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1. General Introduction 

 

1.1 Opioid receptor 

 

The term “opiate” was used extensively until the 1980s to describe any natural or synthetic 

agent that was derived from morphine (1) (Fig. 1). However, the discovery of endogenous 

peptides in the brain that had pharmacological effects similar to morphine led to a change in 

nomenclature. The peptides were not related morphine structurally; yet, their effects were like 

those produced by morphine (1). At this time, the term opioid, meaning opium- or morphine-

like, in terms of the pharmacological action, was introduced. To be precise, the term “opioid” 

refers to the natural or synthetic peptides that act as in a similar way to morphine (1), the 

opium alkaloids, and their derivatives. The general term “opioid” is derived from the English 

name of the plant “opium”. Opium is a white powder obtained from drying of a milky liquid 

derived from immature pericarp of the opium poppy Papaver somniferum. Although the 

powder includes more than fifty kinds of alkaloids, it has been used as a medicine from 

ancient times as described by Teophrastus in the 3rd century B. C.  

 

 

 

 

 

 

 

Fig. 1. The structures of morphine (1) and codeine (2) 

 

The first isolated alkaloid from opium by Sertürner was morphine (1).1 It was named after 

Morpheus, the principal god of dream or of sleep in Greek mythology. Afterward, codeine (2) 

was isolated by Robiquet in 1832 (Fig. 1). In the mid-1800s, the pure alkaloids began to be 

used instead of crude preparation of opium. However, it took more than a century to determine 

their correct structures because of the complexities of the structures of alkaloids. The correct 

structure of morphine (1) was proposed by Robinson and Gulland in 1925,2 and it was 

determined by Schöpf in1927.3 The structure had five asymmetric carbons, and the absolute 

configuration was determined through total synthesis4 by Gate and Tschudi in 1952, and 

through X-ray crystal structural analysis5 by Machay and Hodglein in 1955.  
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Fig. 2. The skeletons of opioid ligand 

 

Morphine (1) has been well-known to have not only analgesic effect but also narcotic addiction 

for a long time. Hence, the development of strong analgesics without addiction started after the 

structure of morphine (1) was determined. The basic skeleton of morphine (1) was called 4,5-

epoxymorphinan and synthesized as a prototype. However, the complexity of the 4,5-epoxy-

morphinan skeleton made it difficult for its supply in large amounts by synthetic methods. To 

simplify the skeleton, morphinan, benzomorphane, arylmorphan and phenylpiperidine skeletons 

were synthesized (Fig. 2).6 These derivatives possessing the indicated azapolycyclic skeletons 

showed agonistic or antagonistic activity for opioid receptor, and also became a powerful tool for 

elucidating the working mechanism of the compounds. After the pharmacological and biological 

investigations, using these derivatives and endogenous opioid peptides as opioid ligands, three 

types of opioid receptors (, , ) were well established. The narcotic addiction derived from 

morphine (1) is believed to be derived from the  receptor type.7 Therefore,  and  receptor types 

are believed to be promising drug targets for analgesics without addiction, hence there has been 

a lot of effort to develop  and  selective agonists.  

Fig. 3. The structures of U-50,488H (3), U-69,593 (4) and nalfurafine (5) hydrochloride 

 

The Upjohn Company developed U-50,488H (3)8 and U-69,593 (4),9 which showed analgesic 

effect without addiction (Fig. 3). Nevertheless, these derivatives were not clinically tested because 

of severe aversion side effects, effects contrary to addiction.10 On the other hand, nalfurafine (5) 

hydrochloride,11 a  selective agonist, was launched in Japan as an antipruritic drug for patients 

undergoing dialysis by Nagase et al. in 200912 (Fig. 3). Nalfurafine (5) showed neither addiction 

nor aversion13 but it could not be used as an analgesic drug because of slightly inseparable sedative 

effect. So far, no  agonist has been approved as an analgesic drug, and the research for developing 

 agonist as an analgesic is continuing even now. 
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Fig. 4. The structures of TAN-67 (6), SNC-80 (7) 

 

Meanwhile, the research of  selective ligands has not made much progress compared to that 

of  selective ligands. Although TAN-67 (6)14 and SNC-80 (7)15 were developed as  agonists 

and showed highly agonistic activities and selectivities for  receptor in vitro, these compounds 

showed insufficient activity for  receptor in vivo. Furthermore, the role of  receptor in organisms 

is still unclear. Therefore,  agonist is significantly desired not only as an analgesic but also as a 

biological tool for elucidating the role of  receptor. Since X-ray crystal structures of three types 

of antagonist-bound opioid receptor (, , ) were reported in 2012,16 the three dimensional 

structures of the three receptor types were unveiled. Accordingly, the design and synthesis of 

opioid ligands were expected to progress based on these information.  

Quite recently, Nagase et al. reported highly selective and potent  agonist, KNT-127 which 

showed potent analgesic effect via systemic administration (ED50 =1.2 mg/kg).17 The derivative 

has been developed as an antidepressant and an anti-anxiety drug. 
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1.2 Propellane skeleton 

 

Scheme 1. Synthesis of propellane compound 10 

 

Recently, Nagase et al. reported that the treatment of 14-hydroxymorphinan 8 with MsCl and 

NaH furnished highly stable iminium salt 9 with propellane skeleton (Scheme 1). And the 

iminium 9 was reduced with NaBH4 to afford a saturated compound, followed by hydrolysis of 

the acetal and O-demethylation to give propellane type compound 10.18 Propellane type 

compound is defined as a derivative which has three rings-fused one C-C bond.  

 

 

 

 

 

 

 

Fig. 5. The structures of propellane compound 10 and naltrexone (11) 

 

Although naltrexone (11), as a starting material of many kinds of  selective ligands like 

nalfurafine (5) showed undesired  selectivity ( = 0.9), propellane type compound 10 showed 

 selectivity ( = 3.3) (Fig. 5).19 On the basis of the promising  selectivity of the propellane 

skeleton, the author chose the skeleton for developing  selective agonists. 
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The numbering of propellane derivatives and pentacyclic derivatives according to the IUPAC 

nomenclature is shown in Fig. 6. However, in this thesis the author used a tentative numbering to 

the propellane derivatives, which would make it easy to compare the relative positions between 

morphinan and propellane skeletons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The numbering of propellane, pentacyclic and morphinan derivatives 
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2. Design and Synthesis of  Receptor Selective Propellane Derivatives with Pentacyclic 

Skeleton and Their Pharmacologies 

 

2.1 Design of  receptor selective propellane derivatives with pentacyclic skeleton 

 

Nalfurafine (5) hydrochloride is garnering attention around the world as an opioid drug without 

addiction, and especially aversion.13 Nalfurafine (5) is structurally different from the 

arylacetamide derivatives known as  selective agonists, which have aversive effects.10 The 

proposed active conformation of nalfurafine (5) for binding to the  receptor is shown in Fig. 7.20  

 

 

 

 

 

 

 

 

 

Fig. 7. The proposed active conformation of nalfurafine (5) 

 

The C-ring of nalfurafine (5) would require the boat form to orient the 6-amide side chain 

toward the upper side of the C-ring. On the basis of the proposed active conformation, Nagase et 

al. investigated the essential structures for binding to the  receptor.21 As mentioned in Chapter 

1.2, propellane 10 showing  selectivity was a promising skeleton for designing  selective 

ligands. However, its affinity (Ki = 17.4 nM) for the  receptor was much lower than that of 

nalfurafine (Ki = 0.178 nM).19 The reason for its low affinity for  receptor was postulated to be 

derived from its conformational flexibility. Propellane 10 could have two canonical conformation 

termed bent form and extended form (Fig. 8). Compared to the proposed active conformation of 

nalfurafine (5), the bent form of propellane 10 would be the active conformation for binding to 

the  receptor. Accordingly, the author designed and synthesized pentacyclic compound 12, in 

which C7 and C9 were connected with an ethylene bridge to fix the bent form of propellane 10 

(Fig. 8).  
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Fig. 8. Two conformers of propellane 10 and pentacyclic derivative 12 with the fixed bent form 

 

2.2 Synthesis of propellane derivatives with pentacyclic skeleton 

 

Scheme 2. Synthetic route of propellane derivatives with pentacyclic skeleton 

 

Synthetic route of propellane derivatives is shown in Scheme 2.22 The reduction of iminium 918 

with NaBH4 gave the corresponding saturated propellane derivative. Furthermore, iminium 9 also 

reacted with NaCN to afford a cyano adduct, and the trial of nucleophilic addition of Grignard 

reagents to iminium 9 resulted in complex mixtures.18 These results suggest that a mild 

nucleophile may be an adequate reagent for addition to iminium 9. After intensive efforts seeking 

for an appropriate nucleophile, the author found that a Reformatsky reaction involving iminium 

salt 9, ethyl bromoacetate, and zinc gave adducts 13a and 13b as diastereoisomers23 in 59% and 

27% yield, respectively. Attempts at intramolecular cyclization of the ketoester, obtained from 
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13b by deacetalization, under basic conditions resulted in the recovery of the starting material 

because of insufficient electrophilicity of the ester group. An aldehyde is a stronger electrophile 

for the intramolecular cyclization. Therefore, the author attempted to convert the ester into the 

more electrophilic aldehyde group. Reduction of the ester 13a and 13b with LiAlH4 provided 

alcohol 14a and 14b in quantitative and 83% yield, respectively. Before attempting the 

intramolecular aldol reaction, the author attempted the SN2 type reaction for conversion of the 

hydroxyl group into leaving group that resulted in formation of azetidinium salt by nucleophilic 

addition of nitrogen to the leaving group. Deacetalization of alcohol 14a and 14b gave ketoalcohol 

15a and 15b, followed by oxidation under Swern conditions to give aldehyde 16a and 16b. It was 

found that obtained aldehyde 16a and 16b were easily epimerized by retro-aza-Michael addition 

and recyclization at room temperature. Therefore, the crude material containing the 

diastereomeric mixture of 16a and 16b was used for the next intramolecular aldol step. The 

intramolecular aldol reaction of mixture of 16a and 16b successfully proceeded under mild basic 

condition to provide desired pentacyclic derivatives 17a and 17b in 10% and 50% yield, 

respectively.24 The o-demethlylation of 17a and 17b with BBr3 gave phenols 18a and 18b in 81% 

and 99% yield, respectively. The author next attempted to dehydrate the hydroxyl group at C7’ of 

pentacyclic compounds 18a and 18b. Before the dehydration reaction, acetalization of the mixture 

of 18a and 18b furnished acetals 19a and 19b in 36% and 40% yield, respectively. Unfortunately, 

the conversion of the hydroxyl group into a strong leaving group such as mesylate resulted in 

cleavage of ethlylene bridge by participation of the lone electron pair on nitrogen to give a stable 

iminium salt. The cleavage reaction led the author to covert the hydroxyl group into a weak 

leaving group such as a xanthate. The removal of hydroxyl group of diastereomer 19a (7’S) was 

achieved by Chugaev reaction of the obtained xanthate to give etheno-bridge compound 21 in 

52% yield in two steps. On the other hand, Chugaev reaction of the xanthate with opposite 

configuration of 20a, derived from diastereomer 19b (7’R), resulted in cleavage of ethylene bridge. 

This cleavage would result from the highly fixed stereochemistry of the hydroxyl group by the 

rigid pentacyclic structure. In other words, the lone electron pair on nitrogen could easily 

participate with the cleavage reaction of the xanthate because of stereoelectronic effect. 

Accordingly, undesired 19b was converted into 19a by Mitsunobu reaction. Deacetalization of 21 

afforded ketone 22 in quantitative yield, followed by O-demethlylation to give phenol 23 in 28% 

yield. 
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  Scheme 3. Synthetic route of pentacyclic derivatives 12 and 27 

 

  The synthesis of ethano-bridged compound 12 and diketo compound 27 is shown in Scheme 

3. The obtained olefin 21 was catalytically hydrogenated and subsequently deacetalyzed to 

provide ethano-bridged compound 24. Diketo compound 26 was obtained by Swern oxidation of 

19b with subsequent deacetalization. The methoxy groups in compounds 24 and 26 were 

demethylated with pyridinium chloride to give the corresponding phenols 12 and 27 in 82% and 

31% yield, respectively.  

 

2.3 Binding affinities and conformational analyses of pentacyclic derivatives 

 

The binding affinities of the prepared pentacyclic propellane derivatives for the opioid 

receptors were evaluated with a competitive binding assay (Table 1).  

 

Table 1. Binding affinities of 10, 18a, 18b, 23, 12 and 27 to opioid receptorsa 

Compound 
Ki (nM) Selectivity  

b c d / / 

10 58.2 448 17.4 3.34 25.7 

18a 70.7 146 16.7 4.22 8.72 

18b 13.1 67.9 7.63 1.72 8.90 

23 17.6 52.2 1.92 9.17 27.2 

12 3.21 43.6 0.84 3.82 52.0 

27 187 410 56.5 3.31 7.26 

a Binding assays were carried out in duplicate (k receptor: cerebellum of guinea pig,  receptor 

and  receptor: whole brain without cerebellum of mouse). b [3H] DAMGO was used. c [3H] 

DPDPE was used. d [3H] U-69,593 was used. 
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As expected, the affinities of etheno- and ethano-bridged compounds 23 and 12 for opioid 

receptors were stronger than those of 10. The increment of the affinity for the  receptor was 

largest among the three types of opioid receptors. Compounds 23 and 12 also showed higher 

selectivity for  receptor than 10. These results support that the bent form would play an important 

role in binding to the  receptor. Meanwhile, the affinity and selectivity of derivatives 18 and 27 

for  receptor, with hydroxyl and keto groups, respectively, were not high, despite being 

pentacyclic derivatives. The affinities of diketo compound 27 were especially lower for the  and 

 receptors compared to those of 10, but similar for the  receptor.  

To clarify the reason why some pentacyclic propellane derivatives displayed higher affinity and 

selectivity for  receptor, conformational analyses of these derivatives using the Conformational 

Analyzer with Molecular Dynamics And Sampling (CAMDAS) 2.1 program were carried out 

(Fig. 9).25 The movement range of basic nitrogen in compound 10, one of the important 

pharmacophores, was very wide (Fig. 9A). By contrast, the conformations of 23 and 12 (Fig. 9B, 

C) were rather fixed by introduction of the fifth additional ring. The more restricted range of basic 

nitrogens in 23 and 12 would result in improved affinities and selectivities for the  receptor 

compared to 10. Meanwhile, the nitrogens in compounds 18 and 27 are less basic because of the 

electron withdrawing hydroxyl and keto groups.26 This phenomenon could account for 

compounds 18 and 27 not showing high affinities and selectivities for the  receptor, although the 

possibility that the keto group in 27 or the hydroxyl group in 18 might interfere with the precise 

interaction of the compound with the  receptor could not be ruled out. Keto compound 27, which 

has the least basic nitrogen due to the inductive effect of the -carbonyl group26 among the three 

compounds (18a, 18b and 27), showed the weakest affinity for the opioid receptors. The basicity 

of the nitrogen may also influence the difference of binding affinities between 23 and 12; the less 

basic nitrogen in 23, which has the electron withdrawing olefin moiety,27 may lower the binding 

affinities of 23 compared to those of 12.  
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In summary, the author design and synthesized propellane derivatives with pentacyclic skeleton 

to fix the proposed active conformation of 10 and improve its affinity for the k receptor. Etheno- 

and ethano-bridged compounds 23 and 12, respectively, showed high affinities and selectivities 

for the receptor. These results supported the hypothesis that the bent form of propellane 10 is 

important for binding to  receptor. Compounds 23 and 12 may be useful skeletons for the 

development of the  selective ligands. 

Fig. 9. Result of the conformational analysis of (A) parent propellane 10, (B) etheno-bridged 

propellane 23, (C) ethano-bridged propellane 12, (D) 7’-hydroxy propellane 18a, (E) 7’-

hydroxy propellane 18b, (F) 7’-keto propellane 27. Structures within 10 kcal/mol of the most 

stable conformer were collected. The nitrogen, oxygen, and carbon atoms were indicated by blue, 

red, and gray colors, respectively. The hydrogen atoms were omitted for clarity.  
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2.4 Design of  receptor selective pentacyclic propellane derivatives with a 6-amide side 

chain 

 

As discussed in the previous section, etheno- and ethano-bridged pantacyclic propellane 

derivatives 23 and 12, respectively, seemed to be promising lead compounds for development of 

the  selective ligand.22 Based on previous studies for development of the  selective agonists,20 

the 6-amide side chain of morphinan derivatives such as nalfurafine (5) would be an important 

pharmacophore unit for binding to the  receptor. However, the existing probability of the chair 

form of the C-ring in nalfurafine (5), considered to be disfavor conformation for the  receptor, 

could not be ruled out. The author next attempted to introduce several kinds of amide side chain 

to pentacyclic derivatives 23 and 12 with the conformational fixed boat form by additional E-ring 

to improve affinities and selectivities for  receptor.28 Compared with the range of orientations of 

the amide side chain of nalfurafine (5), the one of designed 6-amide derivatives with pentacyclic 

skeleton 33a would be expected to show enhanced affinity and selectivity for  receptor (Fig. 10). 

 

Fig. 10. Conformers of nalfurafine (5) and designed 6-amide derivatives 33a 
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2.5 Synthesis of pentacyclic propellane derivatives with a 6-amide side chain 

 

All of the 6-amide derivatives 32a-d, 33a-d, 38a-d and 39a-d were synthesized from 

pentacyclic ketone 2222 (Scheme 4).28 Reductive amination of 22 gave methylamines 28 and 29 

in 51% and 24%, respectively.29 At first, the author converted methylamines 28 and 29 to the 

corresponding amide derivatives by use of acyl chloride. However, the yields of the O-

demethylation reaction in the obtained amide derivatives with boron tribromide were very low 

(0-28%), which may result from the decomposition of the sterically hindered amide group.30 

Therefore, the O-methyl groups in 28 and 29 were removed with pyridinium hydrochloride before 

acylation of the amine groups. The obtained phenolic compounds 30 and 31 were treated with 

acyl chlorides to successfully give the etheno-bridged amides 32a-d and 33a-d. The ethano-

bridged compounds 34 and 35 were obtained by catalytic hydrogenation of 28 and 29 with Pd/C 

in MeOH. The demethylation of 34 and 35, followed by amidation of the resulting phenols 36 

and 37 afforded the amide derivatives 38a-d and 39a-d. 

 

Scheme 4. Synthetic scheme of pentacyclic propellane derivatives with 6-amide side chain 

  

N

OMe

O

N

OMe

NHMe

22 28 (6 ) : 51%
29 (6 ) : 24%

6 6

N

OH

Me
N6

O

R

N

OH

NHMe

N

OMe

NHMe

34 (6 ) : 69%
35 (6 ) : 88%

6

H2, Pd/C
MeOH, rt

N

OH

Me
N

36 (6 ) : 96%
37 (6 ) : 55%

6

O

R

N

OH

NHMe
a: R =

b: R =

c: R =

d: R =

30 (6 ) : 77%
31 (6 ) : 85%

32a (6 ) : 98%, 33a (6 ) : 73%
32b (6 ) : 91%, 33b (6 ) : 74%
32c (6 ) : 89%, 33c (6 ) : 74%
32d (6 ) : 99%, 33d (6 ) : 92%O

Ph

Ph

Ph

6

6

NaBH3CN
MeNH2•HCl

MeOH, rt

HCl•pyridine

180 °C

RCOCl, Et3N
CH2Cl2, rt

then K2CO3
MeOH, rt

HCl•pyridine

180 °C

38a (6 ) : 70%, 39a (6 ) : 73%
38b (6 ) : 85%, 39b (6 ) : 68%
38c (6 ) : 96%, 39c (6 ) : 66%
38d (6 ) : 96%, 39d (6 ) : 83%

RCOCl, Et3N
CH2Cl2, rt

then K2CO3
MeOH, rt



14 
 

2.6 Pharmacological effects of pentacyclic propellane derivatives with a 6-amide side chain 

 

Table. 2. Binding affinities of nalfurafine, 23, 12 and amide derivatives 32, 33, 38 and 39 to 

opioid receptorsa 

Compound C(6) R= 
Ki (nM) Selectivity  

b c d  

nalfurafine (5)  trans-(3-furyl)vinyl 0.431 51.3 0.178 2.42 288 

23  - 17.6 52.2 1.92 9.17 27.2 

12  - 3.21 43.6 0.84 3.82 52.0 

32a  trans-(3-furyl)vinyl 0.570 3.98 0.230 2.48 17.3 

32b  phenethyl 0.510 3.52 0.470 1.09 7.49 

32c  benzyl  0.420 1.66 0.240 1.75 6.92 

32d  phenyl 2.70 2.23 4.46 0.610 0.50 

33a  trans-(3-furyl)vinyl 13.9 14.2 0.820 17.0 17.3 

33b  phenethyl 4.36 10.7 1.86 2.34 5.75 

33c  benzyl 12.2 4.50 1.73 7.05 2.60 

33d  phenyl 47.6 6.46 13.1 3.63 0.493 

38a  trans-(3-furyl)vinyl 0.232 0.182 0.204 1.14 0.89 

38b  phenethyl 0.229 1.15 0.113 2.03 10.2 

38c  benzyl 0.197 1.19 0.136 1.45 8.75 

38d  phenyl 0.280 3.65 0.543 0.516 6.72 

39a  trans-(3-furyl)vinyl 47.9 19.1 8.36 5.73 2.28 

39b  phenethyl 11.5 32.4 11.9 0.966 2.72 

39c  benzyl 59.6 15.0 11.0 5.42 1.36 

39d  phenyl 56.0 1.27 13.8 4.06 0.092 

a Binding assays were carried out in duplicate ( receptor: cerebellum of guinea pig,  and  

receptor: whole brain without cerebellum of mouse). b[3H] DAMGO was used. c[3H] DPDPE was 

used. d[3H] U-69,593 was used.  

 

The results of binding assays of the obtained 6-amide derivatives for the opioid receptors are 

shown in Table 2. The affinities of the etheno- and ethano-bridged compounds 32 and 38, 

respectively, with the 6-amide side chain for the  receptor were higher than those of 23 and 12 

except for 32d. However, selectivity of all 6-isomers 32 and 38 for the  receptor were lower 

than those of 23 and 12. This result may occur from the improper orientation of the 6-side chain 

toward the downward side of the C-ring. On the other hand, although ethano-bridged 6-isomers 

39 showed lower affinities for the  receptor than did 12, these6-amide derivatives showed 

higher / ratio than 12, with the exception of 39b. Meanwhile, both of the affinities and 

selectivities for the  receptor of the etheno-bridged 6-isomers 33b-d were lower than those of 

etheno-bridged compound 23. On the contrary, the etheno-bridged derivative 33a with the same 



15 
 

amide side chain as in nalfurafine showed higher affinity for the  receptor than did 23, and 

furthermore, 33a displayed the highest / ratio of all the previously reported propellane 

derivatives. Moreover, the / ratio of 33a was seven times higher than that of nalfurafine (5). 

