
Epitaxial growth and magnetic properties of NixFe4-xN (x = 0, 1, 3, and 4) films on
SrTiO3(001) substrates
Fumiya Takata, Keita Ito, Soma Higashikozono, Toshiki Gushi, Kaoru Toko, and Takashi Suemasu 
 
Citation: Journal of Applied Physics 120, 083907 (2016); doi: 10.1063/1.4961734 
View online: http://dx.doi.org/10.1063/1.4961734 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/120/8?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Perpendicular magnetic anisotropy of Mn4N films on MgO(001) and SrTiO3(001) substrates 
J. Appl. Phys. 115, 17A935 (2014); 10.1063/1.4867955 
 
Magnetic and structural properties of BiFeO3 thin films grown epitaxially on SrTiO3/Si substrates 
J. Appl. Phys. 113, 17D919 (2013); 10.1063/1.4796150 
 
Structural and magnetic characterizations of Mn2CrO4 and MnCr2O4 films on MgO(001) and SrTiO3(001)
substrates by molecular beam epitaxy 
J. Appl. Phys. 109, 07D714 (2011); 10.1063/1.3545802 
 
Spin and orbital magnetic moments of molecular beam epitaxy γ ′ -Fe 4 N films on LaAlO 3 ( 001 ) and MgO(001)
substrates by x-ray magnetic circular dichroism 
Appl. Phys. Lett. 98, 102507 (2011); 10.1063/1.3564887 
 
Correlation between structural deformation and magnetoelectric response in ( 1 − x ) Pb ( Zr 0.52 Ti 0.48 ) O 3 –
x Ni Fe 1.9 Mn 0.1 O 4 particulate composites 
Appl. Phys. Lett. 91, 162905 (2007); 10.1063/1.2799261 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  130.158.56.100 On: Fri, 04 Nov 2016

02:23:44

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1064718782/x01/AIP-PT/JAP_ArticleDL_102616/AIP-2968_JAP_1640x440r2.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Fumiya+Takata&option1=author
http://scitation.aip.org/search?value1=Keita+Ito&option1=author
http://scitation.aip.org/search?value1=Soma+Higashikozono&option1=author
http://scitation.aip.org/search?value1=Toshiki+Gushi&option1=author
http://scitation.aip.org/search?value1=Kaoru+Toko&option1=author
http://scitation.aip.org/search?value1=Takashi+Suemasu&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4961734
http://scitation.aip.org/content/aip/journal/jap/120/8?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/115/17/10.1063/1.4867955?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/113/17/10.1063/1.4796150?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/7/10.1063/1.3545802?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/7/10.1063/1.3545802?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/98/10/10.1063/1.3564887?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/98/10/10.1063/1.3564887?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/91/16/10.1063/1.2799261?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/91/16/10.1063/1.2799261?ver=pdfcov


Epitaxial growth and magnetic properties of NixFe4-xN (x 5 0, 1, 3, and 4) films
on SrTiO3(001) substrates

Fumiya Takata,1 Keita Ito,1,2,3,a) Soma Higashikozono,1 Toshiki Gushi,1 Kaoru Toko,1

and Takashi Suemasu1

1Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305-8573, Japan
2Department of Electronic Engineering, Graduate School of Engineering, Tohoku University,
Sendai 980-8579, Japan
3Japan Society for the Promotion of Science (JSPS), Chiyoda, Tokyo 102-0083, Japan

(Received 7 June 2016; accepted 16 August 2016; published online 29 August 2016)

The 20–60 nm-thick epitaxial NixFe4-xN (x¼ 0, 1, 3, and 4) films were successfully fabricated on

SrTiO3(001) single-crystal substrates by alternating the substrate temperature (Tsub), and their crystal-

line qualities and magnetic properties were investigated. It was found that the crystal orientation and

the degree of order of N site were improved with the increase of Tsub for x¼ 1 and 3. The lattice con-

stant and saturation magnetization decreased as the Ni content increased. This tendency was in good

agreement with first-principle calculation. Curie temperature of the Ni3FeN film was estimated to be

