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Abstract

Background and Objectives

In computed tomography (CT), statistical iterative reconstruction (SIR)

approaches can produce images of higher quality compared to the conven-

tional analytical methods such as filtered backprojection (FBP) algorithm.

Effective noise modeling and possibilities to incorporate priors in the image

reconstruction problem are the main advantages that lead to continuous de-

velopment of SIR methods. Oriented by low-dose CT requirements, several

methods are recently developed to obtain a high-quality image reconstruc-

tion from down-sampled or noisy projection data. In this paper, a new prior

information obtained from probabilistic atlas is proposed for low-dose CT

image reconstruction.

Methods

The proposed approach consists of two main phases. In learning phase, a

dataset of images obtained from different patients is used to construct a 3D
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atlas with Laplacian mixture model. The expectation maximization (EM) al-

gorithm is used to estimate the mixture parameters. In reconstruction phase,

prior information obtained from the probabilistic atlas is used to construct

the cost function for image reconstruction.

Results

We investigate the low-dose imaging by considering the reduction of x-ray

beam intensity and by acquiring the projection data through a small number

of views or limited view angles. Experimental studies using simulated data

and chest screening CT data demonstrate that the probabilistic atlas prior

is a practically promising approach for the low-dose CT imaging.

Conclusions

The prior information obtained from probabilistic atlas constructed from

earlier scans of different patients is useful in low-dose CT imaging.

Keywords

Computed tomography; statistical image reconstruction; probabilistic at-

las; Laplacian mixture model

1. Introduction1

X-ray computed tomography (CT) has evolved into an essential imaging2

modality in clinical routines. It is hard to find a hospital that has no in-duty3

CT imaging equipments worldwide. Clinical diagnostic applications of CT4

are known as high-dose imaging techniques compared to the conventional5

plain-film radiography. The extensive use of CT scanning leads to a notable6

increase of the average patient dose and, consequently, increases possibilities7

to produce malignancy. The side effects of the radiation dose generated from8
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CT scans become a concerning topic for further investigations. Although it9

is not yet strictly proven that regular CT scans may lead to malignancy, it10

is estimated that a rough of 2% of cancers may eventually be caused by the11

average radiation dose currently used in clinical CT [1]. Moreover, cancer12

lesion in radiosensitive organs such as lungs is correlated to relatively low13

dose of 100 mGy [2]. It is estimated that about 75% of the collective dose14

from radiology is resulted from high-dose procedures such as CT in which15

organ doses are large enough to confirm a significant evidence on cancer risk16

increase [3]. The optimization of hardware factors such as scanning geome-17

try, tube current and pitch factor would probably lead to a dose reduction.18

However, it is always preferable to obtain standard imaging techniques that19

minimize the patient dose with acceptable image quality. The conventional20

image reconstruction methods based on analytical inversion formulae are still21

the fundamental choice in clinical equipment [4]. On the other hand, statis-22

tical iterative reconstruction (SIR) methods are known to provide a higher23

image quality thanks to noise modeling and possibilities to incorporate prior24

information, which has a potential to be useful for some low-dose imaging25

protocols [5–8].26

In this work, we investigate the problem of image reconstruction from27

low-dose imaging protocols. By low-dose imaging, we consider reducing x-28

ray beam intensity, which is known to increase statistical noise in the recon-29

structed image (figure 1(b)). Moreover, we consider the problem of image30

reconstruction from a small number of projection views (figure 1(c)) and31

limited angle problem (figure 1(d)). Reducing the data sampling rate corre-32

sponds a reduction of patient dose, though it may meet some technical chal-33
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(a) Full scan (b) Low-power (c) Small-views (d) Limited-angle

Figure 1: Different CT imaging configurations. Small red circles indicate possible x-ray

tube positions during data acquisition.

lenges when being implemented in clinical routines. In tomographic imaging,34

it is important to find the appropriate prior model to fit with the imaging35

application and data limitation. In this context, several prior models are36

presented to solve problems generated from limited tomographic data. Prior37

models can be classified into two categories based on the source of knowledge.38

First category is image-domain-based prior, where prior information is ac-39

quired from the reconstructed image domain such as Gibbs smoothing prior40

[9], total variation (TV) prior [10], Non-local means (NLM) [11] and Gaus-41

sian mixture priors [12]. Second category is auxiliary-domain-based, where42

prior information is calculated from auxiliary source such as reference image43

[13], dictionary-based [7] and intensity prior [14]. Anatomical information44

has beed used in several tomographic imaging modalities such as emission45

tomography [15–21], transmission electron microscopy [22].46

Using of prior information obtained from earlier CT scans to improve47

the quality of low-dose CT imaging is become an interesting research topic.48

Several approaches are developed to address this problem. For example,49

Ma et al. proposed a post-processing method based on nonlocal means fil-50
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tering, named ndiNLM algorithm [23]. The ndiNLM algorithm is proved51

to be powerful approach for noise reduction. However, it does not consider52

the statistical properties of photons. Chen et al. proposed the PICCS al-53

gorithm, which incorporate prior information obtained from reference image54

into the image reconstruction problem within the framework of compressed55

sensing [13]. Another interesting approach is the PWLS-PINL algorithm [24],56

which consider a nonlocal regularization using prior image obtained earlier57

with normal-dose scan. Major limitation of prior image-based reconstruction58

is the requirement of an earlier scan of the same patient, which is not always59

available in several CT applications. A hybrid reconstruction method is pro-60

posed by Sadowwsky et al. for cone-beam C-arm CT to solve the problem61

of data truncation with the limited field-of-view of C-arm scanners [25].62

The present study proposes a new framework for image generation in63

medical applications, which exploit a probabilistic atlas constructed by pro-64

cessing archived dataset to generate images with superior quality features in65

future scans. This framework might have a large potential to contribute to fu-66

ture trends in medical imaging such as modulating the patient dose, reducing67

data measurements, and improving image quality. Conceptually, the over-68

lap between techniques of medical image creation (i.e. image reconstruction69

and imaging physics) and techniques of image processing (i.e. computational70

anatomy and computer-aided-diagnosis) is weak. The main stream between71

these two tracks is limited to forward medical images generated by imag-72

ing equipments into processing for diagnosis and analysis. In the context of73

image segmentation, the use of probabilistic atlas is a common approach to74

achieve accurate image segmentation in different imaging modalities. The75
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atlas is essentially generated from a population of co-registered images corre-76