These outcomes indicated that not only the orientation of the amide side chain of 33a toward the 

upper side of C-ring, but also the rigidity of the E-ring and the amide side chain could be important 

for interaction with the  receptor. 

   Interestingly, the 6-isomers 33d and 39d showed selectivity for the  receptor, with the 

selectivity of 39d for  receptor being the highest of the compounds shown in Table 2. This 

selectivity may arise from the adequate orientation of the phenyl ring in 39d for binding to the  

receptor in a manner similar to the orientation of the benzene ring in  receptor selective ligands, 

TAN-67 (6),14 NTI (40),31 and KNT-127 (41)17 (Fig. 11). 

 

  Fig. 11. The structure of  selective ligands, TAN-67 (6), NTI (40) and KNT-127 (41)  

 

The agonist activity of 33a for the  receptor was evaluated by the [35S]GTPγS binding assays 

(Table 3). The standard ligand U-69,593 (4) was also evaluated for comparison. 33a showed full 

agonist activity corresponding to the standard  agonist U-69,593 (4). Moreover, the EC50 value 

of 33a was 2.3-fold lower than that of U-69,593 (4)  

 

Table 3. The  receptor-agonist activities of U-69,593 and 33aa 

Compound EC50 (nM) Emax (%) 

U-69,593 28.1 100 

33a 11.8 108 

a Membranes were incubated with [35S] GTPS and GDP with the compound. The  human 

recombinant cell membrane (CHO) was used in this assay. U-69,593 was used as the standard  

agonist. The data represent the means of four samples. 
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  Next, antinociceptive effect induced with s.c.-administrated 33a using the acetic acid writhing 

test (AAW test) was evaluated (Fig. 12). Compound 33a showed a dose-dependent 

antinociceptive effect (ED50 = 0.589 mg/kg) in mice, which was antagonized by the  selective 

antagonist nor-BNI (10 mg/kg). These results indicated that antinociceptive effect of 33a in mice 

would be derived from the  receptor. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Antinociceptive effect of 33a in the acetic acid writhing test 

 

  Although nalfurafine (5) showed a strong antinociceptive effect (ED50 = 0.00622 mg/kg), the 

sedative effect was also strong in the clinical trial test for postoperative pain, which led us to give 

up nalfurafine (5) for this indication. The isolation of the sedation effect from the analgesic effect 

of 33a and nalfurafine (5) were compared by evaluating their spontaneous locomotor activities 

(Fig. 13). Compound 33a exhibited less sedative effect than did nalfurafine (5). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Sedative effect of nalfurafine (5) and 33a in the spontaneous locomotor activity test 
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The ED50 ratio between antinociceptive effect and sedation of YNT-854 was higher than that 

of nalfurafine (Table. 4), indicating that 33a would be expected to act as an analgesic drug for 

postoperative pain with a lower sedative effect than nalfurafine.28 
 

Table 4. The ED50 of antinociceptive effect and sedation effect and the ED50 ratio 

Compound 
%Antinociceptive 

ED50 (mg/kg) 

%Sedation 

ED50 (mg/kg) 
ED50 Ratio 

nalfurafine (5) 0.00622 0.0344 5.5 

33a 0.589 7.74 13.1 

 

2.7 Conclusion 

 

In conclusion, the author have designed and synthesized the pentacyclic derivatives with the 

amide side chain based on the proposed active conformation of nalfurafine (5). The obtained 33a 

showed full agonist activity and the highest / ratio in all the reported propellane derivatives. 

Furthermore, the sedative effect of 33a was notably separated from the analgesic effect, as 

compared to nalfurafine (5). Although the ED50 ratio of nalfurafine (5) is much higher than that 

of U-50,488H in mice, nalfurafine (5) showed a slightly narrow safety margin to be used for 

postoperative pain. Given the ED50 ratio of 33a is 2.4 times higher than that of nalfurafine (5), 

33a would be applicable to postoperative pain. The fact that 33a with the fixed amide chain 

toward the upper side of the C-ring showed higher / ratio than nalfurafine (5) supported the 

idea for an active conformation of the amide side chain in the nalfurafine (5) for binding to  

receptor (Fig. 10). Furthermore, the fact that 33a showed a higher dose ratio between the sedative 

effect and the analgesic effect than nalfurafine (5) may provide a clue for the design of useful 

analgesics with weaker sedative effects than nalfurafine (5). 



18 
 

3. Design and Synthesis of  Receptor Selective Quinolinopropellane Derivatives and Their 

Pharmacologies 

 

3.1 The message-address concept and the  receptor selective ligands 

 

Portoghese successfully utilized the message-address concept as a useful guideline for design 

of type selective opioid ligands.32 The message-address concept was advocated by Schwyzer to 

explain the organization of recognition elements in peptide hormones in 1977.33 The concept 

termed the component of peptide responsible for receptor transduction “message”, and the 

component of peptide providing additional binding affinity but not being essential for the 

transduction process “address”. This concept was applied to endogenous opioid peptide by 

Goldstein et al,34 and to general opioid ligands by Portoghese. In this concept of opioid ligands, 

message part is essential moiety for the intrinsic activities of opioid receptor and common 

structural part for binding to all three types of opioid receptors, and address part participates in 

selectivity for receptor types. It is known that ligands with smaller address part have selectivity 

for the  receptor, ligands with bigger address part bind to the  receptor and ligands with the 

biggest address moiety bind to the  receptor. The several example of this concept for opioid 

receptor is shown in Fig. 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Message-address moieties of selective antagonists for each opioid receptor types
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Based on this concept, some  selective ligands for opioid receptor types were developed. For 

instance,  antagonists such as NTI (40),31 NTB (43),31 BNTX (44),35 and SB-205588 (45),36  

agonists such as TAN-67 (6),14 SB-219825 (46),36 SN-28 (47),37 and KNT-127 (41)17 were 

designed and synthesized (Fig. 15). The  receptor ligands possess various message structures, 

including 4,5-epoxymorphinan, morphinan, and 4a-phenyldecahydroisoquinoline structures.  

Fig. 15. The structure of  antagonists and agonists (red line is message part) 

 

3.2 Design of  receptor selective propellane derivatives and in silico investigations 

 

Recently, Li et al. reported that indolopropellane 48 (Fig. 16) exhibited almost no affinity for 

opioid receptors although Compound 48 has an indole moiety as a possible  receptor address 

part like the selective  antagonist NTI (40).38 As mentioned in Chapter 2, indolopropellane 48 

could have two canonical conformations, bent and extended forms (Fig. 16). The extended form, 

which resembles the stable conformation of NTI (40), could bind to the  receptor. Indeed, the 

real binding conformation of NTI (40) unveiled by the X-ray crystallographic analysis of the NTI-

 receptor complex16 is an extended form (Fig. 17). The lack of binding of indolopropellane 48 

to the  receptor may have ascribed that the bent conformer may be the most stable form. 
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Fig. 16. Structure of indolopropellane 48, quinolinopropellane 49, and the bent and extended 

forms of 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. The binding mode of NTI (40) observed in the X-ray structure of the NTI- receptor 

complex16 
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  This working hypothesis suggests that the derivatives, which has stable extended conformation 

can interact with the  receptor to stabilize the ligand- receptor complex, would enhance the 

binding affinity to the  receptor. In the course of designing the selective  agonist TAN-67 (6),14 

it is assumed that an hydrogen bond between the quinoline nitrogen and the  receptor would lead 

to the  agonistic activity. Based on the above discussion, quinolinopropellane 49 (Fig. 16) was 

designed to form the hydrogen bond with  receptor, which would also need to stabilize the 

extended conformation for binding to the  receptor.  

  First, the conformational analyses of NTI (6), indolo- and quinolinopropellane 48 and 49 using 

Conformational Analyzer with Molecular Dynamics And Sampling (CAMDAS) 2.1 program25 

were performed to confirm the above hypothesis related to the bent form and extended form 

conformers of 48 and 49. When the low-energy conformers of NTI (6), 48 and 49 (those within 

2.5 kcal/mol of global minimum) were superimposed (Fig. 18), the most lowest-energy 

conformers of both 48 and 49 were the bent form, while those of NTI (6), was the extended form 

as expected. The extended form of 48 and 49 appeared at the energy difference of 3-5 kcal/mol 

from the global minimum. 

 

Fig. 18.The superposition of the low-energy conformers of NTI (6), 48 and 49 

 

  Next, the binding modes of 48 and 49 with the  receptor and their binding free energies (Gbind 

values) were examined by using a combination method of the molecular-docking calculation39 

and the molecular mechanics Generalized-Born surface area (MM-GBSA) free energy analysis.40 

The resulting binding modes of 48 and 49 are shown in Fig 19, and their calculated Gbind values 

are given in Table 5. 
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Fig. 19. The binding modes of 48 (A) and 49 (B) with the  receptor determined by our docking 

procedure. Hydrogen-bonding interactions are indicated by red dashed lines. 

 
 

Table 5. Energy contributions (kcal/mol) to the binding free energy of 48 and 49 to the  receptor 

Energy contribution 48 49 Energy differencea 

Eint
b 3.19 2.80 0.39 

EVDW
c –50.03 –48.59 –1.44 

Eelec
d –11.93 –25.47 13.54 

GGB
e 11.06 13.99 –2.93 

GSA
f –6.28 –8.15 1.87 

Gbind
g –53.99 –65.42 11.43 

a Differences of energy contributions of 48 and 49 
b Internal contributions from bond, angle, dihedral terms. 
c Nonbonded van der Waals. 
d Nonbonded electronstatics. 
e Electrostatic component to solvation. 
f Nonpolar component to solvation. 
g Total change of free energy in binding 
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  Indoropropellane 48 was shown to bind with the  receptor in its extended form (Fig. 19A). 

This result strongly supported the working hypothesis that the extremely low affinity of 48 to the 

 receptor may result from the fact that 48 could not bind to the  receptor when the ligand existed 

in the low-energy bent form. In other words, the binding of 48 to the  receptor would require a 

considerable energy penalty to adopt the high-energy extended form, which is suited to bind to 

the  receptor as shown in the crystal structure of the NTI- receptor complex16 (Fig. 18). On the 

other hand, the binding mode of quinolinopropellane 49 (Fig. 20A) proposed that the extended 

form of 49 could also bind to the  receptor.41 Interestingly, the lone electron pair on the nitrogen 

atom in the quinoline ring in 49 could form a hydrogen bonding interaction with the NH3
+ of 

Lys214 residue. A similar hydrogen bond was not observed in the 48- receptor complex, because 

48 possessed the indole ring which lacks a lone electron pair. Owing to the additional hydrogen 

bonding interaction, the electrostatic interaction (Eelec) of 49 with the  receptor was suggested 

to be much greater than that of 48 (Table 5). This situation inevitably led to a much better Gbind 

value for 49. Taken together, the above observations suggest that the additional hydrogen bonding 

interaction in the 49- receptor complex might compensate for any energy penalty, allowing 49 

to adopt the high-energy extended form upon binding. The obtained binding mode of 

quinolinopropellane 49 with the  receptor included the hydrogen bonding with the Lys214 residue, 

whereas a corresponding interaction with Lys214 residue was not observed in the crystal structure 

of the NTI ()- receptor complex.16 In the course of  agonist TAN-67 discovery, the hydrogen 

bonding with the  receptor was proposed to be important in producing the  agonist activity.14 

Therefore, quinolinopropellane 49 was expected to produce the  receptor agonism. To confirm 

the in silico results, the author synthesized the quinolinopropellnae derivatives. 
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3.3 Synthesis of quinolinopropellane derivatives 

 

Synthetic method of quinolinopropellane 49 and its regioisomer 53 is shown in Scheme 5.42 A 

Friedländer quinoline synthesis43 of 5018 with 2-aminobenzaldehyde provided desired 

quinolinopropellane 51 and its regioisomer 52 in 35% and 38% yield, respectively. O-

Demethylation of 51 and 52 with pyridinium chloride to give the corresponding phenol 49 and 53 

in 79% and 79% yield, respectively. 

Scheme 5. Synthetic method of quinolonopropellane 49 and its regioisomer 53 

 

The author also synthesized 17-N-substituted quinolinopropellane derivatives to investigate the 

effects of N-substituents, considered to be important for selectivity for the opioid receptors 

(Scheme 6). N-Me quinolinopropellane 55 and its regioisomer 56 were obtained by Friedländer 

quinoline synthesis of 5418 in 35% and 54 % yield, respectively. The methoxy groups in 

compound 55 and 56 were demethylated with pyridinium chloride to afford phenol 57 and 58 in 

67% and 62% yield, respectively. N-(1-OH-CPM) quinolinopropellane 60 and its regioisomer 61 

were furnished by Friedländer quinoline synthesis of 59, followed by amidation with 1-

acetoxycyclopropanecarboxylic acid and reduction of the obtained amide by alane44 in 19% and 

43 % yield in three steps, respectively. A Friedländer quinoline synthesis of 59, followed by SN2 

reaction with BnBr to afford N-Bn quinolinopropellane 64 and its regioisomer 65 in 16% and 

23% yield in two steps, respectively. O-Demethylation of 64 and 65 with pyridinium chloride to 

give phenol 66 and 67 in 78% and 64% yield, respectively. Finally, A Friedländer quinoline 

synthesis of 59, followed by amidation with phenylacetyl chloride to provide the corresponding 

amide 68 and its regioisomer 69 in 30% and 51% yield in two steps, respectively. N-Phenethyl 

quinolinopropellane 70 and 71 was obtained by reduction of amide 68 and 69 with LiAlH4 in 80% 

and 85% yield in two steps, respectively. O-Demethylation of 70 and 71 with pyridinium chloride 

afforded phenol 72 and 73 in 80% and 57% yield in two steps, respectively. 
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Scheme 6. Synthesis of N-substituted quinolonopropellane derivatives and their regioisomers 

  

H
N

MeO

1) 2-aminobenzaldehyde
MeSO3H, EtOH, reflux

2) 1-acetoxycyclopropane-
carboxylic acid
DMAP, EDCI•HCl, 
DMF, rt

3) LiAlH4, H2SO4, 
THF, 0 °C to rt

O N

RO

N N

RO

N

+

59 60 (R = Me) : 19% (3 steps) 61 (R = Me) : 43% (3 steps)

62 (R = H) : 78% 63 (R = H) : 64%

OH OH

BBr3, CH2Cl2
78 °C to rt

H
N

MeO

1) 2-aminobenzaldehyde
MeSO3H, EtOH, reflux

2) BnBr, K2CO3
DMF, rt

O N

RO

N N

RO

N

+

59 64 (R = Me) : 16% (2 steps) 65 (R = Me) : 23% (2 steps)

66 (R = H) : 36% 67 (R = H) : 50%

Ph Ph

BBr3, CH2Cl2
78 °C to rt

HCl•pyridine
180 °C

HCl•pyridine
180 °C

H
N

MeO

1) 2-aminobenzaldehyde
MeSO3H, EtOH, reflux

2) phenylacetyl chloride
DMF, rt

O N

MeO

N N

MeO

N

+

59 68 : 30% (2 steps) 69 : 51% (2 steps)

Ph Ph

OO

LiAlH4, 

THF, 0 °C to rt

N

RO

N N

RO

N

+

70 (R = Me) : 80% 71 (R = Me) : 85%

Ph Ph

72 (R = H) : 80%

HCl•pyridine
180 °C 73 (R = H) : 57%

HCl•pyridine
180 °C

N

MeO

2-aminobenzaldehyde
MeSO3H

EtOH, reflux

O NMe

RO

N NMe

RO

N

+

54 55 (R = Me) : 35% 56 (R = Me) : 54%
HCl•pyridine
180 °C

57 (R = H) : 67% 58 (R = H) : 62%

Me

HCl•pyridine
180 °C

17



26 
 

3.4 Pharmacological effects of the obtained quinolinopropellane derivatives 

 

 

Fig. 20. The structure of the obtained quinolinopropellane derivatives 

 

Table. 6. Binding affinities of quinolinopropellane derivatives 49, 57, 62, 66 and 72 and those 

regioisomers 53, 58, 63, 67 and 73 to the opioid receptorsa 

Compound 
Ki (nM) Selectivity 

b c d  

49 112 0.941 84.6 119 89.9 

57 3.06 1.88 195 1.63 104 

62 415 1.10 879 378 801 

66 2.32 178 >1000 0.013 - 

72 76.3 31.6 594 2.42 18.8 

53 588 124 446 4.73 3.58 

58 8.37 17.9 790 0.467 44.1 

63 660 168 113 3.94 0.675 

67 101 398 >1000 0.253 - 

73 182 68.6 115 2.65 1.67 

a Binding assays were carried out in duplicate ( receptor: cerebellum of guinea pig,  and  

receptor: whole brain without cerebellum of mouse). b[3H] DAMGO was used. c[3H] DPDPE was 

used. d[3H] U-69,593 was used.  

 

  The binding affinities of the synthesized quinolinopropellane derivatives 49, 57, 62, 66 and 72 

and those regioisomers 53, 58, 63, 67 and 73 to the opioid receptors were evaluated by competitive 

assays (Table 6). As expected, quinolinopropellane derivatives 49, 57 and 62 showed high 

binding affinities for the  receptor. However, N-Me derivative 57 exhibited extremely low 

selectivity for the  receptor compared to N-cyclopropylmethyl derivatives 49 and 62, derived 

from its high affinity for the  receptor. Quinolinopropellane 49 with N-cyclopropylmethyl group 

had the highest binding affinity for the  receptor, while N-(1-hydroxycyclopropylmethyl) 

derivative 62 showed the highest selectivity for the  receptor, although its binding affinity for 
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the  receptor was slightly decreased compared with that of 49. On the other hand, N-Bn and N-

phenethyl derivatives 66 and 72 exhibited low binding affinities for the  receptor, which may 

indicate that phenyl group of 66 and 72 would be inappropriate for binding to the  receptor. 

Meanwhile, regioisomers 53, 58, 63, 67 and 73 showed lower affinities for the  receptor than did 

the corresponding isomers 49, 57, 62, 66 and 72. These results would be derived from 

inappropriate orientation of lone electron pair of quinoline ring, expected to be an important 

pharmacophore for the  receptor in the proposed working hypothesis. 

 

Table 7. The  receptor-Agonist activities of 49 and 62a 

Compound EC50 (nM) Emax (%) 

49 2.50 88 

62 15.4 95 

a Membranes were incubated with [35S] GTPS and GDP with the compound. The  human 

recombinant cell membrane (CHO) was used in this assay. DPDPE was used as the standard  

agonist. The data represent the means of four samples. 

 

  To confirm the working hypothesis, the functional activities of selected compounds 49 and 62, 

which exhibited high selectivities for the  receptor, were evaluated by [35S] GTPS binding 

assays (Table 7). As expected, both of these quinolinopropellanes exhibited  receptor full 

agonist activity. Compared to N-hydroxycyclopropylmethyl derivative 62, N-cyclopropylmethyl 

derivative 49 showed lower EC50 value, indicating N-cyclopropylmethyl group would be suitable 

for binding to the  receptor. The results of in vitro evaluations supported the working hypothesis 

and the in silico experimental results. Furthermore, these observations indicate that the hydrogen 

bonding interaction between a ligand and the Lys214 residue in the  receptor plays a crucial role 

in not only obtaining strong binding ability but also exerting  receptor agonist activity. 
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3.5 Conclusion 

 

The working hypothesis have been developed, that almost no binding affinity of 

indolopropellane 48 to the  receptor would be derived from its possibly extremely stable bent 

conformer. To enable the bent conformation of propellane skeleton to convert to the extended 

conformation, which could be expected to interact with the  receptor, quinolinopropellanes 

derivatives were designed which had an additional pharmacophore, the quinoline nitrogen. The 

calculated binding free energies of ligand- receptor complexes supported the working hypothesis. 

The synthesized quinolinopropellane derivatives 49 and 62 showed selective  receptor full 

agonist activities, confirming the working hypothesis and the outcomes of in silico investigations. 
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4. Conclusion 

The author developed the working hypothesis that the bent form and the extended form of 

propellane compounds would be important for binding to the  and  receptors, respectively (Fig. 

21). Based on this hypothesis, the author designed and synthesized pentacyclic propellane 

derivatives with fixed bent form to bind to  receptor and quinolinopropellnane derivatives 

possessing lone electron pair of quinoline to stabilize the extend form of propellane by ligand- 

receptor interaction to bind to  receptor. As expected, obtained pentacyclic propellane derivative 

33a with amide side chain and quinolinopropellane 49 exhibited high affinity and selectivity for 

the  receptor and the  receptor, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. The working hypothesis of propellane compounds and the structure of  selective  

penatacyclic propellane derivative 33a with amide side chain and  selective quinolino- 

propellane 49 
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Experimental section 

Chemistry  

Melting points were determined on a Yanako MP-500P melting point apparatus and were 

uncorrected. Infrared (IR) spectra were recorded on a JASCO FT/IR-460Plus. Nuclear magnetic 

resonance (NMR) spectra were recorded on Agilent Technologies Mercury-300 at 300MHz for 
1H NMR and 75.5 MHz for 13C NMR. NMR chemical shifts were reported in δ (ppm) using 

residual solvent peaks as standard (CDCl3, 7.26 ppm (1H), 77.0 ppm (13C); THF-d8, 3.58 ppm 

(1H), 67.6 ppm (13C); Pyridine-d5, 8.74 ppm (1H), 150.4 ppm (13C)). Mass spectra (MS) were 

obtained on a JMS-AX505HA, JMS-700 MStation, or JMS-100LP instrument by applying an 

electron ionization (EI), a fast atom bombardment (FAB), or an electrospray ionization (ESI) 

method. Elemental analyses were determined with a Yanako MT-5 and JM10 for carbon, 

hydrogen, and nitrogen. The progress of the reaction was determined on Merck Silica Gel Art. 