266 K from the temperature dependence of magnetization. The Ni4N film was not ferromagnetic but

paramagnetic due to its low degree of order of N site. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961734]

I. INTRODUCTION

In recent years, great attention has been paid to anti-

perovskite type 3d transition metal ferromagnetic nitrides

as a new spintronics material due to their excellent elec-

tronic and magnetic properties. The crystal structure of

these materials is shown in Fig. 1, in which the transition

metal atoms occupy the corner (I) and face-center (II) sites

and the N atom occupies the body-center site. The II sites

can be further classified into IIA and IIB. Fe4N, one of these

compounds, is theoretically predicted to have a very large

negative spin-polarization of electrical conductivity.1 The

high spin-polarization of Fe4N was experimentally demon-

strated via the point-contact Andreev reflection technique

and the large tunneling magnetoresistance (TMR) effect in

the magnetic tunneling junction (MTJ) with Fe4N electro-

des.2,3 Moreover, an inverse TMR ratio of �75% in CoFeB/

MgO/Fe4N MTJs and negative anisotropic magnetoresis-

tance (AMR) effects, originating from the negative spin-

polarization of Fe4N, were reported.4–8

Substitution of other 3d transition metal atoms for Fe

in the Fe4N lattice is an effective means to modify their

magnetic properties. For example, CoxFe4–xN, where Fe

atoms are partially replaced with Co atoms, is theoretically

expected to exhibit a larger negative spin-polarization of

density of states (DOS) at Fermi level (EF) than Fe4N.9 Up

to now, we have succeeded in fabricating these binary 3d
nitrides such as CoxFe4–xN and CoxMn4–xN by molecular

beam epitaxy (MBE) and revealed their magnetic and trans-

port properties.10–16

In this work, we focused on NixFe4–xN. There have

been several reports both by theory and by experiment on

NixFe4–xN, especially for x� 2.4.17–27 NiFe3N has some

similarities with Ni-Fe Invar alloys from the viewpoints of

thermal expansion and forced magnetostriction17 and has a

magnetic moment of 7.15 lB per formula unit.18 The struc-

tural and magnetic properties of NixFe4–xN(up to x¼ 2.4)

films grown on Si or glass substrates were reported.23–27

In contrast, studies on NixFe4–xN with higher Ni composi-

tions (x> 2.4) have been quite limited. Diao et al. demon-

strated that the lattice constant, the saturation magnetization

(Ms), and Curie temperature (Tc) of powdered NixFe4–xN

(0� x� 3.6) monotonically decreased with increasing

x. According to their results, Tc is 287 K, slightly lower

than the room temperature (RT) for x� 3.28 However, this is

inconsistent with a recent report showing that the Tc of

Ni3FeN is above RT because Ni3FeN epitaxial films exhib-

ited a large positive AMR ratio of approximately 6% at

RT.29 For these reasons, the Tc of Ni3FeN has not been

determined yet. In addition, we have only limited informa-

tion about the magnetic properties of Ni4N.30–33 In this

article, we fabricated 20–60 nm-thick NixFe4–xN epitaxial

films in a wide range of 0� x� 4 and examined their

FIG. 1. Crystal structure of anti-perovskite type 3d transition metal ferro-

magnetic nitrides. II site can be divided into IIA and IIB site.a)Electronic mail: keita.ito.729@gmail.com
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fundamental properties in detail comparing with first-

principle calculation.

II. METHOD

A. Experiments

We grew 20–60 nm-thick NixFe4–xN(x¼ 0, 1, 3, and 4)

films on SrTiO3 (STO) (001) single-crystal substrates by

MBE using solid sources of Ni and/or Fe and radio-frequency

(RF) N plasma. Substrate temperature (Tsub) was varied from

150 to 550 �C and the RF power was set to 105 W. The Ni/Fe

ratio was controlled by their crucible temperatures. The crys-

talline quality of grown films was evaluated by reflection

high-energy electron diffraction (RHEED) observed along the

STO[100] axis, out-of-plane (x–2h) x-ray diffraction (XRD),

and in-plane (/–2hv) XRD measurements with Cu-Ka

radiation. As a measure of the occupation probability of N

atom at the body center of NixFe4–xN, the degree of order (S),

defined by Eqs. (1) and (2),8,34 is utilized.

