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Long-lived binary tunneling spectrum in the quantum Hall Tomonaga-Luttinger liquid
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The existence of long-lived nonequilibrium states without showing thermalization, which has previously been
demonstrated in time evolution of ultracold atoms, suggests the possibility of their spatial analog in transport
behavior of interacting electrons in solid-state systems. Here we report long-lived nonequilibrium states in
one-dimensional edge channels in the integer quantum Hall regime. An indirect heating scheme in a counterpropa-
gating configuration is employed to generate a nontrivial binary spectrum consisting of high- and low-temperature
components. This unusual spectrum is sustained even after traveling 5–10 μm, much longer than the length for
electronic relaxation (about 0.1 μm), without showing significant thermalization. This observation is consistent
with the integrable model of Tomonaga-Luttinger liquid. The long-lived spectrum implies that the system is well
described by noninteracting plasmons, which are attractive for carrying information for a long distance.
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I. INTRODUCTION

Dynamics of quantum many-body systems often result
in thermalized states characterized, for example, by the
Fermi distribution function [1]. Exceptional cases have been
discussed for integrable systems, where an isolated system
may be left in a nonequilibrium steady state [2]. This
intriguing aspect has been studied in isolated systems like
one-dimensional (1D) cold atomic chains, where temporal
evolution of the system can be measured after a sudden change
of the interaction (quantum quench) [3,4]. Complementary
experiments in transport measurement would allow us to
study spatial evolution of electronic states traveling from a
noninteraction region to an interacting region (spatial analog of
quantum quench). The Tomonaga-Luttinger (TL) liquid, which
has been identified in various 1D wires and quantum-Hall edge
channels [5–9], is known as an example of integrable systems.
Theoretically the Coulomb interaction between electrons is
absorbed under bozonization into noninteracting plasmon
modes of collective density excitations [10–12]. Therefore, an
ideal TL liquid never thermalizes as plasmon excitations are
conserved during the transport [13–15]. Quantum-Hall edge
channels are suitable for demonstrating this nonthermalizing
behavior, as they are well isolated from the environment.
Actually, coupling to the phonon bath is sufficiently weak [16],
and backscattering that is unwanted for the TL model is highly
forbidden [17,18]. Moreover, tunneling spectroscopy with a
quantum dot (QD) allows us to investigate spatial evolution of
the electronic spectrum in a tailored geometry [19]. Previous
experiments have identified electronic relaxation from single-
particle excitations to collective excitations (plasmons) in
terms of plasmon boundary scattering known as spin-charge
separation [20–23] and fractionalization [24,25] in the TL
physics. However, the absence of thermalization as a hallmark
of an integrable system has not been addressed, as the resulting
states were always close to thermalized states showing a trivial
Fermi distribution [20,26,27].
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In this paper we show that quantum-Hall edge channels
can actually support long-lived nonequilibrium states. For
this purpose, nontrivial binary spectrum composed of hot and
cold carriers is prepared by an indirect heating scheme using
weakly coupled counterpropagating edge channels. Quantum
dot (QD) spectroscopy clearly reveals that the carriers with
the nontrivial binary spectrum propagate over a long distance,
much longer than the length required for electronic relaxation,
without thermalization into a trivial Fermi distribution. This
nonthermalizing characteristic is consistent with the TL model
and encourages us to study nonequilibrium coherent plasmon
transport in the system.

The paper is organized in the following way. After de-
scribing an artificial TL liquid formed in quantum-Hall edge
channels (Sec. II A), we propose an excitation scheme to obtain
nontrivial binary spectrum (Sec. II B). The binary spectrum is
obtained from experiments and simulations. For experiments,
we describe the device structure and measurement scheme
(Sec. III A), and compare energy spectra in two regions in
distinct geometries (Secs. III B, III C, and III D) by considering
the heat flow in the system (Sec. III E). The binary spectrum is
found in one of the regions, where small amplitudes of high-
frequency plasmons are excited. For simulations, we derive
plasmon eigenmodes of the system (Sec. IV A), and show that
an approximate binary spectrum appears as a nonequilibrium
steady state in the quantum-quench simulations (Sec. IV B).
Finally, we discuss the coupling strength (Sec V A), the
similarities and differences between the experiments and
simulations (Sec. V B), some conserved quantities during the
transport (Sec. V C), and possible relaxation mechanisms in
the quantum-Hall system (Sec. V D) before summarizing the
paper.

II. ARTIFICIAL TL LIQUID

A. Plasmon excitation in edge channels

Figure 1(a) illustrates the interacting quantum-Hall edge
channels we study, where right (η = r) and left (η = �) moving
electronic channels with spin σ ∈ {↑ , ↓}, labeled (η,σ ), are
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FIG. 1. (a) Schematic diagram of interacting quantum Hall edge
channels (r/�, ↑ / ↓) with nearest neighbor coupling capacitances CX

and CZ . Charge wave packets for plasmon eigenmodes [L/R,C/S]
are illustrated. (b) The indirect heating scheme for interacting
quantum-Hall edge channels (r/�, ↑ / ↓). Each time a single-electron
charge wave packet is injected from a PC to (�, ↑) as shown by “inj,”
four plasmon charge wave packets in the eigenmodes [L/R,C/S] are
generated. Carriers are drained to ohmic contacts marked by �. The
energy distribution function f (E) shown at the bottom insets exhibits
a double step structure for the initial state (the central inset), close
to Fermi distribution at TH in the DH region (the left inset), and an
unusual binary spectrum with two temperatures TH and Tbase in the
IH region (the right inset).

interacting. Such a geometry can be prepared by depleting a
narrow central region of a two-dimensional electron system
(2DES) in a magnetic field at the filling factor ν = 2 [24].
In the absence of tunneling and the presence of electrostatic
interaction between the channels, the system mimics an ideal
1D wire described by the standard spin-full TL model [28–31].
The Coulomb interaction yields four plasmon eigenmodes,
labeled [d,m], i.e., left (d = L) and right (d = R) moving
charge (m = C) and spin (m = S) modes, as will be derived
in Sec. IV A. The charge and spin modes have symmetric
and antisymmetric charge distributions, respectively, in the
primary channels (spin-charge separation), where the charge
velocity vC is generally greater than the spin velocity vS. The
interaction between counterpropagating channels generates
small amount of dragged charges reverse-travelling in the
subsidiary channels (charge fractionalization), as illustrated
by coupled wave packets in Fig. 1(a) [24,32,33].

