0 under the strictly hyperbolic condition (1.3) with cT > 0. Then,
usual loss of derivatives and the second type of loss of derivatives never occur
for the strictly hyperbolic case, since there exists c′T > 0 such that

∥∂tu∥2L2(Rx) + c′T∥u∥2H1(Rx) ≤ E(t)2 ≤ E(0)2 ≤ ∥u1∥2L2(Rx) + A∥u0∥2H1(Rx).

We have to investigate how the supports of the initial data can be en-
larged. So, our strategy is to consider the weight functions which control the
solution degenerating at infinity. Now, let us consider the following example:
Example Let χR ∈ C∞(R) be a cut off function such that 0 ≤ χR(x) ≤ 1
and χR(x) = 0 for x ≤ 0, = 1 for x ≥ R(> 0) and the coefficient independent
of t

aR(t, x) =
{
1− χR(|x| − 2)

}
· 1 + χR(|x| − 2) · (x2 − 1)−1.

Put T = 1, u0(x) = u1(x) = e−x2/2 and a(t, x) = a1(t, x) (with R = 1)
satisfying (1.2), (1.4), (1.5), that is, the Cauchy problem on [0, 1]×Rx{

∂2
t u− a1(t, x)∂

2
xu = 0,

u(0, x) = e−x2/2, ∂tu(0, x) = e−x2/2.
(1.7)

Then, we find the following (i) and (ii):

(i) The coefficient a1(t, x) satisfies A1 := sup(t,x)∈[0,1]×Rx
a1(t, x) ≤ 1 . More

precisely, a1(t, x) has a polynomial decay such as

c⟨x⟩−2 ≤ a1(t, x) ≤ C⟨x⟩−2 (≤ 1) for all (t, x) ∈ [0, 1]×Rx.

(ii) For the initial data u0, u1 having a super-exponential decay, there exists
a unique solution u having a super-exponential decay such that the loss of
derivatives does not occur.

(i) is trivial. In order to show (ii), we prepare the auxiliary Cauchy
problems (CP1), (CP2) and (CP3).

(CP1): u(1)(t, x) and u
(1)
0 (x) = u

(1)
1 (x) = {1− χ(|x| − 2)}e−x2/2,

(CP2): u(2)(t, x) and u
(2)
0 (x) = u

(2)
1 (x) = χ(|x| − 2)e−x2/2,

(CP3): u(3)(t, x) and u
(3)
0 (x) = u

(3)
1 (x) = χ(|x| − 2){1− χ(|x| − 5)}e−x2/2.
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We immediately see that superposition principle gives the solution of (1.7)
u(t, x) ≡ u(1)(t, x) + u(2)(t, x). By Remark 1.2 we obtain the solutions
u(1)(t, x) and u(3)(t, x) of (CP1) and (CP3) such that the loss of deriva-
tives does not occur. So, our concern is the loss of derivatives of u(2)(t, x).
By uniqueness and finite propagation speed, we know that

u(2)(t, x) ≡

 et−x2/2 for t ∈ [0, 1] and |x| ≥ 2 +R +
√
A1,

u(3)(t, x) for t ∈ [0, 1] and |x| ≤ 5−
√
A1,

noting that u
(2)
0 (x) ≡ u

(3)
0 (x) for all x ∈ [−5, 5]. Since R = 1 and A1 ≤ 1,

u(2)(t, x) is determined for all (t, x) ∈ [0, 1]×Rx. Thus, we find that u(2)(t, x)
has a super-exponential decay such that the loss of derivatives does not occur.
This also means (ii) for u(t, x).

From the above example, the following questions arise when a(t, x) has a
polynomial decay and the initial data u0, u1 have a (sub- or super-)exponential
decay:

Question 1: Would not the (second type of) loss of derivatives for the solution
of the Cauchy problem (1.1) under (1.2) occur in general?

Question 2: Can we expect that the solution keeps to have a (sub- or super-)
exponential decay same as the initial data?

We shall give answers for these questions in the next section.