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iobs
100=Iobs

200

Ical
100=Ical

200

s
; (1)

Ical
hkl ¼ LP � w � F2

hkl � exp �2B
sin2h

k2

� �
; (2)

where Iobs
hkl and Ical

hkl are the integrated XRD intensities of the

(hkl) plane obtained by experiment and calculation, respec-

tively. In Eq. (2), LP is the Lorentz-polarization factor for

single-crystal, w is the powder ring distribution factor,35 the

exponential term is the Debye-Waller factor, and Fhkl is the

structure factor of NixFe4–xN unit cell for (hkl) diffraction.

For the in-plane XRD geometry, w is obtained by Eq. (5) in

Ref. 35, the equipment parameter s2 was fixed to be 3.3� by

replacing with the angular divergence of the detector win-

dow. Fhkl was calculated using Eq. (3) by assuming that Ni

and Fe atoms are randomly distributed over I and II sites.

Fhkl is given by

Fhkl ¼
x � fNi þ 4� xð Þ � fFe

4

� �
f1þ �1ð Þhþk

þ �1ð Þkþl þ �1ð Þlþhg þ fN �1ð Þhþkþl
: (3)

For the calculation of Fhkl, we adapted the electron structure

of Fe0 (Feþ1/3)3N�1 for Fe4N36 and assumed that the electron

number of Ni, Fe, and N atoms for NiFe3N and Ni3FeN were

Ni0, Fe0, and N0, respectively. The atomic scattering factors

fNi, fFe, and fN for Ni0, Fe0, and N0 were given in Refs. 37

TABLE I. Calculated formation energy (Eform), lattice parameters (a, c),

magnetic moment (mspin), saturation magnetization (Ms), and spin-

polarization (PD) of NixFe4-xN(x¼ 0, 1, 3, and 4).

Compounds

Eform

(eV/f.u.)

a
(nm)

c
(nm)

mspin

(lB/f.u.)

Ms

(emu/cm3) PD

Fe4N �0.2454 0.37902 0.37902 9.977 1669 �0.49

NiFe3N

(A-type)

�0.332 0.37726 0.37726 8.008 1383 �0.55

NiFe3N

(B-type)

�0.2927 0.37988 0.37178 8.073 1395 �0.39

Ni3FeN

(A-type)

0.5273 0.37604 0.37604 4.105 716 �0.86

Ni3FeN

(B-type)

�0.0213 0.37302 0.3784 4.067 716 �0.53

Ni4N 0.449 0.37224 0.37224 1.494 269 �0.38

FIG. 2. Calculated spin-polarized density of states of NixFe4-xN (x¼ 0, 1, 3, and 4).
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FIG. 3. RHEED, (a) x-2h XRD, and

(b) /-2hv XRD patterns of NiFe3N

films. The peaks labeled with an aster-

isk indicate the diffractions caused by

the Cu-Kb or W-La x-rays.

FIG. 4. RHEED, (a) x-2h XRD, and

(b) /-2hv XRD patterns of Ni3FeN

films.
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and 38, and that for Feþ1/3 was obtained by the interpolation

of the Fe0 and Feþ1 data. The standard deviation of tilt

angles of Fe4N, NiFe3N, and Ni3FeN were, respectively,

determined as 0.54�, 0.45�, and 0.71� from the ln (Iobs
hkl ) ver-

sus (Dx)2 plots for NixFe4–xN (002) diffraction.35 The offset

angle Dx from the usual x angle in the x–2h XRD measure-

ment was varied as 60.1�, 0.25�, 0.5�, 0.75�, 1.0�, or 1.5�.
The temperature parameter B was calculated by plotting

ln{Iobs
hkl /(LP�w�Fhkl

2)} against sin2h/k2 using the fundamental

diffraction peaks of (200), (220), and (400).36,39 Magnetic

measurements were carried out for approximately 60 nm-

thick NixFe4–xN films utilizing the vibrating sample magne-

tometer (VSM) and superconducting quantum interference

device (SQUID) magnetometer. The NixFe4–xN layer thick-

nesses with surface oxides subtracted were determined by

x-ray reflectometry analysis.