5715 (0.25 mm). Column chromatographies were carried out using Kanto Silica Gel 60N (neutral, 

spherical, 40–100 m). 
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Ethyl 2-[(4aR,9aR,10R)-11-(cyclopropylmethyl)-6-methoxy-1,2,4,9-tetrahydrospiro[4a,9a- 

(ethanoiminomethano)fluorene-3,2'-[1,3] dioxolan]-10-yl]acetate (13a)  

Ethyl 2-[(4aR,9aR,10S)-11-(cyclopropylmethyl)-6-methoxy- 1,2,4,9-tetrahydrospiro[4a,9a-  

(ethanoiminomethano)fluorene-3,2'-[1,3] dioxolan]-10-yl]acetate (13b) 

 

 

 

 

 

 

 

 

To a suspension of Zn dust (6.77 g, 103 mmol) in THF (20 mL) was added a solution of 9 (4.82 

g, 10.4 mmol) and ethyl bromoacetate (3.44 mL, 31.1 mmol) in THF (40 mL) at room temperature 

under an argon atmosphere. The reaction mixture was stirred at 60 °C for 1 h. The cooled reaction 

mixture was filtered through a Celite pad and the Celite pad was washed with AcOEt. After 

concentration of the filterate, the reaction mixture was basified (pH 9) with saturated NaHCO3 

aqueous solution and extracted with CHCl3 three times. The combined organic extracts were dried 

over Na2SO4, and evaporated in vacuo. The residue was purified by silica gel column 

chromatography (hexane/AcOEt = 3/1) to give 13a (2.80 g, 59%) as a yellow oil and 13b (1.28 

g, 27%) as a yellow oil. 

 

13a 

IR (film) cm-1: 3075, 2940, 2833, 1731, 1613, 1492, 1274, 1097, 1037, 801. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.01–0.13 (m, 2H), 0.40–0.55 (m, 2H), 0.74–0.90 (m, 1H), 

1.26 (t, J = 7.1 Hz, 3H), 1.30–1.37 (m, 1H), 1.39–1.66 (m, 4H), 1.79–1.92 (m, 1H), 1.97 (dd, J = 

14.5, 2.4 Hz, 1H), 2.08–2.18 (m, 1H), 2.22 (d, J = 8.5 Hz, 1H), 2.26–2.43 (m, 3H), 2.51 (dd, J = 

13.1, 6.3 Hz, 1H), 2.61 (dd, J = 17.2, 1.9 Hz, 1H), 3.00 (dt, J = 12.1, 3.4 Hz, 1H), 3.09 (dd, J = 

6.0, 2.0 Hz, 1H), 3.27 (d, J = 14.9 Hz, 1H), 3.76–3.99 (m, 4H), 3.79 (s, 3H), 4.08–4.25 (m, 2H), 

6.63–6.70 (m, 2H), 7.08 (d, J = 7.8 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.5, 4.8, 8.1, 14.2, 29.3, 30.5, 35.1, 37.2, 37.4, 38.0, 48.0, 

48.6, 48.7, 55.3, 57.8, 59.3, 60.6, 63.8, 64.2, 108.5, 109.1, 111.0, 126.1, 131.1, 152.9, 158.1, 173.6. 

MS (ESI): m/z = 456[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C27H38NO5: 456.2750. Found: 456.2772. 

  

13b13a 
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13b 

IR (film) cm-1: 3075, 2939, 2833, 1733, 1611, 1489, 1282, 1489, 1282, 1157, 1036, 755. 

1H NMR (300 MHz, CDCl3): δ (ppm) –0.14–0.03 (m, 2H), 0.29–0.47 (m, 2H), 0.60–0.74 (m, 1H), 

1.19 (t, J = 7.1 Hz, 3H), 1.42–1.59 (m, 3H), 1.66–1.84 (m, 4H), 1.87–2.00 (m, 1H), 2.14–2.30 (m, 

1H), 2.31–2.50 (m, 5H), 2.69 (td, J = 13.7, 4.5 Hz, 1H), 2.98 (d, J = 15.5 Hz, 1H), 3.03–3.12 (m, 

1H), 3.77–3.91 (m, 2H), 3.78 (s, 3H), 3.95–4.17 (m, 4H), 6.57 (d, J = 2.4 Hz, 1H), 6.66 (dd, J = 

8.1, 2.4 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.1, 5.1, 8.7, 14.1, 22.6, 27.4, 30.5, 35.3, 37.5, 45.5, 49.3, 

50.1, 50.1, 55.4, 58.5, 60.4, 62.4, 63.4, 64.5, 107.9, 108.0, 111.2, 126.4, 133.1, 151.5, 158.8, 173.8. 

MS (ESI): m/z = 456[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C27H38NO5: 456.2750. Found: 456.2751. 

  



33 
 

2-[(4aR,9aR,10R)-11-(Cyclopropylmethyl)-6-methoxy-1,2,4,9-tetrahydrospiro[4a,9a- 

(ethanoiminomethano)fluorene-3,2'-[1,3]dioxolan]-10-yl]ethanol (14a) 

 

 

 

 

 

 

 

 

 

To a suspension of LiAlH4 (831 mg, 21.9 mmol) in THF (20 mL) was added a solution of 13a 

(1.66 g, 3.65 mmol) in THF (20 mL) at 0 °C under an argon atmosphere. The reaction mixture 

was stirred at room temperature for 30 min. The reaction mixture was quenched with saturated 

NaHCO3 aqueous solution dropwise at 0 °C and stirred for 30 min at the same temperature. After 

addition of anhydrous Na2SO4, the mixture was filtered through a Celite pad and the Celite pad 

was washed with AcOEt. After concentration of the filterate, the residue was purified by silica 

gel column chromatography (CHCl3/MeOH/25% ammonia aqueous solution = 100/1/0.1 to 

100/5/0.5) to give 14a (1.51 g, quant.) as a colorless amorphous solid. 

 

14a 

IR (KBr) cm-1: 3423, 2935, 1492, 1272, 1097, 1034, 812, 669.  

1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.17 (m, 2H), 0.43–0.58 (m, 2H), 0.75–0.89 (m, 1H), 

1.24–1.81 (m, 6H), 1.84–2.28 (m, 5H), 2.28–2.47 (m, 3H), 2.48–2.53 (m, 1H), 2.72 (dd, J = 12.8, 

6.2 Hz, 1H), 3.09 (dt, J = 12.6, 3.8 Hz, 1H), 3.27 (dd, J = 21.1, 15.1 Hz, 1H), 3.60–4.07 (m, 6H), 

3.79 (s, 3H), 6.64 (d, J = 2.3 Hz, 1H), 6.68 (dd, J = 8.1, 2.3 Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.6, 4.7, 8.7, 29.4, 29.7, 30.6, 32.3, 35.8, 37.9, 47.3, 48.6, 

48.7, 55.3, 58.4, 62.7, 63.0, 63.8, 64.2, 108.5, 109.0, 111.0, 126.1, 131.6, 152.7, 158.1. 

MS (ESI): m/z = 414[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H36NO4: 414.26443. Found: 414.2646. 

 

  

14a
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2-[(4aR,9aR,10S)-11-(Cyclopropylmethyl)-6-methoxy-1,2,4,9-tetrahydrospiro[4a,9a- 

(ethanoiminomethano)fluorene-3,2'-[1,3]dioxolan]-10-yl]ethanol (14b) 

 

 

 

 

 

 

 

 

Compound 14b was prepared from compound 13b according to the procedure used to 

synthesize compound 14a. Yield, 83%.; a yellow oil. 

 

14b 

IR (film) cm-1: 3399, 3076, 2949, 2877, 1610, 1488, 1283, 1041, 754. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.00–0.18 (m, 2H), 0.42–0.59 (m, 2H), 0.71–0.88 (m, 1H), 

1.52 (d, J = 14.3 Hz, 1H), 1.60 (dd, J = 14.1, 1.6 Hz, 1H), 1.66–2.15 (m, 10H), 2.18–2.33 (m, 

1H), 2.49 (d, J = 15.8 Hz, 1H), 2.65–2.76 (m, 1H), 2.81 (dd, J = 13.7, 4.3 Hz, 1H), 3.00–3.10 (m, 

1H), 3.18–3.29 (m, 1H), 3.84–4.25 (m, 5H), 3.86 (s, 3H), 6.65 (d, J = 2.4 Hz, 1H), 6.73 (dd, J = 

8.1, 2.4 Hz, 1H), 7.16 (d, J = 8.1 Hz, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.4, 4.9, 10.2, 22.6, 24.3, 28.0, 30.5, 36.3, 45.6, 46.9, 48.9, 

50.4, 51.9, 55.3, 63.5, 64.1, 64.2, 64.4, 108.0, 108.0, 111.2, 126.1, 133.0, 151.8, 158.9. 

MS (ESI): m/z = 414[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H36NO4: 414.2644. Found: 414.2638. 

 

 

  

14b
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(4aR,9aR,10R)-11-(Cyclopropylmethyl)-10-(2-hydroxyethyl)-6-methoxy-4,9-dihydro-1H- 

4a,9a-(ethanoiminomethano)fluoren-3(2H)-one (15a) 

 

 

 

 

 

 

 

 

To a stirred solution of 14a (1.73 g, 4.19 mmol) in MeOH (3 mL) was added 2 M HCl (3mL) 

at room temperature under an argon atmosphere. After 4 h with stirring, the reaction mixture was 

basified (pH 9) with saturated NaHCO3 aqueous solution at 0 °C and extracted with CHCl3 three 

times. The combined organic extracts were dried over Na2SO4, and evaporated in vacuo. The 

residue was purified by silica gel column chromatography (CHCl3/MeOH/25% ammonia aqueous 

solution = 100/1/0.1 to 100/5/0.5) to give 15a (1.25 g, 81%) as a colorless amorphous solid.  

 

15a 

IR (film) cm-1: 3412, 2936, 1611, 1588, 1491, 1463, 1286, 1033. 

1H NMR (300 MHz, CDCl3):  (ppm) 0.10–0.17 (m, 2H), 0.47–0.56 (m, 2H), 0.82–0.89 (m, 1H), 

1.51 (ddd, J = 13.8, 5.4, 2.4 Hz, 1H), 1.65 (ddd, J = 13.8, 10.8, 3.0 Hz, 1H), 1.72–1.81 (m, 2H), 

1.86–1.96 (m, 2H), 1.99–2.05 (m, 1H), 2.26–2.36 (m, 2H), 2.50 (t, J = 12.0 Hz, 1H), 2.57 (d, J = 

12.6 Hz, 1H), 2.59 (d, J = 12.6 Hz, 1H), 2.71 (br s, 1H), 2.75 (dd, J = 12.6, 6.0 Hz, 1H), 2.85 (d, 

J = 16.2 Hz, 1H), 3.05–3.10 (m, 1H), 3.49 (d, J = 15.6 Hz, 1H), 3.75 (s, 3H), 3.77–3.85 (m, 2H), 

6.57 (d, J = 2.4 Hz, 1H), 6.68 (dd, J = 8.0, 2.4 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), a proton (OH) 

was not observed. 
13C NMR (150 MHz, CDCl3):  (ppm) 3.4, 4.8, 8.8, 31.2, 33.2, 35.2, 36.9, 39.0, 44.7, 46.6, 48.9, 

51.2, 55.3, 57.9, 60.8, 62.4, 107.7, 112.6, 126.0, 132.2, 150.7, 159.1, 211.3. 

MS (ESI): m/z = 370 [M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H32NO3: 370.2382. Found: 370.2376. 

 

 

  

15a
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(4aR,9aR,10S)-11-(Cyclopropylmethyl)-10-(2-hydroxyethyl)-6-methoxy-4,9-dihydro-1H- 

4a,9a-(ethanoiminomethano)fluoren-3(2H)-one (15b) 

 

 

 

 

 

 

 

 

Compound 15b was prepared from compound 14b according to the procedure used to 

synthesize compound 15a. Yield, 95%.; a yellow oil. 

 

15b 

IR (film) cm-1: 3413, 2955, 1711, 1610, 1588, 1485, 1459, 1428, 1330, 1033. 

1H NMR (400 MHz, CDCl3):  (ppm) 0.00–0.09 (m, 2H), 0.41–0.50 (m, 2H), 0.65–0.75 (m, 1H), 

1.68–1.87 (m, 3H), 1.88–2.01 (m, 2H), 2.16–2.24 (m, 2H), 2.24–2.38 (m, 4H), 2.43 (d, J = 13.6 

Hz, 1H), 2.48–2.57 (m, 2H), 2.76 (d, J = 16.0 Hz, 1H), 3.12 (d, J = 15.6 Hz, 1H), 3.21 (td, J = 

8.8, 4.0 Hz, 1H), 3.54–3.62 (m, 1H), 3.64–3.72 (m, 1H), 3.77 (s, 3H), 6.56 (d, J = 2.4 Hz, 1H), 

6.70 (dd, J = 8.0, 2.4 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), a proton (OH) was not observed. 
13C NMR (100 MHz, CDCl3):  (ppm) 3.8, 4.1, 9.7, 27.2, 27.6, 31.6, 36.9, 37.6, 47.4, 49.9, 52.5, 

53.6, 55.3, 56.5, 63.2, 63.3, 107.7, 112.0, 126.1, 132.7, 149.9, 159.1, 211.1. 

MS (ESI): m/z = 370 [M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H32NO3: 370.2382. Found: 370.2388. 

 

  

15b

N
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(2S,3S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-3-hydroxy-9-methoxy-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-one (17a) 

(2S,3R,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-3-hydroxy-9-methoxy-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-one (17b) 

 

 

 

 

 

 

 

 

 

To a solution of oxalyl chloride (246 L, 2.84 mmol) in CH2Cl2 (3 mL) was added DMSO (402 

L, 5.68 mmol) dropwise at –78 °C and stirred for 15 min under an argon atmosphere. To the 

stirred reaction mixture was added a solution of mixture of 15a and 15b (500 mg, 1.35 mmol) in 

CH2Cl2 (4 mL) dropwise. After 1 h with stirring at the same temperature, to the stirred reaction 

mixture was added Et3N (1.13 mL, 8.12 mmol) and then allowed to warm gradually to room 

temperature for 2 h. the reaction mixture was basified (pH 9) with saturated NaHCO3 aqueous 

solution and extracted with CHCl3 three times. The combined organic extracts were dried over 

Na2SO4, and evaporated in vacuo. The residue was purified by silica gel column chromatography 

(CHCl3/MeOH/25% ammonia aqueous solution = 100/1/0.1 to 100/5/0.5) to give a yellow oil 

(431 mg). The oil (431 mg) was dissolved in MeOH (2 mL), and then K2CO3 (400 mg, 2.89 mmol) 

was added to the solution at room temperature. After 7 h with stirring at the same temperature, 

the reaction mixture was basified (pH 9) with saturated NaHCO3 aqueous solution and extracted 

with CHCl3 three times. The combined organic extracts were dried over Na2SO4, and evaporated 

in vacuo. The residue was purified by preparative TLC (hexane/AcOEt/MeOH/25% ammonia 

aqueous solution = 200/100/100/1) to give 17a (50.6 mg, 10% in two steps) as a colorless 

amorphous solid and 17b (247 mg, 50% in two steps) as a colorless amorphous solid. 

  

17a 17b
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17a 

IR (film) cm-1: 3406, 2929, 1696, 1610, 1586, 1481, 1282, 1213. 

1H NMR (400 MHz, CDCl3):  (ppm) 0.08–0.17 (m, 2H), 0.44–0.55 (m, 2H), 0.81–0.90 (m, 1H), 

1.48 (d, J = 14.0 Hz, 1H), 1.53–1.74 (m, 1H), 1.80 (dd, J = 14.0, 2.8 Hz, 1H), 1.85–1.92 (m, 2H), 

2.04 (dd, J = 14.0, 2.0 Hz, 1H), 2.29 (dd, J = 12.8, 6.8 Hz, 1H), 2.37 (d, J = 15.2 Hz, 1H), 2.45 

(d, J = 2.0 Hz, 1H), 2.49–2.66 (m, 4H), 2.94 (d, J = 19.2 Hz, 1H), 3.44 (t, J = 8.8 Hz, 1H), 3.74 

(d, J = 15.2 Hz, 1H), 3.78 (s, 3H), 4.20 (d, J = 2.4 Hz, 1H), 6.63 (d, J = 2.4 Hz, 1H), 6.69 (dd, J 

= 8.4, 2.4 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), a proton (OH) was not observed. 
13C NMR (100 MHz, CDCl3):  (ppm) 3.2, 4.1, 9.7, 26.1, 29.9, 38.5, 40.6, 41.4, 44.9, 46.4, 46.6, 

52.6, 54.7, 55.4, 59.4, 68.2, 107.9, 111.7, 126.5, 132.9, 152.6, 158.7, 212.2. 

MS (ESI): m/z = 368 [M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H30NO3: 368.2225. Found: 368.2224. 

 

17b 

IR (film) cm-1: 3412, 2923, 1698, 1610, 1586, 1480, 1284, 1215. 

1H NMR (400 MHz, CDCl3):  (ppm) 0.08–0.18 (m, 2H), 0.42–0.56 (m, 2H), 0.80–0.92 (m, 1H), 

1.35 (dd, J = 14.4, 2.0 Hz, 1H), 1.48 (dt, J = 14.0, 3.2 Hz, 1H), 1.58–1.75 (m, 2H), 2.02 (dd, J = 

10.0, 4.0 Hz, 1H), 2.15 (td, J = 13.6, 6.0 Hz, 1H), 2.27 (d, J = 14.8 Hz, 1H), 2.32 (t, J = 6.0 Hz, 

1H), 2.52–2.60 (m, 4H), 2.63 (d, J = 8.4 Hz, 1H), 2.96 (d, J = 18.8 Hz, 1H), 3.20 (dd, J = 12.0, 

6.0 Hz, 1H), 3.73 (d, J = 15.2 Hz, 1H), 3.77 (s, 3H), 3.93 (dt, J = 11.6, 5.6 Hz, 1H), 6.63 (d, J = 

2.4 Hz, 1H), 6.68 (dd, J = 8.0, 2.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), a proton (OH) was not 

observed. 
13C NMR (100 MHz, CDCl3):  (ppm) 3.3, 4.0, 9.7, 27.4, 34.7, 38.5, 39.9, 41.4, 45.5, 45.8, 47.2, 

51.9, 55.4, 57.4, 59.2, 70.6, 107.8, 111.7, 126.4, 132.7, 152.3, 158.7, 213.2. 

MS (ESI): m/z = 390 [M+Na]+. 

HR-MS (ESI): [M+Na]+ Calcd for C23H29NNaO3: 390.2045. Found: 390.2028. 
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18a

(2S,3S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-3,9-dihydroxy-2,3,4,4a,5,6,7,12-octahydro- 

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-one (18a) 

 

 

 

 

 

 

 

  To a stirred solution of 17a (37.9 mg, 0.103 mmol) in CH2Cl2 (2 mL) was added 1.0 M solution 

of BBr3 in CH2Cl2 (515 L, 0.515 mmol) dropwise at –78 °C under an argon atmosphere and 

stirred at room temperature for 1.5 h. To the reaction mixture was added 25% ammonia aqueous 

solution and extracted with CHCl3 three times. The combined organic extracts were dried over 

Na2SO4, and evaporated in vacuo. The residue was purified by silica gel column chromatography 

(hexane/AcOEt/MeOH/25% ammonia aqueous solution = 100/100/10/1) to give 18a (29.6 mg, 

81%) as a yellow amorphous solid. 

  To a solution of 18a in MeOH was added 10% HCl•MeOH dropwise. After evaporation, to the 

residue was added AcOEt to give a colorless solid. Filtration followed by drying the solid gave 

18a •HCl as a colorless solid.  

 

18a 

IR (film) cm-1: 3361, 2929, 1692, 1012, 756. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.16 (m, 2H), 0.41–0.54 (m, 2H), 0.78–0.92 (m, 1H), 

1.38–1.52 (m, 1H), 1.55–1.71 (m, 1H), 1.71–1.92 (m, 3H), 1.96–2.08 (m, 1H), 2.26 (dd, J = 12.4, 

7.0 Hz, 1H), 2.33 (d, J = 14.7 Hz, 1H), 2.40–2.68 (m, 5H), 2.90 (d, J = 19.0 Hz, 1H), 3.44 (t, J = 

7.8 Hz, 1H), 3.70 (d, J = 15.4 Hz, 1H), 4.19 (d, J = 2.2 Hz, 1H), 6.55–6.67 (m, 2H), 7.05 (d, J = 

7.8 Hz, 1H), two protons (OH) were not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.2, 9.7, 26.0, 30.0, 38.4, 40.5, 41.3, 44.9, 46.3, 46.6, 

52.7, 54.7, 59.4, 68.2, 109.1, 113.6, 126.7, 132.6, 152.6, 154.7, 213.7. 

MS (ESI): m/z = 354[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C22H28NO3: 354.2069. Found: 354.2052. 

 

18a•HCl 

mp (dec.) 194–195 °C 

Anal. Calcd for C22H27NO3·HCl·0.8H2O: C, 65.35; H, 7.38; N, 3.46. Found: C, 65.26; H, 7.42; N, 

3.48. 
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(2S,3R,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-3,9-dihydroxy-2,3,4,4a,5,6,7,12-octahydro- 

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-one (18b) 

 

 

 

 

 

 

 

 

Compound 18b was prepared from compound 17b according to the procedure used to 

synthesize compound 18a. Yield, 99%.; a yellow amorphous solid. 

 

18a 

IR (film) cm-1: 3360, 2925, 1692, 1460, 1214, 1055, 755. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.05–0.17 (m, 2H), 0.40–0.55 (m, 2H), 0.76–0.92 (m, 1H), 

1.19–1.47 (m, 2H), 1.52–1.82 (m, 2H), 1.95 (dd, J = 13.8, 3.2 Hz, 1H), 2.06–2.33 (m, 3H), 2.45–

2.70 (m, 5H), 2.92 (d, J = 17.9 Hz, 1H), 3.12–3.26 (m, 1H), 3.68 (d, J = 15.5 Hz, 1H), 3.92–4.03 

(m, 1H), 6.57–6.65 (m, 2H), 7.01 (d, J = 8.2 Hz, 1H), two protons (OH) were not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.3, 4.1, 9.6, 26.6, 34.8, 38.1, 39.6, 41.3, 45.4, 45.5, 47.4, 

52.3, 57.3, 59.0, 70.4, 109.2, 113.6, 126.7, 132.3, 152.1, 154.9, 214.5. 

MS (ESI): m/z = 354[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C22H28NO3: 354.2069. Found: 354.2071. 

 

18a•HCl 

mp (dec.) 203–204 °C 

Anal. Calcd for C22H27NO3·HCl·0.7H2O: C, 65.64; H, 7.36; N, 3.48. Found: C, 65.55; H, 7.36; N, 

3.58. 