In a practical device, such interacting channels can be
formed in a finite region, outside of which the left and right
moving channels are spatially separated as shown in Fig. 1(b).
Suppose that a nonequilibrium charge is injected into one of the
channels, (�, ↑) [illustrated as an arrow marked by “inj”] from
a quantum point contact (PC). The initial electronic state in
(�, ↑) exhibits a double-step profile in the energy distribution
function f (E), where the width and height are given by
the excitation energy eVE and the tunneling probability D,
respectively, of the PC, as shown in the central inset at

the bottom of Fig. 1(b). However, the interaction alters the
electronic spectrum significantly during the transport [20].

In the plasmon picture, charge wave packets randomly
injected from the PC can propagate in a noninteracting manner.
Each time a single electron is injected into (�, ↑), an initial
wave packet, shown just on the left side of the injection point,
is generated. It can be described as a linear superposition of the
four plasmon eigenmodes. Since the charge and spin modes
have different velocities, the injected charge splits into four
plasmon packets as illustrated. We will refer to this splitting
as electronic relaxation in the sense that a single-particle
excitation in one channel is relaxed into collective charge
excitations over the channels. This takes place within a length
lel = 2�vCvS/e(vC − vS)VE, which is approximately 100 nm
at the excitation voltage VE of 1 mV for typical velocities vC =
2–5 × 105 m/s and vS = 2–5 × 104 m/s at ν = 2 [21,34,35],
from the injection point. When random charge packets are
successively injected from a biased PC, channels are filled
with incoherent ensemble of plasmon wave packets. A fast
wave packet in the charge mode can catch up with a slow
packet in the spin mode, and overtake it without any scattering
as the plasmons are noninteracting. Therefore, the excitation
of noninteracting plasmons cannot be thermalized [13,36,37].

B. Nontrivial binary spectrum

We next show that nontrivial binary spectrum can be
generated in the excitation scheme described in the previous
subsection. To see this, it is important to note that electron-hole
excitations (and thus the energy spectra) in all channels are
correlated with each other as they all originate from the com-
mon injection process at the PC. Most of the generated wave
packets flow to the downstream of the injection point, which
we refer to as “direct-heating (DH) region” [the red region
in Fig. 1(b)]. Previous studies have shown that the spectrum
in this region can be described by an approximate Fermi
distribution at temperature TH, as schematically shown in the
left inset [20]. This might not contradict the nonthermalizing
nature of TL model, as the theory has shown that the electronic
relaxation results in an approximate Fermi distribution for
this case [26,27]. However, the experiment on the DH region
was not successful in identifying the presence of long-lived
nonequilibrium states.

Here, we focus on the spectrum in the counterpropagating
channels, which we refer to as “indirect-heating (IH) region”
(the blue region). Because of the small amplitude of the
correlated excitations, the spectrum in the IH region should
have a small fraction of the spectrum in the DH region (at TH).
This fraction p (�1) is determined by the interaction, or the
plasmon eigenmodes of the system (see Sec. IV). The majority
of the spectrum should reflect the base temperature Tbase of the
system. This leads to a nontrivial binary spectrum in the IH
regions, as shown in the right inset. The focus of this study is
the stability of this unusual mixture during transport.

This experimental scheme can be understood as a spatial
analog of quantum quench. This analogy is allowed because
the plasmon transport is unidirectional from the injection
point through the channels to the ohmic contacts at the ends
of the channels, as is the flow of time in quantum quench
(see discussions in Sec. V B). The initial state prepared as
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FIG. 2. (a) The measurement setup with three magnified
scanning-electron micrographs with false color. The QD spectrometer
and one of the heat injectors (PC1–PC4) are activated with the surface
gates (SGiso, SG1−4, etc.), while inactivated PCs are fully opened.
The double lines indicate edge channels that form when PC1 and
PC3 are activated, while only one of the PCs are activated in the
actual measurements. The outer and inner channels serve spin-up and
-down transport, respectively. The QD with a few electrons shows a
charging energy of about 2 meV. Terminals labeled “fl” are floating
ohmic contacts. (b) A schematic energy diagram of the transport
through a QD level ε. Electronic spectra fa,↑(E) and fb,↑(E) can be
determined from the current I (ε). (c) Current spectra of the QD for
various effective bias voltages VD − VE1 taken with all PCs (including
PC1) fully opened (Gi/Gq = 2). Dashed lines indicate the energy
alignment of the ground state with the chemical potential of the
channels (ε = μa/b,↑), while dotted lines indicate that of the excited
states. Each trace is offset for clarity.

single electron excitations relaxes into plasmon excitations
in the DH and IH regions. Such spatial evolution can be
studied by using PC injectors at various distances from the QD
spectrometer [20]. If the ergodicity is assumed, a many-body
state may relax to a thermal-equilibrium state after traveling a
long distance. However, “nonequilibrium steady state,” which
can be defined as a state that remains nonequilibrium even after
traveling a sufficiently long (conceptually infinite) distance,
may emerge in an integrable model. The comparison between
the experiment in Sec. III and the simulation in Sec. IV implies
that the binary spectrum is the signature of “nonequilibrium
steady state” expected in the integrable model of TL liquid.

III. EXPERIMENT

A. Sample and measurement technique

The measurements were performed with an AlGaAs/GaAs
modulation-doped heterostructure in a perpendicular magnetic
field of 5.9 T (ν = 2) at the lattice temperature of 20–
100 mK. The unprocessed 2DES has the electron density 2.9 ×
1011 cm−2 and the zero-field mobility 1.6 × 106 cm2/Vs. The
device shown in Fig. 2(a) involves split gates SG’s to define
the channels, PC charge injectors, and a QD spectrometer.

The quantized Hall resistance at h/2e2 and the vanishing
longitudinal resistance of the device ensure the formation of
two chiral edge channels dominating the transport.

