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Abstract

A numerical method to solve the TDHFB equations by using a hybrid
basis of the two-dimensional harmonic oscillator eigenfunctions and one-
dimensional Lagrange mesh with the Gogny effective interaction is applied
to the head-on collisions of the superfluid nuclei 20O’s. Taking the energies
around the barrier top, the trajectories, pairing energies, and numbers of
transferred nucleons are displayed. Their dependence on the relative gauge
angle at the initial time is studied.

PACS numbers: 21.60.-n, 25.40.Hs, 25.60.Pj
Keywords: TDHFB, Gogny interaction, Lagrange mesh, pairing energy,
gauge angle

1 Introduction

The nuclear superfluidity has attracted continuous attention among the nuclear
physicists for more than fifty years. The structure of the nuclear ground states,
the reaction mechanism of a pair of colliding nuclei, the dynamical properties
of the fission processes, and so on, have been studied in connection with the
pairing correlations among the nucleons in the nucleus (nuclei) [1, 2, 3, 4, 5].

The time-dependent mean-field theory has been one of the useful theoretical
frameworks to study the static as well as dynamical properties of the nuclei.
The time-dependent Hartree-Fock (TDHF) method is the foremost example of
the time-dependent mean-field methods. The TDHF has been widely in use
in the investigations of the small-amplitude collective vibrations around the
ground states as well as the large-amplitude collective motions in the nuclear
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fusion/fission processes [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The TDHF has
been extended to deal with the effects of the pairing correlation into the time-
dependent Hartree-Fock Bogoliubov (TDHFB) or TDHF+BCS methods [16,
17, 18, 19, 20, 21, 22].

In relation with the reaction processes of two superfluid nuclei, one of the
long-standing, interesting subjects is to make clear the mechanism of the parti-
cle transfer phenomena influenced by the pairing correlation in the sub-barrier
energy region. The particle transfer process between the two superfluid nuclei
may be analogous to the Josephson effect in the solid state physics [23, 24]. In
the Josephson effect, the electric current flows between the two superconducting
objects separated by a thin insulator in proportion to the sine of the difference
of the phases of the superconducting objects.

In the mean-field framework of the BCS approximation or Hartree-Fock Bo-
goliubov (HFB) method, the ground state of the superfluid nucleus is accom-
panied by a time-dependent phase (gauge angle) whose angular velocity is the
chemical potential. The phase has no effects on the ground state property of
the nucleus, or on its evolution with the TDHFB equations of motion. In the
collision process of two superfluid nuclei, the phase of the one nucleus could be
different from that of the other’s. In order to make clear the mechanism of the
nuclear Josephson effect [25, 26, 27, 28, 29, 30], we propose to study the effects
of the difference of the phases (relative phase) between the two initial nuclei.

Recently, several groups have calculated the numbers of the transferred nu-
cleons in the nuclear collisions by making use of the quantum mechanical method
of the number projection, in which the angular variables are used as the gener-
ator coordinates (integration variables) [22, 31, 32, 33]. In the framework of the
mean-field calculations of the TDHFB, additional effects of the relative phase
is expected on the physical quantities such as trajectories, pairing energies, po-
tential profiles, and so on, in the collision processes.

In this article, we propose a numerical technique of solving the TDHFB
equations by using the hybrid basis of the two-dimensional harmonic oscilla-
tor eigenfunctions and one-dimensional Lagrange mesh [21]. Then, we report
its first application to the head-on collision processes of the superfluid oxygens
20O’s. We study the effects of the relative gauge angle of two colliding nuclei
by adopting four different angles (0, 45, 90, and 135 degrees) as the represen-
tative samples. The dependence of the potentials between the colliding nuclei,
trajectories, and pairing energies on the relative phase are discussed.

This article is composed of the following sections: In Section II, the TDHFB
equations are given together with the initial conditions of the two colliding su-
perfluid nuclei. In Section III, the TDHFB calculations of the collision processes
of the two oxygens 20O’s are carried out with the three values of the boost en-
ergies, Eboost = 4.8, 5.0, and 5.2 MeV, leading to the center-of-mass energy
Ec.m. = 9.21, 9.41, and 9.61 MeV, respectively. The trajectories, pairing ener-
gies, and the number of the transferred nucleons are displayed. In Section IV,
the effects of the initial relative phase (gauge angle) are discussed. Section V is
for the summary and concluding remarks.
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2 Basic equations and initial conditions

2.1 Basic equation

The nuclear Hamiltonian under consideration is in the form,

H =
∑
αβ

TαβC
†
αCβ +

1

4

∑
αβγδ

VαβγδC
†
αC

†
βCδCγ , (1)

where Tαβ is the kinetic energy matrix element and Vαβγδ is the antisymmetrized
two-body matrix element of the Gogny interaction. The operator C†

α(Cα) is a
nucleon creation (annihilation) operator of a state labelled with α.