  

18b
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(2S,3S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-2,3,4,4a,5,6,7,12-octahydro-1H- 

spiro[2,7a-ethanoindeno[1,2-d]quinoline-14,2'-[1,3]dioxolan]-3-ol (19a) 

(2S,3R,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-2,3,4,4a,5,6,7,12-octahydro-1H- 

spiro[2,7a-ethanoindeno[1,2-d]quinoline-14,2'-[1,3]dioxolan]-3-ol (19b) 

 

 

 

 

 

 

 

 

  

To a solution of mixture of 17a and 17b (26.6 g, 72.3 mmol) in benzene (400 mL) 

were added ethylene glycol (36.0 mL, 645 mmol) and p-toluenesulfonic acid 

monohydrate (13.7 g, 72.0 mmol), and the mixture was refluxed under an argon 

atomosphere. After 11 h with stirring, the reaction mixture was evaporated and the 

residue was basified (pH 9) with K2CO3 and saturated NaHCO3 aqueous solution and extracted 

with CHCl3 three times. The combined organic extracts were dried over Na2SO4, and evaporated 

in vacuo. The residue was purified by silica gel column chromatography (CHCl3/MeOH = 100/0.2 

to 100/6) to give 19a (10.8 g, 36%) as a brown amorphous solid and 19b (11.8 g, 40%) as a yellow 

amorphous solid. 

 

19a 

IR (film) cm-1: 3406, 2922, 1611, 1585, 1480, 1096, 732. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.17 (m, 2H), 0.40–0.54 (m, 2H), 0.76–0.91 (m, 1H), 

1.22–1.33 (m, 1H), 1.52 (dt, J = 12.5, 6.3 Hz, 1H), 1.63–1.79 (m, 4H), 2.04 (d, J = 15.4 Hz, 1H), 

2.10–2.26 (m, 4H), 2.47–2.66 (m, 3H), 3.30 (dd, J= 11. 1, 6.6 Hz, 1H) 3.71 (d, J = 15.6 Hz, 1H), 

3.78 (s, 3H), 3.80–4.01 (m, 4H), 4.26–4.33 (m, 1H), 6.62–6.68 (m, 2H), 7.10 (d, J = 8.6 Hz, 1H), 

a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.1, 4.2, 9.7, 23.9, 29.7, 35.9, 38.3, 39.6, 40.9, 44.8, 45.7, 

46.0, 54.6, 55.3, 58.7, 64.0, 64.2, 67.7, 108.3, 109.4, 110.4, 126.3, 133.4, 152.9, 157.9. 

MS (ESI): m/z = 412[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H34NO4: 412.2488. Found: 412.2478.  

  

19b 19a 
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19b 

IR (film) cm-1: 3508, 2911, 1617, 1586, 1479, 1087, 1054. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.07–0.19 (m, 2H), 0.42–0.52 (m, 2H), 0.75–0.90 (m, 1H), 

1.06 (dd, J = 13.6, 2.0 Hz, 1H), 1.22–1.35 (m, 1H), 1.43–1.62 (m, 1H), 1.72–1.99 (m, 4H), 2.02–

2.33 (m, 4H), 2.45–2.68 (m, 3H), 2.99–3.14 (m, 1H), 3.67 (d, J = 15.0 Hz, 1H), 3.75–4.09 (m, 

5H), 3.79 (s, 3H), 6.63–6.69 (m, 2H), 7.07–7.12 (m, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.3, 3.9, 9.6, 26.8, 34.6, 37.3, 38.3, 39.2, 41.4, 41.5, 45.0, 

46.5, 55.3, 57.4, 58.7, 63.8, 64.4, 71.3, 108.4, 110.4, 112.0, 126.3, 133.4, 152.6, 158.0. 

MS (ESI): m/z = 412[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H34NO4: 412.2488. Found: 412.2503.  
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O-[(2S,3S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-2,3,4,4a,5,6,7,12-octahydro-

1H-spiro[2,7a-ethanoindeno[1,2-d]quinoline-14,2'-[1,3]dioxolan]-3-yl]S-methyl  

carbonodithioate (20a) 

 

 

 

 

 

 

 

 

 

To a suspension of NaH (514 mg, 12.9 mmol) in THF (50 mL) was added a solution of 19a 

(529 mg, 1.29 mmol) in THF (400 mL) at 0 °C under an argon atmosphere. After 10 min with 

stirring, to the reaction mixture was added freshly distilled CS2 (232 L, 3.86 mmol) at room 

temperature. After 1.5 h with stirring at the same temperature, to the reaction mixture was added 

MeI (96 L, 1.54 mmol) at room temperature. After 3 h with stirring, the reaction mixture was 

quenched by saturated NH4Cl aqueous solution at 0 °C, and then basified (pH 9) with saturated 

NaHCO3 aqueous solution and extracted with CHCl3 three times. The combined organic extracts 

were dried over Na2SO4, and evaporated in vacuo. The residue was purified by silica gel column 

chromatography (hexane/AcOEt = 6/1) to give 20a (536 mg, 83%) as a yellow oil.  

 

20a 

IR (film) cm-1: 2923, 1610, 1479, 1230, 1049. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.16 (m, 2H), 0.42–0.53 (m, 2H), 0.75–0.89 (m, 1H), 

1.24–1.36 (m, 1H), 1.47–1.63 (m, 2H), 1.73–1.84 (m, 1H), 1.96 (dd, J = 16.3, 6.7 Hz, 1H), 2.06–

2.33 (m, 6H), 2.45 (dd, J = 12.7, 6.0 Hz, 1H), 2.52–2.67 (m, 2H), 2.55 (s, 3H), 3.30 (dd, J = 11.1, 

6.7 Hz, 1H), 3.68–4.02 (m, 5H), 3.79 (s, 3H), 6.04–6.10 (m, 1H), 6.64–6.72 (m, 2H), 7.10 (d, J = 

8.0 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 3.8, 9.7, 18.8, 21.0, 30.6, 36.4, 38.2, 39.5, 40.2, 40.9, 

45.3, 46.0, 55.0, 55.2, 58.6, 64.2, 64.3, 81.8, 108.4, 108.7, 110.5, 126.3, 133.2, 152.7, 158.0, 214.6. 

MS (ESI): m/z = 502[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C27H36NO4S2: 502.2086. Found: 502.2089.  
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-2,4a,5,6,7,12-hexahydro-1H- 

spiro[2,7a-ethanoindeno[1,2-d]quinoline-14,2'-[1,3]dioxolane] (21) 

 

 

 

 

 

 

 

 

A solution of 20a (447 mg, 0.891 mmol) in o-dichlorobenzene (7 mL) was stirred at 160 °C 

under an argon atmosphere. After 2 h with stirring at the same temperature, the reaction mixture 

was passed through a short column of silica gel for removal of o-dichlorobenzene and evaporated 

in vacuo. The residue was purified by silica gel column chromatography (hexane/AcOEt/MeOH/ 

25% ammonia aqueous solution = 80/10/10/1) to give 21 (220 mg, 63%) as a brown amorphous 

solid.  

 

21 

IR (film) cm-1: 2998, 2913, 1611, 1587, 1485, 1219, 947. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.11–0.18 (m, 2H), 0.44–0.53 (m, 2H), 0.78–0.92 (m, 1H), 

1.20–1.30 (m, 1H), 1.42–1.55 (m, 2H), 1.88–1.99 (m, 2H), 2.11–2.20 (m, 1H), 2.16 (d, J = 14.6 

Hz, 1H), 2.25 (d, J = 14.6 Hz, 1H), 2.40–2.64 (m, 4H), 3.55–3.60 (m, 1H), 3.60 (d, J = 14.0 Hz, 

1H), 3.79 (s, 3H), 3.81–3.99 (m, 4H), 5.93–6.07 (m, 2H), 6.65–6.72 (m, 2H), 7.10 (d, J = 8.6 Hz, 

1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.6, 3.7, 9.8, 34.3, 34.8, 39.3, 39.4, 39.8, 43.2, 44.7, 47.5, 

55.3, 58.7, 59.8, 64.0, 64.4, 108.3, 110.6, 110.8, 126.1, 129.0, 132.5, 132.9, 152.8, 158.1. 

MS (ESI): m/z = 394[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H32NO3: 394.2382. Found: 394.2372. 
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-2,4a,5,6,7,12-hexahydro-1H-2,7a- 

ethanoindeno[1,2-d]quinolin-14-one (22) 

 

 

 

 

 

 

 

Compound 22 was prepared from compound 21 according to the procedure used to synthesize 

compound 15a. Yield, quant.; a colorless amorphous solid. 

 

22 

IR (film) cm-1: 3076, 3001, 2922, 1713, 1483, 1284, 1219, 1034. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.14–0.20 (m, 2H), 0.45–0.58 (m, 2H), 0.81–0.95 (m, 1H), 

1.32–1.41 (m, 1H), 1.61 (dt, J = 14.8, 4.5 Hz, 1H), 1.85 (dd, J = 13.6, 3.6 Hz, 1H), 1.97 (dt, J = 

13.4, 2.1 Hz, 1H), 2.34 (d, J = 15.0 Hz, 1H), 2.44–2.70 (m, 5H), 2.79–2.86 (m, 1H), 2.98 (d, J = 

16.1 Hz, 1H), 3.69 (d, J = 15.0 Hz, 1H), 3.75–3.80 (m, 1H), 3.78 (s, 3H), 5.90–5.99 (m, 1H), 6.21 

(dd, J = 10.0, 1.5 Hz, 1H), 6.66–6.71 (m, 2H), 7.11 (d, J = 8.7 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.6, 3.8, 9.7, 37.3, 39.2, 39.6, 41.5, 43.2, 45.3, 48.7, 50.8, 

55.3, 58.6, 59.5, 108.0, 111.9, 126.4, 130.3, 130.8, 132.5, 151.2, 158.7, 211.1. 

MS (ESI): m/z = 350[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H28NO2: 350.2120. Found: 350.2128. 
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-1H-2,7a- 

ethanoindeno[1,2-d]quinolin-14-one (23) 

 

 

 

 

 

 

 

 

Compound 23 was prepared from compound 22 according to the procedure used to synthesize 

compound 18a. Yield, 28%.; a colorless amorphous solid. 

 

23 

IR (film) cm-1: 3349, 2924, 1704, 1462, 1218, 757. 
1H NMR (300 MHz, CD3OD): δ (ppm) 0.12–0.27 (m, 2H), 0.46–0.61 (m, 2H), 0.80–0.99 (m, 1H), 

1.22–1.42 (m, 2H), 1.54–1.76 (m, 1H), 1.86 (dd, J = 13.5, 3.4 Hz, 1H), 1.98 (d, J = 13.5 Hz, 1H), 

2.32 (d, J = 15.1 Hz, 1H), 2.45–2.76 (m, 5H), 2.80–2.89 (br s, 1H), 2.98 (d, J = 16.1 Hz, 1H), 

3.61–3.86 (m, 2H), 5.91–6.03 (m, 1H), 6.21 (dd, J = 10.0, 1.1 Hz, 1H), 6.60–6.67 (m, 2H), 7.06 

(d, J = 8.6 Hz, 1H). 
13C NMR (75 MHz, CD3OD): δ (ppm) 4.30, 4.34, 10.3, 38.9, 40.1, 40.4, 42.5, 44.6, 46.4, 50.1, 

52.2, 59.7, 60.8, 110.0, 114.7, 127.6, 131.5, 131.7, 132.3, 152.2, 157.4, 213.6. 

MS (ESI): m/z = 336[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C22H26NO2: 336.1966. Found: 336.1962. 

 

23•HCl 

mp (dec.) 168–170 °C 

Anal. Calcd for C22H25NO2·HCl·2.4H2O: C, 63.65; H, 7.48; N, 3.37. Found: C, 63.81; H, 7.23; N, 

3.53. 
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-2,3,4,4a,5,6,7,12-octahydro-1H-2,7a-

ethanoindeno[1,2-d]quinolin-14-one (24) 

 

 

 

 

 

 

 

 

Under an argon atmosphere, To a solution of 21 (100 mg, 0.254 mmol) in MeOH (5 mL) was 

added 10% Pd on carbon (110 mg), and after exchange of argon for H2, the reaction mixture was 

stirred at room temperature for 28 h. The reaction mixture was filtered through a Celite pad and 

the Celite Pad was washed with MeOH. The filtrate was concentrated in vacuo to give a colorless 

amorphous solid (90.0 mg). To a stirred solution of the residue was added 2 M HCl (3 mL) at 

room temperature under an argon atmosphere. After 7 h with stirring, the reaction mixture was 

basified (pH 9) with saturated NaHCO3 aqueous solution and extracted with CHCl3 three times. 

The combined organic extracts were dried over Na2SO4, and evaporated in vacuo. The residue 

was purified by preparative TLC (hexane/AcOEt = 2/1) to give 24 (64.7 mg, 82% in two steps) 

as a colorless oil. 

 

24 

IR (film) cm-1: 3076, 3001, 2929, 1703, 1609, 1481, 1286, 1217, 1055, 753. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.08–0.21 (m, 2H), 0.42–0.57 (m, 2H), 0.79–0.96 (m, 1H), 

1.32–1.84 (m, 6H), 1.91–2.07 (m, 2H), 2.22–2.42 (m, 3H), 2.48–2.74 (m, 3H), 2.55 (d, J = 18.8 

Hz, 1H), 2.94 (d, J = 18.8 Hz, 1H), 3.06–3.24 (m, 1H), 3.70–3.86 (m, 1H), 3.78 (s, 3H), 6.62–

6.71 (m, 2H), 7.11 (d, J = 8.0 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.1, 9.8, 17.5, 28.3, 37.3, 38.5, 40.4, 41.4, 44.9, 45.5, 

46.3, 47.4, 55.3, 58.4, 59.3, 107.8, 111.5, 126.5, 133.0, 152.7, 158.6, 215.2. 

MS (ESI): m/z = 352[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H30NO2: 352.2277. Found: 352.2290. 
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12-octahydro-1H-2,7a-

ethanoindeno[1,2-d]quinolin-14-one (12) 

 

 

 

 

 

 

 

  A mixture of 24 (223 mg, 0.635 mmol) and pyridinium chloride (8.5 g, 73.6 mmol) were 

stirred at 180 °C for 3 h. The cooled reaction mixture was basified (pH 9) with saturated NaHCO3 

aqueous solution and extracted with CHCl3 three times. The combined organic extracts were dried 

over Na2SO4, and evaporated in vacuo. The residue was purified by preparative TLC 

(hexane/AcOEt/MeOH/25% ammonia aqueous solution = 40/10/10/1) to give 12 (176 mg, 82%) 

as a colorless oil. 

To a solution of 12 in MeOH was added a solution of CSA in AcOEt. After evaporation, to the 

residue was added Et2O to give a colorless solid. Filtration followed by drying the solid gave 12 

•CSA as a colorless solid.  

 

12 

IR (film) cm-1: 3347, 2927, 1695, 1613, 1461, 1216, 755. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.10–0.18 (m, 2H), 0.43–0.57 (m, 2H), 0.80–0.94 (m, 1H), 

1.38 (dd, J = 13.6, 2.1 Hz, 1H), 1.46 (dt, J = 14.0, 3.0 Hz, 1H), 1.47–1.90 (m, 4H), 1.90–2.07 (m, 

2H), 2.26 (d, J = 15.0 Hz, 1H), 2.29–2.42 (m, 2H), 2.50–2.69 (m, 4H), 2.91 (d, J = 18.7 Hz, 1H), 

3.15 (t, J = 8.7 Hz, 1H), 3.76 (d, J = 15.0 Hz, 1H), 6.57–6.64 (m, 2H), 7.04 (d, J = 7.8 Hz, 1H), a 

proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.3, 4.1, 9.7, 17.5, 28.2, 37.4, 38.4, 40.4, 41.4, 44.9, 45.5, 

46.3, 47.5, 58.4, 59.3, 109.1, 113.3, 126.7, 132.7, 152.7, 154.7, 216.0. 

MS (ESI): m/z = 338[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C22H28NO2: 338.2120. Found: 338.2112. 

 

12 •CSA 

mp (dec.) 159–160 °C 

Anal. Calcd for C22H27NO2·CSA·2.5H2O: C, 62.52; H, 7.87; N, 2.28. Found: C, 62.34; H, 7.50; 

N, 2.36. 
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-4,4a,5,6,7,12-hexahydro-1H- 

spiro[2,7a-ethanoindeno[1,2-d]quinoline-14,2'-[1,3]dioxolan]-3(2H)-one (25) 

 

 

 

 

 

 

 

 

To a solution of oxalyl chloride (1.26 mL, 14.6 mmol) in CH2Cl2 (20 mL) was added DMSO 

(2.07 mL g, 29.2 mmol) dropwise at –78 °C and stirred for 1 h under an argon atmosphere. To the 

stirred reaction mixture was added a solution of 19b (2.00 g, 4.86 mmol) in CH2Cl2 (20 mL) 

dropwise. After 1 h with stirring, to the stirred reaction mixture was added Et3N (1.50 mL, 10.8 

mmol) and then allowed to warm gradually to room temperature for 3 h. the reaction mixture was 

basified (pH 9) with saturated NaHCO3 aqueous solution and extracted with CHCl3 three times. 

The combined organic extracts were dried over Na2SO4, and evaporated in vacuo. The residue 

was purified by silica gel column chromatography (hexane/AcOEt = 3/1) to give 25 (1.49 g, 75%) 

as a yellow amorphous solid.  

 

25 

IR (film) cm-1: 3076, 3001, 2935, 1703, 1618, 1481, 1215, 1092, 947, 755. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.09–0.16 (m, 2H), 0.43–0.54 (m, 2H), 0.73–0.90 (m, 1H), 

1.34–1.42 (m, 1H), 1.46 (dd, J = 14.1, 1.9 Hz, 1H), 1.61 (td, J = 15.9, 5.5 Hz, 1H), 2.08–2.26 (m, 

4H), 2.30 (br s, 1H), 2.39–2.60 (m, 4H), 2.63–2.72 (m, 1H), 2.80 (dd, J = 17.7, 8.2 Hz, 1H), 3.39–

3.47 (m, 1H), 3.73 (d, J = 14.8 Hz, 1H), 3.77–3.84 (m, 1H), 3.80 (s, 3H), 3.88–4.00 (m, 3H), 

6.67–6.73 (m, 2H), 7.10–7.16 (m, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.4, 3.9, 9.4, 34.2, 34.9, 36.0, 38.3, 39.4, 40.9, 45.0, 46.5, 

54.5, 55.3, 58.6, 58.6, 64.2, 64.6, 107.7, 108.6, 110.9, 126.3, 132.7, 151.9, 158.2, 210.3. 

MS (ESI): m/z = 410[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H32NO4: 410.2331. Found: 410.2342. 
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-methoxy-4,4a,5,6,7,12-hexahydro-1H-2,7a- 

ethanoindeno[1,2-d]quinoline-3,14(2H)-dione (26) 

 

 

 

 

 

 

 

 

Compound 26 was prepared from compound 25 according to the procedure used to synthesize 

compound 15a. Yield, 52%.; a colorless amorphous solid. 

 

26 

IR (film) cm-1: 3077, 3001, 2923, 1695, 1610, 1482, 1212, 1035, 732. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.10–0.18 (m, 2H), 0.46–0.56 (m, 2H), 0.76–0.92 (m, 1H), 

1.45–1.54 (m, 1H), 1.67–1.86 (m, 2H), 2.18–2.31 (m, 2H), 2.37 (d, J = 15.0 Hz, 1H), 2.46–2.93 

(m, 6H), 2.97 (d, J = 17.8 Hz, 1H), 3.27 (br s, 1H), 3.63 (dd, J = 9.3, 7.7 Hz, 1H), 3.75–3.86 (m, 

1H), 3.78 (s, 3H), 6.66–6.74 (m, 2H), 7.15 (d, J = 8.0 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.4, 4.0, 9.4, 35.4, 37.1, 38.2, 39.5, 40.9, 43.3, 45.7, 48.5, 

55.4, 58.7, 58.9, 65.1, 107.9, 112.0, 126.7, 132.3, 150.7, 158.9, 203.1, 204.0. 

MS (ESI): m/z = 366[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H28NO3: 366.2069. Found: 366.2079. 
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(2S,4aS,7aR,12aR)-5-(Cyclopropylmethyl)-9-hydroxy-4,4a,5,6,7,12-hexahydro-1H-2,7a- 

ethanoindeno[1,2-d]quinoline-3,14(2H)-dione (27) 

 

 

 

 

 

 

 

 

 

Compound 27 was prepared from compound 26 according to the procedure used to synthesize 

compound 12. Yield, 31%.; a colorless amorphous solid. 

 

27 

IR (film) cm-1: 3382, 2924, 1717, 1693, 1614, 1209, 756. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.11–0.18 (m, 2H), 0.46–0.59 (m, 2H), 0.78–0.91 (m, 1H), 

1.49 (dt, J = 16.3, 2.3 Hz, 1H), 1.68–1.86 (m, 3H), 2.20–2.30 (m, 2H), 2.36 (d, J = 15.0 Hz, 1H), 

2.47–2.98 (m, 7H), 3.25–3.31 (br s, 1H), 3.62 (dd, J = 9.1, 7.8 Hz, 1H), 3.80 (d, J = 14.9 Hz, 1H), 

6.60–6.67 (m, 2H), 7.10 (d, J = 7.7 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.4, 4.1, 9.4, 35.4, 37.2, 38.1, 39.5, 40.9, 43.4, 45.8, 48.6, 

58.7, 58.8, 65.1, 109.2, 113.8, 126.9, 132.3, 150.9, 154.7, 203.3, 204.1. 

MS (ESI): m/z = 352[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C22H26NO3: 352.1913. Found: 352.1907. 

 

27 •CSA 

mp (dec.) 156–157 °C 

Anal. Calcd for C22H25NO3·CSA·4.5H2O: C, 57.81; H, 7.58; N, 2.11. Found: C, 57.79; H, 7.50; 

N, 2.27. 
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(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-methoxy-N-methyl-2,4a,5,6,7,12- 

hexahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-amine (28) 

(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-methoxy-N-methyl-2,4a,5,6,7,12- 

hexahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-amine (29) 

 

 

 

 

 

 

 

 

To a stirred solution of 22 (759 mg, 2.17 mmol) in MeOH (15 mL) were added methylamine 

hydrochloride (1.47 g, 21.7 mmol) and sodium cyanoborohydride (150 mg, 2.39 mmol) at room 

temperature under an argon atmosphere. After 13 h with stirring at the same temperature, the 

reaction mixture was basified (pH 9) with saturated NaHCO3 aqueous solution and extracted with 

CHCl3 three times. The combined organic extracts were dried over Na2SO4, and evaporated in 

vacuo. The residue was purified by silica gel column chromatography (CHCl3/MeOH/25% 

ammonia aqueous solution = 100/2/0.2) to give 28 (404 mg, 51%) as a colorless oil and 29 (193 

mg, 24%) as a colorless oil. 