As shown in Fig. 2(a), three sections of edge channels (η,σ ),
where η specifies the region “a,” “b,” and “c,” are defined
by using the isolation gate SGiso (width w = 0.1 μm) and a
QD spectrometer inserted between the sections “a” and “b.”
Spin-full TL liquids labeled TLLs are formed in the interacting
regions of (a,σ ) and (c,σ ) for the length of 5 μm, as well as
(b,σ ) and (c,σ ) of 10 μm. We investigate how the spectra
of (a, ↑) and (b, ↑) in the vicinity of the QD change when
heat current is injected at different locations with respect to
the spectrometer. This is done by selectively activating one of
the four PCs; that is, injection from PC1 (PC2–PC4) implies
that the spectrometer is placed in the DH (IH) region(s). The
tunneling probability Di,σ of ith PC for spin σ can be estimated
from its conductance Gi = Gq(Di,↑ + Di,↓) with Gq = e2

h
,

where G1 = IE1/VE1 for PC1 and Gi = IE2/VE2 for PCi

(i = 2, 3, and 4) are obtained from the current IE1/2-voltage
VE1/2 characteristics.

Figure 2(c) shows current spectrum with varying effective
QD bias VD−VE1 between the drain and the emitter [See
Fig. 2(a) for their locations], taken without heating (PC1 fully
opened and PC2–PC4 fully closed). Current steps associated
with the transport through the ground and excited levels are
shown by dashed and dotted lines, respectively, indicating the
level spacing of about 200 μeV. In the following experiments,
we keep the effective bias voltage below 200 μV to probe only
the transport through the ground level ε as shown in Fig. 2(b).

When ε is swept with the gate voltage VC, the QD current
measures the electronic spectrum fa/b,↑(E) of channel (a/b, ↑)
via the relation

I (ε) = I0{fa,↑(ε)[1 − fb,↑(ε)] − fb,↑(ε)[1 − fa,↑(ε)]}, (1)

where I0 is the saturated current on the step. For a large
positive bias, the second term of Eq. (1) describing the negative
component of the current can be neglected. Then, the current
profiles around the onsets ε = μa,↑ (the left edge of the peak at
a positive bias) and μb,↑ (the right edge) measure the spectra
fa,↑(E) and 1 − fb,↑(E), respectively. Therefore, electronic
spectra fa,↑(E) and fb,↑(E) can be evaluated from a single
current trace ID(VC). The unheated spectrum in Fig. 2(c) can
be fitted well by using the Fermi distribution

fF(E; T ) = [e(E−μ)/kBT + 1]−1 (2)

with the thermal energy kBTa/b,↑ and chemical potential μa/b,↑.
The sharp onsets on both sides of the peak indicate the thermal
energy kBTbase = 9–10 μeV at the base temperature Tbase

in both channels. The QD spectroscopy relies on transport
through a single level. Therefore we restrict ourselves at
low-excitation conditions where populations to the excited
states can be neglected, unless otherwise stated.

B. Spectrum in the DH region

First, we investigate the spectrum in the DH region using
PC1 located ∼5 μm upstream of the QD. Figure 3(a) schemat-
ically shows the corresponding channel layout. The DH region
is formed in (a, ↑) and (a, ↓) by injecting heat through PC1
with an excitation voltage VE1 = −100 μeV. Nonequilibrium
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FIG. 3. (a) A schematic channel layout for measuring the spectrum in the DH region formed downstream of PC1 in (a, ↑ / ↓). (b) Schematic
channel geometries near PC1 for (i) G1 = 0, (ii) G1 = 0.5Gq, (iii) G1 = Gq, (iv) G1 = 1.5Gq, and (v) G1 = 2Gq. Channels (a, ↑) and (a, ↓)
can be heated in (ii) and (iv), respectively. (c) VPC1 dependence of G1/Gq, measured by the current IE1 at the excitation voltage VE1 = −100 μV.
(d) Current spectra with a flat-top region of the width associated with the effective bias. Measured current (circles) is fitted well with the Fermi
distribution function (solid lines). The broadened edges measure the electron temperatures Ta/b,↑ in the channels. The ID and VC scales apply
to the trace (v), while other traces are offset for clarity. (e) kBTa/b,↑ as a function of VPC1. T

(0.1)
H is the expected temperature considering the

coupling p = 0.1. Small difference between Ta,↑ and Tb,↑ at unheated conditions (iii) and (v) might come from external noise in the ammeter
for IE1.

charge can be injected selectively into (a, ↑) for the PC1
conductance G1 in the range of 0 < G1 < Gq as shown in
panel (ii) of Fig. 3(b), and (a, ↓) for Gq < G1 < 2Gq in panel
(iv). This was confirmed by measuring clear conductance steps
in the split-gate voltage VPC1 dependence of G1 (= IE1/VE1)
in Fig. 3(c).

Figure 3(d) summarizes the current spectra of the QD
(filled circles) for various G1 values, plotted as a function
of VC. The QD spectrometer is operated at VD = 100 μeV.
As the PC1 opening is increased from G1/Gq = 0 to 2, the
width of the spectrum grows from eVD = 100 μeV [trace
(i)] to e(VD − VE1) = 200 μeV [traces (iii)–(v)], reflecting
the channel (a, ↑) being switched from the grounded ohmic
contact to the one biased at VE1. Heating in (a, ↑) is manifested
in the slope on the left edge of the spectra, which becomes
distinctly gentle, indicating larger Ta,↑, in the tunneling
regimes at G1/Gq = 0.5 [trace (ii)] and 1.5 [trace (iv)]. Note
that heating in (a, ↑) is resolved even when nonequilibrium
charge is injected into (a, ↓). This ensures the coupling
between the two channels. No heating is seen at quantized
conductance G1/Gq = 1 [trace (iii)] and 2 [trace (v)]. In
contrast to the left edge of the spectra, the right edge, which
probes (b, ↑), remains steep with Tb,↑ � Tbase for all G1 values.
This is reasonable, as no heating is expected for (b, ↑) in this
channel layout [see Fig. 3(a)].

All the spectra in Fig. 3(d) can be fitted well with the
Fermi distribution as shown by the solid lines. Figure 3(e)
plots kBTa,↑ (open circles) and kBTb,↑ (solid circles) deduced
from the fits, revealing significant heating in (a, ↑), for both
injection into (a, ↑) (G1/Gq ∼ 0.5 at VPC1 ∼ −660 mV) and
(a, ↓) (G1/Gq ∼ 1.5 at VPC1 ∼ −220 mV). The fact that Ta,↑
reaches almost the same maximum values at G1/Gq ∼ 0.5
and 1.5 indicates that the injected heat is equally partitioned
between (a, ↑) and (a, ↓). As these data show, the coupling
between hot and cold copropagating channels results in spectra
that looks like the equilibrium Fermi distribution in both of

the copropagating channels. Theory suggests that the actual
distribution is different from the Fermi distribution even in the
DH region [26,27]. However, the deviation is too small to be
resolved experimentally, resulting in seemingly thermalized
spectra indistinguishable from the equilibrium distribution.
Consequently, the DH scheme is not suitable for studying
nonequilibrium steady states.