2 Energy Estimate

Wemay suppose thatA := sup(t,x)∈[0,T ]×Rx
a(t, x) ≤ 1 by considering u(t, x) =

U(t, x/
√
A) without loss of generality. Now we define the energy

E(t)2 :=
∥∥∥eρ(t)a(t,x)−γ

∂tu
∥∥∥2
L2

+
∥∥∥a(t, x)1/2eρ(t)a(t,x)−γ

∂xu
∥∥∥2
L2

+ δ
∥∥∥eρ(t)a(t,x)−γ

u
∥∥∥2
L2
,

(2.1)
where γ > 0 and ρ(t) is a differentiable function such that ρ′(t) < 0.

Remark 2.1 Under our condition (1.2), we remark that a(t, x)1/2eρ(t)a(t,x)
−γ ≥

cεe
(ρ(t)−ε)a(t,x)−γ

. Then, we get∥∥∥a(t, x)1/2eρ(t)a(t,x)−γ

∂xu
∥∥∥2
L2

≥ cε
∥∥∥e(ρ(t)−ε)a(t,x)−γ

∂xu
∥∥∥2
L2
, (2.2)
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even when lim|x|→∞ a(t, x) = 0. Consequently, this enables us to avoid a
second type of loss of derivatives. In the below proof our task is to check
carefully whether the use of the weight eρ(t)a(t,x)

−γ
is suitable for the energy

computations.

By differentiating E(t)2 in t, we have

∂t{E(t)2}
= ∂t

{(
eρa

−γ

ut, eρa
−γ

ut

)
+
(
aeρa

−γ

ux, eρa
−γ

ux

)
+ δ

(
eρa

−γ

u, eρa
−γ

u
)}

≤ 2ρ′
∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2 + 2γ|ρ|
∥∥∥|at|1/2a−(γ+1)/2eρa

−γ

ut

∥∥∥2
+2ℜ

(
eρa

−γ

utt, eρa
−γ

ut

)
+2ρ′

∥∥∥a(1−γ)/2eρa
−γ

ux

∥∥∥2 + 2γ|ρ|
∥∥∥|at|1/2a−γ/2eρa

−γ

ux

∥∥∥2
+
∥∥∥|at|1/2eρa−γ

ux

∥∥∥2 + 2ℜ
(
aeρa

−γ

utx, eρa
−γ

ux

)
+2δρ′

∥∥∥a−γ/2eρa
−γ

u
∥∥∥2 + 2δγ|ρ|

∥∥∥|at|1/2a−(γ+1)/2eρa
−γ

u
∥∥∥2

+2δℜ
(
eρa

−γ

ut, eρa
−γ

u
)

= 2ρ′
∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2 + 2γ|ρ|
∥∥∥|at|1/2a−(γ+1)/2eρa

−γ

ut

∥∥∥2
+2ℜ

(
eρa

−γ

auxx, eρa
−γ

ut

)
+2ρ′

∥∥∥a(1−γ)/2eρa
−γ

ux

∥∥∥2 + 2γ|ρ|
∥∥∥|at|1/2a−γ/2eρa

−γ

ux

∥∥∥2
+
∥∥∥|at|1/2eρa−γ

ux

∥∥∥2 − 2ℜ
(
ut, ∂xae

2ρa−γ

ux

)
+2δρ′

∥∥∥a−γ/2eρa
−γ

u
∥∥∥2 + 2δγ|ρ|

∥∥∥|at|1/2a−(γ+1)/2eρa
−γ

u
∥∥∥2

+2δℜ
(
eρa

−γ

ut, eρa
−γ

u
)

= 2ρ′
∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2 + 2ρ′
∥∥∥a(1−γ)/2eρa

−γ

ux

∥∥∥2 + 2δρ′
∥∥∥a−γ/2eρa

−γ

u
∥∥∥2

+2γ|ρ|
∥∥∥|at|1/2a−(γ+1)/2eρa

−γ

ut

∥∥∥2 + 2δγ|ρ|
∥∥∥|at|1/2a−(γ+1)/2eρa

−γ

u
∥∥∥2

+2γ|ρ|
∥∥∥|at|1/2a−γ/2eρa

−γ

ux

∥∥∥2 + ∥∥∥|at|1/2eρa−γ

ux

∥∥∥2
−2ℜ

(
ut, axe

2ρa−γ

ux

)
+ 4γρℜ

(
ut, a−γaxe

2ρa−γ

ux

)
+ 2δℜ

(
eρa

−γ

ut, eρa
−γ

u
)

=: I + II + III + IV + V + V I + V II + V III + IX +X.