The quasi-particles β
(τ)
k

†
and β

(τ)
k are introduced by the Bogoliubov trans-

formation from the particle operators C†
α and Cα,

β
(τ)
k

†
=

∑
α

(
U

(τ)
αk C†

α + V
(τ)
αk Cα

)
, (2)

β
(τ)
k =

∑
α

(
U

(τ)
αk

∗
Cα + V

(τ)
αk

∗
C†

α

)
, (3)

where τ = p (n) for protons (neutrons), respectively.
In the TDHFB method, the equations of motion for the matrices U (τ) and

V (τ) in the Bogoliubov transformation (2) and (3) are given in the form [16, 20],

ih̄
∂

∂t

(
U (τ)(t)
V (τ)(t)

)
= H(τ)

(
U (τ)(t)
V (τ)(t)

)
, (4)

with the HFB Hamiltonian H(τ),

H(τ) =

(
h(τ) ∆(τ)

−∆(τ)∗ −h(τ)∗

)
. (5)

The mean field Hamiltonian h(τ) and the pairing mean field ∆(τ) are introduced
through the relations [2],

h
(τ)
αβ = Tαβ + Γ

(τ)
αβ , (6)

Γ
(τ)
αβ =

∑
γδ

Vαγβδρ
(τ)
δγ , ∆

(τ)
αβ =

1

2

∑
Vαβγδκ

(τ)
γδ , (7)

where ρ(τ) and κ(τ) are normal density matrix and pairing tensor,

ρ
(τ)
αβ =

(
V (τ)∗V (τ)T

)
αβ

, κ
(τ)
αβ =

(
V (τ)∗U (τ)T

)
αβ

, (8)

respectively. The symbol T in Eq. (8) stands for the transpose of a matrix.
As the basis functions labeled with α, β, · · ·, we make use of the spatial grid

points, i.e., the Lagrange mesh [34, 35] in the direction of the z axis, while the
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two-dimensional harmonic oscillator eigen functions are used in the directions
of the x and y axes [21].

The HFB matrices U
(τ)
αk

(0)
and V

(τ)
αk

(0)
of the ground state of a nucleus are

obtained by solving the HFB equations [2],(
h(τ) − λ(τ) ∆(τ)

−∆(τ)∗ −h(τ)∗ + λ(τ)

)(
U

(τ)
k

V
(τ)
k

)

= E
(τ)
k

(
U

(τ)
k

V
(τ)
k

)
, (9)

with the eigenvalues E
(τ)
k and a chemical potential λ(τ). In Eq. (9), U

(τ)
k

(V
(τ)
k ) denotes the vector U

(τ)
αk (V

(τ)
αk ) corresponding to the eigenvalue E

(τ)
k of

the quasi-particle with a label k, respectively.
The inclusion of the chemical potential or any real variable µ in the mean-

field Hamiltonians h(τ) − µ and −h(τ)∗ + µ in Eq. (5) will keep unchanged the
evolution of the one-body density matrix ρ(τ) and two-body correlation matrix
κ(τ)κ(τ)∗.

2.2 Initial conditions

When we set up the initial condition of the TDHFB equation (4), we assume that
the two nuclei are uncorrelated and independent of each other if the distance
between the two nuclei is large enough. With the purpose of realizing the
situation, we make use of a Lagrange mesh whose number of the grid points

Ngrid is just the double of that of the original Lagrange mesh N
(0)
grid (Fig. 1):

Ngrid = 2×N
(0)
grid.

In the left (L) region with negative z (z < 0) in the doubled Lagrange mesh

(b) in Fig. 1), the HFB matrices U
(τ)
αk

(0)
and V

(τ)
αk

(0)
of the ground state solution

on the Lagrange mesh (a) in Fig. 1) are mapped into the matrices Uαk and Vαk

on the doubled Lagrange mesh,

W
(τ)
αk =

{
W

(τ)
αk

(0)
, α = 1, 2, · · · , Nbase/2 ,

0, α = Nbase/2 + 1, · · · , Nbase ,
(10)

where k = 1, 2, · · · , Nbase/2 andW (τ)(W (τ)(0)) stands for the matrix U (τ)(U (τ)(0))

or V (τ)(V (τ)(0)), respectively. Here, Nbase is the total number of the basis func-
tions of the two-dimensional harmonic oscillator eigenfunctions and Lagrange
mesh together with the spin degrees of freedom.