C. Spectrum in the IH region

In contrast to the case of DH region, qualitatively different
tunneling spectra emerge when the spectrometer is placed in
the IH region. IH regions appear in (a,σ ) and/or (b,σ ) when one
of PC2–PC4 is adjusted in the tunneling regime with the PC
conductance Gi = IE2/VE2 ∼ 0.5Gq. Figure 4 summarizes
the current spectra (solid circles) with PC2 in (a), PC3 in
(b), and PC4 in (c). As the bias VE2 of the PC is increased,
an additional small but long tail develops, resulting in an
anomalous spectrum that cannot be fitted with a single Fermi
distribution function. The long tails appear on one or both sides
of the peak depending on the location of the spectrometer with
respect to the PC.

For example, injection from PC2 induces an IH region in
(a,σ ) but not in (b,σ ) [inset of Fig. 4(a)]. This is consistent
with the observation that a tail appears only on the left side of
the peak [anomalous excitation in (a, ↑)], by recalling that the
current profiles on the left and right sides of the peak reflect
fa,↑(E) and 1 − fb,↑(E), respectively.

Injection from PC3 should also induce an IH region only
in (a,σ ). This is consistent with the tail appearing on the left
side [excitation in (a, ↑)] as seen in Fig. 4(b). The amplitude
of the tail on the left side is comparable to that in Fig. 4(a).
A small steplike profile on the right side is associated with
the excited state of the QD, where electromagnetic and/or
phonon-mediated energy transfer might be responsible only
for this geometry with a short distance between PC3 and QD
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FIG. 4. Binary tunneling spectra in the IH regions with heat current injected from (a) PC2, (b) PC3, and (c) PC4. Measured current (circles)
is fitted well with the binary spectrum (solid lines) with two temperatures, T

(H)
a,↑ and T

(L)
a,↑ , coexisting in the channel. Each inset shows the

schematic channel geometry with the location of IH regions of interest.

(<0.3 μm) [38]. Therefore this steplike structure is disregarded
in the following discussion.

Injection from PC4 induces IH regions in both (a,σ ) and
(b,σ ), resulting in tails on both sides [excitation in (a, ↑) and
(b, ↑)] in Fig. 4(c). In this case, PC4 excites left moving
plasmons in modes [L, C/S], which drag nonequilibrium
charges in (b,σ ) up to the right of the QD. This gives a tail on
the right side of the peak. However, this measurement point
is ill defined as it is located near the boundary between the
IH region and the unheated upstream region of (b,σ ). This
could be the reason of the small amplitude of the right tail as
compared to the tails in Figs. 4(a) and 4(b). Moreover, the left
moving plasmons in the interacting channels (b,σ ) and (c,σ )
are interrupted by the QD and scatter into the other interacting
region with channels (a,σ ) and (c,σ ). This plasmon scattering
leads another IH region [denoted by IH′ in the inset of Fig. 4(c)]
in (a,σ ), which generates a tail on the left side of the peak. The
small amplitude of the left tail reflects this plasmon scattering.

Apart from the quantitative differences, the unusual tails
appear in all of the IH regions we investigated. As shown by
thin solid lines in Fig. 4, all the spectra in the IH regions can
be fitted well with the binary spectrum

fη,σ (E) = (1 − p)fF
(
E; T (L)

η,σ

) + pfF
(
E; T (H)

η,σ

)
, (3)

which consists of majority carriers at lower temperature T (L)
η,σ

and minority carriers of a fraction p (∼0.1) at high temperature
T (H)

η,σ .
To further demonstrate the validity of Eq. (3), we examine

the case of large excitation voltage, where the second term of
Eq. (1) cannot be neglected. We show in Fig. 5 a spectrum
excited using PC2 under a large excitation voltage of VE2 =
2 meV [panel (i)] and compare it with that without heating
[panel (ii)], plotted in a linear scale. As already shown in
Fig. 4(a), in this configuration heating occurs only in (a,σ )
near the QD, which affects only the left side of the peak at
low bias. In contrast, the spectrum in panel (i) of Fig. 5 shows
a small negative tail (blue hatched region) on the right side,
in addition to the tail on the left side (red hatched region).
This signifies the presence of hot holes as well as hot electrons
in (a, ↑). The whole spectrum including the negative tail is
reproduced well with Eq. (3) as shown by the solid line. The

distribution functions fa,↑(E) and 1 − fb,↑(E) deduced from
the fit are shown by solid lines in the inset, highlighting the
anomalous binary spectrum fa,↑(E) compared to the Fermi
distribution function fF(E) shown by a dashed line.

Binary spectrum can be seen in a wide range of gate voltage,
VPCi , for ith PC with i = 2, 3, and 4. Figure 6 summarizes the
VPC2 dependence of the PC2 conductance in (a) and the fitting
parameters, the fraction p in (b), and two distinct temperatures
T

(H)
a,↑ (circles) and T

(L)
a,↑ (black solid line) in (c), for the binary

spectrum. At this large bias voltage VE2 =1 mV, G2 in Fig. 6(a)
does not show quantized conductance at Gq, which gives
ambiguity in the estimate of D2,σ . The binary spectrum with
high T

(H)
a,↑ is seen in the entire tunneling regime, while T

(L)
a,↑ as

well as Tb,↑ in the unheated region remain low comparable to
the base temperature.
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FIG. 5. Current spectrum in a linear scale (i) with heat injection
from PC2 and (ii) without heat injection. The positive and negative
current tails in the red and blue hatched regions in (i) represent
the excitation of hot electrons and hot holes, respectively, consistent
with the binary spectrum (the solid lines). The deduced distribution
functions fa,↑(E) and 1 − fb,↑(E) are shown in the inset. The binary
spectrum in fa,↑(E) contrasts with a single Fermi distribution function
fF(E) (dashed line).
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PER by

assuming D2,↑ = D2,↓, D2,↓ = 0, and D2,↑ = 0, respectively.