sponding to distinct patients and is then used to provide a complete spatial77

distribution of probability that a pixel belongs to each organ. This may pro-78

vide a useful information that is used to decide an organ to which each pixel79

should be classified [26].80

In this paper, we propose a new SIR method using prior information ob-81

tained from probabilistic atlas computed using auxiliary dataset. We used82

a set of reconstructed volumes obtained from previous scans of several pa-83

tients to construct a probabilistic atlas using the Laplacian mixture model84

(LMM). The mixture parameters are estimated using the expectation maxi-85

mization (EM) algorithm [27]. The atlas and the mixture model parameters86

are then used to construct the image reconstruction cost function from lim-87

ited projection data. The developed method can be considered an extension88

of our earlier work of the intensity-based MAP (iMAP) algorithm [14]. The89

main contribution of this paper is to demonstrate that the spatial informa-90

tion provided by the atlas leads to a more accurate reconstruction when the91

projection data is limited.92

This paper is organized as follows. In section 2, the iMAP algorithm93

is briefly reviewed. The proposed method is detailed in section 3. The94

experimental results are presented and discussed in section 4. The limitations95

of the proposed method and future extensions are discussed in section 5, while96

the paper is concluded in section 6.97
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2. Regularized statistical iterative reconstruction98

Although analytical image reconstruction methods are still the main ap-99

proach for clinical equipments, it is known that the data limitations lead to100

significant artifacts in the reconstructed image [28]. An alternative approach101

is the SIR, where photon statistics and accurate physical imaging models102

can be incorporated into the image reconstruction. This would lead to sup-103

pression of statistical noise and other data limitation artifacts in an effective104

way. Indeed, this would increase the computation time, but this problem105

can be mitigated with the use of high-speed computation hardware such as106

GPUs. The data acquisition in the transmission x-ray CT can be described107

in a discrete form using the following statistical model.108

yi ≈ Poisson (bi exp(−〈ai,x〉)) , i = 1, . . . ,m , (1)

where x = (x1, . . . , xn) is the image vector representing the attenuation co-109

efficients of object, y = (y1, . . . , ym) is a vector representing the raw detector110

measurements with the blank scan b = (b1, . . . , bm), A = {aij} is the m× n111

system matrix that models the imaging system, and 〈ai,x〉 =
∑n

j=1 aijxj is112

the inner product of ith row of matrix A and image vector x. In SIR, the113

maximum likelihood (ML) approach is used in many cases. In the case of114

transmission CT, the solution is found through solving the following opti-115

mization problem.116

x∗ = arg min
x≥0

l(x) (2)
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l(x) = −
m∑
i=1

[
yi log(bi)− yi

n∑
j=1

aijxj − log(yi!)− bi exp(−
n∑

j=1

aijxj)

]
, (3)

where l(x) is the (negative) log-likelihood function. However, the ML method117

is known to amplify the statistical noise in tomographic reconstruction, which118

is a high-dimensional inverse problem. The typical approach to solve this119

issue is the introduction of a regularization term into the penalty function.120

Bayesian approaches such as Maximum a posteriori (MAP) are the common121

framework in this regard. The solution is found by maximizing the MAP122

function defined as:123

P (x|y) =
P (y|x)P (x)

P (y)
, (4)

and the solution of the image reconstruction problem is found by124

x∗ = arg min
x≥0

L(x) + βU(x), (5)

where U(x) is the penalty term that represent the prior knowledge of the125

object in question. The compromise between the data fidelity enforced by126

the likelihood function and the regularization term is controlled by a hyper-127

parameter β. The penalty term (also known as the regularization term) can128

take several forms. The common approach used as a regularizer is the Gibbs129

smoothing prior [29–31]. Moreover, it is possible to integrate other prior130

information of the image such as intensity information. In the following sec-131

tion, we briefly introduce a recently developed algorithm by the authors with132

the name of intensity-based MAP (iMAP) algorithm. The iMAP algorithm133
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is the basis used to derive the image reconstruction method proposed in this134

paper.135

2.1. Overview of iMAP algorithm136

Recently, we have developed an iterative image reconstruction algorithm137

from a small number of projection views named as iMAP algorithm [14]. In138

this method, a regularization term based on prior information concerning139

a small number of intensity values contained in the object in question is140

introduced. The regularization term, named as intensity prior, is computed141

using average intensity values of uniform regions in the scanned object, and142

it leads to a considerable improvement in image quality. The framework of143

iMAP algorithm is based on the fact that, in many CT imaging applications,144

most of anatomical structures, and corresponding attenuation information145

can be easily known or estimated in prior to image reconstruction. Moreover,146

the intensity value within the same region (organ) is almost uniform or is147

slightly varying.148

In the iMAP algorithm, the solution of image reconstruction problem is149

found by solving the following optimization problem.150

min
x≥0

f(x) = L(x) + βD(x) (6)

L(x) =
m∑
i=1

[bi exp(−〈ai,x〉) + yi〈ai,x〉] (7)

D(x) =
n∑

j=1

L

min
l=1

ωlξl(xj), ξl(t) =

 |t− zl| zl−1 ≤ t ≤ zl+1

∞ (otherwise)
, (8)
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Figure 2: The penalty function of the iMAP algorithm in equation (8) corresponding to

L = 3, z = (0.5, 1.0, 2.0), ω1 = 0.15, ω2 = 0.5 and ω3 = 0.35. Plot of ωl|x − zl| with

l = 1, 2 and 3 are in dotted lines. The value corresponding to minL
l=1 ωlξl(x) is shown in

solid line.

where L(x) is the negative log-likelihood after ignoring the irrelevant terms,151

D(x) is a distance function corresponding to the intensity prior, z = (z1, . . . , zL)152

is a set of a priori known intensity values arranged in ascending order (i.e.153

z1 < z2 < · · · < zL−1 < zL) with z0 = −∞ and zL+1 =∞, and ω1, . . . , ωL are154

empirically determined weighting parameters corresponding to the intensity155

values. The intensity vector z is assumed to be known in prior to reconstruc-156

tion as it represents attenuation coefficients of uniform regions in the scanned157

object. The weighting parameter ωl is determined from the frequency of in-158

tensity zl appearing in the image, which can be estimated from the intensity159

histogram. Figure 2 illustrates the penalty function defined in equation (8).160

When the image reconstruction problem is ill-posed due to the limitations161

of projection data, the regularization term in equation (8) is used to find a162

solution which minimizes the `1 norm distance between each image pixel xj163

and a closest component of the known intensity vector z.164

The main challenge in minimizing the cost function in equation (6) is that165
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the regularization term D(x) defined by taking the minimum of several `1166

norm functions is neither convex nor differentiable. Therefore, it is difficult167

to employ an ordinary gradient-type iterative method to minimize the cost168

function. Instead, the majorizarion-minimization strategy [32, 33] is used to169

replace the minimization problem into a sequence of minimizing a separable170

surrogate function f̃(x,xk). At each iteration k, the non-separable part to171

the cost function is approximated by a separable function around x = xk
172

given by173

f̃(x;xk) =
n∑

j=1

β
[
cj(xj − pj)2 + ωh(xj)|xj − zh(xj)|

]
+ T (xk),

h(xj) =

{
h ∈ {1, . . . , L} : ωh|xj − zh| =

L

min
l=1

ωl|xj − zl|
}
, (9)

where T (xk) is the term independent of x and (pj, cj) are computed as174

follows.175

pj = xkj + xkj

∑m
i=1 aij

(
bi exp(−〈ai,x

k〉)− yi
)∑m

i=1 aij〈ai,xk〉bi exp(−〈ai,xk〉)
(10)

cj =
1

2βxkj

m∑
i=1

aij〈ai,x
k〉bi exp(−〈ai,x

k〉). (11)