By (1.5) we also get

IV + V ≤ 2Mγ|ρ|
∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2 + 2Mδγ|ρ|
∥∥∥a−γ/2eρa

−γ

u
∥∥∥2,
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V I ≤ 2Mγ|ρ|
∥∥∥a(1−γ)/2eρa

−γ

ux

∥∥∥2,
V II ≤ M

∥∥∥a1/2eρa−γ

ux

∥∥∥2.
By (1.4) from the Glaeser inequality with respect to x, i.e., |∂xa(t, x)| ≤
Ka(t, x)1/2 for (t, x) ∈ R2, we get

V III = −2ℜ
(
K1/2a−γ/2eρa

−γ

ut, K−1/2aγ/2axe
ρa−γ

ux

)
≤ K

∥∥∥a−γ/2eρa
−γ

ut

∥∥∥2 +K−1
∥∥∥aγ/2axeρa−γ

ux

∥∥∥2
≤ K

∥∥∥a−γ/2eρa
−γ

ut

∥∥∥2 +K
∥∥∥a(1+γ)/2eρa

−γ

ux

∥∥∥2,
IX = −4γρℜ

(
K1/2a−γ/2eρa

−γ

ut, K−1/2a−γ/2axe
ρa−γ

ux

)
≤ 2Kγ|ρ|

∥∥∥a−γ/2eρa
−γ

ut

∥∥∥2 + 2K−1γ|ρ|
∥∥∥a−γ/2axe

ρa−γ

ux

∥∥∥2
≤ 2Kγ|ρ|

∥∥∥a−γ/2eρa
−γ

ut

∥∥∥2 + 2Kγ|ρ|
∥∥∥a(1−γ)/2eρa

−γ

ux

∥∥∥2,
X = 2δℜ

(
eρa

−γ

ut, eρa
−γ

u
)
≤ δ

∥∥∥eρa−γ

ut

∥∥∥2 + δ
∥∥∥eρa−γ

u
∥∥∥2.

Summing up these terms and taking δ = 1, we have

∂t{E(t)2}
≤ 2

{
ρ′ + γ(M +K)|ρ|

}
×
{∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2 + ∥∥∥a(1−γ)/2eρa
−γ

ux

∥∥∥2 + δ
∥∥∥a−γ/2eρa

−γ

u
∥∥∥2}

+(M +K)
{∥∥∥a1/2eρa−γ

ux

∥∥∥2 + ∥∥∥a(1+γ)/2eρa
−γ

ux

∥∥∥2}
+δ
{∥∥∥eρa−γ

ut

∥∥∥2 + ∥∥∥eρa−γ

u
∥∥∥2}

≤ 2
{
ρ′ + γ(M +K)|ρ|+ 1

2
(M +K + 1)

}
×
{∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2 + ∥∥∥a(1−γ)/2eρa
−γ

ux

∥∥∥2 + ∥∥∥a−γ/2eρa
−γ

u
∥∥∥2}, (2.3)

here we used that a1/2 ≤ a(1−γ)/2, a(1+γ)/2 ≤ a(1−γ)/2 and a−γ/2 ≥ 1 for γ > 0,
thanks to 0 < a ≤ 1. Now we shall solve the ordinary differential equation

ρ′ + γ(M +K)|ρ|+ 1

2
(M +K + 1) = 0. (2.4)

When ρ0 > 0, we shall put the one point t = t0 > 0 such that

ρ0 =
1

2

∫ t0

0
eγ
∫ s

0
(M+K)dτ (M +K + 1)ds
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and choose

ρ(t) =



eγ
∫ t

0
(M+K)dτ

{
ρ0 − 1

2

∫ t
0 e

−γ
∫ s

0
(M+K)dτ (M +K + 1)ds

}
if ρ0 ≤ 0 and 0 ≤ t ≤ T,

e−γ
∫ t

0
(M+K)dτ

{
ρ0 − 1

2

∫ t
0 e

γ
∫ s

0
(M+K)dτ (M +K + 1)ds

}
if ρ0 > 0 and 0 ≤ t ≤ t0,

e
γ
∫ t

t0
(M+K)dτ

{
ρ(t0)− 1

2

∫ t
t0
e
−γ
∫ s

t0
(M+K)dτ

(M +K + 1)ds
}

if ρ0 > 0 and t0 ≤ t ≤ T,

(2.5)

where we remark that ρ(t0) = 0. Then, we see that

E(t)2 ≤ E(0)2.