Strikingly, the observed binary spectrum did not decay into
a single Fermi function for any geometries we examined.
The factor p(∼ 0.1) is found to be comparable for various
distances from the PC to the QD, including the shortest
case with PC3 [Fig. 4(b)], 5 μm with PC2 [Fig. 4(a)],
and 10 μm with PC4 in the reversed magnetic field (see
Appendix B and Fig. 10). These distances are much longer
than lel (∼0.1 μm at VE = 1 meV) for electronic relaxation to
plasmons. Therefore, the observed binary spectrum supports
the picture of noninteracting plasmon excitations and the
nonthermalizing character of the 1D edge channels.

D. Comparison of the spectra

The spectra in the DH and IH regions are compared in
the same range of excitation voltages in Fig. 7, where the
horizontal axis is taken as the dot energy ε relative to μa,↑.
The spectrum for the DH region at G1 = 1.5Gq in Fig. 7(a) is
measured at various VE1 by keeping the effective bias constant
(VE1 − VD = 200 μV). Heating in (a, ↑) is seen as broadening
on the left edge of the peak. The linear slope over a few
orders of magnitude in the logarithmic scale of ID suggests
that all carriers in the DH region can be characterized by a
single temperature T (DH) . In contrast, the unusual tail for
the IH region, which can be recognized from VE2 ∼ 200 μV
and becomes prominent at VE2 � 500 μV in Fig. 7(b), can
be characterized by the binary spectrum with parameters T (H)

(gentle slope), T (L) (steep slope), and p.
One can see that T (DH) in the DH region [Fig. 7(a)] is

somewhat higher but comparable to T (H) in the IH region
[Fig. 7(b)], by comparing the spectra at the same excitation
voltages (VE1 = VE2 ∼ 600 μV). This implies the strong
relation between the two spectra. Based on the argument in
Sec. II B, the different spectra in the DH and IH regions can
be understood by considering the amplitudes of the plasmon
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FIG. 7. (a) Tunneling spectra measured in the DH region induced
by PC1 at G1 = 1.5Gq. Its VE1 dependence is taken by changing both
VE1 and VD to keep VE1 − VD = 200 μV. Excited-state features are
indicated by arrows (ES and ES′). (b) Tunneling spectra measured in
the IH region induced by PC2 at G2 = 0.5Gq. The binary spectrum
develops with increasing VE2.

excitations. The channels in the DH region are full of hot
plasmons with large amplitudes as shown in Fig. 1(b), which
seemingly looks like a thermalized state when the system is
measured with a QD spectrometer. In contrast, the channels
in the IH region involve small amplitudes of hot plasmons
in the background of cold plasmons, which could lead to the
anomalous binary spectrum.

We should add some comments on the effect of excited
states in the dot. In Fig. 7(a), a faint kink marked by ES′ and
a steplike structure marked by ES appear when the excitation
voltage VE1 exceeds the typical level spacing (about 200 μV)
of the QD. The former (ES′) can be understood as hot electrons
passing through an excited state, and the latter (ES) can also be
attributed to a complex excitation process to an excited state.
Both of these additional features start to appear at VE1 values
much higher than that at which the heating in the channel
starts to be visible. In contrast, no features associated with the
excited states appear for the IH region, unless VE2 exceeds
2 mV. This is presumably due to the weak coupling (p ∼ 0.1)
between the DH and IH regions.

E. Heat flow

Provided that the binary distribution of Eq. (3) holds
well, the temperatures in DH and IH regions can be related
to each other by considering the heat flow in the system.
The heat current injected from the ith PC is given by
Wi = 1

2Gq
∑

σ Di,σ (1 − Di,σ )V 2
E with the partitioning factor

D(1 − D) [16,20]. This heat should be redistributed over the
four channels. As discussed in Sec II B, excitations in DH
and IH regions are expected to be correlated. For simplicity,
we assume that all carriers in the DH region and the fraction
p of carriers in the IH region share an identical temperature
T

(p)
H while the cold majority (1 − p) in the IH region remains
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H and T

(0)
H , respectively, considering the variation

of kBTbase = 10 (lower bounds) and 13 μeV (upper bounds). (b
and c) The bias voltage VE2 dependence of p in (b) and kBT

(H)
a,↑ ,

kBT
(L)

a,↑ , and kBTb,↑ in (c). The error bars show typical ambiguity in

fitting the binary spectrum. Blue solid lines show T
(0.1)

H , considering
the ambiguity of tunneling probabilities between D2,↑ = D2,↓ =
G2/2Gq (upper bound) and D2,↑ = G2/Gq and D2,↓ = 0 (lower
bound).

at Tbase. This assumption can be justified for the high-energy
spectrum (|ε − μa,↑| 	 kBT

(p)
H ) in the weak coupling limit

(p � 1) of the quantum quench problem shown in Sec. IV B.
This crude approximation allows us to compare the different
experiments for the DH and IH regions. Then, the energy
conservation law suggests that the spectra are expected to share

the same temperature given by T
(p)

H =
√

T 2
base + 3h

(1+p)π2k2
B
Wi .

Figure 8(a) shows the bias-voltage VE1 dependence of
the deduced thermal energy kBTa,↑ in the DH region taken
at G2/Gq ∼ 1.5 (circles) and ∼0.5 (squares). Figures 8(b)
and 8(c) summarize VE2 dependence of the fitting parameters
[p in (b) and kBT

(H)
a,↑ (open circles), kBT

(L)
a,↑ (solid line) and

kBTb,↑ (dotted line) in (c)] for the IH region induced by
PC2. Here we have restricted the ranges VE1 � 0.2 mV and
VE2 � 1.5 meV, where excited states in the QD play no visible
effects in the spectrum. By choosing a typical value of p = 0.1
from Fig. 8(b), one can see that kBTa,↑ in Fig. 8(a) as well as
kBT

(H)
a,↑ in Fig. 8(c) follow reasonably well the same form

of T
(0.1)

H . This suggests that the carriers in the DH region
and the minority carriers in the IH region indicate a similar
spectrum. Quantitative disagreement, such as the deviation of
kBT

(H)
a,↑ from a linear dependence in Fig. 8(c), might come

from this crude approximation and possible energy-dependent
coupling between the channels [25]. Note that the temperature
T

(L)
a,↑ [solid line in Fig. 8(c)] of the majority carriers always

remains cold. Therefore, the total energy is well conserved in
the four channels with negligible heat leakage to other degrees
of freedom, which ensures that the channels are effectively
isolated from the environment. The same temperature T

(0.1)
H is

also plotted in Fig. 6(c), where one can see that the observed
T

(H)
a,↑ is smaller but comparable to T

(0.1)
H . These evidences

support that the excitations in DH and IH regions are strongly
correlated.