The computational procedure of the iMAP algorithm is summarized as176

follows.177

(i) Initialization: Give the intensity prior z, set the initial image x0 as178

a uniform positive image, and initialize the iteration number as k = 0.179

(ii) Majorization: The cost function f(x) is approximately majorized180

around the current estimate xk by the separable surrogate function f̃(x;xk)181
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in equation (9).182

(iii) Minimization: The separable surrogate function f̃(x;xk) is mini-183

mized over x ≥ 0 to obtain the image estimate for next iterate xk+1.184

(iv) Stopping condition: Set the iteration number as k = k + 1 and185

repeat steps (ii)-(iii) until a stopping criterion is satisfied.186

The separable surrogate function f(x;xk) is minimized in step (iii) using187

the exact procedure detailed in Appendix A. The minimization is achieved188

through what is called multi-thresholding function [14]. The implementation189

of the thresholding operation is explained as follows. If the pixel update value190

pj computed in equation (10) is close to the intensity value zl, in terms of191

`1 norm distance weighted by parameter ωl, then, the pixel value is assigned192

to the value of zl. Otherwise, pj is shifted by a soft-thresholding operation193

towards the closest value of zl.194

2.2. Improvements of the iMAP algorithm195

During the implementation of the iMAP algorithm, we have found that196

the major challenge is how to estimate the parameters (zl, ωl) contained in197

the intensity prior. One possible improvement direction is to develop a ro-198

bust approach to automatically or semi-automatically estimate the intensity199

weighting parameter ωl such that it matches to the intensity histogram of the200

image in question. Moreover, the structure of the iMAP algorithm is based201

on the pixel intensity values without consideration of any spatial information202

(i.e. spatially dependent nature). In other words, the iMAP algorithm uses203

prior information of expected intensity values for all image pixels equally.204

However, it would be useful to utilize additional information provided by the205

pixel position in the image. In the present work, based on these observations,206
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Figure 3: A diagram of the proposed framework for low-dose reconstruction using proba-

bilistic atlas prior.

we extend the iMAP algorithm by incorporating additional pixel-dependent207

probability obtained from a probabilistic atlas to further improve the recon-208

struction performance.209

3. Proposed Method210

In low-dose CT, image reconstructed from projection data acquired through211

a reduction of x-ray beam intensity is known to be of low quality due to the212

effect of statistical noise. It is common to use MAP-based reconstruction213

methods using various prior models to reduce the effect of noise or other214

artifacts. In this work, we develop a novel framework to construct a new215
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Figure 4: A schematic of the construction of the probabilistic atlas (learning phase).

class of MAP reconstruction methods based on techniques of computational216

anatomy fields. A general diagram explain the overview of the proposed217

framework is shown in figure 3. The proposed framework consists of two218

essential phases. First, we construct a probabilistic atlas from dataset of CT219

images acquired from other patients through image processing techniques.220

In the second phase, the probabilistic atlas is used as prior knowledge for221

image reconstruction. Hereafter, this image reconstruction method is called222

Probabilistic-Atlas MAP (PA-MAP).223

3.1. Phase I: Learning phase224

We start with a population of images (CT dataset) acquired from dif-225

ferent patients under the same imaging configuration. Through an image226

processing step, including image registration and segmentation, this dataset227

can be probabilistically represented as a multivariate mixture of L inten-228

sity components. Each component, with median value µl, is representing an229
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anatomical region within the scanned object. A schematic of the learning230

phase is presented in figure 4. A In this paper, the probabilistic atlas is used231

to provide a complete spatial distribution of probabilities that each image232

pixel belongs to which region having uniform (or almost uniform) intensity.233

By constructing the probabilistic atlas, the probabilities πlj (l = 1, . . . , L)234

are assigned to each pixel xj together with the corresponding intensity value235

µ = (µ1, . . . , µL), where πlj represents the probability, that the pixel xj be-236

longs to the region l having the median intensity µl. To construct the atlas, a237

mixture model is used to define the distribution of image pixels. We use the238

Laplacian mixture model (LMM) to segment the dataset into L number of239

regions. The parameters of the LMM are estimated using the EM algorithm.240

Finally, the parameters of the probabilistic atlas, which we call the proba-241

bilistic atlas prior, are incorporated into the image reconstruction within the242

framework of the iMAP algorithm.243

3.1.1. Image registration244

The probabilistic atlas is computed from dataset images obtained with the245

same imaging configurations. After images of the dataset are co-registered246

using an arbitrary patient image as a reference, the atlas is computed in247

the form of LMM. For the atlas construction, the registered images are clus-248

tered using the EM algorithm into L components and the atlas is computed249

by averaging the probability distribution of the LMM. A useful review of250

image registration techniques in medical applications can be found in Ref.251

[34]. Several image registration technique might be successfully used in the252

proposed framework. Intuitively, we used a non-rigid image registration tech-253

nique. Non-rigid image registration aims to transform an image (a member254

15



of the dataset) such that it becomes as similar as possible to a fixed im-255

age (reference image). In this study, we use a deformable image registration256

method based on the B-splines [35]. The registration process is optimized257

using gradient decent method with means squares as similarity measure and258

20 mm point spacing. An example of registration process is shown later in259

section 4.260

3.1.2. EM clustering261

The Laplacian mixture model (LMM) is one of statistical models for mul-262

tivariate analysis that is widely used within the context of robust clustering263

such as image segmentation [36]. The density function at an observation x264

is expressed as265

p(x) =
n∏

j=1

L∑
l=1

πljp(xj|Ωl), (12)

where Ωl (l = 1, . . . , L) is the set of class labels and πlj is the prior probability266

for each pixel xj to belong to the class Ωl. Obviously, πlj satisfies the following267

constraints.268

0 ≤ πlj ≤ 1 (l = 1, . . . , L; j = 1, . . . , n) and (13)
L∑
l=1

πlj = 1 (j = 1, . . . , n). (14)

It is important to note that the mixture probability πlj in the ordinary clus-269

tering problems is expressed with a single subscript in the form of πl. How-270

ever, in the current situation, to construct the atlas, the input data used to271

compute the LMM parameters is a set of multiple images of different patients272
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Figure 5: Plot of probability. Laplacian density functions for three components with

parameters (µ, λ) = (0.5, 0.4), (1.0, 0.3) and (2.0, 0.6) are in dotted lines. The mixture

density corresponding to proportions of 0.3, 0.5 and 0.2, respectively, is shown in solid

line.