Just in the same way, in the right (R) region with positive z (0 < z) in the

doubled Lagrange mesh, we have the mapped matrices U
(τ)
αk and V

(τ)
αk ,

W
(τ)
αk =

{
0, α = 1, 2, · · · , Nbase/2 ,

W
(τ)
α′k

(0)
(α′ = α−Nbase/2) , α = Nbase/2 + 1, · · · , Nbase ,

(11)
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where k = Nbase/2 + 1, · · · , Nbase and W (τ)(W (τ)(0)) is used for the matrix

U (τ)(U (τ)(0)) or V (τ)(V (τ)(0)), respectively.
Note that this initialization method conserves the fermion commutation re-

lations [2],

U (τ)†U (τ) + V (τ)†V (τ) = 1, (12)

U (τ)U (τ)† + V (τ)∗V (τ)T = 1, (13)

U (τ)TV (τ) + V (τ)TU (τ) = 0, (14)

U (τ)V (τ)† + V (τ)∗U (τ)T = 0. (15)

Each of the two nuclei is boosted with a momentum so that the total mo-
mentum of the system is zero and the initial position of the center-of-mass is
kept at the initial point.

a)

b)

Z

Z

L R

0

0

Figure 1: Initial condition of the TDHFB equation (4). A HFB ground state
is calculated by using the basis functions with the number of the grid points

N
(0)
grid = Ngrid/2 (a)). The HFB ground state in a) is mapped on the space of

the basis functions with the number of the grid points Ngrid (L or R in b)).

3 Head-on collisions of two 20O’s

In the present calculations, the Gogny D1S is used as the effective interaction.
We note that the Coulomb force is used only in the mean-field part and is not
included in the pairing part of the HFB Hamiltonian.

The parameters used in the calculations are as follows: The grid spacing
∆z = 0.91 fm and the total number of the grid points of the doubled Lagrange
mesh Ngrid is forty six. The harmonic oscillator eigenfunctions are used as the
basis functions in the x-y plane. The space of the harmonic oscillator quantum
number is restricted as nx +ny ≤ Nshell = 4 with the quantum number nx (ny)
in the direction of the x (y) axis, respectively. The total number of the basis
functions Nbase is Nbase = (Nshell + 1)(Nshell + 2)Ngrid including spin up and
down. The harmonic oscillator parameter h̄ω = 14.6 MeV and the maximum
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number Nshell are used in the calculations of the HFB ground state solutions
(a) in Fig. 1) as well as the head-on collisions of the two nuclei on the doubled
mesh space (b) in Fig. 1) .

Here, we note that the restricted space limits the number of the degrees of
freedom to 2760 including spin and isospin while a full calculation in Cartesian
mesh would involve around 105 degrees of freedom. The CPU time for the one
step of the integration of the TDHFB equations is four minutes on HITACHI
SR16000M1 by using 512 CPUs. The one trajectory in the subsequent calcula-
tions is carried out in eight to ten days.

Figure 2: Densities in the yz plane in the collisions 20O + 20O for the center-of-
mass energies Ec.m.=9.21 MeV (left) and Ec.m.=9.61 MeV (right). The densities
are shown with respect to the time at the times ct = 180, 360, 540, 720, and
900 fm from the top to the bottom, respectively. c is the light speed.

3.1 Relative distance, relative momentum, and transferred
number of particle

The evolution of the system is shown in Fig. 2 for the two center-of-mass
energies Ec.m., where one is below the barrier and another is above the barrier.
For the energy Ec.m. below the barrier top, the two nuclei exchange nucleons
and separate into two fragments, while the two nuclei merge into one for the
energy Ec.m. above the barrier top.

In order to understand the dynamical properties of the collision processes
around the barrier, we followed Washiyama’s method of introducing a section
plane at a point on the z axis between the two colliding nuclei [12]. The section
plane is set at the point z = zs where the density ρ̃L(r, t) is equal to the density
ρ̃R(r, t). Here, ρ̃L/R(r, t) is the density which started from the nucleus in the
left (L) (right (R)) region,

ρ̃L/R(r, t) =
∑
αβ

Φα(r)Φ
∗
β(r)ρ̃

L/R
αβ δσασβ

, (16)
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with the density matrix ρ̃
L/R
αβ ,

ρ̃
L/R
αβ =

∑
τ =p,n

∑
k′

V
(τ)
αk′

∗
V

(τ)
βk′ , (17)

respectively. The index k′ takes the values k′ = 1, 2, · · · , Nbase/2 for the ρ̃Lαβ
and k′ = Nbase/2 + 1, Nbase/2 + 2, · · · , Nbase for the ρ̃Rαβ . In (16), Φα(r) and
Φβ(r) are the basis functions of the two-dimensional harmonic oscillator eigen
functions and Lagrange mesh [21], and σα and so on are the labels of the spin.

Making use of the section plane at z = zs, we calculated the number of the
nucleons in each of the left region and right region with respect to the plane,

mL =

∫
d3x ρ(r)θ(zs − z) , (18)

mR =

∫
d3x ρ(r)θ(z − zs) , (19)

with the total density ρ(r) = ρ(p)(r) + ρ(n)(r) made from the proton (p) and
neutron (n) densities.