 

28 

IR (film) cm-1: 3347, 3075, 3011, 2912, 2845, 2793, 1608, 1481, 1282, 1221, 1036. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.09–0.17 (m, 2H), 0.43–0.51 (m, 2H), 0.77–0.90 (m, 1H), 

1.17–1.25 (m, 1H), 1.30 (dd, J = 13.4, 3.6 Hz, 1H), 1.37–1.50 (m, 1H), 1.62–1.80 (m, 2H), 1.93 

(d, J = 15.1 Hz, 1H), 2.06 (dd, J = 15.1, 5.5 Hz, 1H), 2.20 (d, J = 15.0 Hz, 1H), 2.29 (s, 3H), 2.33–

2.61 (m, 5H), 2.65–2.71 (m, 1H), 3.55–3.62 (m, 2H), 3.78 (s, 3H), 5.86–6.01 (m, 2H), 6.67 (dd, 

J = 8.1, 2.5 Hz, 1H), 6.77 (d, J = 2.5 Hz, 1H), 7.11 (d, J = 8.1 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.6, 3.7, 9.7, 28.4, 30.1, 33.7, 39.5, 40.5, 43.4, 44.8, 45.5, 

55.3, 56.9, 58.6, 60.0, 76.6, 107.1, 111.7, 126.6, 127.7, 133.3, 134.4, 153.6, 158.4. 

MS (ESI): m/z = 365[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C24H33N2O: 365.2593. Found: 365.2578. 
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29 

IR (film) cm-1: 3326, 3075, 3001, 2915, 2848, 2796, 1609, 1482, 1282, 1220, 1037, 727. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.09–0.18 (m, 2H), 0.42–0.53 (m, 2H), 0.78–0.92 (m, 1H), 

1.22–1.33 (m, 1H), 1.41–1.62 (m, 3H), 1.64–1.75 (m, 1H), 1.84–2.09 (m, 1H), 2.03 (dd, J = 13.6, 

4.5 Hz, 1H), 2.20 (d, J = 15.0 Hz, 1H), 2.39–2.64 (m, 6H), 2.46 (s, 3H), 3.56–3.64 (m, 2H), 3.80 

(s, 3H), 5.85–5.95 (m, 1H), 6.08 (dd, J = 10.2, 1.6 Hz, 1H), 6.68 (dd, J = 8.1, 2.4 Hz, 1H), 6.73 

(d, J = 2.4 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.6, 3.7, 9.7, 32.6, 33.5, 33.6, 36.7, 38.8, 39.8, 43.3, 45.2, 

47.3, 55.3, 58.0, 58.7, 60.2, 107.5, 110.8, 126.3, 129.4, 130.3, 133.6, 152.7, 158.5. 

MS (ESI): m/z = 365[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C24H33N2O: 365.2593. Found: 365.2577. 
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(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-14-(methylamino)-2,4a,5,6,7,12-hexahydro-

1H-2,7a-ethanoindeno[1,2-d]quinolin-9-ol (30) 

 

 

 

 

 

 

 

 

Compound 30 was prepared from compound 28 according to the procedure used to synthesize 

compound 12. Yield, 77%.; a colorless amorphous solid. 

 

30 

IR (KBr) cm-1: 3434, 2920, 1608, 1471, 1269, 1081, 817. 
1H NMR (300 MHz, Pyridine-d8): δ (ppm) 0.12–0.19 (m, 2H), 0.39–0.52 (m, 2H), 0.80–0.94 (m, 

1H), 1.20–1.37 (m, 2H), 1.51–1.67 (m, 1H), 1.93–2.12 (m, 3H), 2.18 (s, 3H), 2.28 (d, J = 15.2 

Hz, 1H), 2.33–2.51 (m, 4H), 2.56 (dd, J = 12.6, 6.1 Hz, 1H), 2.64–2.70 (m, 1H), 3.58–3.63 (m, 

1H), 3.80 (d, J = 15.2 Hz, 1H), 5.89–6.02 (m, 2H), 7.02 (dd, J = 7.9, 2.3 Hz, 1H), 7.17–7.28 (m, 

2H), 11.01–11.29 (m, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, Pyridine-d8): δ (ppm) 4.0, 4.5, 10.4, 29.7, 30.9, 34.4, 34.4, 40.4, 41.2, 43.7, 

45.4, 46.0, 57.8, 59.0, 60.9, 110.2, 114.1, 127.1, 128.2, 131.7, 135.0, 155.1, 157.7. 

MS (ESI): m/z = 351[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H31N2O: 351.2436. Found: 351.2422. 

  

30



55 
 

(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-14-(methylamino)-2,4a,5,6,7,12-hexahydro-

1H-2,7a-ethanoindeno[1,2-d]quinolin-9-ol (31) 

 

 

 

 

 

 

 

 

Compound 31 was prepared from compound 29 according to the procedure used to synthesize 

compound 12. Yield, 85%.; a colorless oil.  

 

31 

IR (film) cm-1: 3287, 3076, 3009, 2918, 2850, 2808, 1611, 1471, 1370, 1278, 807, 756. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.10–0.17 (m, 2H), 0.44–0.52 (m, 2H), 0.78–0.90 (m, 1H), 

1.19–1.32 (m, 1H), 1.41–1.76 (m, 4H), 2.06 (dd, J = 13.6, 4.3 Hz, 1H), 2.16 (d, J = 15.0 Hz, 1H), 

2.38–2.64 (m, 6H), 2.45 (s, 3H), 3.51–3.62 (m, 2H), 4.42–4.81 (m, 1H), 5.82–5.91 (m, 1H), 6.07 

(dd, J = 10.2, 1.4 Hz, 1H), 6.59 (dd, J = 7.9, 2.3 Hz, 1H), 6.68 (d, J = 2.2 Hz, 1H), 7.03 (d, J = 

7.9 Hz, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.6, 3.8, 9.7, 32.4, 32.9, 33.0, 36.7, 38.7, 39.8, 43.4, 45.1, 

47.3, 57.8, 58.7, 60.2, 109.0, 113.5, 126.5, 129.7, 130.1, 132.4, 152.5, 155.5. 

MS (ESI): m/z = 351[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H31N2O: 351.2436. Found: 351.2442. 

  

31
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(E)-N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-3-(furan-3-yl)-N-methyl-acrylamide (32a) 

 

 

 

 

 

 

 

To a stirred solution of 30 (20.0 mg, 0.0571 mmol) in CH2Cl2 (1 mL) were added triethylamine 

(23.8 L, 0.171 mmol) and trans-3-(3-furyl)acryloyl chloride (10.7 mg, 0.0685 mmol) at room 

temperature under an argon atmosphere. After 30 min with stirring at the same temperature, the 

reaction mixture was concentrated and the residue was dissolved in MeOH (1 mL). To the stirred 

reaction mixture was added K2CO3 (23.7 mg, 0.171 mmol) at room temperature. After 2 h with 

stirring at the same temperature, the reaction was quenched with saturated NaHCO3 aqueous 

solution and extracted with CHCl3 three times. The combined organic extracts were dried over 

Na2SO4, and evaporated in vacuo. The residue was purified by preparative TLC (CHCl3/MeOH 

= 100:3) to give 32a (26.4 mg, 98%) as a colorless oil. 

  

32a 

IR (KBr) cm-1: 3362, 2919, 2810, 1654, 1600, 1410, 1160, 1020, 974, 870, 792. 

1H NMR (300 MHz, THF-d8): δ (ppm) 0.13–0.23 (m, 2H), 0.45–0.55 (m, 2H), 0.83–0.99 (m, 1H), 

1.32–1.65 (m, 4H), 1.97–2.77 (m, 8H), 2.66 (s, 3H), 3.55–3.70 (m, 2H), 4.49–4.62 (m, 1H), 6.02–

6.10 (m, 2H), 6.54–6.60 (m, 2H), 6.70–6.82 (m, 2H), 7.04 (br d, J = 7.7 Hz, 1H), 7.48–7.57 (m, 

2H), 7.81 (s, 1H), 8.00 (s, 1H). 
13C NMR (75 MHz, THF-d8): δ (ppm) 4.1, 4.4, 10.8, 31.0, 32.5, 33.9, 35.8, 40.2, 42.8, 44.4, 45.0, 

46.4, 52.0, 60.0, 61.7, 108.5, 110.1, 114.2, 120.0, 124.8, 126.9, 129.0, 132.1, 132.2, 135.0, 144.9, 

145.1, 154.1, 157.7, 167.0. 

MS (ESI): m/z = 471[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H35N2O3: 471.2648. Found: 471.2664. 

 

32a•HCl 

mp (dec.) 172–173 °C 

Anal. Calcd for C30H34N2O3·HCl·2.3H2O: C, 65.69; H, 7.28; N, 5.11. Found: C, 65.71; H, 7.03; 

N, 5.05. 

  

32a
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N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-1H-

2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-3-phenylpropanamide (32b) 

 

 

 

 

 

 

 

To a stirred solution of 30 (20.0 mg, 0.0571 mmol) in CH2Cl2 (1 mL) were added triethylamine 

(23.8 L, 0.171 mmol) and hydrocinnamoyl chloride (10.1 L, 0.0685 mmol) at room 

temperature under an argon atmosphere. After 30 min with stirring at the same temperature, the 

reaction mixture was concentrated and the residue was dissolved in MeOH (1 mL). To the stirred 

reaction mixture was added K2CO3 (23.7 mg, 0.171 mmol) at room temperature. After 2 h with 

stirring at the same temperature, the reaction was quenched with saturated NaHCO3 aqueous 

solution and extracted with CHCl3 three times. The combined organic extracts were dried over 

Na2SO4, and evaporated in vacuo. The residue was purified by preparative TLC 

(CHCl3/MeOH/25% ammonia aqueous solution = 100/3/0.3) to give 32b (25.0 mg, 91%) as a 

colorless oil.  

 

32b 

IR (film) cm-1: 3200, 3062, 3021, 2923, 2852, 1667, 1613, 1454, 1282, 1218, 754, 700. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.07–0.27 (m, 2H), 0.43–0.61 (m, 2H), 0.78–0.99 (m, 1H), 

1.20–2.81 (m, 16H), 2.84–3.10 (m, 3H), 3.38–3.91 (m, 2.2H), 4.49–4.62 (m, 0.8H), 5.77–6.18 (m, 

2H), 6.32–6.52 (m, 1H), 6.57–6.71 (m, 1H), 6.97–7.08 (m, 1H), 7.16–7.37 (m, 5H), a proton (OH) 

was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.8, 3.8, 9.5, 29.7, 31.2, 31.4, 31.9, 32.7, 33.9, 36.4, 37.4, 

41.7, 43.8, 45.1, 53.0, 58.8, 59.9, 108.9, 109.1, 113.5, 126.3, 126.5, 128.3, 128.5, 128.6, 128.7, 

129.2, 132.6, 140.6, 141.8, 155.1, 172.6. 

MS (ESI): m/z = 483[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H39N2O2: 483.3012. Found: 483.3023. 

 

32b•HCl 

mp (dec.) 176–177 °C 

Anal. Calcd for C32H38N2O2·HCl·1.5H2O: C, 70.37; H, 7.75; N, 5.13. Found: C, 70.50; H, 7.56; 

N, 4.97. 

32b
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N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-1H-

2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-2-phenylacetamide (32c) 

 

 

 

 

 

 

 

 

To a stirred solution of 30 (14.0 mg, 0.0456 mmol) in CH2Cl2 (1 mL) were added triethylamine 

(23.8 L, 0.171 mmol) and phenylacetyl chloride (12.1 L, 0.0913 mmol) at room temperature 

under an Ar atmosphere. After 30 min with stirring, the reaction mixture was concentrated and 

the residue was dissolved in MeOH (1 mL). To the stirred reaction mixture was added K2CO3 

(22.0 mg, 0.159 mmol) at room temperature. After 2 h with stirring, the reaction was quenched 

with saturated NaHCO3 aqueous solution and extracted with CHCl3 three times. The combined 

organic extracts were dried over Na2SO4, and evaporated in vacuo. The residue was purified by 

preparative TLC (CHCl3/MeOH/25% ammonia aqueous solution = 100/2.5/0.25) to give 32c 

(19.0 mg, 89%) as a colorless oil.  

 

32c 

IR (film) cm-1: 3261, 3013, 2919, 1614, 1455, 1282, 1218, 921, 755. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.04–0.22 (m, 2H), 0.40–0.54 (m, 2H), 0.73–0.94 (m, 1H), 

1.17–1.61 (m, 3.4H), 1.66–2.66 (m, 11.6H), 3.31–3.84 (m, 4H), 3.91–4.04 (m, 0.4H), 4.53–4.64 

(m, 0.6H), 5.76–6.07 (m, 2H), 6.29–6.69 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H) 7.19–7.39 (m, 5H), a 

proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ(ppm) 3.7, 3.7, 9.6, 18.8, 29.4, 32.3, 32.6, 33.3, 33.8, 39.4, 41.6, 

41.9, 43.9, 45.1, 50.1, 58.8, 108.2, 109.0, 113.5, 126.7, 128.7, 128.8, 128.8, 128.9, 132.9, 134.1, 

135.2, 144.9, 153.1, 154.9, 171.3. 

MS (ESI): m/z = 469[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H37N2O2: 469.2855. Found: 469.2854. 

 

32c•HCl  

mp (dec.) 136–136 °C 

Anal. Calcd for C31H36N2O2·1.0CSA·2.2H2O: C, 66.50; H, 7.68; N, 3.78. Found: C, 66.42; H, 

7.50; N, 3.78. 

32c
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N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-1H-

2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methylbenzamide (32d) 

 

 

 

 

 

 

 

 

To a stirred solution of 30 (20.0 mg, 0.0571 mmol) in CH2Cl2 (1 mL) were added triethylamine 

(23.8 L, 0.171 mmol) and benzoyl chloride (8.0 L, 0.0685 mmol) at room temperature under 

an argon atmosphere. After 30 min with stirring, the reaction mixture was concentrated and the 

residue was dissolved in MeOH (1 mL). To the stirred reaction mixture was added K2CO3 (23.7 

mg, 0.171 mmol) at room temperature. After 2 h with stirring, the reaction was quenched with 

saturated NaHCO3 aqueous solution and extracted with CHCl3 three times. The combined organic 

extracts were dried over Na2SO4, and evaporated in vacuo. The residue was purified by 

preparative TLC (CHCl3/MeOH = 100/3 to 100/7) to give 32d (25.6 mg, 99%) as a colorless oil. 

 

32d 

IR (film) cm-1: 3267, 3076, 3017, 2919, 2847, 2812, 1607, 1456, 1281, 1063, 910, 733. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.08–0.21 (m, 2H), 0.42–0.56 (m, 2H), 0.77–0.94 (m, 1H), 

1.29–1.40 (m, 1H), 1.44–1.66 (m, 2H), 1.90–2.00 (m, 1H), 2.12–2.65 (m, 11H), 3.50–3.69 (m, 

2H), 4.24–4.54 (m, 1H), 5.84–6.06 (m, 2H), 6.65 (dd, J = 7.9, 2.3 Hz, 1H), 6.72 (d, J = 2.3 Hz, 

1H), 7.06 (d, J = 7.9 Hz, 1H), 7.18–7.32 (m, 5H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.8, 3.8, 9.6, 15.7, 29.9, 32.8, 33.5, 38.5, 41.3, 43.5, 44.0, 

45.2, 51.5, 58.9, 60.0, 109.4, 109.4, 113.7, 126.6, 126.7, 128.4, 128.4, 129. 0, 129.4, 132.2, 133.3, 

137.0, 152.7, 155.5, 172.9. 

MS (ESI): m/z = 455[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H35N2O2: 455.2699. Found: 455.2685. 

 

32d•HCl  

mp (dec.) 186–187 °C 

Anal. Calcd for C30H34N2O2·HCl·1.2H2O: C, 70.28; H, 7.35; N, 5.46. Found: C, 70.20; H, 7.23; 

N, 5.44. 

 

32d
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(E)-N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-3-(furan-2-yl)-N-methylacrylamide (33a) 

 

 

 

 

 

 

 

  

 

 

Compound 33a was prepared from compound 31 according to the procedure used to synthesize 

compound 32a. Yield, 73%.; a colorless amorphous solid.  

 

33a 

IR (KBr) cm-1: 2935, 1639, 1561, 1459, 1372, 1160, 1090, 980, 802. 

1H NMR (300 MHz, THF-d8): δ (ppm) 0.15–0.27 (m, 2H), 0.47–0.60 (m, 2H), 0.87–1.00 (m, 1H), 

1.32–1.43 (m, 1H), 1.52–1.70 (m, 2H), 1.72–1.92 (m, 2H), 2.19 (br d, J = 14.6 Hz, 1H), 2.33–

2.79 (m, 6H), 2.99–3.14 (m, 3H), 3.58–3.73 (m, 2.2H), 4.26–4.83 (m, 0.8H), 5.96–6.10 (m, 1H), 

6.12–6.21 (m, 1H), 6.53–6.84 (m, 4H), 6.99–7.09 (m, 1H), 7.46–7.60 (m, 2H), 7.80 (br s, 1H), 

7.88–8.05 (m, 1H). 
13C NMR (75 MHz, THF-d8): δ (ppm) 3.6, 4.3, 10.4, 26.6, 30.5, 39.0, 39.9, 40.4, 44.0, 45.7, 48.3, 

52.7, 56.7, 59.6, 61.7, 108.3, 109.0, 114.3, 119.3, 124.8, 127.2, 130.0, 132.5, 132.8, 145.1, 145.1, 

145.2, 153.0, 157.8, 166.6.  

MS (ESI): m/z = 471[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H35N2O3: 471.2648. Found: 471.2637. 

 

33a•HCl  

mp (dec.) 191–192 °C 

Anal. Calcd for C30H34N2O3·HCl·1.5H2O: C, 67.47; H, 7.17; N, 5.25. Found: C, 67.59; H, 7.17; 

N, 5.07. 

  

33a
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N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-1H-

2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-3-phenylpropanamide (33b) 

 

 

 

 

 

 

 

 

 

Compound 33b was prepared from compound 31 according to the procedure used to synthesize 

compound 32b. Yield, 74%.; a colorless oil.  

 

33b 

IR (film) cm-1: 3249, 3019, 2917, 1614, 1455, 1217, 1074, 809, 754, 700. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.10–0.21 (m, 2H), 0.43–0.57 (m, 2H), 0.78–0.94 (m, 1H), 

1.21–1.34 (m, 1H), 1.41–1.76 (m, 4H), 2.04–2.22 (m, 2H), 2.27–2.68 (m, 7H), 2.72–3.02 (m, 5H), 

3.49–3.68 (m, 2.5H), 4.35–4.47 (m, 0.5H), 5.76–5.94 (m, 1H), 5.99–6.10 (m, 1H), 6.61–6.71 (m, 

2H), 6.91–7.32 (m, 6H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.7, 3.9, 9.6, 28.0, 29.4, 31.6, 35.8, 36.3, 37.5, 38.7, 39.6, 

43.4, 44.9, 47.6, 51.9, 55.7, 58.7, 107,9, 108.9, 113.6, 126.1, 126.4, 126.9, 128.3, 128.5, 128.5, 

128.5, 129.3, 132.5, 141.2, 155.5, 173.0. 

MS (ESI): m/z = 483[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H39N2O2: 483.3012. Found: 483.2997. 

 

33b•HCl  

mp (dec.) 143–144 °C 

Anal. Calcd for C32H38N2O2·CSA·2.8H2O: C, 65.91; H, 7.85; N, 3.66. Found: C, 65.73; H, 7.56; 

N, 3.65. 

  

33b
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N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-1H-

2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-2-phenylacetamide (33c) 

 

 

 

 

 

 

 

 

 

Compound 33c was prepared from compound 31 according to the procedure used to synthesize 

compound 32c. Yield, 74%.; a colorless amorphous solid.  

 

33c 

IR (film) cm-1: 3261, 3013, 2919, 1614, 1455, 1282, 1218, 921, 755. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.22 (m, 2H), 0.41–0.55 (m, 2H), 0.76–0.94 (m, 1H), 

1.14–1.90 (m, 6H), 2.04–2.31 (m, 2H), 2.33–2.68 (m, 4H), 2.87 (s, 3H), 3.45–3.77 (m, 4.5H), 

4.39–4.50 (m, 0.5H), 5.74–5.93 (m, 1H), 5.98–6.06 (m, 1H), 6.35–6.41 (m, 0.5H), 6.55–6.71 (m, 

1.5H), 6.93–7.00 (m, 1H), 7.04 (d, J = 8.0 Hz, 1H), 7.11–7.36 (m, 4H), a proton (OH) was not 

observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.7, 3.9, 9.5, 28.1, 29.5, 31.9, 35.6, 37.3, 38.4, 39.6, 42.0, 

44.9, 47.5, 52.3, 55.7, 58.7, 107.9, 108.8, 113.5, 126.5, 126.7, 128.3, 128.5, 128.7, 128.7, 128.8, 

132.5, 134.9, 151.2, 155.2, 171.8. 

MS (ESI): m/z = 469[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H37N2O2: 469.2855. Found: 469.2844. 

 

33c •CSA 

mp (dec.) 245–246 °C 

Anal. Calcd for C31H36N2O2·1.0CSA·1.8H2O: C, 67.15; H, 7.64; N, 3.82. Found: C, 67.25; H, 

7.48; N, 3.787. 

  

33c
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N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,4a,5,6,7,12-hexahydro-1H-

2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methylbenzamide (33d) 

 

 

 

 

 

 

 

 

 

Compound 33d was prepared from compound 31 according to the procedure used to synthesize 

compound 32d. Yield, 92%.; a colorless oil.  

 

33d 

IR (film) cm-1: 3274, 3017, 2918, 1608, 1446, 1370, 1221, 1072, 755. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.07–0.23 (m, 2H), 0.40–0.58 (m, 2H), 0.77–0.94 (m, 1H), 

0.97–2.35 (m, 8H), 2.39–2.72 (m, 4H), 2.84–3.07 (m, 3H), 3.37–3.71 (m, 2.6H), 4.25–4.60 (m, 

0.4H), 5.88–6.13 (m, 2H), 6.25–7.04 (m, 3H), 7.09–7.49 (m, 5H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.7, 3.9, 9.6, 29.0, 29.7, 35.5, 38.6, 39.6, 40.7, 43.6, 44.9, 

47.4, 53.1, 57.5, 58.7, 108.2, 108.6, 113.4, 115.6, 126.4, 128.5, 128.5, 129.4, 131.0, 132.2, 136.7, 

145.4, 151.0, 155.0, 172.8. 