(not a single image). Therefore, it is allowed to compute the pixel-dependent273

prior probability πlj in a stable way. In equation (12), the probability density274

function (pdf) corresponding to each Laplacian component p(xj|Ωl), called275

component of the mixture, is expressed as276

p(xj|Ωl) =
1

2λl
exp

(
−|xj − µl|

λl

)
. (15)

where µl and λl are the median value and the width parameter of density277

function corresponding to the label Ωl, respectively. The set of LMM pa-278

rameters (µl, λl, πlj) (l = 1, . . . , L; j = 1, . . . , n) obtained by using the EM279

clustering algorithm specifies the probabilistic atlas [37]. An example of the280

mixture density function is shown in figure 5. By taking the (negative) loga-281

rithm of equation (12), the prior term DLMM(x) corresponding to the LMM282
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model used for image reconstruction as prior knowledge is derived as283

DLMM(x) = −
n∑

j=1

log

[
L∑
l=1

πlj p(xj|Ωl)

]
(16)

∼=
n∑

j=1

L

min
l=1

[
− log(

πlj
λl

) +
|xj − µl|

λl

]
+ log 2 (17)

=
n∑

j=1

L

min
l=1

gl(xj), (18)

gl(xj) = − log
πlj
λl

+
|xj − µl|

λl
(19)

The regularization term in equation (16) is constructed as follows. First,284

we prepare CT images of many patients, or different scans of the same pa-285

tient as in follow-up applications, spatially registered to one another. Then,286

by using the EM clustering algorithm, we fit the LMM (equation (12)) to287

the learning dataset. We call this process the learning phase, in which the288

mixture parameters (µl, λl, πlj) (l = 1, . . . , L; j = 1, . . . , n) appearing in equa-289

tion (17) are estimated. To derive equation (17) from equation (16), we have290

used the standard approximation in the mixture analysis to take only a single291

dominant component among all L components. For example, this approxi-292

mation has been successfully used in image segmentation applications with293

the name of k-mean or k-median clustering.294

3.2. Phase II: Image reconstruction phase295

3.2.1. Atlas fitting296

The PA constructed in learning phase is computed by registering all the297

dataset to arbitrary selected image. Thus, the resulted atlas accuracy is298
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Figure 6: A schematic of image reconstruction using proposed method (image reconstruc-

tion phase).
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highly dependent on the arbitrary selected reference image. To fit the PA299

with the image to be reconstructed, we use the following procedure. First,300

the FBP image is reconstructed and then clustered into L components using301

EM algorithm. Then the PA is registered to the clustered FBP image. The302

normalized PA that is aligned to the FBP image is then used for PA-MAP303

reconstruction. Figure 6 details the atlas fitting procedure and experimental304

results is shown in section 4 below.305

3.2.2. PA-MAP algorithm306

To construct the image reconstruction method using the prior information307

generated from the probabilistic atlas, the median value of each mixture308

components µl can be considered as the known intensity values zl in the309

iMAP algorithm. The inverse of width parameter 1/λl can be considered the310

weighting parameter wl. Furthermore, we also need to include the additional311

additive term − log(πlj/λl) into the cost function, which reflects the spatially-312

dependent nature of prior knowledge. These correspondences are clear from313

the comparison of equation (8) and equation (16). Finally, the cost function314

for the PA-MAP algorithm is defined by315

f(x) = L(x) + βDLMM(x). (20)

The minimization of cost function f(x) for image reconstruction is per-316

formed by using the iterative algorithm based on the majorization-minimization317

strategy similar to that of the iMAP algorithm previously described in sec-318

tion 2. The cost function in equation (20) is approximately majorized around319

the current iterate xk by using the following equation.320
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f̃(x;xk) =
n∑

j=1

β

[
cj(xj − pj)2 +

1

λh(xj)

|xj − µh(xj)|
]

+ T (xk)

h(xj) =

{
h ∈ {1, . . . , L} : gh(xj) =

L

min
l=1

gl(xj)

}
(21)

where pj and cj are defined in equations (10) and (11), respectively and321

T (xk) is the term independent of x. The formulation of the cost function322

in equation (20) requires a considerable effort to minimize. This is due to323

the mixing of the discrete optimization corresponding to the label l and the324

continuous `1 norm optimization with respect to xj. A novel exact minimiza-325

tion algorithm is detailed in Appendix A. We note that both the intensity326

prior in equation (8) and the PA prior in equation (16) are different from327

a class of smoothing priors like total-variation (TV) and Gibbs priors so328

that they can be combined with a smoothing prior to further improve of the329

performances. We call the resulting reconstruction method PA-MAP, which330

provides a useful framework to improve the iMAP reconstruction method.331

The advantages of the PA-MAP method compared to the iMAP method332

is summarized as follows. First, more accurate values of the prior intensity333

can be provided through the data modeling as LMM in the learning phase.334

Second, the weighting parameter wl can now be automatically computed as335

the corresponding width of the mixture component 1/λl. Finally, the prior336

knowledge is pixel-dependent, which contributes to improving image quality.337

Moreover, it is possible to use additional smoothing penalty terms to the cost338

function f(x) in (20), such as the well-known quadratic smoothing penalty.339

In the experimental studies presented in the paper, we have included a very340

weak smoothing penalty to improve the quality of reconstruction. In brief,341
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the computational procedure of PA-MAP method is summarized as follows.342

(I) Learning phase:343

(i) Input images dataset and specify the number of expected mixture344

components L.345

(ii) Select an arbitrary reference image xref from the image dataset.346

(iii) Register the remaining images to xref .347

(iv) Compute the mixture parameters (µl, λl, πlj) (l = 1, . . . , L; j = 1, . . . , n)348

using the EM algorithm.349

(II) Reconstruction phase:350

(i) Fit the PA with xFBP image as described in figure 6.351

(ii) Set the initial image x0 to a uniform positive image.