Hence, it follows that for γ > 0∥∥∥eρ(t)a(t,x)−γ

∂tu
∥∥∥2
L2

+
∥∥∥a(t, x)1/2eρ(t)a(t,x)−γ

∂xu
∥∥∥2
L2

+
∥∥∥eρ(t)a(t,x)−γ

u
∥∥∥2
L2

≤
∥∥∥eρ0a(0,x)−γ

u1

∥∥∥2
L2

+
∥∥∥a(0, x)1/2eρ0a(0,x)−γ

∂xu0

∥∥∥2
L2

+
∥∥∥eρ0a(0,x)−γ

u0

∥∥∥2
L2
. (2.6)

Thus, noting (2.2), we can avoid the (second type of) loss of derivatives. This
is an answer of the Question 1 in §1. In particular, when there exist cT > 0,
CT > 0 and α ≥ 0 such that

cT ⟨x⟩−α ≤ a(t, x) ≤ CT ⟨x⟩−α for all (t, x) ∈ [0, T ]×Rx, (2.7)

noting the signature of ρ(t) and ρ0, we have for γ > 0∥∥∥emin{ρ(t)cT , ρ(t)CT }⟨x⟩αγ

∂tu
∥∥∥2
L2

+ cT
∥∥∥⟨x⟩−α/2emin{ρ(t)cT , ρ(t)CT }⟨x⟩αγ

∂xu
∥∥∥2
L2

+
∥∥∥emin{ρ(t)cT , ρ(t)CT }⟨x⟩αγ

u
∥∥∥2
L2

≤
∥∥∥emax{ρ0cT , ρ0CT }⟨x⟩αγ

u1

∥∥∥2
L2

+ CT

∥∥∥⟨x⟩−α/2emax{ρ0cT , ρ0CT }⟨x⟩αγ

∂xu0

∥∥∥2
L2

+
∥∥∥emax{ρ0cT , ρ0CT }⟨x⟩αγ

u0

∥∥∥2
L2
. (2.8)

So, the solution u also has a (sub- or super-)exponential decay.

Remark 2.2 In order to derive (2.8), we have not directly used the energy
as E(t)2 := ∥eρ(t)⟨x⟩γ∂tu∥2L2 + ∥a(t, x)1/2eρ(t)⟨x⟩γ∂xu∥2L2 + ∥eρ(t)⟨x⟩γu∥2L2 for the
energy computations. This would make the energy computations complicated
in our case. After getting the desired energy inequality with the energy (2.1),
we have replaced a(t, x)−γ by the power of ⟨x⟩ in the exponent as the above.
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Thus, we conclude the following theorem:

Theorem 2.3 Let ρ be defined by (2.5). Assume that a(t, x) satisfies (1.2),
(1.4) and (1.5). Then the Cauchy problem (1.1) has a unique solution u
satisfying (2.6). In particular, if a(t, x) has a polynomial decay as (2.7) and
the initial data u0, u1 have (sub- or super-)exponential decay, the Cauchy
problem (1.1) has a unique solution u having a (sub- or super-)exponential
decay and satisfying (2.8).

Remark 2.4 It is not necessary that the decreasing function ρ(t) is positive
on [0, T ] for the given T > 0. If we take a sufficiently large ρ0 > 0 such that
ρ(t) > 0 for t ∈ [0, T ], the (second type of) loss of derivatives does not occur,
since the weight functions in the 2nd terms in the left hand sides of (2.6) and
(2.8) do not disappear.

Remark 2.5 In general, weakly hyperbolic equations are concerned with the
study of the Levi condition ([3], [5], etc). If we consider the equation with
the lower order terms, i.e.,

∂2
t u− a(t, x)∂2

xu+ b(t, x)∂xu+ d(t, x)∂tu+ c(t, x)u = 0,

we also need Levi conditions

|b(t, x)| ≤ M(t)a(t, x)1/2 with M(t) ∈ L1(0, T ) for (t, x) ∈ [0, T ]×Rx, (2.9)

|d(t, x)|+ |c(t, x)| ≤ M(t) ∈ L1(0, T ) for (t, x) ∈ [0, T ]×Rx, (2.10)

where M(t) is arranged to be a positive function (M(t)−1/2, M(t)−1 exist).
Indeed, we have the additional terms in the energy computations, which can
be estimated as follows:

−2ℜ
(
eρa

−γ

bux, eρa
−γ

ut

)
= −2ℜ

(
M−1/2aγ/2beρa

−γ

ux, M1/2a−γ/2eρa
−γ

ut

)
≤ M−1

∥∥∥aγ/2beρa−γ

ux

∥∥∥2 +M
∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2
≤ M

∥∥∥a(1+γ)/2eρa
−γ

ux

∥∥∥2 +M
∥∥∥a−γ/2eρa

−γ

ut

∥∥∥2,
−2ℜ

(
eρa

−γ

dut, eρa
−γ

ut

)
≤ 2M

∥∥∥eρa−γ

ut

∥∥∥2,
−2ℜ

(
eρa

−γ

cu, eρa
−γ

ut

)
≤ M

∥∥∥eρa−γ

ux

∥∥∥2 +M
∥∥∥eρa−γ

ut

∥∥∥2. (2.11)

When c(t, x) > 0, we may replace δ∥eρ(t)a(t,x)−γ
u∥2L2 by ∥c(t, x)1/2eρ(t)a(t,x)

−γ
u∥2L2

in the energy (2.1). Then the term (2.11) is canceled in the energy compu-
tations.
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The energy (2.1) includes the parameter γ > 0. We can also consider the
case corresponding to γ = 0 with the following energy instead of (2.1):

E(t)2

:=
∥∥∥eρ(t) log a(t,x)−1

∂tu
∥∥∥2
L2
+
∥∥∥a(t, x)1/2eρ(t) log a(t,x)−1

∂xu
∥∥∥2
L2
+δ
∥∥∥eρ(t) log a(t,x)−1

u
∥∥∥2
L2(

=
∥∥∥a(t, x)−ρ(t)∂tu

∥∥∥2
L2
+
∥∥∥a(t, x)1/2−ρ(t)∂xu

∥∥∥2
L2
+ δ

∥∥∥a(t, x)−ρ(t)u
∥∥∥2
L2

)
. (2.12)

In the energy computations, we replace γ by 0 in the inside of the norms or
the inner products (but replace γ by 1 in the outside of them). Similarly we
have the estimate instead of (2.3)

∂t{E(t)2} ≤ 2
{
ρ′ + (M +K)|ρ|+ 1

2
(M +K + 1)

}{∥∥∥(log a−1)1/2eρ log a
−1

ut

∥∥∥2
+
∥∥∥(a log a−1)1/2eρ log a

−1

ux

∥∥∥2 + ∥∥∥(log a−1)1/2eρ log a
−1

u
∥∥∥2}, (2.13)

and solve the ordinary differential equation

ρ′ + (M +K)|ρ|+ 1

2
(M +K + 1) = 0.

When ρ0 > 0, we shall put the one point t = t0 > 0 such that

ρ0 =
1

2

∫ t0

0
e
∫ s

0
(M+K)dτ (M +K + 1)ds

and choose

ρ(t) =



e
∫ t

0
(M+K)ds

{
ρ0 − 1

2

∫ t
0 e

−
∫ s

0
(M+K)dτ (M +K + 1)ds

}
if ρ0 ≤ 0 and 0 ≤ t ≤ T,

e−
∫ t0
0

(M+K)ds
{
ρ0 − 1

2

∫ t
0 e
∫ s

0
(M+K)dτ (M +K + 1)ds

}
if ρ0 > 0 and 0 ≤ t ≤ t0,

e
∫ t

t0
(M+K)ds

{
ρ(t0)− 1

2

∫ t
t0
e
−
∫ s

t0
(M+K)dτ

(M +K + 1)ds
}

if ρ0 > 0 and t0 ≤ t ≤ T,

(2.14)

where we remark that ρ(t0) = 0. Then, we see that ∂t{E(t)2} ≤ 0 and
E(t)2 ≤ E(0)2. Hence, by it follows that∥∥∥a(t, x)−ρ(t)∂tu