Note that the above analysis is based on the assumption
where the energy distribution can be approximated by Fermi
distribution in the DH region and the binary distribution in
the IH region. Rigorous analysis should be made with the TL
model, which is beyond the scope of this paper. However,
simulations of quantum quench, a time-dependent problem
for initial states prepared at different temperatures, strongly
support this approximation, as shown in the next section.

IV. SIMULATIONS WITH THE TL MODEL

A. Plasmon eigenmodes

Plasmon modes in the edge channels can be conveniently
described by a capacitance model [24,31]. Interaction inside or
between quantum Hall edge channels can be parametrized by
capacitances per unit length, Cch for intrachannel coupling
and Cij for interchannel coupling between ith and j th
channel [i,j ∈ {(r, ↓),(r, ↑),(�, ↑),(�, ↓)}]. For simplicity,
we only consider nearest neighbor couplings with CX between
copropagating channels and CZ between counterpropagating
channels, as shown in Fig. 1(a). We assumed that Cch is
identical for all channels. Excess charge density ρi and
potential Vi of ith channel are related by the coupling
capacitances; ρi = CijVj with the capacitance matrix of the
form

C = Cch

⎛
⎜⎝

1 + cX −cX 0 0
−cX 1 + cX + cZ −cZ 0

0 −cZ 1 + cX + cZ −cX

0 0 −cX 1 + cX

⎞
⎟⎠

(4)
in the order of the channel index i = (r, ↓),(r, ↑),(�, ↑),
and (�, ↓). Here, cX = CX/Cch and cZ = CZ/Cch denote
the normalized coupling strengths. Charge conservation in
each channel can be represented by ∂ρi/∂t = −SiGq∂Vi/∂x

with the chirality S(r,σ ) = 1 for right-moving channels and
S(�,σ ) = −1 for left-moving channels, and Gq = e2

h
. Coupled

wave equation of the plasmons can be written in the form

∂ρi/∂t = −Mij∂ρj/∂x (5)

with Mij = SiGq{C−1}ij .
The plasmon eigenmodes can be obtained by diagonalizing

the matrix M. The transformation matrix T that satisfies
T†MT = diag(vm) describes the plasmon eigenmode ρ̃m and
the velocity vm for m = [R,C], [R,S], [L,S], and [L,C]. For
a weak coupling limit cZ � cX � 1, eigenmodes can be
approximately written as

ρ̃R,C � (1,1 − cZ/2cX, − cZ/2,0)/
√

2 (6)

ρ̃R,S � (−1,1 + cZ/2cX, − cZ/2,0)/
√

2 (7)

ρ̃L,S � (0, − cZ/2,1 + cZ/2cX, − 1)/
√

2 (8)

ρL,C � (0, − cZ/2,1 − cZ/2cX,1)/
√

2 (9)

with the velocity vR/L,C � ±v0(1 − cZ/2) for charge modes
and vR/L,S � ±v0(1 − 2cX − cZ/2) for spin modes, where
v0 = Gq/Cch is the uncoupled plasmon velocity in a single
channel. These plasmon eigenmodes are schematically shown
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in Fig. 1(a). Note that these plasmon eigenmodes are fully
consistent with the TL model, as shown in Sec. IV B.

When a unit charge is injected into (�, ↑), it can be
expressed as

(0,0,1,0) �
√

2s(ρ̃R,C + ρ̃R,S) + (ρ̃L,C + ρ̃L,S)/
√

2 (10)

with a small fractionalization ratio s = cZ/4 = CZ/4Cch. This
explains large and small plasmon amplitudes in the DH and IH
regions, respectively, as schematically illustrated in Fig. 1(b).

The above capacitance model is convenient for describ-
ing different coupling parameters between the channels.
If required, the capacitances can be obtained by solving
electrostatic potential around the edge channels [24]. Actually,
the model has been applied to reproduce plasmon transport in
edge channels including plasmon interferrometers [31]. In this
paper, we use the matrix T and parameters cX and cZ to solve
the quench problem shown in the next subsection.

B. Quantum quench

We have experimentally studied how the energy spec-
trum changes along the interacting edge channels under
continuously injecting nonequilibrium electrons from a PC
(spatial analog of quantum quench). This can be compared
with the standard quantum quench problem asking how the
momentum spectrum changes with time in the interacting
channels after preparing a nonequilibrium state. Here we apply
the quench problem to the counterpropagating channels to see
the emergence of a binary spectrum.

We followed the approach taken by Kovrizhin and Chalker
to study the quench problem for two copropagating channels
(see Refs. [14,36] and references therein). Here, four infinitely
long channels with channel index j (= 1–4), i.e., two right
movers (j = 1 and 2) and two left movers (j = 3 and 4), are
initially prepared in independent thermal equilibrium at dif-
ferent temperatures Tj (T1 = T3 = T4 = Tbase and T2 = TH >

Tbase). The initial state of each channel at t = 0 is described
by the correlation function Gj (x; t = 0) = G(eq)

Tj
(x), where x is

distance and G(eq)
T (x) = i

2�
(πkBT/�v0)/ sinh [(πkBT/�v0)x]

is the correlation function in thermal equilibrium at tem-
perature T . Corresponding momentum distribution function
fj (k,t = 0) is the Fermi distribution function f

(eq)
T (k) =

1/[exp (�v0k/kBT ) + 1] at T = Tj .
Time evolution of the system is calculated based on the

standard bosonization technique for the TL model [39]. The
interaction parameters often described by g’s are equivalent
to those in the capacitance model in Sec. IV A; i.e., the so-
called g4 and g2 parameters represent the diagonal and off-
diagonal elements, respectively, of C−1. It should be noted that
backscattering with the so-called g1 parameter, which diverts
the system away from the TL model, is well suppressed in
the edge channels. The Bogoliubov transformation can also
be performed with the same matrix T. Then, the dynamics
is simply described by noninteracting plasmon modes with
constant velocities. For the independent initial states at Tj ,
the equal-time correlation function Gj (x; t) at time t can be
described by a product of initial correlation functions G(eq)

Tj
(x)

of all channels as

Gj (x; t) =
∏
j ′

[
G(eq)

Tj ′ (x)
]pjj ′

×
∏
m,m′

⎡
⎣G(eq)

Tj ′ (x + 
vm,m′ t)

G(eq)
Tj ′ (
vm,m′ t)