x0j =
1

d n

m∑
i=1

− log(yi/bi), j = 1, . . . , n,

where d is the number of projection view angles. Set the iteration number352

as k = 0.353

(iii) The cost function in equation (20) is approximately majorized around354

the current iterate xk by the separable surrogate function in equation (21).355

(iv) The separable surrogate function is minimized over x ≥ 0.356

xk+1 = arg min
x≥0

f̃(x;xk)

(v) Increment the iteration number by k = k+1 and repeat step (iii) and357

step (iv) alternately until a stopping criterion is satisfied.358

Below, we explain how to perform the minimization of the surrogate func-359

tion f̃(x,xk) appearing in the step (II)(iv), which is a key part in the PA-360

MAP method. First of all, from equation (21), it is clear that this minimiza-361

22



tion can be performed for each variable xj separately (i.e. the cost function is362

separable). However, solving the resulting minimization problem for each xj363

is not trivial, mainly because the cost function includes the minimization op-364

eration with respect to the label l, which is a discrete optimization. We have365

found that this minimization problem can be solved in an exact and simple366

way by using the novel procedure shown in Appendix A, which involves a se-367

quence of the soft-thresholding operations for all label values l = 1, 2, . . . , L.368

See Appendix A for the details. We have used this algorithm to perform369

the minimization of the surrogate function f̃(x,xk) (of course, if the opti-370

mal value of xj, at which f̃(x,xk) is minimum, is negative it is replaced by371

zero). We note that the computational cost of this algorithm is much smaller372

compared to those of the forward projection and the backprojection if the373

number of labels is not large. We also note that the similar algorithm was374

proposed for the iMAP method and was called multi-thresholdings.375

3.3. Preserving abnormalities376

One major concern in penalized reconstruction methods similar to the one377

presented in this paper is the possibility of losing abnormalities. The main378

purpose of diagnostic CT imaging is to find the abnormalities such as lesion,379

tumors or organ shape deformation. It is always preferable for physicians380

to look at true images with weak artifacts than beautiful images that are381

likely to be different from the truth. It is clear from Sections 2 and 3.2, the382

thresholding operation used in both the iMAP and PA-MAP algorithms is383

applied only to pixels having intensity values closer to one of the intensity384

priors zl in the iMAP algorithm and one of the median values µl (l = 1, . . . , L)385

in the PA-MAP algorithm. Moreover, the effect of the regularization term386
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is handled such that the strength of the thresholding operation is reduced387

while the iteration proceeds by using dynamic value of the parameter β that388

is gradually decreased. In early iterations, the parameter β is relatively large389

to increase the effect of the PA prior and thus enforce image pixels to be390

closer to the values of µl. Later, and as the iteration proceeds, the value of391

β is reduced to give higher weight to the data fidelity term. Thus, restore392

abnormalities lost in early iterations. In the experimental studies presented393

here, we use the following rule to calculate dynamic β394

β = β◦/(k + 1), (22)

where β◦ is the initial parameter value. Further details are described in395

our previous study [14], and are omitted here. Consequently, the power of396

preserving abnormalities of the iMAP and PA-MAP methods is rather strong.397

In the experimental studies detailed in the next section, we demonstrate how398

the proposed method can preserve abnormalities such as calcifications in399

lungs.400

4. Experimental studies401

4.1. Image quality measures402

Throughout the experimental studies, the following image quality mea-403

sures are used to evaluate the proposed method and its competitors. The404

noise reduction is measured using the relative root mean square error (RRME).405

RRME =

√∑n
j=1(xj − x∗j)2∑n

j=1(x
∗
j)

2
, (23)
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(a) Sample image#1 (b) Sample image #100 (c) Ellipse changes

Figure 7: Sample of digital chest phantoms used to construct the probabilistic atlas: (a)

sample image of patient #1 (largest contraction case), (b) sample image of patient #100

(largest expansion case) and (c) contour lines describing the range of size of each phantom

ellipse (solid lines for largest contraction and dashed lines for largest expansion cases).

(a) Air (b) Lungs (c) Soft-tissue (d) Cardiac (e) Vertebra

Figure 8: Components of probabilistic atlas constructed from simulated 100 digital phan-

toms defined in figure 7. White color corresponds to the probability of one and black color

corresponds to zero probability.
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Table 1: Parameters of digital phantom shown in figure 7. Minimum and maximum values

corresponding to patients #1 and #100, respectively.

Index Description Center coordinates
Major axis Minor axis

Density (cm−1)
Min Max Min Max

1 soft-tissue (0.0, 0.0) 0.80 1.00 0.50 0.70 1.00

2 lungs
(0.38, 0.0)

0.285 0.416 0.334 0.466 0.25
(-0.38, 0.0)

3 cardiac (0.0, 0.38) 0.121 0.220 0.121 0.220 1.20

4 vertebra (0.0,-0.40) 0.051 0.150 0.051 0.150 1.80

where xj denotes the pixel value of reconstructed image and x∗j is the cor-406

responding true value. The image contrast is measured using the following407

formulae.408

Contrast =
|x̄s − x̄b|
x̄s + x̄b

, (24)

where x̄s and x̄b are the mean pixel values of selected region-of-interest (ROI)409

pixels (ROIs) and background pixels (ROIb), respectively. The mean values410

x̄s and x̄b are computed by411

x̄s =
1

ns

ns∑
j=1

xj, (xj ∈ ROIs), x̄b =
1

nb

nb∑
j=1

xj, (xj ∈ ROIb), (25)

where ns (nb) is the number of pixels within ROIs (ROIb). Furthermore, we412

use another metric to evaluate the image contrast and the noise properties.413

The contrast-to-noise ratio (CNR) is measured by414

CNR =
2|x̄s − x̄b|
δsσs + δbσb

, δs =
ns

ns + nb

, δb =
nb

ns + nb

, (26)
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Table 2: Parameters of digital phantom shown in figure 9(a).