The center-of-mass position zL (zR) and momentum pL (pR) in the left (right)
region divided by the section plane are calculated,

zL = Tr
[
(z)(L)ρ

]
/mL, zR = Tr

[
(z)(R)ρ

]
/mR, (20)

and

pL = Tr
[
(pz)

(L)ρ
]
, pR = Tr

[
(pz)

(R)ρ
]
, (21)

respectively. In Eqs. (20) and (21) , the notation Tr is the trace of a matrix,
and the notations (z)(L), (z)(R), (pz)

(L) and (pz)
(R) stand for the matrices with

the matrix elements,

(z)
(L)
αβ =

∫
d3x θ(zs − z)Φα(r)

∗zΦβ(r)δσασβ
,

(pz)
(L)
αβ =

∫
d3x θ(zs − z)Φα(r)

∗
(
−ih̄

∂

∂z

)
Φβ(r)δσασβ

, (22)

(z)
(R)
αβ =

∫
d3x θ(z − zs)Φα(r)

∗zΦβ(r)δσασβ
,

(pz)
(R)
αβ =

∫
d3x θ(z − zs)Φα(r)

∗
(
−ih̄

∂

∂z

)
Φβ(r)δσασβ

. (23)

Here, ρ is the total density matrix ρ = ρ(p) + ρ(n). The relative coordinate
R and relative momentum Pz are defined,

R = zR − zL ,

Pz = (mLpR −mRpL) /(mL +mR) . (24)
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3.2 Trajectories, pairing energies, and number of the trans-
ferred particles

As the examples of the head-on collisions of the two 20O’s, we chose three boost
energies Eboost = 4.8 MeV, 5.0 MeV, and 5.2 MeV, leading to the center-of-mass
energies Ec.m. = 9.21, 9.41, and 9.61 MeV, respectively.

In Fig. 3, we display the frozen density potential VFD(R) with respect to
the relative distance R together with the positions of the three initial energies
to show that they are below, nearly on, and above the top of the frozen density
potential, respectively.

-15
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 (

 R
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 9.2

 9.4

 9.6

 9.8

 8  9  10  11

Relative distance  R  (fm)

Figure 3: The frozen density potential VFD(R) with respect to relative coordi-
nate R of the head-on collision of two 20O’s. The inset figure is the magnification
of the region around the top of the frozen density potential. In the inset figure,
three energies are described with broken, chain, and solid lines for Ec.m. = 9.21,
9.41, and 9.61 MeV, respectively.

Corresponding to the three energies Ec.m., we got three trajectories of the
colliding oxygens 20O’s in the phase space R−Pz of the relative distance R and
the relative momentum Pz.

In Fig. 4, we display the three trajectories in the phase space R−Pz. They
start at R = 20.91 fm and follow each other side by side till they come around
R ∼ 12 fm. After passing the point around R ∼ 12 fm, the three trajectories
begin to separate from each other: The trajectory with the energy Ec.m. = 9.21
MeV corresponds to a process in which the two oxygens 20O’s come near each
other, stop at the turning point around R ∼ 10 fm, and then bounce back into
the two fragments that are mixture of the components including the transfer
states, the two initial 20O’s states in their ground states, and in their excited
states.

The two trajectories with the energies Ec.m. = 9.41 MeV and 9.61 MeV, on
the other hand, represent the process of fusion of the two nuclei after slowing
down in the relative motion. The combined systems display vibration after the
fusion of the two 20O’s in both cases of these energies.

In Fig. 5, the variations of the pairing energies along the three trajectories in
Fig. 4 are displayed. We see that the pairing energies are kept almost constant
before the two nuclei come to the region of the top of the potential energy
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Figure 4: Trajectories in the phase space of the relative coordinate R and the
relative momentum Pz. The curve in solid (broken, chain) corresponds to the
initial energy Ec.m. = 9.21 (9.41, 9.61) MeV, respectively. The two trajectories
with Ec.m. = 9.41 and 9.61 MeV almost fully overlap in the region R < 8.5 fm.

VFD(R) at around R ∼ 9.2 fm for the cases of the energies Ec.m. = 9.41 MeV
and 9.61 MeV. In a similar way, the pairing energy is kept almost constant until
the two nuclei come to the turning point at around R ∼ 10.0 fm for the case
with the energy Ec.m. = 9.21 MeV.

Once the two nuclei begin to fuse in the cases of the energies Ec.m. = 9.41
and 9.61 MeV, the pairing energy Epair rapidly becomes small in the magnitude
from -13 MeV to -2 MeV, and oscillates around the value Epair ∼ -2 MeV in
each case of the energies (a) and b) in Fig. 5). We can interpret this diminution
of the pairing energy from the increase of the excitation energy after the fusion.
The occurrence of the internal excitations is expected to reduce the pairing
correlation. When the two nuclei turn back from the turning point (c) in Fig.
5), on the other hand, the variation of the pairing energy is 0.15 MeV.