B. Calculation details

We performed first-principle calculation for NixFe4–xN

(x¼ 0, 1, 3, and 4) using Vienna ab initio simulation pack-

age40 (VASP) with the projected-augment wave pseudopoten-

tial,41 spin-polarized Perdew-Burke-Ernzerhof generalized

gradient approximations,42 and Bader charge analysis.43 The

total energy minimization was obtained via an optimization

of the lattice parameters and a relaxation of the atomic posi-

tions in a conjugate gradient routine. The convergence in the

total energy was better than 10�7 eV/f.u. using the energy

cut off of 400 eV. The k-points sampling of 11� 11� 11

were used for the calculation of the charge density with

VASP. Performing the calculation of structural relaxation, for-

mation energy (Eform), lattice parameters (a and c), spin mag-

netic moment (mspin), saturation magnetization (Ms), density

of states (DOS) of majority and minority spins (D" and D#),
and spin-polarized DOS at EF [PD¼ (D" � D#) / (D" þ D#)]
were calculated. The total electronic energies for fcc-Ni, bcc-

Fe, and molecular N2 were also calculated to estimate Eform.44

We considered two types of model for NiFe3N and Ni3FeN.

In a unit cell of NiFe3N (Ni3FeN), Ni (Fe) atoms are located

at I site and Fe (Ni) atoms are at II site in A-type, while Fe

(Ni) atoms are located at I and IIA sites, and Ni (Fe) atoms

are at IIB site in B-type.

III. RESULTS AND DISCUSSION

Table I shows the Eform, a, c, mspin, Ms, and PD of

NixFe4–xN (x¼ 0, 1, 3, and 4) and Fig. 2 illustrates their D"
and D# obtained from first-principle calculation. Calculations

show that all compositions examined are ferromagnetic. It

should be noted that the highest value of PD¼�0.86 was

obtained for A-type Ni3FeN. This result suggests that A-type

Ni3FeN can be a candidate material for spintronics with a

high spin-polarization. Focusing on the sign and magnitude of

Eform, we can discuss whether these compounds are stable or

not. Eform was, however, 0.5273 eV/f.u. for A-type Ni3FeN,

which is positive and much higher than Eform¼�0.0213 eV/

f.u. for B-type Ni3FeN with smaller PD¼�0.53, implying

that A-type is not stable. This calculation supports the experi-

mental report that Ni atoms preferentially replaced Fe atoms

located at I site in Fe4N.21,22 Although Eform is negative for B-

type Ni3FeN, it is much larger than that for Fe4N or NiFe3N.

Furthermore, Ni4N and A-type Ni3FeN have positive Eform,

suggesting that Ni3FeN and Ni4N are unstable. The interesting

point is that tetragonal modification occurs for B-type NiFe3N

and Ni3FeN with c/a ratios of 0.98 and 1.01, respectively.

Figures 3 and 4 show x–2h XRD, /–2hv XRD, and

RHEED patterns of 20 nm-thick NiFe3N and Ni3FeN films,

respectively. Tsub was changed from 350 to 550 �C for

NiFe3N and 150 to 450 �C for Ni3FeN. Streaky RHEED pat-

terns and only (001) oriented diffraction peaks were

observed for all the grown films deposited at 150�350 �C,

which is indicative of epitaxial growth of single-phase

nitrides. When Tsub was above 400 �C for Ni3FeN, the dif-

fraction peak of NiFe(002) was observed, suggesting the

decomposition of Ni3FeN to NiFe due to the release of N

atoms. The Tsub dependences of the full width at half maxi-

mum (FWHM) for NiFe3N(002) and Ni3FeN (002) diffrac-

tion lines, measured by x-ray x-scan rocking curves and S,

are plotted in Fig. 5. With increasing Tsub, the FWHMs for

NiFe3N(002) and Ni3FeN(002) diffraction lines decreased

and showed the smallest values of 0.280 and 1.248� at

Tsub¼ 550 and 400 �C, respectively; their S reached the larg-

est values of 0.71 and 0.75, respectively. The decreasing of

FWHM indicates the enlargement of grain size or the reduc-

tion of inhomogeneous strain in the films, and the

FIG. 5. Temperature dependence of (a) FWHM for NiFe3N(002) and

Ni3FeN(002) diffraction line and (b) degree of order (S) of N site. The red

outlined triangles in Fig. 5(b) are the S values assuming Ni atom perfectly

occupies I sites in the lattice.
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enhancement of S values was caused by the promotion of