Index Description Center coordinates Major axis Minor axis angle Density (cm−1)

1 soft-tissue (0.0, 0.0) 0.90 0.60 0.0 1.00

2 lungs
(0.38, 0.0)

0.35 0.40 0.0 0.25
(-0.38, 0.0)

3 cardiac (0.0, 0.38) 0.17 0.17 0.0 1.20

4 vertebra

(0.0, -0.40) 0.10 0.10 0.0

1.80(0.1,-0.45) 0.08 0.03 -45.0

(-0.1,-0.45) 0.08 0.03 45.0

5 lesion (1) (0.4, 0.2) 0.02 0.02 0.0 1.0

6 lesion (2) (-0.4, 0.2) 0.08 0.08 0.0 1.0

7 lesion (3) (-0.4, -0.2) 0.08 0.08 0.0 0.6

8 lesion (4) (-0.3, 0.0) 0.015 0.015 0.0 1.0

9 lesion (5) (-0.5, 0.0) 0.015 0.015 0.0 0.6
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where σ is the standard deviation over ROI and is computed as follows:

σs =

√√√√ 1

ns − 1

ns∑
j=1

(xj − x̄s)2, σb =

√√√√ 1

nb − 1

nb∑
j=1

(xj − x̄b)2. (27)

4.2. Simulation results415

4.2.1. Experiment setup416

In the simulation study, we have used digital phantoms to construct the417

probabilistic atlas. A set of 100 simulated phantoms were designed to sim-418

ulate chest CT with change in organ size to take the individual variation419

into account. Each ellipse (organ) is assumed to have the same center point420

to avoid additional efforts for image registration. The sample image corre-421

sponding to patient #1 (largest ellipse contraction case) and patient #100422

(largest expansion case) are shown in figure 7(a) and (b), respectively and423

phantom parameters are shown in table 1. Attenuation values are assumed424

to be uniform within each organ and we assigned the values of 0.0, 0.25, 1.20,425

1.0, and 1.80 cm−1 for regions representing air, lungs, soft-tissue, cardiac and426

vertebra, respectively. The range of size changes in ellipses is illustrated in427

figure 7(c) and detailed in table 1. The probabilistic atlas, computed from428

the simulated data, is shown in figure 8, which is an ideal example where429

most of the image pixels possess crisp probabilities (either zeros or ones).430

Only pixels located near region boundaries possess non-crisp values.431

4.2.2. Image reconstruction432

The phantom image to be reconstructed is an intermediate case (pa-433

tient #50) with some additional abnormality (which are not included in434

creating the atlas). Abnormalities are considered as change in anatomical435
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(a) True (b) ROIs and ROIb

Figure 9: (a) True phantom image with a lesion inserts marked from (1) to (5) and change

in vertebra anatomy. (b) Arrows pointed to ROIs and ROIb regions used to compute

image quality measures and rectangle include a magnified region in reconstruction results

below.

structure shown by two ellipses added to the vertebra or lung lesions. One436

6.4 mm lesion insert in the right-side lung, two 25.4 mm and two 4.8 mm437

lesions insert on the left-side lung. The lesion in the right-side lung is with in-438

tensity value of 1.0 cm−1, while lesions in the left-side lung are with intensity439

values of 1.0 cm−1 and 0.6 cm−1 as shown in Fig 9(a) and detailed in table 2.440

We use the lesion insert (1) in the right-side lung to compute quantitative le-441

sion observation measures discussed above, while remaining lesions are used442

for visual quality observation. The image grid was set to 320×320 pixels,443

and the projection data was computed by assuming 320 detector bins for444

each view, 180◦ view angular range with parallel-beam geometry and simple445

line-integral projection model. We implemented the following three scenar-446

ios. First, we measure the projection data over 320 views with additional447

Poisson noise corresponds to 2×103, 1×104 and 2×104 photon counts. The448

filtered back-projection (FBP) and the standard OS-Convex [38] (with and449

without quadratic penalty) algorithms are used to evaluate the proposed PA-450
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FBP OS-Convex Quad. Penalty PA-MAP

Figure 10: Top-down rows indicate reconstructions from low, medium and high pho-

ton counts, respectively. Columns are reconstructions using different algorithms. Region

marked with red rectangle in figure 9(b) is magnified in each image and display gray scale

is [0.0, 1.8] cm−1.
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MAP algorithm. The number of iterations for OS-Convex, OS-Convex with451

quadratic penalty and PA-MAP are set to 10 iterations and β◦ = 1.0. Recon-452

structed images are shown in figure 10 and quality measures are illustrated in453

table 3. In low photon counts (shown in the top row), the low-contrast lesion454

is highly degraded and very difficult to visually observed. However, due to455

the improvement is noise properties in the background, lesion detectability456

in PA-MAP is improved. With higher photon counts, the low-contrast lesion457

becomes more visible in FBP, OS-Convex and OS-Convex with quadratic458

penalty but PA-MAP still of higher quality. One drawback observed in the459

PA-MAP image is the degradation in regions close to boundaries. This effect460

is expected as the value of certainty is low around the boundaries.461

In the second scenario, we consider the reconstruction from small number462

of views (16, 24 and 32 projections). Iterative algorithms are implemented463

using 100 iterations and β◦ = 50.0. Results re shown in figure 11 and quality464

metrics are shown in table 4. In the third scenario, we consider the limited-465

angle problem by limiting the projection data to 320 views over the angular466

orbit of 90◦, 120◦ and 150◦. We consider 10 iterations for iterative recon-467

struction and β◦ = 50.0. Reconstructed images are shown in figure 12 and468

image quality measurements are in table 5.469

4.3. Pseudo real data results470

To evaluate the performances of the proposed PA-MAP method for image471

reconstruction from low-dose imaging setup, we have carried out a set of472
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Table 3: Image quality measurements for reconstructed images shown in figure 10.

Photon counts Method RRME Contrast CNR

True – 0.6 –

(2× 103)

FBP 0.4489 0.5968 4.1961

OS-Convex 0.3377 0.6648 7.8214

Quad. Penalty 0.1095 0.5932 18.6541

PA-MAP 0.0883 0.6554 18.8216

(1× 104)

FBP 0.3157 0.5606 6.0540

OS-Convex 0.2246 0.5954 10.9437

Quad. Penalty 0.1004 0.5608 14.8607

PA-MAP 0.0774 0.5746 24.0699

(2× 104)

FBP 0.2208 0.5219 6.9409

OS-Convex 0.1305 0.5762 12.5381

Quad. Penalty 0.0937 0.5714 21.5419

PA-MAP 0.0586 0.5623 36.7561
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Figure 11: Reconstructed images from different projection views corresponding to 16, 24

and 32 projections using several reconstruction algorithms.
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Table 4: Image quality measurements for reconstructed images shown in figure 11.

Projection views Method RRME Contrast CNR

(16)

FBP 0.5000 0.5091 5.4040

OS-Convex 0.1495 0.3074 13.7290

Quad. Penalty 0.1302 0.3335 17.9965

PA-MAP 0.0699 0.5522 15.9280

(24)

FBP 0.3732 0.5495 8.9016

OS-Convex 0.1273 0.4628 13.1352

Quad. Penalty 0.0979 0.4921 17.6956

PA-MAP 0.0290 0.5737 31.3217

(32)

FBP 0.3119 0.5118 6.4494

OS-Convex 0.1104 0.4914 13.0650

Quad. Penalty 0.0758 0.5228 21.6929

PA-MAP 0.0213 0.5772 42.9994

34
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Figure 12: Reconstructed images from different rotation orbit corresponding to 90◦, 120◦

and 150◦ using several reconstruction algorithms.
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Table 5: Image quality measurements for reconstructed images shown in figure 12.