In relation with the variations of the pairing energies in Fig. 5, let us cal-
culate the numbers of the transferred nucleons. We followed the Washiyama,s

definition of the number of the transferred nucleons N
L/R
trans [R(t)] in the collision

process of a pair of the identical nuclei, which was used in the framework of the
TDHF [12],

NL
trans [R(t)] =

∫
d3xρ̃L(r, t)θ(z), (25)

where L stands for the left nuclei at the initial time t = 0 and the density
ρ̃L/R(r, t) is given in (17). We paid attention only to the transfer of the nucleons
which were in the left nuclei at the initial time, since the present system of two
oxygen nuclei 20O’s is symmetric with respect to the origin z = 0. Then, the
section plane is also put at the origin zs = 0.

In Figs. 6 and 7, we show the transferred numbers of the protons and
neutrons with respect to the relative distance R in the cases of the trajectories
with the energies Ec.m. = 9.61 MeV and 9.21 MeV, respectively.

In Fig. 6, the two nuclei are in the process of the fusion within the region R ≤
9.2 fm, and the transferred numbers of the protons and neutrons rapidly increase
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Figure 5: Pairing energies of the trajectories with the energies Ec.m. = 9.61
MeV (a)), 9.41 MeV (b)), and 9.21 MeV (c)) are plotted with respect to the
relative distance R.

as the overlap of the two nuclei becomes larger. In the figure, multiplying the
transferred number of the protons by 1.5, we get a curve which goes along the
curve of the number of the transferred neutrons. Since the value 1.5 is just the
number of the N/Z ratio in the 20O, we see that the protons and neutrons begin
to move into the region of the other nuclei in a similar way after the combined
system passes over the top of the potential energy VFD(R).

In the region R ≥ 9.2 fm, the number of the transferred protons is practically
zero, while the number of the transferred neutrons slowly increases to the value
of around 0.4 as the two nuclei approach each other.
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Figure 6: Transferred numbers of the protons (thin curve) and neutrons (thick
curve) with respect to the relative distance along the trajectory with the energy
Ec.m. = 9.61 MeV. The broken curve is plotted by multiplying the number of
the transferred protons by a factor of 1.5.

In Fig. 7, the energy of the system is below the top energy of the potential
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curve VFD(R). The numbers of the transferred nucleons are small along the
trajectory in which the system approaches each other, stop at the turning point,
and separate again into two fragments.
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Figure 7: Transferred numbers of the protons (broken curve) and neutrons (solid
curve) with respect to the relative distance in the trajectory with the energy
Ec.m. = 9.21 MeV. The chain curve is for the transferred number of the neutrons
in Fig. 6 as a reference.

The number of the transferred protons increase only when the system is near
the turning point, though it is much smaller than that of the neutrons under
the influence of the Coulomb potential.

The number of the transferred neutrons increases monotonously up to 0.2
as the two nuclei approach each other before they come to the turning point
R ∼ 10.0 fm. The number of the transferred neutrons jumps up by 0.2 near the
turning point, and comes up to 0.55 at the end point of the curve in Fig. 7 at
the distance R ∼ 18 fm. As a result, the transferred number of the neutrons is
more than ten times as large as that of the protons in the whole process in Fig.
7. The ratio is much larger than the N/Z ratio 1.5 in the 20O. The Coulomb
barrier is the main reason for the difference between the transferred numbers of
the protons’ and that of the neutrons’.

In Fig. 7, we also note that the curve of the transferred neutrons of the
trajectory with the energy Ec.m. = 9.21 MeV follows that of the trajectory with
the energy Ec.m. = 9.61 MeV in Fig. 6 in the approaching stage of the two
nuclei before they come to the region near the turning point. This could be
understood from the variations of the pairing energies in Fig. 5: We see that
the pairing energies of the trajectories of the three cases of the energies are kept
practically constant at the initial values during the two nuclei approach each
other. The tail parts of the neutron densities of the approaching nuclei 20O’s
with the same pairing energies are almost the same to each other. Then, the
transferred numbers of the neutrons during the approaching stage of the two
nuclei could be in the common tendency among the three cases of the energies.
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4 Effects of the initial relative gauge angle

In the superfluid nuclei which satisfy the HFB equations (9), it is well known
that there is a gauge invariance in relation with the transformation in terms of

an operator G(χ) = e−iχN̂ with the number operator N̂ . The operator G(χ)
transforms the matrices Uαk and Vαk to e−iχUαk and eiχVαk, respectively. The
transformation does not change the properties of the nucleus in the ground state
as long as an isolated nucleus is under consideration. In the collision process of
the two superfluid nuclei, however, we do not know in advance the effects of the
gauge transformations in the two nuclei at the initial time on the properties of
the colliding two nuclei on the trajectory.

From the quantum mechanical point of view, the degree of of freedom of the
transformation by the operator G(χ) is made use of to project out a state with
a specified number of particles from the HFB state.

In the framework of the mean-field of the (TD)HFB, what we would like
to study is the influence of the gauge transformations within the HFB ground
states at the initial stage of the colliding nuclei on the behavior of the system
later in the collision process.