∥∥∥2
L2

+
∥∥∥a(t, x)1/2−ρ(t)∂xu

∥∥∥2
L2

+
∥∥∥a(t, x)−ρ(t)u

∥∥∥2
L2

≤
∥∥∥a(0, x)−ρ0u1

∥∥∥2
L2

+
∥∥∥a(0, x)1/2−ρ0∂xu0

∥∥∥2
L2

+
∥∥∥a(0, x)−ρ0u0

∥∥∥2
L2
,(2.15)
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and in particular under (2.7) with cT > 0 and CT > 0∥∥∥⟨x⟩αρ(t)∂tu∥∥∥2
L2

+ cT
∥∥∥⟨x⟩α{ρ(t)−1/2}∂xu

∥∥∥2
L2

+
∥∥∥⟨x⟩αρ(t)u∥∥∥2

L2

≤
∥∥∥⟨x⟩αρ0u1

∥∥∥2
L2

+ CT

∥∥∥⟨x⟩α{ρ0−1/2}∂xu0

∥∥∥2
L2

+
∥∥∥⟨x⟩αρ0u0

∥∥∥2
L2
. (2.16)

Thus, we get the following:

Theorem 2.6 Let ρ be defined by (2.14). Assume that a(t, x) satisfies (1.2),
(1.4) and (1.5). Then the Cauchy problem (1.1) has a unique solution u
satisfying (2.15). In particular, if a(t, x) has a polynomial decay as (2.7)
and the initial data u0, u1 have polynomial decays, the Cauchy problem (1.1)
has a unique solution u having a polynomial decay and satisfying (2.16).

A result when the initial data having less regularities can be given, is
better in the study of the wellposedness of Cauchy problems. So, one will also
think that Theorem 2.6 is a better result than Theorem 2.3 in sense that the
initial data having less decays can be given. Similarly as the technical term
“finite loss of derivatives”, we may call “finite loss of decays” for (2.16). The
energy inequality (2.16) corresponding to γ = 0 with α = 2 (and especially
ρ0 = 1/2) becomes

∥⟨x⟩2ρ(t)∂tu∥2L2 + cT∥⟨x⟩2ρ(t)−1∂xu∥2L2 + ∥⟨x⟩2ρ(t)u∥2L2

≤ ∥⟨x⟩u1∥2L2 + CT∥∂xu0∥2L2 + ∥⟨x⟩u0∥2L2 . (2.17)

But, if we consider the Cauchy problem (1.7), the energy inequality (2.17)
does not show a positive answer for the Question 2 in §1. On the other
hand, the energy inequality (2.8) with γ = 1 and α = 2 in Theorem 2.3 just
becomes∥∥∥emin{ρ(t)cT , ρ(t)CT }⟨x⟩2∂tu

∥∥∥2
L2

+ cT
∥∥∥⟨x⟩−1emin{ρ(t)cT , ρ(t)CT }⟨x⟩2∂xu

∥∥∥2
L2

+
∥∥∥emin{ρ(t)cT , ρ(t)CT }⟨x⟩2u

∥∥∥2
L2

≤
∥∥∥emax{ρ0cT , ρ0CT }⟨x⟩2u1

∥∥∥2
L2

+ CT

∥∥∥⟨x⟩−1emax{ρ0cT , ρ0CT }⟨x⟩2∂xu0

∥∥∥2
L2

+
∥∥∥emax{ρ0cT , ρ0CT }⟨x⟩2u0

∥∥∥2
L2
. (2.18)

(2.18) means that the solution keeps to have a super-exponential decay same
as the initial data (see the example in §1). This is an answer of the Question
2.
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Remark 2.7 If one considers the standard energy (1.6), that is (2.12) with
ρ = 0, one would obtain the following instead of (2.13):

∂t{E(t)2} ≤ (M +K + 1)
{
∥ut∥2 + ∥a1/2ux∥2 + ∥u∥2

}
= (M +K + 1)E(t)2,

and E(t)2 ≤ e
∫ t

0
(M+K+1)dτE(0)2 and

∥∂tu∥2+∥a1/2∂xu∥2+∥u∥2 ≤ e
∫ t

0
(M+K+1)dτ

{
∥u1∥2+∥a(0, x)1/2∂xu0∥2+∥u0∥2

}
.

Under the condition (1.2) the left hand side should be changed into ∥∂tu∥2 +
∥u∥2. So, the second type of loss of derivatives occurs for the standard energy
(1.6). From this inequality with the standard energy, we do not know any
information about the loss of decay.