Projection views Method RRME Contrast CNR

(90◦)

FBP 0.7183 0.3758 6.5297

OS-Convex 0.2839 0.4778 13.0386

Quad. Penalty 0.2827 0.4795 13.7752

PA-MAP 0.1290 0.5703 16.5052

(120◦)

FBP 0.4911 0.4175 7.3225

OS-Convex 0.1508 0.5139 21.3042

Quad. Penalty 0.1489 0.5157 23.8119

PA-MAP 0.0527 0.5757 30.8816

(150◦)

FBP 0.3169 0.4864 8.4396

OS-Convex 0.0839 0.579 37.2394

Quad. Penalty 0.0810 0.5805 43.5291

PA-MAP 0.0201 0.5791 50.4566
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Figure 13: Sample of non-registered images (slice #12) of different patients of the dataset

used in this study. Display window is [-700, 500] HU. This example show the large variation

in the dataset images.

experimental studies. Chest screening CT dataset1, was used to construct the473

probabilistic atlas. The dataset consists of 68 volumes for 14 normal and 54474

abnormal patients scanned using Hitachi CT-W950SR scanner. The dataset475

include a confirmed diagnosis sheet for each patient. Each volume consists476

of 18 to 31 transaxial slices, where each slice consists of 320×320 pixels with477

pixel size of 1×1 mm and slice thickness of 10 mm. Sample images that478

demonstrate a large individual variation of anatomical information in the479

dataset used here are shown in figure 13.480

1JAMIT medical image database, The Japanese Society of Medical Imaging Technology

(JAMIT) (http://www.jamit.jp/cad/db/index.html)
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Figure 14: An example of registration and clustering process. The reference image (pa-

tient #24, slice 10), target image (patient #15, slice 10) and registered image. Below rows

are the masks for clustered L components of reference and registered images shown above.
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(a) Air (b) Bed (c) Lungs

(d) Fatty tissue (e) Muscles (f) Bones

Figure 15: Each component of the probabilistic atlas constructed from chest screening

data.

4.3.1. Atlas construction481

To construct the probabilistic atlas, a randomly selected image from the482

dataset (patient #24 in this experiment) was set to a reference image and483

all remaining corresponding slices (67 images) were registered to it. An484

example of image registration and clustering process used to construct the485

PA is shown in figure 14. The EM algorithm was used to estimate the486

LMM parameters (λ, µ, π) and the prior probability function. We intuitively487

limited the mixture to six components (L = 6) that represent air, patient488

bed, lungs, fatty-tissues, muscles, and bones. After only 10 iterations of the489

EM algorithm, we obtained the atlas shown in figure 15.490

Due to the lack of the original raw projection data, we have forward-491

projected dataset images to simulate a realistic data acquisition. The forward492
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(a) True (b) FBP

Air Bed Lungs Fatty tissues Muscles Bones

(c
)

(d
)
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)

Figure 16: Example of atlas fitting procedure shown in figure 6. (a) True image of pa-

tient #50 slice 10. (b) FBP reconstruction with added noise. (c) Clustered FBP image

into L components. (d) Initial PA shown in figure 15 mapped over true image with in-

accurate matching. (e) Fitted PA after registering initial PA shown in (d) with clustered

components in (c).
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True FBP OS-Convex PA-MAP

Figure 17: Reconstruction results for patient #50 (slice #10) in top raw and patient #59

(slice #14) in bottom raw, using FBP, OS-Convex, and PA-MAP methods. Both patients

are diagnosed for a confirmed lung cancer marked by red arrows.
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projection was implemented through a 320 detector bins and 640 projection493

views using simple line-integral model and parallel-beam geometry. In this494

experiment, we evaluated the ability of PA-MAP method in lesion detec-495

tion task with comparison with other conventional methods. We selected496

patient #50 (slice #10) and patient#59 (slice 14), where a lung cancer is497

defined and confirmed. We considered the case of low-power tube and the498

same parameter setup as in the previous experiment was used. First, we499

obtain initial FBP image, which is degraded with statistical noise. The ini-500

tial PA shown in figure 15 was fitted using the clustered FBP components501

as shown in figure 16. The fitted atlas shown in figure 16(e) is used for the502

implementation of the PA-MAP algorithm. Reconstruction results indicate503

an improvement of image quality with preservation of lung abnormalities.504

Another study was performed to evaluate the proposed method with rel-505

atively small abnormality. we consider patient #17 (slice #11), where a506

calcification is found and confirmed inside the left-side lung. We consid-507

ered the case of low-power tube and data acquisition over a small number508

of projection views (64 views). We used the same parameter setup as in the509

previous experiment. Reconstructed images are shown in figure 18, and im-510

age quality measurements defined in section 4.1 were calculated as shown in511

table 6. It is observed that image reconstructed using conventional methods512

still suffer from artifacts, which is significantly suppressed when PA-MAP is513

used. It is also observed that the contrast of cancer lesion is also preserved514

with high contrast.515
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Figure 18: True image for patient #17 (slice #11) with calcification in left-side lung. (b)

a guide mask for ROIs and ROIb regions. The bottom two rows show the reconstructed

images for the cases of low x-ray power and small-views, respectively. The columns corre-

spond to the FBP, OS-Convex, Quadratic Penalty and PA-MAP reconstruction methods.

Magnification of the calcification region (ROIs) is shown at the top right corner of each

image. Background region (ROIb) is not magnified as it contains no visual structures

within the display gray scale.
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Table 6: Image quality measurements for reconstructed images shown in figure 18.