4.1 A combination of the 16O and 20O

As an example of the case in which the gauge transformation of the superfluid
nucleus plays no effects on the collision process, we take the combination of the
16O and 20O. We adopt the phase factors eiχ with χ = 0, 45, 90, and 135 degrees
as the representation of the gauge transformation in the superfluid nuclei 20O,

Uαk = eiχU
(0)
αk , Vαk = e−iχV

(0)
αk . (26)

The 16O is not in the superfluid phase but in the normal state on both sides
of the protons and neutrons. Note that this transformation keeps unchanged
the normal density, and modify the pairing tensor κ with a phase shift 2χ. In
consequence the values of χ between 180 and 360 degrees are redundant with
the values between 0 and 180 degrees.

We put the 16O as the left-hand side nucleus and the 20O with the phase
factors in Eq. (26) as the right-hand side nucleus in the initial conditions (10)
and (11). In the case of the energy Ec.m. = 11.41 MeV, the trajectories are
shown in Fig. 8, with the different initial gauge angles χ = 0, 45, 90, and 135
degrees. All of the trajectories in Fig. 8 with different initial gauge angles
overlap each other completely.

The variations of the pairing energies with respect to the relative distance
are shown in Fig. 9 in the cases of the different initial gauge angles χ. After
passing the region of the top of the potential energy at R ∼ 8.5 fm the pairing
energies smoothly decrease to - 2 MeV and oscillate about the value. Again,
the curves of the pairing energies with different initial gauge angles overlap each
other completely.

Thus, we see that there is no dependence on the initial gauge angles in
the collision process of the combination of a nucleus in the normal state and
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Figure 8: Trajectories of the head-on collisions of the 16O and the 20O with
the energy Ec.m. = 11.41 MeV in the phase space of the relative distance R
and relative momentum Pz. The solid (thin solid, chain, and broken) curve
is for the case with the initial gauge angle χ = 0 (45, 90, and 135) degree(s),
respectively. All of the trajectories overlap each other. The curve with χ = 45
(90, 135) degrees is shifted upward by 0.2 (0.4, 0.6) 1/fm for the ease of the
eyes, respectively.

a superfluid nucleus. This result can be understood simply from the fact that
the normal nucleus does not break the gauge angle symmetry. In consequence,
changing the phase of the superfluid nuclei is equivalent to changing the whole
phase of the system, in which transformation the evolution of the observables
is kept unchanged.

4.2 A combination of the 20O and 20O

In the case of the combination of the 20O and 20O, we follow the way of setting
the initial condition of the TDHFB equations which is stated in the previous
subsection for the case of the collisions of the 16O and the 20O. The initial
phase factors eiχ with χ = 0, 45, 90, and 135 degrees are multiplied on the HFB

solutions U
(0)
αk and V

(0)
αk of the ground state of the 20O just as in (26). Then each

of the set of the matrices eiχU
(0)
αk and e−iχV

(0)
αk are mapped as the right-hand

side nucleus, while the HFB solutions U
(0)
αk and V

(0)
αk , which is just the case with

the gauge angle χ = 0, are mapped as the left-hand side nucleus.
In Figs. 10 and 11, we show the trajectories in the case of the energy Ec.m.

= 11.41 MeV. The latter figure Fig. 11 is a magnification of the region with the
relative distance 4 fm ≤ R ≤ 11 fm in the former figure Fig. 10.

In contrast to the cases of the combination of the 16O and the 20O in the
previous subsection, the trajectories are dependent on their initial gauge angles
and are separated from each other in the region of the relative distance R ≤
10 fm. The shift of the trajectory with the initial gauge angle χ = 90 degrees
from the one with the angle χ = 0 degree is the largest. The trajectories with
the angles χ = 45 and 135 degrees overlap each other and come in the space
between the trajectories with the angles χ = 0 and 90 degree(s).
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Figure 9: Variations of the pairing energies with respect to the relative distance
in the collision processes in Fig. 8. The solid (thin solid, chain, and broken)
curve is for the case with the initial gauge angle χ= 0 (45, 90, and 135) degree(s),
respectively. All of the curves overlap each other. The curve with χ = 45 (90,
135) degrees is shifted upward by 0.3 (0.6, 0.9) MeV for the ease of the eyes,
respectively.

Just as in the cases of the trajectories, the variation of the pairing energy
with respect to the relative distance R changes as the gauge angle χ is varied. In
Fig. 12, we plot the pairing energies of the trajectories in Fig. 11 with respect
to the relative distance R with the initial gauge angles χ = 0, 45, 90, and 135
degrees. The size of the shift of the pairing energy with the gauge angle χ = 90
degrees from that with χ = 0 degree is the largest among the three cases of the
gauge angles.

In Figs. 13 and 14, we show the trajectories in the case of the energy Ec.m.

= 9.21 MeV. The latter figure Fig. 14 is a magnification of the region with the
relative distance 9.8 fm ≤ R ≤ 11 fm in the former figure Fig. 13.