MS (ESI): m/z = 455[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H35N2O2: 455.2699. Found: 455.2699. 

 

33d•HCl  

mp (dec.) 174–175 °C 

Anal. Calcd for C30H34N2O2·HCl·1.2H2O: C, 70.28; H, 7.35; N, 5.46. Found: C, 70.03; H, 7.06; 

N, 5.20. 
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(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-methoxy-N-methyl-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-amine (34) 

 

 

 

 

 

 

 

 

Under an argon atmosphere, to a solution of 28 (59.8 mg, 0.164 mmol) in MeOH (2 mL) was 

added 10% Pd on carbon (52.0 mg), and after exchange of argon for H2, the reaction mixture was 

stirred at room temperature for 19 h. The reaction mixture was filtered through a Celite pad and 

the Celite pad was washed with MeOH. After concentration of the filtrate, the residue was purified 

by preparative TLC (CHCl3/MeOH/25% ammonia aqueous solution = 100/5/0.5) to give 34 (41.5 

mg, 69%) as a colorless oil. 

 

34 

IR (film) cm-1: 3075, 2998, 2912, 2848, 1608, 1586, 1478, 1282, 1037, 916, 728. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.17 (m, 2H), 0.40–0.53 (m, 2H), 0.76–0.89 (m, 1H), 

0.96 (dd, J = 13.7, 2.5 Hz, 1H), 1.27–1.37 (m, 1H), 1.44–2.14 (m, 10H), 2.22 (dd, J = 12.6, 6.8 

Hz, 1H), 2.34 (s, 3H), 2.47–2.70 (m, 4H), 3.01 (dd, J = 11.1, 6.8 Hz, 1H), 3.70 (d, J = 15.1 Hz, 

1H), 3.79 (s, 3H), 6.65 (dd, J = 8.1, 2.5 Hz, 1H), 6.75 (d, J = 2.5 Hz, 1H), 7.10 (d, J = 8.1 Hz, 

1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.1, 9.8, 16.3, 28.8, 30.6, 31.6, 32.8, 33.9, 38.7, 40.8, 

41.5, 45.3, 45.9, 55.4, 58.5, 59.0, 60.3, 107.1, 111.1, 126.7, 134.1, 154.4, 158.3. 

MS (ESI): m/z = 367[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C24H35N2O: 367.2749. Found: 367.2749. 

 

  

34
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(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-methoxy-N-methyl-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-amine (35) 

 

 

 

 

 

 

 

 

 

Compound 35 was prepared from compound 29 according to the procedure used to synthesize 

compound 34. Yield, 88%.; a colorless oil.  

 

35 

IR (film) cm-1: 3075, 2918, 2850, 1609, 1586, 1479, 1284, 1216, 1033, 799, 727. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.17 (m, 2H), 0.40–0.54 (m, 2H), 0.75–0.91 (m, 1H), 

1.22 (dd, J = 13.4, 3.4 Hz, 1H), 1.26–1.35 (m, 1H), 1.40–1.66 (m, 4H), 1.68–2.14 (m, 5H), 2.15–

2.26 (m, 2H), 2.40–2.69 (m, 4H), 2.45 (s, 3H), 2.97–3.09 (m, 1H), 3.74 (d, J = 14.7 Hz, 1H), 3.79 

(s, 3H), 6.65 (dd, J = 8.0, 2.5 Hz, 1H), 6.70 (d, J = 2.5 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), a proton 

(OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.1, 9.8, 16.3, 23.6, 30.5, 33.4, 33.8, 38.1, 38.3, 40.0, 

41.4, 46.2, 46.7, 55.3, 58.3, 58.6, 58.8, 107.4, 110.2, 126.6, 134.4, 153.5, 158.3. 

MS (ESI): m/z = 367[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C24H35N2O: 367.2749. Found: 367.2737. 

 

  

35 
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(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-14-(methylamino)-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-9-ol (36) 

 

 

 

 

 

 

 

 

Compound 36 was prepared from compound 34 according to the procedure used to synthesize 

compound 12. Yield, 96%.; a colorless amorphous solid.  

 

36 

IR (KBr) cm-1: 3312, 2935, 2848, 1608, 1467, 1248, 1039, 816. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.16 (m, 2H), 0.40–0.54 (m, 2H), 0.74–0.92 (m, 1H), 

0.96–1.06 (m, 1H), 1.22–1.39 (m, 1H), 1.46–2.01 (m, 7H), 2.13 (d, J = 13.3 Hz, 1H), 2.14–2.41 

(m, 3H), 2.37 (s, 3H), 2.47–2.66 (m, 3H), 2.83–2.92 (m, 1H), 3.03 (dd, J = 10.8, 7.3 Hz, 1H), 3.69 

(d, J = 14.9 Hz, 1H), 3.78–4.32 (m, 1H), 6.57 (dd, J = 8.0, 2.1 Hz, 1H), 6.81 (d, J = 2.1 Hz, 1H), 

7.03 (d, J = 8.0 Hz, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.1, 9.7, 16.5, 28.5, 29.1, 31.1, 32.4, 33.1, 38.4, 40.8, 

41.5, 45.1, 45.7, 58.3, 59.1, 60.4, 109.0, 113.8, 127.2, 132.9, 153.4, 155.5. 

MS (ESI): m/z = 353[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H33N2O: 353.2593. Found: 353.2603. 

 

36•HCl  

mp (dec.) 205–206 °C 

Anal. Calcd for C23H32N2O·2.0HCl·2.0H2O: C, 59.86; H, 8.30; N, 6.07. Found: C, 60.02; H, 8.31; 

N, 5.98. 

  

36
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(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-14-(methylamino)-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-9-ol (37) 

 

 

 

 

 

 

 

 

Compound 37 was prepared from compound 35 according to the procedure used to synthesize 

compound 12. Yield, 55%.; a colorless oil.  

 

37 

IR (film) cm-1: 2919, 1611, 1471, 1373, 910, 732. 
1H NMR (300 MHz, CDCl3): δ (ppm) 0.04–0.15 (m, 2H), 0.38–0.52 (m, 2H), 0.73–0.90 (m, 1H), 

1.16–1.34 (m, 2H), 1.40–1.66 (m, 3H), 1.68–2.12 (m, 4H), 2.07 (d, J = 14.8 Hz, 1H), 2.13–2.30 

(m, 2H), 2.38–2.73 (m, 4H), 2.44 (s, 3H), 3.03 (dd, J = 10.7, 6.5 Hz, 1H), 3.71 (d, J = 14.8 Hz, 

1H), 3.90–4.46 (m, 1H), 4.15 (br s, 1H), 6.58 (dd, J = 7.9, 2.3 Hz, 1H), 6.66 (d, J = 2.3 Hz, 1H), 

7.03 (d, J = 7.9 Hz, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.1, 9.7, 16.4, 23.5, 29.9, 32.9, 33.6, 38.1, 38.2, 39.9, 

41.3, 46.0, 46.6, 58.3, 58.5, 58.8, 108.6, 113.0, 126.8, 133.4, 153.2, 155.1. 

MS (ESI): m/z = 353[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C23H33N2O: 353.25929. Found: 353.26031. 

  

37
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(E)-N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-3-(furan-2-yl)-N-methylacrylamide  

(38a) 

 

 

 

 

 

 

 

 

Compound 38a was prepared from compound 36 according to the procedure used to synthesize 

compound 32a. Yield, 70%.; a colorless oil.  

 

38a 

IR (film) cm-1: 3225, 3002, 2924, 2855, 1650, 1586, 1281, 1159, 870, 754. 

1H NMR (300 MHz, THF-d8): δ (ppm) 0.04–0.19 (m, 2H), 0.38–0.57 (m, 2H), 0.80–0.97 (m, 1H), 

1.14 (d, J = 12.5 Hz, 1H), 1.23–2.10 (m, 9H), 2.14–2.67 (m, 5H), 2.71–2.95 (m, 5H), 3.07–3.31 

(m, 1H), 4.15–4.29 (m, 0.4H), 4.95–5.11 (m, 0.6H), 6.47–6.79 (m, 4H), 6.98 (d, J = 8.1 Hz, 1H), 

7.40 (br s, 1H), 7.53–7.63 (m, 2H), a proton (OH) was not observed. 
13C NMR (75 MHz, THF-d8): δ (ppm) 3.6, 3.9, 10.2, 28.4, 29.9, 30.6, 31.2, 32.0, 35.1, 36.5, 38.1, 

45.5, 46.2, 50.4, 53.8, 60.3, 63.9, 107.3, 109.7, 114.5, 116.5, 117.3, 123.0, 125.3, 131.1, 133.2, 

144.1, 153.5, 156.2, 166.6. 

MS (ESI): m/z = 473[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H37N2O3: 473.2804. Found: 473.2803. 

 

38a•HCl  

mp (dec.) 198–199 °C 

Anal. Calcd for C30H36N2O3·HCl·1.3H2O: C, 67.67; H, 7.50; N, 5.26. Found: C, 67.78; H, 7.51; 

N, 5.35. 

  

38a
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N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12-octahydro- 

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-3-phenylpropanamide (38b) 

 

 

 

 

 

 

 

 

Compound 38b was prepared from compound 36 according to the procedure used to synthesize 

compound 32b. Yield, 85%.; a colorless oil.  

 

38b 

IR (film) cm-1: 3249, 2924, 1614, 1454, 1286, 1215, 1073, 909. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.05–0.21 (m, 2H), 0.40–0.57 (m, 2H), 0.80–0.99 (m, 1H), 

1.04–1.17 (m, 1H), 1.31–1.50 (m, 1H), 1.53–2.18 (m, 8H), 2.24–3.04 (m, 14H), 3.08–3.29 (m, 

1H), 3.93–4.03 (m, 0.4H), 4.83–4.94 (m, 0.6H), 6.59 (dd, J = 8.2, 2.2 Hz, 1H), 6.74 (dd, J = 8.1, 

2.2 Hz, 1H), 6.93–7.00 (m, 1H), 7.14–7.33 (m, 5H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.6, 3.9, 9.9, 28.9, 30.1, 30.4, 30.9, 31.7, 31.9, 35.2, 35.9, 

38.0, 45.3, 45.7, 46.2, 50.1, 53.8, 60.4, 63.8, 109.5, 114.7, 125.3, 126.2, 128.4, 128.5, 128.5, 128.6, 

130.8, 141.0, 153.3, 156.4, 172.6. 

MS (ESI): m/z = 485[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H41N2O2: 485.31680. Found: 485.31583. 

 

38b•HCl  

mp (dec.) 158–159 °C 

Anal. Calcd for C32H40N2O2·HCl·1.2H2O: C, 70.81; H, 8.06; N, 5.16. Found: C, 70.54; H, 7.95; 

N, 5.25. 

  

38b
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N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12-octahydro- 

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-2-phenylacetamide (38c) 

 

 

 

 

 

 

 

 

Compound 38c was prepared from compound 36 according to the procedure used to synthesize 

compound 32c. Yield, 96%.; a colorless oil.  

 

38c 

IR (film) cm-1: 3236, 2925, 2856, 1615, 1454, 1286, 909, 729. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.05–0.19 (m, 2H), 0.39–0.57 (m, 2H), 0.80–0.99 (m, 1H), 

1.02–1.15 (m, 1.5H), 1.19–2.05 (m, 9.5H), 2.12–2.94 (m, 9H), 3.01–3.31 (m, 1H), 3.69 (s, 1H), 

3.84 (d, J = 2.7 Hz, 1H), 3.88–3.98 (m, 0.5H), 4.90 (br s, 0.5H), 6.49 (dd, J = 8.2, 2.2 Hz, 1H), 

6.69 (dd, J = 8.0, 2.2 Hz, 1H), 6.91–6.93 (m, 1H), 7.18–7.36 (m, 5H), a proton (OH) was not 

observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.5, 3.6, 9.8, 28.9, 30.5, 31.1, 34.7, 36.1, 38.2, 41.6, 42.2, 

45.2, 45.8, 46.0, 50.4, 54.4, 60.2, 63.8, 109.6, 114.5, 125.1, 125.4, 127.0, 128.3, 128.3, 128.7, 

128.7, 129.0, 135.1, 156.0, 171.0. 

MS (ESI): m/z = 471[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H39N2O2: 471.3012. Found: 471.3010. 

 

38c•HCl  

mp (dec.) 182–183 °C 

Anal. Calcd for C31H38N2O2·HCl·1.2H2O: C, 70.81; H, 8.06; N, 5.16. Found: C, 70.54; H, 7.95; 

N, 5.25. 

  

38c
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N-[(2S,4aS,7aR,12aR,14R)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12-octahydro-

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methylbenzamide (38d) 

 

 

 

 

 

 

 

 

Compound 38d was prepared from compound 36 according to the procedure used to synthesize 

compound 32d. Yield, 96%.; a colorless oil.  

 

38d 

IR (film) cm-1: 3267, 2925, 2855, 1613, 1448, 1286, 1068, 910, 731. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.01–0.24 (m, 2H), 0.35–0.58 (m, 2H), 0.69–2.27 (m, 12H), 

2.31–3.44 (m, 6H), 2.38 (d, J = 15.9 Hz, 1H), 2.88 (s, 3H), 3.92 (br s, 0.6H), 4.92 (br s, 0.4H), 

6.53–6.70 (m, 2H), 6.88–6.98 (m, 1H), 7.41 (br s, 5H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.5, 3.9, 10.2, 23.5, 28.6, 29.6, 29.8, 31.5, 35.1, 36.3, 38.1, 

45.6, 46.3, 51.1, 55.5, 59.8, 63.7, 109.7, 114.8, 125.2, 125.6, 125.9, 126.8, 128.7, 129.6, 130.9, 

136.6, 153.1, 156.1, 172.0. 

MS (ESI): m/z = 471[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H37N2O2: 457.2855. Found: 457.2835. 

 

38d•HCl  

mp (dec.) 184–185 °C 

Anal. Calcd for C30H36N2O2·HCl·1.3H2O: C, 69.76; H, 7.73; N, 5.42. Found: C, 70.00; H, 7.68; 

N, 5.47. 

  

38d
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(E)-N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12- 

octahydro-1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-3-(furan-2-yl)-N-methylacrylamide  

(39a) 

 

 

 

 

 

 

 

 

 

 

Compound 39a was prepared from compound 37 according to the procedure used to synthesize 

compound 32a. Yield, 73%.; a colorless oil.  

 

39a 

IR (film) cm-1: 3231, 2921, 1650, 1584, 1463, 1159, 1021, 870, 755. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.06–0.22 (m, 2H), 0.41–0.56 (m, 2H), 0.79–0.94 (m, 1H), 

1.06–1.38 (m, 2H), 1.52–1.74 (m, 4H), 1.78–2.78 (m, 10H), 3.01–3.28 (m, 4H), 3.65–3.79 (m, 

1H), 3.96 (br s, 0.5H), 4.55 (br s, 0.5H), 6.27–6.73 (m, 4H), 6.94–7.10 (m, 1H), 7.28–7.44 (m, 

1H), 7.45–7.60 (m, 2H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.2, 9.7, 16.5, 26.3, 30.6, 32.6, 34.9, 38.2, 39.9, 41.5, 

45.7, 46.8, 54.3, 56.9, 58.4, 58.8, 107.6, 113.2, 116.8, 123.0, 127.0, 129.2, 133.0, 133.1, 144.0, 

144.0, 152.3, 153.7, 167.1. 

MS (ESI): m/z = 473[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H37N2O3: 473.2804. Found: 473.2781. 

 

39a•HCl 

mp (dec.) 204–205 °C 

Anal. Calcd for C30H36N2O3·HCl·1.4H2O: C, 67.44; H, 7.51; N, 5.24. Found: C, 67.29; H, 7.49; 

N, 5.31. 

  

39a
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N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12-octahydro- 

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-3-phenylpropanamide (39b) 

 

 

 

 

 

 

 

 

 

Compound 39b was prepared from compound 37 according to the procedure used to synthesize 

compound 32b. Yield, 68%.; a colorless oil.  

 

39b 

IR (film) cm-1: 3250, 2923, 1613, 1455, 1241, 1072, 911, 731. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.05–0.20 (m, 2H), 0.39–0.55 (m, 2H), 0.76–0.94 (m, 1H), 

1.02–1.20 (m, 1H), 1.23–1.38 (m, 1H), 1.49–1.72 (m, 5H), 1.77–2.11 (m, 5H), 2.16–2.73 (m, 6H), 

2.77–2.89 (m, 1H), 2.91–3.13 (m, 5H), 3.63–3.85 (m, 1.5H), 4.48 (br s, 0.5H), 6.58–6.67 (m, 2H), 

6.95–7.35 (m, 6H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.2, 9.7, 16.3, 26.2, 29.3, 30.1, 31.6, 32.1, 34.6, 35.8, 

39.1, 39.9, 41.3. 45.7, 46.8, 56.9, 58.5, 58.8, 107.8, 113.1, 126.0, 126.1, 126.7, 127.1, 128.0, 128.4, 

128.5, 133.3, 141.3, 155.2, 172.8. 

MS (ESI): m/z = 485[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H41N2O2: 485.3168. Found: 485.3159. 

 

39b•HCl 

mp (dec.) 172–173 °C 

Anal. Calcd for C32H40N2O2·HCl·1.5H2O: C, 70.12; H, 8.09; N, 5.11. Found: C, 69.85; H, 8.00; 

N, 5.17. 

  

39b
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N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12-octahydro- 

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methyl-2-phenylacetamide (39c) 

 

 

 

 

 

 

 

 

 

Compound 39c was prepared from compound 37 according to the procedure used to synthesize 

compound 32d. Yield, 66%.; a colorless oil.  

 

39c 

IR (film) cm-1: 3280, 2920, 1615, 1456, 1241, 911, 729. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.05–0.18 (m, 2H), 0.39–0.55 (m, 2H), 0.74–0.93 (m, 1H), 

1.01–1.33 (m, 2H), 1.39–1.73 (m, 5H), 1.79–2.11 (m, 4H), 2.15–2.41 (m, 2H), 2.47–2.75 (m, 2H), 

2.94–3.13 (m, 4H), 3.50–3.89 (m, 4.5H), 4.49 (br s, 0.5H), 6.11–6.18 (m, 0.5H), 6.55–6.65 (m, 

1.5H), 6.93–7.08 (m, 2H), 7.16–7.36 (m, 4H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.1, 9.6, 16.4, 26.4, 30.2, 32.0, 34.4, 37.9, 39.2, 39.8, 

41.6, 42.2, 45.7, 46.7, 57.0, 58.3, 58.8, 107.8, 113.0, 126.5, 126.7, 128.4, 128.5, 128.7, 128.8, 

133.2, 135.1, 152.1, 154.8, 171.9. 

MS (ESI): m/z = 471[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H39N2O2: 471.3012. Found: 471.2992. 

 

39c•HCl 

mp (dec.) 190–191 °C 

Anal. Calcd for C31H38N2O2·HCl·1.5H2O: C, 69.71; H, 7.93; N, 5.24. Found: C, 69.82; H, 7.85; 

N, 5.35. 

  

39c
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N-[(2S,4aS,7aR,12aR,14S)-5-(Cyclopropylmethyl)-9-hydroxy-2,3,4,4a,5,6,7,12-octahydro- 

1H-2,7a-ethanoindeno[1,2-d]quinolin-14-yl]-N-methylbenzamide (39d) 

 

 

 

 

 

 

 

 

Compound 39d was prepared from compound 37 according to the procedure used to synthesize 

compound 32d. Yield, 83%.; a colorless oil.  

 

39d 

IR (film) cm-1: 3267, 3076, 2923, 1608, 1445, 1371, 1240, 1066, 912, 732. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.08–0.19 (m, 2H), 0.41–0.56 (m, 2H), 0.78–1.36 (m, 3H), 

1.47–2.78 (m, 14H), 2.94–3.29 (m, 4H), 3.52–3.80 (m, 1.7H), 4.55 (br s, 0.3H), 6.27–6.61 (m, 

2H), 6.78–6.96 (m, 1H), 7.04–7.48 (m, 5H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.2, 4.2, 9.4, 16.6, 26.6, 30.1, 31.4, 31.9, 34.5, 37.8, 39.7, 

40.5, 41.5, 45.7, 46.6, 58.4, 58.7, 108.1, 112.9, 125.6, 126.6, 126.6, 128.4, 128.5, 129.3, 132.6, 

139.0, 151.7, 155.1, 172.4.  

MS (ESI): m/z = 457[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H37N2O2: 457.2855. Found: 457.2854. 

 

39d•HCl 

mp (dec.) 208–209 °C 

Anal. Calcd for C30H36N2O2·HCl·1.5H2O: C, 69.28; H, 7.75; N, 5.39. Found: C, 69.21; H, 7.70; 

N, 5.48. 

  

39d
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(6aR,11aS)-15-(Cyclopropylmethyl)-8-methoxy-11,12-dihydro-6H-6a,11a-(ethanoimino- 

methano)indeno[2,1-b]acridine (51) 

(7aR,12bR)-16-(Cyclopropylmethyl)-11-methoxy-7,8-dihydro-6H-12b,7a-(ethanoimino- 

methano)indeno[1,2-a]acridine (52) 

 

 

 

 

 

 

 

 

 

To a stirred solution of 50 (61.1 mg, 0.188 mmol) in ethanol (10 mL) were added 

methanesulfonic acid (48.7 L, 0.751 mmol) and 2-aminobenzaldehyde (91.0 mg, 0.751 mmol) 

and refluxed under an argon atmosphere. After 12 h with stirring at the same temperature, the 

reaction mixture was basified (pH 9) with saturated NaHCO3 aqueous solution, and extracted with 

CHCl3 three times. The combined organic extracts were dried over Na2SO4, and evaporated in 

vacuo. The residue was purified by preparative TLC (Hexane/AcOEt/MeOH/25% ammonia 

aqueous solution = 300/100/10/1) to give 51 (27.0 mg, 35%) as a yellow oil and 52 (29.5 mg, 

38%) as a yellow oil. 