N diffusion by heating during deposition. According to

M€ossbauer spectroscopy study on NixFe4–xN, the Ni atoms

completely occupy I sites at x� 2.22 We therefore assumed

that I sites were occupied by Ni atoms in Ni3FeN and calcu-

lated the S values to be 0.71, 0.75, 0.77, 0.82, 0.83, and 0.85

for films grown at Tsub¼ 150, 200, 250, 300, 350, and

400 �C, respectively, as shown in Fig. 5(b), by using Eqs. (1)

and (2). The S values were larger by about 0.1 than those for

Ni atoms randomly occupying I and II sites at all Tsub due to

the modulation of Fhkl.

Figure 6 shows x–2h XRD, /–2hv XRD, and RHEED

patterns of 20 nm-thick Ni4N films deposited at various Tsub

ranging from 150 to 450 �C. Only (001) oriented diffraction

peaks and streaky RHEED patterns were obtained for films

grown at 150 and 200 �C, showing that single-phase Ni4N was

epitaxially grown. However, other phases such as Ni8N and

Ni were confirmed at Tsub¼ 250, 350, and 450 �C. Ni8N is an

intermediate phase formed during the decomposition of Ni4N

to fcc-Ni.33 In the x–2h XRD profiles of samples grown at

Tsub¼ 150 and 200 �C, the diffraction peak of Ni4N(002)

shifted to higher angles, whereas the Ni4N(200) peak did not

shift in the /–2hv XRD profiles, meaning that the in-plane

tensile strain exists in the Ni4N grown at low temperature.

An out-of-plane lattice constant (c) to in-plane lattice constant

(a) ratio (c/a) was approximately 0.98, determined from the

diffraction lines of Ni4N(002) and Ni4N(200) in the x–2h
XRD and /–2hv XRD profiles. The fact that Ni3FeN and

Ni4N films were easily decomposed to other phases is sup-

ported by our calculation showing that they are not stable

because their Eform are positive as shown in Table I. The S
value was calculated to be 0.76 for Fe4N fabricated at

Tsub¼ 450 �C, whereas we were not able to calculate it for

Ni4N because of its supper lattice diffraction peak being very

weak. The lattice constants deduced from the XRD patterns

and those from first-principle calculation (A-type NiFe3N and

FIG. 6. RHEED, (a) x-2h XRD, and

(b) /-2hv XRD patterns of Ni4N films.

The broken lines are a guide to the eye.

FIG. 7. Lattice constants of NixFe4-xN (x¼ 0, 1, 3, and 4) thin films as a

function of Ni content.
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Ni3FeN) are plotted as a function of Ni concentration in

Fig. 7. The lattice parameters were determined experimentally

by Cohen’s method adapting Nelson-Riley function45 for

NixFe4–xN (x¼ 0, 1, 3, and 4) films fabricated at Tsub¼ 450,

550, 350, and 250 �C, respectively. They showed the smallest

FWHMs at these Tsub. Table II summarizes the in-plane lattice

constant a, out-of-plane lattice constant c, and cube root of the

unit cell volume V¼ a2c of the samples deduced from the

positions of the Bragg angles of NixFe4–xN(001), (100), (110),

(002), (200), (220), (004), and (400) in the XRD patterns.

Note that Ni4N(001) and (110) diffractions were not used

because they were not detected. The decrease of lattice con-

stants with increasing x in NixFe4–xN is well explained by the

replacement of Fe atoms with smaller radius Ni atoms. The

epitaxial relationship between STO and NixFe4–xN was found

to be STO[100](001) jj NixFe4–xN[100](001). In this relation,

the lattice mismatches are about �3% to �4% and epitaxial

growth was successfully achieved owing to these small lattice

mismatches.