Just in the same way as the case with the energy Ec.m. = 11.41 MeV, the
trajectories are dependent on the initial gauge angles χ, and the shift of the
trajectory with the angle χ = 90 degrees from that with the angle χ = 0 is the
largest. The two trajectories with the angles χ = 45 and 90 degrees overlap
each other.

A remarkably different point in the trajectories with the energy Ec.m. =
11.41 MeV and Ec.m. = 9.21 MeV is as follows: In the case of the energy Ec.m.

= 11.41 MeV, the point of the relative distance at which the relative momentum
Pz of the trajectory takes the smallest absolute value just before the fusion shifts
to the direction of the small value of the R when the initial gauge angle is varied
from 0 to 90 degrees through 45 degrees. On the other hand, in the case of the
energy Ec.m. = 9.21 MeV, the turning point of the trajectory shifts toward the
large value of the R when the gauge angle is varied as χ = 0, 45, and 90 degrees.

The difference could be understood from the change of the shapes of the
frozen density potential energies with respect to the relative distance R when
the gauge angle χ is varied. In Fig. 15, we plot the frozen density potential
energy curves near the point R = 9 fm with the gauge angles χ = 0, 45, 90,
135 degrees. We see that the top of the energy curve shifts to the direction
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Figure 10: Trajectories of the head-on collisions of the 20O and the 20O with
the energy Ec.m. = 11.41 MeV in the phase space of the relative distance R
and relative momentum Pz. Each of the trajectories is the result of the first
2000 steps of the time integration of the TDHFB equations (4). The solid (thin
solid, chain, and broken) curve is for the case with the initial gauge angle χ = 0
(45, 90, and 135) degree(s), respectively. The trajectories with the initial gauge
angles χ = 45 and 135 degrees overlap each other.
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Figure 11: Magnification of the region of the relative distance R ≤ 11 fm in Fig.
10.

of the small value of the R when the gauge angle is varied as χ = 0, 45, 90
degrees. This is consistent with the shift of the point of the R at which the
relative momentum Pz takes the minimum absolute value in the case of the
energy Ec.m. = 11.41 MeV. Together with the shift of the tops of the frozen
density potential energy curves, they are shifted upward when the gauge angle
is varied as χ = 0, 45, and 90 degrees. Then, the section point of the potential
energy curve with the energy Ec.m. = 9.21 MeV shifts toward the large value of
the R. This is consistent with the shift of the turning points of the trajectories
in Fig. 14 with the angles χ = 0, 45, and 90 degrees.

To understand this phenomena, we can look at the total energy in the frozen
calculation that is directly related to the nucleus-nucleus potential in Fig. 15.
Because the normal density is not affected by the relative phase, only the pairing
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R in the trajectories in Fig. 11.
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Figure 13: Trajectories of the head-on collisions of the 20O and the 20O with
the energy Ec.m. = 9.21 MeV in the phase space of the relative distance R and
relative momentum Pz. The solid (chain) curve is for the case with the initial
gauge angle χ = 0 (90) degree(s), respectively. The thin solid curve is for both χ
= 45 and 135 degrees. The trajectories with the angles χ = 45 and 135 degrees
overlap each other.

part of the total energy changes with the choice of the relative gauge angle,

Epair =
1

4

∑
αβγδ

vαβγδκ
∗
αβκγδ. (27)

The κ matrix can be decomposed into a part coming from the left nuclei and a
part coming from the right. Because the phase of the κ coming from the right
part is shifted by a phase 2χ, the total κ matrix is expected to be minimum
for the angle χ = 90 degrees. This phase dependence of the potential energy
illustrates that the nucleus-nucleus interaction energy for χ = 90 degrees is
smaller than that for χ = 0. Here, the nucleus-nucleus interaction energy is the
difference between the Coulomb energy and the frozen density potential energy
at each point of the relative distance R.

Let us pay attention to the behaviors of the variations of the number of the
neutrons in the left region. The left and right regions are separated by a section
plane located at z = zs that is introduced in Section III.
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Figure 15: The frozen density potentials VFD(R) with respect to the relative
distance R with the initial gauge angle χ = 0 (solid), 45 (thin solid), 90 (chain),
and 135 (broken) degrees. The thin broken line stands for the energy Ec.m. =
9.21 MeV.

In Figs. 16 and 17, we show the variations of the numbers of the neutrons
with respect to the relative distance R when the gauge angle is varied as χ =
0, 45, 90, and 135 degrees. Each of the curves in the figures stands for the
difference of the number NL of the neutrons in the left region from the initial
value 12. The NL is calculated just like Eq. (18) with ρ(r) replaced by the
neutron density ρ(n)(r),

NL =

∫
d3x ρ(n)(r)θ(zs − z) . (28)

In both of the figures, the curves for the gauge angles χ = 0 and 90 degrees
are flat, denoting that the numbers of the neutrons in the left region are kept to
be 12 all along the trajectories. In the cases of the trajectories with the gauge
angles χ = 45 and 135 degrees, on the other hand, the number of the neutrons
increase (decrease) for the gauge angle χ = 45 (90) degrees in the left region,
respectively.