 

51 

IR (film) cm-1: 3075, 3001, 2915, 2832, 1714, 1609, 1490, 1284, 1221, 1033, 752. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.01–0.09 (m, 2H), 0.42–0.52 (m, 2H), 0.74–0.89 (m, 1H), 

1.70–1.86 (m, 1H), 1.93–2.04 (m, 1H), 2.07–2.25 (m, 2H), 2.27–2.69 (m, 5H), 2.80 (d, J = 15.2 Hz, 

1H), 2.97 (d, J = 15.2 Hz, 1H), 3.08 (d, J = 17.0 Hz, 1H), 3.20–3.36 (m, 1H), 3.24 (d, J = 9.9 Hz, 1H), 

3.79 (s, 3H), 6.69 (dd, J = 8.1, 2.4 Hz, 1H), 6.77 (d, J = 2.4 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 7.40–

7.47 (m, 1H), 7.57–7.64 (m, 1H), 7.68–7.73 (m, 1H), 7.84 (s, 1H), 7.97 (d, J = 8.3 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.7, 4.1, 8.4, 33.4, 36.8, 41.7, 42.6, 45.6, 47.3, 50.1, 55.4, 60.2, 

63.4, 108.3, 111.6, 125.6, 126.2, 126.9, 127.4, 128.3, 128.5, 129.7, 133.1, 134.7, 146.6, 151.7, 158.2, 

159.0. 

MS (ESI): m/z = 411[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C28H31N2O: 411.2436. Found: 411.2423. 
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52 

IR (film) cm-1: 3000, 2921, 1587, 1488, 1283, 1223, 1031, 907, 732. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.03–0.10 (m, 2H), 0.44–0.54 (m, 2H), 0.78–0.91 (m, 1H), 

1.94–2.05 (m, 1H), 2.08–2.36 (m, 6H), 2.43–2.78 (m, 4H), 2.91 (d, J = 15.2 Hz, 1H), 3.26–3.38 (m, 

2H), 3.81 (s, 3H), 6.69 (dd, J = 8.2, 2.5 Hz, 1H), 6.77 (br s, 1H), 7.10 (d, J = 8.2 Hz, 1H), 7.39–7.46 

(m, 1H), 7.57–7.65 (m, 1H), 7.69–7.75 (m, 1H), 7.95 (d, J = 8.5 Hz, 1H), 8.10 (s, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.8, 4.2, 8.3, 27.9, 30.3, 35.4, 38.8, 46.1, 50.9, 51.6, 55.5, 60.8, 

63.6, 110.8, 110.9, 125.5, 126.3, 127.2, 127.4, 128.0, 128.0, 129.1, 134.0, 135.6, 146.3, 149.5, 157.2, 

158.7. 

MS (ESI): m/z = 411[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C28H31N2O: 411.2436. Found: 411.2426. 
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(6aR,11aS)-15-(Cyclopropylmethyl)-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)- 

indeno[2,1-b]acridin-8-ol (49) 

 

 

 

 

 

 

 

 

Compound 49 was prepared from compound 51 according to the procedure used to synthesize 

compound 12. Yield, 79%.; a colorless amorphous solid.  

 

49 

IR (film) cm-1: 3007, 2918, 2816, 1613, 1494, 1465, 1238, 1217, 753. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.01–0.09 (m, 2H), 0.39–0.53 (m, 2H), 0.72–0.88 (m, 1H), 

1.68–1.82 (m, 1H), 1.92–2.03 (m, 1H), 2.05–2.28 (m, 4H), 2.54–2.66 (m, 2H), 2.72 (d, J = 15.3 

Hz, 1H), 2.85 (d, J = 15.3 Hz, 1H), 3.06–3.22 (m, 3H), 3.50 (d, J = 17.7 Hz, 1H), 6.60 (dd, J = 

8.0, 2.2 Hz, 1H), 6.84 (d, J = 2.2 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 7.42–7.49 (m, 1H), 7.57–7.65 

(m, 1H), 7.69–7.75 (m, 1H), 7.91 (s, 1H), 8.10 (d, J = 8.5 Hz, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.7, 4.2, 8.4, 31.7, 36.1, 42.0, 43.3, 45.2, 47.3, 50.3, 60.9, 

63.5, 109.9, 114.3, 125.9, 126.4, 127.0, 127.5, 127.6, 128.9, 129.9, 131.8, 135.7, 145.9, 151.0, 

156.3, 158.3. 

MS (ESI): m/z = 397[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C27H29N2O: 397.2280. Found: 397.2263. 

 

49•HCl 

mp (dec.) 186–187 °C 

Anal. Calcd for C27H28N2O·2.0HCl·2.8H2O: C, 62.38; H, 6.90; N, 5.39. Found: C, 62.59; H, 7.08; 

N, 5.38. 

  

N

HO

N
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(7aR,12bR)-16-(Cyclopropylmethyl)-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)- 

indeno[1,2-a]acridin-11-ol (53) 

 

 

 

 

 

 

 

Compound 53 was prepared from compound 52 according to the procedure used to synthesize 

compound 12. Yield, 79%.; a colorless amorphous solid.  

 

53 

IR (film) cm-1: 3006, 2923, 2814, 1613, 1590, 1491, 1464, 1282, 1220, 1052, 752. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.01–0.08 (m, 2H), 0.42–0.51 (m, 2H), 0.74–0.90 (m, 1H), 

1.88–2.00 (m, 1H), 2.07–2.52 (m, 8H), 2.55–2.88 (m, 3H), 3.15–3.38 (m, 2H), 6.64 (dd, J = 8.0, 2.3 

Hz, 1H), 6.83 (br s, 1H), 6.97 (d, J = 8.0 Hz, 1H), 7.34–7.42 (m, 1H), 7.53–7.65 (m, 2H), 7.96 (d, J = 

8.4 Hz, 1H), 8.08 (s, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 3.8, 4.2, 8.1, 28.0, 29.8, 35.3, 39.0, 46.0, 50.7, 51.4, 60.6, 63.6, 

111.3, 114.0, 125.7, 126.5, 127.2, 127.4, 127.4, 127.9, 129.4, 132.8, 136.0, 145.7, 149.4, 155.6, 157.3. 

MS (ESI): m/z = 397[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C27H29N2O: 397.2280. Found: 397.2275. 

 

53•HCl 

mp (dec.) 198–199 °C 

Anal. Calcd for C27H28N2O·2.0HCl·1.4H2O: C, 65.56; H, 6.68; N, 5.66. Found: C, 65.44; H, 7.03; N, 

5.65. 

  

N

HO

N
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(6aR,11aS)-8-Methoxy-15-methyl-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)- 

indeno[2,1-b]acridine (55) 

(7aR,12bR)-11-Methoxy-16-methyl-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)- 

indeno[1,2-a]acridine (56) 

 

 

 

 

 

 

 

Compound 55 and 56 was prepared from compound 54 according to the procedure used to 

synthesize compound 51 and 52. Yield, 55: 35%.; a colorless amorphous solid and 56: 54%.; a 

colorless oil.  

 

55 

IR (film) cm-1: 2933, 2840, 2790, 1714, 1609, 1491, 1284, 1034, 732. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.69–2.10 (m, 2H), 2.13–2.29 (m, 3H), 2.17 (s, 3H), 2.30–

2.50 (m, 2H), 2.79 (d, J = 15.3 Hz, 1H), 2.94 (d, J = 15.3 Hz, 1H), 3.02–3.12 (m, 1H), 3.19 (d, J 

= 17.7 Hz, 1H), 3.30 (d, J = 17.7 Hz, 1H), 3.79 (s, 3H), 6.69 (dd, J = 8.1, 2.5 Hz, 1H), 6.77 (d, J 

= 2.5 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 7.40–7.47 (m, 1H), 7.57–7.64 (m, 1H), 7.67–7.72 (m, 

1H), 7.82 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 33.5, 36.7, 41.6, 42.4, 45.6, 46.4, 46.5, 52.0, 55.3, 62.7, 

108.4, 111.7, 125.6, 126.2, 126.9, 127.4, 128.3, 128.5, 129.5, 133.0, 134.7, 146.6, 151.6, 158.0, 

159.0. 

MS (ESI): m/z = 371[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H27N2O: 371.2123. Found: 371.2141. 
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56 

IR (film) cm-1: 2934, 2841, 2790, 1615, 1587, 1488, 1284, 1227, 1032, 751. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.95–2.07 (m, 1H), 2.13–2.32 (m, 4H), 2.19 (s, 3H), 2.37–

2.72 (m, 4H), 2.93 (d, J = 15.2 Hz, 1H), 3.28–3.39 (m, 2H), 3.84 (s, 3H), 6.72 (dd, J = 8.1, 2.4 

Hz, 1H), 6.95 (br s, 1H), 7.12 (d, J = 8.1 Hz, 1H), 7.39–7.47 (m, 1H), 7.59–7.67 (m, 1H), 7.73 (d, 

J = 8.1 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 8.11 (s, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 27.7, 30.3, 35.4, 38.6, 46.1, 46.4, 51.0, 52.8, 55.4, 63.2, 

110.8, 111.0, 125.5, 126.3, 127.1, 127.3, 128.0, 129.1, 133.9, 135.1, 135.7, 146.3, 149.2, 157.0, 

158.7. 

MS (ESI): m/z = 371[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C25H27N2O: 371.2123. Found: 371.2114. 
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(6aR,11aS)-15-Methyl-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)indeno[2,1- 

b]acridin-8-ol (57) 

 

 

 

 

 

 

 

 

Compound 57 was prepared from compound 55 according to the procedure used to synthesize 

compound 12. Yield, 67%.; a colorless amorphous solid.  

 

57 

IR (film) cm-1: 3389, 2924, 2796, 1613, 1495, 1465, 1050, 752. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.70–1.84 (m, 1H), 1.92–2.04 (m, 1H), 2.12–2.29 (m, 2H), 

2.20 (s, 3H), 2.37–2.55 (m, 2H), 2.75 (d, J = 15.2 Hz, 1H), 2.84 (d, J = 15.2 Hz, 1H), 3.08–3.21 

(m, 3H), 3.43 (d, J = 17.8 Hz, 1H), 6.61 (dd, J = 8.0, 2.2 Hz, 1H), 6.81 (d, J = 2.2 Hz, 1H), 7.01 

(d, J = 8.0 Hz, 1H), 7.43–7.50 (m, 1H), 7.59–7.66 (m, 1H), 7.70–7.76 (m, 1H), 7.91 (s, 1H), 8.08 

(d, J = 8.5 Hz, 1H), a proton (OH) was not observed. 

MS (ESI): m/z = 357[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C24H25N2O: 357.1967. Found: 357.1953. 

 

57•HCl 

mp (dec.) 202–203 °C 

Anal. Calcd for C24H24N2O·2.0HCl·1.2H2O: C, 63.92; H, 6.35; N, 6.21. Found: C, 63.75; H, 6.53; 

N, 6.22. 

  

57



83 
 

(7aR,12bR)-16-Methyl-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)indeno[1,2-

a]acridin-11-ol (58) 

 

 

 

 

 

 

 

Compound 58 was prepared from compound 56 according to the procedure used to synthesize 

compound 12. Yield, 62%.; a colorless amorphous solid.  

 

 

58 

IR (film) cm-1: 3365, 2925, 2796, 1590, 1464, 1226, 751. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.89–2.01 (m, 1H), 2.13–2.49 (m, 7H), 2.17 (s, 3H), 2.56–

2.73 (m, 1H), 2.83 (d, J = 15.1 Hz, 1H), 3.23–3.36 (m, 2H), 6.63 (dd, J = 2.3, 8.0 Hz, 1H), 6.85 

(br s, 1H), 6.97 (d, J = 8.0 Hz, 1H), 7.34–7.42 (m, 1H), 7.53–7.63 (m, 2H), 7.96 (d, J = 8.4 Hz, 

1H), 8.09 (s, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 27.7, 29.8, 35.2, 38.7, 46.0, 46.4, 50.8, 52.7, 63.0, 111.4, 

114.1, 125.7, 126.6, 127.2, 127.4, 127.4, 129.4, 132.6, 135.1, 136.1, 145.8, 149.2, 155.9, 157.1. 

MS (ESI): m/z = 357[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C24H25N2O: 357.1967. Found: 357.1984. 

 

58•HCl 

mp (dec.) 219–220 °C 

Anal. Calcd for C24H24N2O·2.0HCl·1.4H2O: C, 63.41; H, 6.39; N, 6.16. Found: C, 63.52; H, 6.71; 

N, 6.13. 

  

58
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1-{[(6aR,11aS)-8-Methoxy-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)indeno[2,1- 

b]acridin-15-yl]methyl}cyclopropanol (60) 

1-{[(7aR,12bR)-11-Methoxy-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)indeno[1,2- 

a]acridin-16-yl]methyl}cyclopropanol (61) 

 

 

 

 

 

 

 

 

To a stirred solution of 59 (329 mg, 1.21 mmol) in ethanol (10 mL) were added methanesulfonic 

acid (315 L, 4.85 mmol) and 2-aminobenzaldehyde (588 mg, 4.85 mmol) and refluxed under an 

argon atmosphere. After 12 h with stirring at the same temperature, the reaction mixture was 

basified (pH 9) with saturated NaHCO3 aqueous solution, and extracted with CHCl3 three times. 

The combined organic extracts were dried over Na2SO4, and evaporated in vacuo. The residue 

was purified by silica gel column chromatography (CHCl3/MeOH = 100/1 to 100/10) to give an 

inseparable diastereomeric mixture (380 mg, 88%) as a colorless amorphous solid. The resulting 

diastereomeric mixture was used for the next reaction without further purification. To a stirred 

solution of the diastreomeric mixture (113 mg, 0.376 mmol) in DMF (10 mL) were added 4-

dimethylaminopyridine (19 mg, 0.47 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide 

hydrochloride (303 mg, 1.58 mmol) and 1-acetoxycyclopropanecarboxylic acid (228 mg, 1.58 

mmol), and stirred under an argon atmosphere at rt. After 6 h with stirring, the reaction mixture 

was evaporated in vacuo. The residue was basified (pH 9) with saturated NaHCO3 aqueous 

solution, and extracted with CHCl3 three times. The combined organic extracts were dried over 

Na2SO4, and evaporated in vacuo. The residue was purified by silica gel column chromatography 

(hexane/AcOEt/MeOH/25% ammonia aqueous solution = 200/100/10/1) to give an inseparable 

diastereomeric mixture (180 mg) as a colorless amorphous solid. but could not be purified 

completely. The resulting compound was used for the next reaction without further purification. 

To a stirred suspension of LiAlH4 (120 mg, 3.16 mmol) in THF (3.2 mL) was added a solution of 

H2SO4 (84.2 L, 1.58 mmol) at 0 °C under an argon atmosphere and stirred at room temperature. 

After 15 min with stirring, the diastereomeric mixture (180 mg) in THF (1.5 mL) was added to a 

reaction mixture and stirred at room temperature under an argon atmosphere. After 1 h with 

stirring, THF/H2O = 1:1 and 25% NH3 aqueous solution were added to the solution. The obtained 

solid was removed by filtration and the filtrate was evaporated in vacuo. The residue was purified 

60 61
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by preparative TLC (hexane/AcOEt/MeOH/25% ammonia aqueous solution = 200/100/10/1) to 

give 60 (29.1 mg, 22% in two steps) as a colorless amorphous solid and 61 (66.5 mg, 49% in two 

steps) as a colorless amorphous solid.  

 

60 

IR (film) cm-1: 3000, 2917, 2831, 1609, 1491, 1285, 1033, 910, 732. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.29–0.38 (m, 2H), 0.75–0.84 (m, 2H), 1.69–1.82 (m, 1H), 

1.94–2.06 (m, 1H), 2.37–2.50 (m, 1H), 2.39 (d, J = 2.1 Hz, 1H), 2.47 (d, J = 11.8 Hz, 1H), 2.53–

2.63 (m, 1H), 2.57 (d, J = 11.5 Hz, 1H), 2.86 (d, J = 15.4 Hz, 1H), 2.98 (d, J = 15.4 Hz, 1H), 

3.06–3.35 (m, 3H), 3.19 (d, J = 17.3 Hz, 1H), 3.30 (d, J = 17.3 Hz, 1H), 3.78–3.83 (m, 1H), 3.79 

(s, 3H), 6.71 (dd, J = 8.1, 2.5 Hz, 1H), 6.77 (d, J = 2.5 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 7.41–

7.49 (m, 1H), 7.58–7.66 (m, 1H), 7.69–7.74 (m, 1H), 7.84 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 10.9, 11.1, 33.3, 37.2, 42.1, 42.8, 46.0, 47.5, 50.0, 52.2, 55.4, 

60.8, 64.4, 108.4, 111.9, 125.7, 126.1, 126.9, 127.4, 128.3, 128.6, 129.5, 132.9, 134.5, 146.7, 

151.2, 158.2, 159.1. 

MS (ESI): m/z = 427[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C28H31N2O2: 427.2386. Found: 427.2364. 

 

61 

IR (film) cm-1: 3002, 2924, 2832, 1587, 1488, 1285, 1032, 909, 732. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.31–0.38 (m, 2H), 0.78–0.85 (m, 2H), 2.02 (dt, J = 14.1, 

5.9 Hz, 1H), 2.24–2.54 (m, 4H), 2.33 (d, J = 12.5 Hz, 1H), 2.43 (d, J = 12.5 Hz, 1H), 2.57–2.77 

(m, 2H), 2.71 (d, J = 11.8 Hz, 1H), 2.93 (d, J = 15.2 Hz, 1H), 3.27–3.37 (m, 3H), 3.82 (s, 3H), 

6.71 (dd, J = 8.1, 2.4 Hz, 1H), 6.90–6.97 (m, 1H), 7.11 (d, J = 8.1 Hz, 1H), 7.39–7.46 (m, 1H), 

7.58–7.65 (m, 1H), 7.69–7.74 (m, 1H), 7.95 (d, J = 8.5 Hz, 1H), 8.09 (s, 1H), a proton (OH) was 

not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 10.8, 11.3, 27.7, 30.1, 35.5, 38.5, 46.3, 50.9, 51.5, 52.2, 55.5, 

61.0, 64.5, 110.8, 111.0, 125.6, 125.7, 126.4, 127.1, 127.4, 128.0, 129.2, 133.8, 135.7, 146.3, 

149.2, 156.9, 158.8. 

MS (ESI): m/z = 427[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C28H31N2O2: 427.2386. Found: 427.2391. 
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(6aR,11aS)-15-[(1-Hydroxycyclopropyl)methyl]-11,12-dihydro-6H-6a,11a-(ethanoimino- 

methano)indeno[2,1-b]acridin-8-ol (62) 

 

 

 

 

 

 

 

 

Compound 62 was prepared from compound 60 according to the procedure used to synthesize 

compound 18a. Yield, 78%.; a colorless oil. 

 

62 

IR (film) cm-1: 2920, 2819, 1613, 1495, 1465, 1288, 908, 732. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.26–0.40 (m, 2H), 0.71–0.86 (m, 2H), 1.65–1.77 (m, 1H), 

1.91–2.03 (m, 1H), 2.25–2.39 (m, 4H), 2.60–2.71 (m, 2H), 2.78 (d, J = 15.5 Hz, 1H), 2.89 (d, J = 

15.5 Hz, 1H), 3.10–3.21 (m, 3H), 3.37 (d, J = 17.4 Hz, 1H), 6.63 (dd, J = 8.0, 2.2 Hz, 1H), 6.81 

(d, J = 2.2 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 7.43–7.51 (m, 1H), 7.58–7.67 (m, 1H), 7.71–7.77 

(m, 1H), 7.92 (s, 1H), 8.10 (d, J = 8.5 Hz, 1H), two proton (OH) were not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 11.0, 11.1, 31.9, 36.6, 42.3, 43.2, 45.6, 47.4, 50.1, 52.2, 61.3, 

64.3, 109.8, 114.4, 126.1, 126.4, 127.0, 127.4, 127.6, 129.1, 129.8, 131.7, 135.4, 145.9, 150.5, 

156.4, 158.3. 

MS (ESI): m/z = 413[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C27H29N2O2: 413.2229. Found: 413.2237. 

 

62•HCl 

mp (dec.) 177–178 °C 

Anal. Calcd for C27H28N2O2·1.0HCl·3.5H2O: C, 63.33; H, 7.09; N, 5.47. Found: C, 63.50; H, 7.06; 

N, 5.50. 

  

N

HO

N
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(7aR,12bR)-16-[(1-Hydroxycyclopropyl)methyl]-7,8-dihydro-6H-12b,7a-(ethanoimino- 

methano)indeno[1,2-a]acridin-11-ol (63) 

 

 

 

 

 

 

 

 

Compound 63 was prepared from compound 61 according to the procedure used to synthesize 

compound 18a. Yield, 64%.; a colorless oil. 

 

63 

IR (film) cm-1: 2923, 1590, 1464, 1285, 1125, 908, 732. 

1H NMR (300 MHz, CDCl3): δ (ppm) 0.29–0.38 (m, 2H), 0.76–0.86 (m, 2H), 1.89–2.06 (m, 1H), 

2.12–2.75 (m, 11H), 2.85 (d, J = 15.1 Hz, 1H), 3.20–3.40 (m, 2H), 6.67 (dd, J = 8.0, 2.2 Hz, 1H), 

6.89 (br s, 1H), 6.97 (d, J = 8.0 Hz, 1H), 7.34–7.41 (m, 1H), 7.52–7.62 (m, 2H), 7.97 (d, J = 8.4 

Hz, 1H), 8.08 (s, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 10.8, 11.4, 27.6, 29.6, 35.4, 38.7, 46.1, 50.9, 51.4, 52.2, 60.8, 

64.4, 111.3, 114.1, 125.8, 126.6, 127.2, 127.2, 127.5, 129.5, 132.5, 135.2, 136.3, 145.6, 149.1, 

155.9, 157.0. 

MS (ESI): m/z = 413[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C27H29N2O2: 413.2229. Found: 413.2210. 

 

63•HCl 

mp (dec.) 195–196 °C 

Anal. Calcd for C27H28N2O2·2.0HCl·1.0H2O: C, 64.41; H, 6.41; N, 5.56. Found: C, 64.61; H, 6.55; 

N, 5.60. 
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(6aR,11aS)-15-Benzyl-8-methoxy-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)- 

indeno[2,1-b]acridine (64) 

(7aR,12bR)-16-Benzyl-11-methoxy-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)- 

indeno[1,2-a]acridine (65) 

 

 

 

 

 

 

 

 

To a stirred solution of 59 (329 mg, 1.21 mmol) in ethanol (10 mL) were added methanesulfonic 

acid (315 L, 4.85 mmol) and 2-aminobenzaldehyde (588 mg, 4.85 mmol) and refluxed under an 

argon atmosphere. After 12 h with stirring at the same temperature, the reaction mixture was 

basified (pH 9) with saturated NaHCO3 aqueous solution, and extracted with CHCl3 three times. 

The combined organic extracts were dried over Na2SO4, and evaporated in vacuo. The residue 

was purified by silica gel column chromatography (CHCl3/MeOH = 100/1 to 100/10) to give an 

inseparable diastereomeric mixture (380 mg, 88%) as a colorless amorphous solid. The resulting 

diastereomeric mixture was used for the next reaction without further purification. 