Imaging scenario Method RRME Contrast CNR

True – 0.5375 9.1254

Low-power

FBP 0.2396 0.5064 6.7482

OS-Convex 0.1138 0.5351 8.1389

Quad. Penalty 0.0815 0.5348 9.4073

PA-MAP 0.0633 0.5813 12.8801

Small-views

FBP 0.2768 0.4905 7.3574

OS-Convex 0.1496 0.4971 9.8717

Quad. Penalty 0.1120 0.5523 15.4315

PA-MAP 0.0801 0.5916 18.4482

5. Discussion516

This section is dedicated for a general overview discussion of the proposed517

methods considering experimental results, current limitations and potential518

extensions. From the demonstrated results, it is clear that the PA-MAP519

method outperforms the conventional FBP in terms of noise suppression, ar-520

tifacts reduction, and lesion contrast preservation. The abnormal inserts can521

be observed clearly in every considered imaging scenarios using the proposed522

PA-MAP method. The interesting result is the ability to reconstruct a nice523

image from the projection data measured over rotation orbit of 90◦ as shown524

in figure 12.525

One concern about the PA-MAP method is the treatment of large-size526

abnormalities and variation of anatomical structures. It is observed that PA-527

MAP reconstruction produces a notable improvement in image quality for528

normal structures. However, pixels belong to abnormalities are still suffered529
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Figure 19: Tracing of lesion (1) during 100 iterations of the PA-MAP reconstruction from

16 projections shown in figure 11. Solid and dashed lines represent the values of x̄s and

x̄b, respectively. Blue circle line is the values of the parameter β. The bottom images

show the ROI containing the abnormal insert corresponding to iteration number and the

true ROI.

from artifacts. The reason for this is the lack of PA prior to these pixels.530

This is clear from the appearance of lesions (2) and (3) in the PA-MAP re-531

construction shown in figures 10-12. The interesting observation here is that532

pixels belong to regions of abnormalities or variation of anatomical structures533

are not incorrectly assigned to the corresponding PA intensity values. This534

reason of this feature is discussed above in Section 3.3.535

To observe the behavior of the abnormal insert during PA-MAP recon-536

struction, we have traced a small ROI (16×16 pixels) surrounding lesion (1)537

iteration-by-iteration. We consider image reconstruction from 16 projections538

(figure 11) and the results are presented in figure 19. Obviously, in very early539

iterations, the background intensity value reaches to the correct intensity540

value assigned to pixels of lungs (0.25 cm−1). However, pixels corresponding541
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to the abnormality is still far from the correct value (1.0 cm−1). Soon after542

few iterations, as the parameter β decreases, the enforcement of data fidelity543

term is improved and the abnormality recovery gradually progresses.544

In training-based approaches such as the one presented here, It is im-545

portant to specify criteria for selecting the training set. There are several546

cases in which the dataset is insufficient to present enough knowledge. For547

example, if the number of patients used to construct the atlas are too small,548

there is large potential that it introduce incorrect pdf value. On the other549

hand, if the number of images are too large, there is possibilities that the550

atlas become uniformly distributed and the prior information is diminished.551

This is largely depends on the accuracy of the registration process. Selec-552

tion of appropriate training set is a common problem in probabilistic atlas553

construction for medical imaging applications. Obviously, it is recommend554

that images used in the training set are acquired using similar conditions to555

the image in question. The term similar conditions means factors related to556

the patient (e.g. size, age, gender) and imaging environment (e.g. imaging557

facility, dose, contrast agent).558

The PA-MAP method implemented in this work should be further inves-559

tigated. A more sophisticated registration process is expected to contribute560

more to image quality. However, developing a high-performance image reg-561

istration approach is out of the scope of this work. Also, it is worth noting562

that the use of probabilistic atlas is also useful in solving the limited angle563

problem, which is one of the challenging data limitation problems arising564

in several CT applications. The first results shown in this paper indicate565

a potential that most of lost image structures can be recovered well using566
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the PA-MAP method. Another important direction to be investigated in567

the future is to incorporate the statistical shape prior in addition to the568

probabilistic atlas to further improve the performance. In the CT image569

segmentation field, it is known that the shape prior dramatically improves570

segmentation accuracy [39]. The similar improvement can be expected in the571

CT reconstruction applications.572

6. Conclusion573

This work presents a new image reconstruction method for low-dose CT574

imaging. We consider two imaging setups including the reduction of x-ray575

tube power and data acquisition over a small number of projection views or576

small orbital range. The main contribution of this work is the use of prior577

information obtained from probabilistic atlas constructed from earlier scans578

of different patients. This work provides a positive answer to the question579

of whether it is useful to utilize CT images generated from other patients580

to improve image quality when the projection data is limited. Within the581

framework of our iMAP reconstruction method, the prior information com-582

puted from the atlas is proved to be useful in improving image quality as583

well as lesion detection. The proposed PA-MAP method possesses several584

advantages summarized as follows. 1) The implementation requires minor ef-585

forts as it is essentially a combination of the conventional statistical iterative586

reconstruction and a sequence of soft-thresholding operations, 2) the conver-587

gence can be sped up by using the concept of ordered subsets similar to the588

implementation of the iMAP algorithm [14], and 3) the only parameter to589

be manually adjusted is the regularization parameter β as most of the iMAP590
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parameters are automatically determined from the probabilistic atlas. The591

proposed PA-MAP method was evaluated using chest screening CT dataset592

with patients diagnosed for different types of abnormalities, and experimen-593

tal results indicate image quality improvement compared to the conventional594

reconstruction methods such as FBP and OS-Convex algorithms.595
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Appendix A. Exact procedure to minimize the surrogate function599

in the PA-MAP and iMAP methods600

Assume al > 0. In the case of PA-MAP method, our problem is to find601

the solution of the minimization problem expressed in the following form.602

f(x∗) = min
x
{

L

min
l=1

[bl + al|x−ml|] +
1

2
(x− p)2} (A.1)

=
L

min
l=1
{bl + min

x
[al|x−ml|+

1

2
(x− p)2]} (A.2)

[Step 1] For l = 1, . . . , L we perform the soft-thresholding to solve the603

inner minimization problem with respect to x in equation (A.2).604

xl = soft-thresholding(p) =


p+ al (p < ml − al)

p (ml − al ≤ p ≤ ml + al)

p− al (p > ml + al)

(A.3)
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[Step 2] Using the result of Step 1, compute the index h at which the605

outer minimization with respect to l in equation (A.2) is achieved606

h = arg
L

min
l=1

[bl + al|xl −ml|+
1

2
(xl − p)2] (A.4)

[Step 3] The solution is given by

x∗ = xh (A.5)

A special case of the iMAP method (bl = 0 and the minimum with respect607

to l is taken with respect to only two candidates) can be obtained as follows.608

[Step 1] Find the unique index n such that mn ≤ p < mn+1609

[Step 2] Compute the two candidates of the solution610

xn =

 p (mn ≤ p ≤ mn + an)

p− an (p > mn + an)
(A.6)

xn+1 =

 p+ an+1 (p < mn+1 − an+1)

p (mn+1 − an+1 ≤ p < mn+1)
(A.7)

[Step 3] Compute the index h at which the minimum is achieved611

h = arg min
l=n, n+1

[al|xl −ml|+
1

2
(xl − p)2] (A.8)

[Step 4] The solution is given by

x∗ = xh (A.9)
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