In Fig. 17, we see that the change of the number NL of the neutrons is
realized near the turning point of the trajectory of the bouncing nuclei. When
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Figure 17: The same as in Fig. 16, but for the energy Ec.m. = 9.21 MeV.

the number NL of the neutrons is plotted with respect to the elapsed time in
Fig. 18, the smooth variation of the number NL is clearly illustrated. Thus, the
figures 16 to 18 suggest us the dependence of the number NL on the relative
gauge angle Φ = 2χ with the periodicity 2π.

Taking account of the one-dimensional situation of the present calculations
of the head-on collisions, and assuming the 2π periodicity of the number NL

of the neutrons in the left region with respect to the relative gauge angle Φ,
we guess that the flux Js of the neutrons across the section plane at z = zs is
proportional to the sine of the angle Φ,

Js ∝ sin (Φ) . (29)

The relation in (29) reminds us the Josephson current of the electron pair
through the Josephson junction with a relative phase Φ of the two supercon-
ducting objects separated by a thin insulator [23, 24]. The detailed studies are
needed to understand the microscopic background of the flows of the nucleons
under the condition of the superfluidity illustrated in the figures 16 to 18.

18



N
um

be
r  

of
  n

eu
tr

on
s

N
L
-

12

Time    (fm)

-0.2

-0.1

 0

 0.1

 0.2

 0  200  400  600  800  1000

45

0, 90

135

Figure 18: The same as in Fig. 17, but the variations of the number NL of the
neutrons in the left region are plotted with respect to the elapsed time.

5 Summary and concluding remarks

In this article, we have reported the first results of the application of the method
of solving the TDHFB equations with the Gogny force to the head-on collision
processes of the superfluid nuclei 20O + 20O. The method of solving the TDHFB
equations are realized by using the two-dimensional harmonic oscillator eigen-
functions and one-dimensional Lagrange mesh [21]. A candidate of the way of
setting up the initial conditions of the collision processes was proposed.

The advantage of the present numerical method is the natural cut-off for
quasi-particle energy obtained by using a Gaussian type finite range interac-
tion. Furthermore, the choice of the present hybrid basis allows to include all
the quasi-particle states, then the unitarity relations (12) to (15) are respected
during the evolution. These two points are expected to contribute to the stable
numerical integrations of the TDHFB equations.

Setting the energies of the colliding nuclei around the energy of the top of the
frozen density potential energy, we have displayed the trajectories, variations of
the pairing energies with respect to the relative distance, and the numbers of
the transferred nucleons.

We studied the effects of the initial relative phase on the properties of the
colliding superfluid nuclei. In particular, the dependence of the trajectories,
pairing energies, and transferred number of the neutrons on the relative phase
was visually illustrated in the figures. We showed that the static and dynami-
cal nucleus-nucleus potential depends on the relative gauge angle between two
superfluid nuclei. For the reaction 20O + 20O the difference concerning the po-
tential energy is about 0.4 MeV for the height of the barrier and 0.2 fm for the
position of the barrier.

Some remarks concerning the present calculations are as follows:
1. The set up the initial conditions of the TDHFB equations of the colliding

superfluid nuclei was of a sharp cut-off type, by assuming that the correlations
of the two nuclei at the initial time could be neglected when they were set
apart with large distance. At present, the effects of the sharp cut-off initial
conditions have not been studied. It would be interesting to compare the results
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of the present calculations with those obtained by using other types of initial
conditions.

2. In all of the numerical calculations in this article, we have used a fixed
set of the parameters of the basis functions (number of the grid points Ngrid,
grid size ∆z, maximum number of the two-dimensional harmonic oscillator shell
Nshell, and harminic oscillator frequency h̄ω, and so on). The dependence of the
numerical results on the parameters of the basis functions will be studied before
the heavier nuclei are treated in the future calculations.

3. In calculating the numbers of the transferred nucleons, we followed
Washiyama’s method proposed in the TDHF framework. It would be neces-
sary to study the present results from the quantum mechanical viewpoint by
making use of the number projection method [22].

4. The present contribution shows that there is a dependence of the observ-
ables with respect to the initial gauge angle. Nevertheless, the two fragments
should initially respect the gauge angle symmetry and preserve the initial good
number of particles in each fragments. It would be interesting for future ap-
plications to develop a self-consistent time-dependent mean-field theory that
describes the evolution of a quasi-particle state projected on the good number
of particles.

The transfer mechanism of the nucleons in the collision processes of the
superfluid nuclei will be studied in a future analysis by combining the present
method of solving the Gogny-TDHFB equations with the quantum mechanical
method of the number projection [22].
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