 To a stirred solution of the diastreomeric mixture (98.7 mg, 0.277 mmol) in DMF (2 mL) were 

added K2CO3 (153 mg, 1.11 mmol) and benzyl bromide (98.7 L, 0.831 mmol) at room 

temperature under an argon atmosphere. After 4 h with stirring at the same temperature, the 

reaction mixture was basified (pH 9) with saturated NaHCO3 aqueous solution, and extracted with 

CHCl3 three times. The combined organic extracts were dried over Na2SO4, and evaporated in 

vacuo. The residue was purified by preparative TLC (CHCl3/Et2O = 4/0.1) to give 64 (21.8 mg, 

18%) as a colorless amorphous solid and 65 (31.7 mg, 26%) as a colorless amorphous solid. 
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64 

IR (film) cm-1: 3025, 2913, 2807, 1609, 1493, 1284, 1220, 1030, 752, 699. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.69–1.81 (m, 1H), 1.91–2.03 (m, 1H), 2.21–2.38 (m, 3H), 

2.39–2.51 (m, 1H), 2.75 (d, J = 15.2 Hz, 1H), 2.95 (d, J = 15.0 Hz, 1H), 2.99 (d, J = 17.2 Hz, 1H), 

3.15–3.49 (m, 2H), 3.25 (d, J = 8.6 Hz, 1H), 3.39 (d, J = 6.5 Hz, 1H), 3.79 (s, 3H), 6.69 (dd, J = 

8.1, 2.4 Hz, 1H), 6.77 (d, J = 2.4 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 7.21–7.34 (m, 5H), 7.35–7.40 

(m, 1H), 7.41–7.48 (m, 1H), 7.57–7.65 (m, 1H), 7.69–7.74 (m, 1H), 7.82 (s, 1H), 7.98 (d, J = 8.5 

Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 33.7, 36.7, 41.5, 42.5, 45.9, 47.3, 50.3, 55.4, 60.0, 62.7, 

108.3, 111.7, 125.6, 126.1, 126.8, 126.9, 127.4, 127.6, 128.1, 128.2, 128.3, 128.5, 128.7, 129.8, 

133.2, 134.5, 139.1, 146.6, 151.8, 158.3, 159.0.  

MS (ESI): m/z = 447[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H31N2O: 447.2436. Found: 447.2432. 

 

65 

IR (film) cm-1: 2932, 2806, 1587, 1489, 1283, 1028, 752. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.90 (td, J = 14.2, 5.8 Hz, 1H), 2.13–2.32 (m, 4H), 2.38–

2.70 (m, 4H), 2.86 (d, J = 15.1 Hz, 1H), 3.17–3.41 (m, 3H), 3.46 (d, J = 13.4 Hz, 1H), 3.82 (s, 

3H), 6.70 (dd, J = 8.2, 2.4 Hz, 1H), 6.91–6.96 (m, 1H), 7.09 (d, J = 8.2 Hz, 1H), 7.20–7.36 (m, 

5H), 7.38–7.45 (m, 1H), 7.57–7.64 (m, 1H), 7.67–7.74 (m, 1H), 7.96 (d, J = 8.5 Hz, 1H), 8.08 (s, 

1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 27.6, 30.2, 35.6, 38.5, 46.4, 51.1, 51.7, 55.5, 60.6, 62.8, 

110.8, 110.9, 125.5, 126.3, 126.9, 127.2, 127.4, 127.4, 128.0, 128.2, 128.2, 128.6, 128.6, 129.1, 

134.1, 135.6, 139.0, 146.3, 149.5, 157.3, 158.7. 

MS (ESI): m/z = 447[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H31N2O: 447.2436. Found: 447.2424. 
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(6aR,11aS)-15-Benzyl-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)indeno[2,1-b]- 

acridin-8-ol (66) 

 

 

 

 

 

 

 

 

Compound 66 was prepared from compound 64 according to the procedure used to synthesize 

compound 12. Yield, 36%.; a colorless amorphous solid.  

 

66 

IR (film) cm-1: 3024, 2923, 2809, 1613, 1495, 1347, 1217, 907, 751. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.37–1.84 (m, 3H), 1.93–2.04 (m, 1H), 2.18 (d, J = 11.4 

Hz, 1H), 2.35 (d, J = 11.4 Hz, 1H), 2.45–2.56 (m, 1H), 2.70–2.83 (m, 2H), 3.02 (d, J = 17.8 Hz, 

1H), 3.12–3.26 (m, 2H), 3.29–3.47 (m, 2H), 6.61 (dd, J = 8.0, 2.2 Hz, 1H), 6.82 (d, J = 2.2 Hz, 

1H), 7.02 (d, J = 8.0 Hz, 1H), 7.22–7.34 (m, 5H), 7.44–7.51 (m, 1H), 7.59–7.67 (m, 1H), 7.72–

7.78 (m, 1H), 7.90 (s, 1H), 8.08 (d, J = 8.4 Hz, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 32.2, 36.0, 41.7, 43.2, 45.6, 47.3, 50.5, 60.6, 62.7, 109.8, 

114.1, 125.9, 126.4, 126.9, 126.9, 127.6, 127.6, 128.2, 128.2, 128.7, 128.7, 128.9, 130.0, 132.2, 

135.4, 139.1, 146.0, 151.2, 156.0, 158.4. 

MS (ESI): m/z = 433[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H29N2O: 433.2280. Found: 433.2270. 

 

66•HCl 

mp (dec.) 172–173 °C 

Anal. Calcd for C30H28N2O·1.0HCl·2.7H2O: C, 69.61; H, 6.70; N, 5.41. Found: C, 69.42; H, 6.81; 

N, 5.67. 
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(7aR,12bR)-16-Benzyl-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)indeno[1,2-a]acridin-

11-ol (67) 

 

 

 

 

 

 

 

Compound 67 was prepared from compound 65 according to the procedure used to synthesize 

compound 12. Yield, 50%.; a colorless amorphous solid.  

 

67 

IR (film) cm-1: 3026, 2926, 2806, 1590, 1493, 1454, 1282, 908, 733. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.87 (td, J = 14.0, 6.0 Hz, 1H), 2.11–2.32 (m, 4H), 2.33–

2.51 (m, 2H), 2.42 (d, J = 11.6 Hz, 1H), 2.57–2.85 (m, 1H), 2.79 (d, J = 14.9 Hz, 1H), 3.14–3.50 

(m, 2H), 3.32 (d, J = 13.6 Hz, 1H), 3.44 (d, J = 13.3 Hz, 1H), 6.65 (dd, J = 8.0, 2.3 Hz, 1H), 6.83 

(br s, 1H), 6.99 (d, J = 8.0 Hz, 1H), 7.19–7.34 (m, 5H), 7.36–7.44 (m, 1H), 7.55–7.65 (m, 2H), 

7.98 (d, J = 8.4 Hz, 1H), 8.06 (s, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 27.8, 29.9, 35.7, 38.8, 46.3, 51.0, 51.6, 60.5, 62.8, 102.3, 

111.2, 113.9, 125.7, 126.5, 126.9, 127.2, 127.5, 127.5, 128.2, 128.6, 128.7, 129.3, 129.4, 133.3, 

136.0, 139.0, 145.8, 149.7, 155.3, 157.4.  

MS (ESI): m/z = 433[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C30H29N2O: 433.22799. Found: 433.22903. 

 

67•HCl 

mp (dec.) 188–189 °C 

Anal. Calcd for C30H28N2O·1.0HCl·2.2H2O: C, 70.89; H, 6.62; N, 5.51. Found: C, 70.87; H, 6.37; 

N, 5.51. 
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1-[(6aR,11aS)-8-Methoxy-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)indeno[2,1- 

b]acridin-15-yl]-2-phenylethanone (68) 

1-[(7aR,12bR)-11-Methoxy-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)indeno[1,2- 

a]acridin-16-yl]-2-phenylethanone (69) 

 

 

 

 

 

 

 

 

To a stirred solution of 59 (329 mg, 1.21 mmol) in ethanol (10 mL) were added methanesulfonic 

acid (315 L, 4.85 mmol) and 2-aminobenzaldehyde (588 mg, 4.85 mmol) and refluxed under an 

argon atmosphere. After 12 h with stirring at the same temperature, the reaction mixture was 

basified (pH 9) with saturated NaHCO3 aqueous solution, and extracted with CHCl3 three times. 

The combined organic extracts were dried over Na2SO4, and evaporated in vacuo. The residue 

was purified by silica gel column chromatography (CHCl3/MeOH = 100/1 to 100/10) to give an 

inseparable diastereomeric mixture (380 mg, 88%) as a colorless amorphous solid. The resulting 

diastereomeric mixture was used for the next reaction without further purification. 

 To a stirred solution of the diastreomeric mixture (99.0 mg, 0.278 mmol) in DMF (3 mL) was 

added phenylacetyl chloride (73.5 mg, 0.556 mmol) at room temperature under an argon 

atmosphere. After 2 h with stirring at the same temperature, the reaction mixture was basified (pH 

9) with saturated NaHCO3 aqueous solution, and extracted with CHCl3 three times. The combined 

organic extracts were dried over Na2SO4, and evaporated in vacuo. The residue was purified by 

preparative TLC (hexane/AcOEt/MeOH/25% ammonia aqueous solution = 100/100/10/1) to give 

68 (44.6 mg, 34%) as a colorless oil and 69 (76.8 mg 58%) as a colorless oil. 

  

N
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68 

IR (film) cm-1: 2934, 1635, 1496, 1420, 1285, 1032, 910, 728. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.80–2.07 (m, 2H), 2.63 (s, 0.5H), 2.75 (s, 0.5H), 2.85 (d, 

J = 16.8 Hz, 1H), 2.92–3.10 (m, 4H), 3.18–3.28 (m, 2H), 3.31–3.40 (m, 1H), 3.44–3.59 (m, 2H), 

3.70–3.83 (m, 0.3H), 3.77 (s, 1.5H), 3.79 (s, 1.5H), 4.13 (d, J = 13.5 Hz, 0.7H), 6.62–6.74 (m, 

2H), 6.84 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 7.8 Hz, 0.7H), 7.01–7.07 (m, 1.3H), 7.11–7.21 (m, 2H), 

7.24–7.38 (m, 1H), 7.43–7.51 (m, 1H), 7.59–7.67 (m, 1H), 7.70–7.78 (m, 1.3H), 7.85 (br s, 0.7H), 

7.96–8.04 (m, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 33.7, 39.6, 40.7, 41.6, 43.2, 44.7, 46.6, 47.0, 50.3, 55.4, 

108.2, 113.6, 125.2, 126.0, 126.6, 127.2, 127.7, 128.5, 128.6, 128.6, 128.7, 128.8, 129.5, 129.9, 

132.9, 133.7, 134.5, 146.8, 148.3, 159.0, 159.3, 171.5. 

MS (ESI): m/z = 475[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H31N2O2: 475.2386. Found: 475.2379. 

 

69 

IR (film) cm-1: 2923, 1634, 1490, 1284, 1153, 1033, 909, 730. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.82–2.04 (m, 1H), 2.05–2.35 (m, 3H), 2.49 (d, J = 15.6 

Hz, 0.4H), 2.64 (d, J = 15.8 Hz, 0.6H), 2.91 (d, J = 15.6 Hz, 0.4H), 3.00 (d, J = 15.6 Hz, 0.6H), 

2.99–3.11 (m, 1H), 3.12–3.33 (m, 3H), 3.49–3.62 (m, 1H), 3.71–3.87 (m, 2H), 3.80 (s, 1.8H), 

3.81 (s, 1.2H), 3.97–4.15 (m, 1H), 6.69–6.77 (m, 1H), 6.86 (dd, J = 18.9, 2.3 Hz, 1H), 7.05–7.20 

(m, 1.5H), 7.21–7.39 (m, 4.5H), 7.42–7.51 (m, 1H), 7.60–7.79 (m, 2H), 7.98 (d, J = 8.5 Hz, 1H), 

8.04 (s, 0.6H), 8.11 (s, 0.4H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 27.7, 29.9, 34.4, 38.4, 40.8, 43.2, 46.9, 48.0, 52.0, 55.4, 

110.6, 111.5, 125.7, 126.3, 126.8, 127.1, 127.3, 128.0, 128.3, 128.7, 128.7, 129.3, 133.0, 133.6, 

134.4, 134.9, 135.2, 146.2, 147.8, 157.2, 158.9, 170.0. 

MS (ESI): m/z = 475[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H31N2O2: 475.2386. Found: 475.2383. 
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(6aR,11aS)-8-Methoxy-15-phenethyl-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)- 

indeno[2,1-b]acridine (70) 

 

 

 

 

 

 

 

 

  To a stirred suspension of LiAlH4 (21.4 mg, 0.564 mmol) in THF (5 mL) was added a solution 

of 68 (44.6 mg, 0.094 mmol) in THF (5 mL) at 0 °C and then the reaction mixture was allowed 

to warm to room temperature under an argon atmosphere. After 1 h with stirring at the same 

temperature, AcOEt (5 mL) and saturated Na2SO4 aqueous solution were added to the solution. 

The obtained solid was removed by filtration and the filtrate was evaporated in vacuo. The residue 

was purified by preparative TLC (hexane/AcOEt/MeOH/25% ammonia aqueous solution = 

100/100/10/1) to give 70 (34.5 mg, 80%) as a yellow oil. 

 

70 

IR (film) cm-1: 3025, 2931, 2806, 1607, 1492, 1284, 1032, 750. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.67–1.80 (m, 1H), 1.91–2.02 (m, 1H), 2.26–2.57 (m, 6H), 

2.68–2.84 (m, 3H), 2.93 (d, J = 15.2 Hz, 1H), 3.05 (d, J = 17.3 Hz, 1H), 3.14–3.32 (m, 3H), 3.79 

(s, 3H), 6.70 (dd, J = 8.1, 2.4 Hz, 1H), 6.77 (d, J = 2.4 Hz, 1H), 7.09–7.28 (m, 6H), 7.41–7.48 (m, 

1H), 7.57–7.64 (m, 1H), 7.68–7.74 (m, 1H), 7.80 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 33.5, 33.6, 36.9, 41.8, 42.7, 45.8, 47.4, 50.2, 55.4, 60.1, 

60.4, 108.4, 111.7, 125.6, 125.6, 125.8, 126.1, 126.9, 127.4, 128.2, 128.2, 128.3, 128.5, 128.7, 

129.7, 133.2, 134.6, 140.6, 146.6, 151.6, 158.3, 159.0. 

MS (ESI): m/z = 461[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H33N2O: 461.2593. Found: 461.2573. 
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(7aR,12bR)-11-Methoxy-16-phenethyl-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)- 

indeno[1,2-a]acridine (71) 

 

 

 

 

 

 

 

 

Compound 71 was prepared from compound 69 according to the procedure used to synthesize 

compound 70. Yield, 85%.; a yellow oil.  

 

71 

IR (film) cm-1: 2934, 2806, 1587, 1488, 1283, 1225, 1033, 908. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.97 (dt, J = 14.2, 5.9 Hz, 1H), 2.19–2.33 (m, 4H), 2.39–

2.80 (m, 8H), 2.90 (d, J = 15.2 Hz, 1H), 3.26–3.37 (m, 2H), 3.81 (s, 3H), 6.70 (dd, J = 8.1, 2.4 

Hz, 1H), 6.89–6.96 (m, 1H), 7.10 (d, J = 8.1 Hz, 1H), 7.13–7.21 (m, 3H), 7.22–7.30 (m, 2H), 

7.37–7.45 (m, 1H), 7.57–7.64 (m, 1H), 7.68–7.74 (m, 1H), 7.96 (d, J = 8.4 Hz, 1H), 8.09 (s, 1H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 27.9, 30.3, 33.7, 35.6, 38.8, 46.3, 51.1, 51.7, 55.5, 60.3, 

60.9, 110.8, 111.0, 125.5, 125.9, 126.3, 127.2, 127.4, 128.0, 128.2, 128.3, 128.7, 128.7, 129.1, 

134.1, 135.2, 135.6, 140.6, 146.3, 149.4, 157.2, 158.7. 

MS (ESI): m/z = 461[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C32H33N2O: 461.25929. Found: 461.26084. 
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(6aR,11aS)-15-Phenethyl-11,12-dihydro-6H-6a,11a-(ethanoiminomethano)indeno[2,1- 

b]acridin-8-ol (72) 

 

 

 

 

 

 

 

 

 

Compound 72 was prepared from compound 70 according to the procedure used to synthesize 

compound 12. Yield, 80%.; a colorless oil.  

 

72 

IR (film) cm-1: 3025, 2923, 2812, 1614, 1495, 1350, 1239, 907, 731, 700. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.66–1.80 (m, 1H), 1.94–2.04 (m, 1H), 2.16–2.29 (m, 2H), 

2.39–2.63 (m, 4H), 2.66–2.79 (m, 3H), 2.86 (d, J = 15.4 Hz, 1H), 3.04–3.23 (m, 3H), 3.41 (d, J = 

17.7 Hz, 1H), 6.62 (dd, J = 8.0, 2.3 Hz, 1H), 6.87 (d, J = 2.3 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 

7.12–7.29 (m, 5H), 7.44–7.52 (m, 1H), 7.59–7.67 (m, 1H), 7.72–7.78 (m, 1H), 7.89 (s, 1H), 8.12 

(d, J = 8.4 Hz, 1H), a proton (OH) was not observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 31.8, 33.6, 36.1, 42.0, 43.4, 45.4, 47.4, 50.4, 59.9, 61.0, 

109.8, 114.3, 125.8, 125.8, 125.9, 126.5, 126.9, 127.5, 127.6, 128.2, 128.7, 128.8, 129.0, 129.9, 

132.0, 135.6, 140.6, 145.9, 150.9, 156.2, 158.4. 

MS (ESI): m/z = 447[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H31N2O: 447.24364. Found: 447.24245. 

 

72•HCl 

mp (dec.) 168–169 °C 

Anal. Calcd for C31H30N2O·2.0HCl·0.2H2O: C, 71.18; H, 6.24; N, 5.36. Found: C, 71.25; H, 6.47; 

N, 5.27. 
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(7aR,12bR)-16-Phenethyl-7,8-dihydro-6H-12b,7a-(ethanoiminomethano)indeno[1,2- 

a]acridin-11-ol (73) 

 

 

 

 

 

 

 

Compound 73 was prepared from compound 71 according to the procedure used to synthesize 

compound 12. Yield, 57%.; a colorless amorphous solid.  

 

73 

IR (film) cm-1: 3025, 2925, 2807, 1589, 1493, 1283, 1225, 908, 731. 

1H NMR (300 MHz, CDCl3): δ (ppm) 1.86–1.99 (m, 1H), 2.11–2.89 (m, 13H), 3.17–3.39 (m, 2H), 

6.66 (dd, J = 8.0, 2.2 Hz, 1H), 6.87 (br s, 1H), 6.98 (d, J = 8.0 Hz, 1H), 7.11–7.28 (m, 5H), 7.33–

7.41 (m, 1H), 7.52–7.62 (m, 2H), 7.97 (d, J = 8.4 Hz, 1H), 8.07 (s, 1H), a proton (OH) was not 

observed. 
13C NMR (75 MHz, CDCl3): δ (ppm) 27.8, 29.7, 33.4, 35.5, 38.8, 46.1, 51.0, 51.5, 60.3, 60.8, 

111.3, 114.1, 125.7, 125.9, 126.5, 127.2, 127.3, 127.5, 128.3, 128.3, 128.7, 128.7, 129.4, 132.8, 

135.3, 136.1, 140.4, 145.6, 149.3, 155.7, 157.3. 

MS (ESI): m/z = 447[M+H]+. 

HR-MS (ESI): [M+H]+ Calcd for C31H31N2O: 447.24364. Found: 447.24210. 

 

73•HCl 

mp (dec.) 190–191 °C 

Anal. Calcd for C31H30N2O·2.0HCl·0.1H2O: C, 71.42; H, 6.23; N, 5.37. Found: C, 71.44; H, 6.43; 

N, 5.33. 
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Pharmacology   

 

Opioid receptor binding assay 

  Membrane tissue obtained from mouse whole brain without cerebellum and guinea pig 

cerebellum wes prepared as described previously.45 The ,  or  opioid receptor binding assays 

were performed with 2.0 nM [3H]DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin), 

[3H]DPDPE ([D-Pen2,5]-Enkephalin) or [3H]U-69,593. Nonspecific binding was measured in the 

presence of 1 M unlabeled DAMGO, DPDPE or U-69,593. Ki value was calculated according 

to the Cheng–Prusoff equation.46  

 

GTPS binding assay 

  Membrane suspension from  or  human recombinant cell (CHO cell) was incubated in 0.25 

mL of assay buffer (50 mM Tris, 1 mM EDTA, 5 mM MgCl2, 100 mM NaCl) with various 

concentrations of the tested compound, 30 M GDP and 0.1 nM [35S]GTPS (PerkinElmer). 

Nonspecific binding was measured in the presence of 10 M unlabeled GTPS.   

 

Material and Methods for antinociceptive assay and Spontaneous locomotor activity test  

1. Animals  

Male ICR mice weighing 35–45 g were purchased from Japan SLC, Inc. and housed in standard 

polycarbonate mouse cages for at least 2 weeks prior to the experimental procedures. 

 

2. Antinociceptive assay 

 An antinociceptive assay was performed using the acetic acid-abdominal constriction (writhing) 

test based on previous method.47 Briefly, each mouse was injected intraperitoneally (i.p.) with 

0.6 % acetic acid at a dose of 10 mL/kg 15 min after s.c. administration of drugs. After a 10 min 

delay, the animals were observed for an additional 10 min, during which the number of abdominal 

constrictions was counted. Percent inhibition was calculated and compared with the number of 

writhing movements in the control group. To block  opioid receptor, nor-binaltorphimine (nor-

BNI) was administered s.c. 24 h before drug administration. The doses and administration 

schedules were determined according to our previous methods.48     
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3. Spontaneous locomotor activity test  

The spontaneous locomotor activity apparatus consisted of a square area (24 cm × 24 cm × 30 

cm) placed in indirect light (200 lux). Animals were kept in the test apparatus 30 min for 

adaptation before drug administration. The mice were allowed to freely explore the apparatus for 

3 h. Spontaneous locomotor activity was tracked and recorded via an overhead video camera. 

After the test period, the movement data were analyzed with a computerized image analysis 

system (CompACT AMS DI-064W Muromachi Kikai Co., Ltd., Tokyo, Japan). 
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