Remark 2.8 Thanks to the use of the loss of decays, we can avoid the second
type of loss of derivatives for the decaying coefficient a(t, x), but can not
expect the time decay of solutions. [13] and [14] developed the theory of
Fourier integral operators which help us to construct the parametrix, and gave
weighted estimates for hyperbolic equations, where the decay in x is translated
into the time decay of solutions.

In the above, we have proved the global results with respect to x by the
global condition (1.2). If we give compactly supported initial data, by the
finite propagation property we may consider the problem locally with respect
to x. Instead of (1.2), we shall assume

(A ≥)a(t, x) > 0 for all (t, x) ∈ [0, T ]×Rx\{0}, (2.19)

which is regarded as a local condition around x = 0. Without changes of
other conditions and the proof, we can also obtain the following:

Corollary 2.9 Let ρ be defined by (2.5) (resp. (2.14)). Assume that a(t, x)
satisfies (1.4), (1.5) and (2.19). Then the Cauchy problem (1.1) has a unique
solution u satisfying (2.6) (resp. (2.15)). In particular, if there exist cT > 0,
CT > 0 and α ≥ 0 such that

cT |x|α ≤ a(t, x) ≤ CT |x|α for all (t, x) ∈ [0, T ]×Rx, (2.20)
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the Cauchy problem (1.1) has a unique solution u satisfying∥∥∥emin{ρ(t)cT , ρ(t)CT }|x|−αγ

∂tu
∥∥∥2
L2

+ cT
∥∥∥|x|α/2emin{ρ(t)cT , ρ(t)CT }|x|−αγ

∂xu
∥∥∥2
L2

+
∥∥∥emin{ρ(t)cT , ρ(t)CT }|x|−αγ

u
∥∥∥2
L2

≤
∥∥∥emax{ρ0cT , ρ0CT }|x|−αγ

u1

∥∥∥2
L2

+ CT

∥∥∥|x|α/2emax{ρ0cT , ρ0CT }|x|−αγ

∂xu0

∥∥∥2
L2

+
∥∥∥emax{ρ0cT , ρ0CT }|x|−αγ

u0

∥∥∥2
L2(

resp.
∥∥∥|x|−αρ(t)∂tu

∥∥∥2
L2

+ cT
∥∥∥|x|−α{ρ(t)−1/2}∂xu

∥∥∥2
L2

+
∥∥∥|x|−αρ(t)u

∥∥∥2
L2

≤
∥∥∥|x|−αρ0u1

∥∥∥2
L2

+ CT

∥∥∥|x|−α{ρ0−1/2}∂xu0

∥∥∥2
L2

+
∥∥∥|x|−αρ0u0

∥∥∥2
L2

)
.

Remark 2.10 In order that a(t, x) belongs to C2 with respect to x as (1.4),
actually α should satisfy α ≥ 2.

The last energy inequality corresponding to γ = 0 with α = 2 (and especially
ρ0 = 1/2) becomes

∥|x|−2ρ(t)∂tu∥2L2 + cT∥|x|−2ρ(t)+1∂xu∥2L2 + ∥|x|−2ρ(t)u∥2L2

≤ ∥|x|−1u1∥2L2 + CT∥∂xu0∥2L2 + ∥|x|−1u0∥2L2 .

If the initial data u0 and u1 have degeneration of polynomial order at x = 0,
the right hand side is finite. So, we find that the solution u must degenerate
at x = 0 for the degenerating coefficient a(t, x) (propagation speed 0 at
x = 0).

Remark 2.11 The case when the coefficient is just a(t, x) ≡ x2, satisfies
(2.20) with cT = CT = 1 and α = 2, but not (2.19) with A < ∞. If we
give compactly supported initial data, the finite propagation property allows
the coefficient a(t, x) ≡ x2 with some modifications to satisfy (2.19). Indeed,
[1] shows the following representation formula of the exact solution u with
a(t, x) ≡ x2 and u0 ≡ 0:

u(t, x) = t
∫ 1

−1

u1(xe
yt)

2e
yt
2

J0

(
t
√
1− y2

2

)
dy,

where J0(x) is the Bessel function of order 0, i.e., J0(x) =
∑∞

n=0(−x2

4
)n/(n!)2.

Hence, we really find that the solution u degenerates at x = 0 if u1(0) = 0.
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