Figures 8(a) and 8(b), respectively, show the magnetiza-

tion curve measured at RT and 2 K using VSM or SQUID.

The samples used for the measurement were approximately

60 nm-thick NixFe4–xN(x¼ 0, 1, 3, and 4) films grown at Tsub

¼ 450, 550, 350, and 150 �C, respectively. External magnetic

field H was applied to the NixFe4–xN[100] axis. Figure 9

shows the Ms of NixFe4–xN films as a function of x. Those

obtained from first-principle calculation are also plotted. The

Ms values were 1300 6 70 emu/cm3 and 1060 6 50 emu/cm3

for Fe4N and NiFe3N, respectively, at RT, and they increased

to 1520 6 80 emu/cm3 and 1150 6 60 emu/cm3 at 2 K. In

contrast, the hysteresis curve was not obtained for Ni3FeN at

RT but at 2 K with Ms¼ 480 6 20 emu/cm3. The decrease of

Ms with increasing Ni content can be mainly attributed to the

TABLE II. In-plane lattice constant a, out-of-plane lattice constant c, and

cube root of unit cell volume V¼ a2c deduced from the XRD patterns of the

samples.

Compounds a (nm) c (nm)
ffiffiffiffi
V3
p

(nm)

Fe4N 0.3798 0.3798 0.3798

NiFe3N 0.3790 0.3788 0.3789

Ni3FeN 0.3749 0.3770 0.3756

Ni4N 0.3739 0.3756 0.3745

FIG. 8. Magnetization curves of NixFe4-xN (x¼ 0, 1, 3, and 4) thin films

measured at (a) RT and (b) 2 K when the magnetic field was applied along

NixFe4-xN[100] direction.

FIG. 9. Saturation magnetization of NixFe4-xN (x¼ 0, 1, 3, and 4) thin films

as a function of Ni concentration.

FIG. 10. Temperature dependence of magnetization of Ni3FeN film when

the applied magnetic field was 10 Oe.
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substitution of Fe atom by Ni atom with a much smaller spin

magnetic moment than Fe atom. Figure 10 shows the tem-

perature dependence of magnetization of Ni3FeN measured

at H¼ 10 Oe applied along the Ni3FeN[100] axis, and Tc was

determined to be 266 K. This value is close to 287 K evalu-

ated by Diao et al.28 In our present experimental result, Ni4N

was paramagnetic, differently from our first-principle calcu-

lation and others46,47 based on the assumption that the per-

fect degree of order of N atoms in a Ni4N lattice. The

magnetization of our Ni4N film was much smaller than that

of other compositions as shown in Fig. 8(b); which was

smaller than 10 emu/cm3 even at 2 K, probably arising from

a small amount of residual fcc-Ni in the grown films.

According to Ref. 47, they insisted that Ni4N become a para-

magnetic phase when N atoms are located at positions next

to each Ni atom.47 As mentioned above, the supper lattice

diffraction attributed to the long range order of N atoms is

very weak in the Ni4N film of this work, meaning that a large

number of Ni atoms are located side by side with N atoms.

We therefore consider that the Ni4N film is paramagnetic

rather than ferromagnetic due to its low degree of order of N

site in the present work.

IV. CONCLUSION

NixFe4–xN (x¼ 0, 1, 3, and 4) epitaxial films were suc-

cessfully prepared on STO(001) single-crystal substrates

and their magnetic properties were investigated. The crystal-

line quality and S values were evaluated for samples grown

at various Tsub. With increasing Tsub, the FWHMs of

NiFe3N(002) and Ni3FeN(002) diffraction lines decreased

and they reached the smallest values of 0.28� and 1.248� at

Tsub¼ 550 and 400 �C, respectively, and their S values

reached the highest values of 0.71 and 0.75. The lattice

parameters and Ms decreased for NixFe4–xN as the Ni com-

position increased. These results were in good agreement

with our first-principle calculation except that Ni4N did not

show ferromagnetism even at 2 K. Tc was estimated to be

266 K for Ni3FeN from the temperature dependence of

magnetization.
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