⎤
⎦

cjj ′mcjj ′m′

, (11)

with the power pjj ′ = ∑
m |TmjTmj ′ |2 that satisfies

∑
j ′ pjj ′ =

1. cjj ′m represents the coupling between the channels j and
j ′ through the plasmon mode m, and 
vm,m′ = vm′ − vm′ is
the velocity difference between the modes m and m′. For the
steady state, Gj (x; ∞) at t → ∞ is given by a power mean of
initial correlation functions as

Gj (x; ∞) =
∏
j ′

[
G(eq)

Tj ′ (x)
]pjj ′

. (12)

For the weak coupling limit (cZ � cX � 1), we have pjj ′ ∼
0.5 between copropagating channels (SjSj ′ = 1) while pjj ′

(∼ s2) � 1 between counterpropagating channels (SjSj ′ =
−1). Finally, the momentum distribution function f

(st)
j (k) is

obtained from the Fourier transform of Gj (x,∞).
When only one channel (j = 2) is heated to TH with others

kept at Tbase in the initial condition, Eq. (12) can be simplified
as

Gj (x; ∞) = G(eq)
Tbase

[
G(eq)

TH
/G(eq)

Tbase

]pj2
. (13)

Focusing on the correlation function at shorter distance
(|x| � �v0/kBTH) or the spectrum at larger momentum (|k| �
kBTH/�v0), the ratio X ≡ G(eq)

TH
/G(eq)

Tbase
∼ 1 to the power of

p ≡ pj2 � 1 for j = 3 or 4 can be approximated to Xp � 1 +
p(X − 1) + O((X − 1)2). This yields Gj � (1 − p)G(eq)

Tbase
+

pG(eq)
TH

. Its Fourier spectrum exhibits a binary spectrum of the
form

f
(st)
j=3,4(k) � (1 − p)f (eq)

Tbase
(k) + pf

(eq)
TH

(k) (14)

in the counterpropagating channels (j = 3 or 4). In this way,
the appearance of an approximate binary spectrum is suggested
in the quantum quench problem. In contrast, electronic
spectrum in the copropagating channels (j = 1 and 2) can
be approximated to f

(st)
j=1,2(k) � f

(eq)
TH

(k) by neglecting an
anomaly around k = 0. Therefore, the two spectra in counter-
and copropagating channels share an identical spectrum. This
characteristics is used in the analysis of heat flow in Sec. III E.

The exact solution of the spectra are neither the binary
spectrum nor the Fermi distribution function. The accurate
spectrum can be obtained by performing a Fourier transform
of Eq. (13). The solid lines in Figs. 9(a) and 9(b) show the initial
momentum distribution functions f

(ini)
j (k) and the steady-state

distribution function f
(st)
j , respectively, plotted as a function of

the normalized momentum �v0k/kBTbase. Here, we assumed
TH = 10Tbase and coupling parameters cX = 0.8 and cZ = 0.6.
The parameters, which are realistic in the capacitance model
in Sec. IV A, were chosen to imitate the binary spectra in
Fig. 4. The copropagating channels 1 and 2 resulted in similar
spectra (f1 ∼ f2), which resemble a single Fermi distribution
function shown by the dashed line. In contrast, anomalous
spectra (f3 and f4) emerge in the counterpropagating channels
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FIG. 9. Momentum distribution functions for (a) initial states
in noninteracting channels and (b) steady state at t = ∞ after the
interaction is turned on at t = 0. Each trace is offset for clarity.
Initially, channels are in thermal equilibrium at T1 = T3 = T4 = Tbase

and T2 = 10Tbase in (a). Nonequilibrium steady states are reached at
t = ∞ in (b), where quasibinary spectrum emerges in counterprop-
agating channels 3 and 4. The dashed and dash-dotted lines show
single and binary Fermi distribution functions, respectively, adjusted
to the spectra based on the TL theory (solid lines). The schematic
channel geometries without and with interaction are shown in the
inset of (a) and (b), respectively.

3 and 4. The spectrum can be approximated by a binary
spectrum composed of hot and cold carriers, as shown by
the dash-dotted line. In this range of plots in Fig. 9(b), the
temperature (the inverse of the slope) of hot minority carriers
in the counterpropagating channels is somewhat lower than
that in copropagating channels.

In this way, the unusual binary spectrum can emerge in
quantum-quench simulation. The simulation can be compared
to the experiment by regarding the heated channel (j = 2) as
(�, ↑) in Fig. 1(b), spectra f1 and f2 as those in the DH region,
and spectra f3 and f4 as those in the IH region.

V. DISCUSSION

A. Coupling strength

The factor p deduced from the fits, which ranges from
0.03 to 0.2 in our PCs, measures the coupling between the
counterpropagating channels across the isolation gate (Giso)
of the width w ∼ 0.1 μm. This can be compared with those
in previous studies with nonspectroscopic means. The time-
domain charge measurement in Ref. [24] has demonstrated
charge fractionalization of an incident wave packet, which
yields the fractionalization ratio of r = 0.04 in the amplitude,
for the gate width w ∼ 1 μm. Based on the model shown
in Sec. IV, this corresponds to p ∼ 4r2 ∼ 0.006 in our
parameter. Bolometric detection of heat transfer between
counterpropagating channels in Ref. [25] have identified the
interaction strength |1 − K| = 0.1 ∼ 0.25, which corresponds
to p ∼ 4(1 − K−1)

2 = 0.03 ∼ 0.16, depending on the gate

voltage on the isolation gate of width w ∼ 0.2 μm. Since
the fraction p should increase with decreasing the separation
of the counterpropagating channels, p ∼ 0.1 in our case is
reasonable for w ∼ 0.1 μm.

B. Analogy with quantum quench

The time dependence of the momentum spectrum (quantum
quench) in Sec. IV can be related to the spatial dependence of
the energy spectrum studied in Sec. III. The differences and
similarities between them are summarized as follows.

Firstly, the energy (momentum) spectrum is given by the
Fourier transform of the equal-position (equal-time) correla-
tion function. Considering the noninteracting nondispersive
plasmon modes with the constant velocities, the energy
spectrum and the momentum spectrum should be related to
each other [29,36,40].

Secondly, the initial state that can be prepared by a PC
shows a double-step distribution function [see the central inset
of Fig. 1(b)], which is not in thermal equilibrium assumed
in the quantum-quench simulation. Previous experiments for
two copropagating channels [20], as well as our results in
Sec. III B, resulted in a spectrum close to Fermi distribution
function, which is similar to the spectra f1 and f2 in
Fig. 9(b). This behavior can be reproduced in simulations
of quantum quench starting from a double-step function in
one channel [27] as well as from thermal equilibrium states at
different temperatures [36]. This suggests that these different
initial states do not play significant roles in the final state for
the problem. Therefore, quantum quench starting from a Fermi
distribution function is not a bad assumption to validate the
appearance of binary spectrum in the system.

Thirdly, different from the quantum quench problem, the
length of the interacting region in our experiment is finite.
Thanks to the chiral nature of quantum-Hall edge channels,
the plasmon transport is unidirectional particularly outside
the interacting region. Nonequilibrium charge that left the
interacting region never returns back. This prevents unwanted
effects in the leads and dissipative ohmic contacts, and allows
us to neglect the finite-length problem. Such unidirectional
transport cannot be expected for conventional 1D wires
connected to diffusive leads. In this way, our experiment can
be regarded as a spatial analog of quantum quench.

C. Conserved quantities during the transport

Nonequilibrium transport in integer quantum Hall edge
channels has been investigated for a few decades. When
the scattering between the channels is well suppressed, the
chemical potential of each channel is conserved during the
transport, allowing the system to have independent charge
distributions on the channels [17,18]. When the coupling to
the environment, such as phonon bath, is negligible, the heat or
the electron temperature of the system is conserved during the
transport [16,25,41]. More intriguingly, when the interaction
is not fully ergodic to cause thermal equilibration, the system
may have infinite numbers of conserved quantities [42]. Our
spectroscopic analysis has successfully revealed nonequilib-
rium electronic distribution with, at least, four conserved
quantities (the binary spectrum parametrized by T (H), T (L),
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FIG. 10. Spectrum after traveling 10 μm. (a) The energy diagram
at a negative bias μa,↑ − μb,↑ = eVD = −80 μeV. (b) The location
of DH and IH regions in the schematic channel layout. (c) Current
spectrum of the QD measured with PC4 in the reversed magnetic
field. Binary spectrum is seen on the left side of the peak only when
the PC4 conductance is set in the tunneling regime (G4 � 0.5Gq).

p, as well as μ), which is greater than two (μ and T ) for trivial
cases.

The TL theory suggests that the plasmons are noninteract-
ing and thus should be conserved during the transport. This
is supported by the fact that the nonequilibrium spectrum is
sustained for a long distance. This is attractive for carrying
much information as plasmon excitations rather than short-
lived electronic excitations [43,44].

D. Possible relaxation mechanisms

In previous reports, other energy transfer mechanisms such
as phonons [45] or impurities [46] have been discussed to
explain the charge and heat transfer. Such extrinsic effects
with random processes are expected to result in a continuous
thermalization into a trivial Fermi distribution. This contrasts
with our binary spectrum independent of the propagation
length (from ∼0 to 10 μm), which implies that the extrinsic
thermalization processes becomes relevant only at longer dis-
tances. This signifies the importance of Coulomb interaction
in 1D systems prepared in the integer quantum Hall regime.

VI. SUMMARY

We have investigated the energy spectrum of nonequi-
librium states in quantum-Hall Tomonaga-Luttinger liquids.
When nonequilibrium charge is injected from a PC, a nontrivial
binary spectrum consisting of high- and low-temperature
components appears in the IH region, while a seemingly
thermalized spectrum appears in the DH region. The binary
spectrum is sustained even after traveling 5–10 μm, much
longer than the length for electronic relaxation (about 0.1 μm),
without showing significant thermalization. This can be
compared with the simulation of quantum quench problem,
which also suggest the emergence of an approximate binary
spectrum as a nonequilibrium steady state. The long-lived
binary spectrum implies that the system is well described
by noninteracting plasmons, which suggests that low-energy

excitations of edge channels in the integer quantum Hall
regime can be well understood as a TL liquid.
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APPENDIX A: FITTING PROCEDURE

The fitting curves in Figs. 3–5 are obtained by using Eq. (1)
with a constant current level I0 as a free parameter. The dot
energy ε = α(VC − VC,0) is converted from the gate voltage
VC with a factor α � 0.018e from an offset VC,0. For the
spectrum in the DH region in Fig. 3(b), the Fermi distribution
functions [Eq. (2)] with free parameters Ta/b,↑ and μa/b,↑
are used. When binary spectrum is found in the IH regions
(Figs. 4 and 5), the binary spectra of the form Eq. (3) with
free parameters pa/b,↑, T

(L)
a/b,↑, T

(H)
a/b,↑, and μa/b,↑ are used. We

fitted Ifit(ε) to the measured data Imeas(ε) by minimizing the
residual error

∫
[log Imeas(ε) − log Ifit(ε)]2dε evaluated in the

logarithmic scale to focus on the low-current profile. In order
to obtain reliable fitting, data with current level smaller than
10–20 fA were discarded. The hot minority spectrum with
wide current level ranging from 10–200 fA is analyzed. Since
small fitting error always exists near the transition between
the hot and cold spectrum, the fitting involves ambiguity as
shown by error bars in Figs. 6(c) and 8(c). When T (H) is high,
the spectrum is extended over a wide energy range greater
than the typical energy spacing of 200 μeV. We neglected any
effects from the excited states and energy-dependent tunneling
rate, which might give additional error in the estimate of T (H).

APPENDIX B: BINARY SPECTRUM AFTER
TRAVELING 10 μm

The spectrum measured at the farthest position downstream
in the IH region is obtained with PC4 in the reversed field at
B = −5.9 T. As shown in Fig. 10(b), QD is located 10 μm
downstream in the IH region from PC4. As shown in Fig. 10(c),
a binary spectrum emerges on the left side of the peak only
when a large excitation voltage (VE2 = 2 mV) is applied across
PC4 in the tunneling regime (G4 � 0.5Gq at VG4 = −0.9 V).
The profile can be fitted with the binary spectrum of hot
minority carriers (kBT

(H)
b,↑ � 350 μeV and p � 0.25) and cold

majority carriers (kBT
(L)

b,↑ � 15 μeV) as shown by the thin solid
line. The large current on the right of the peak is associated
with a similar binary spectrum detected with the next Coulomb
blockade peak. Note that, for this experiment, negative bias
VD = −80 μV is applied to the channel (b,σ ) to make the
transport go from the right to the left as shown in Fig. 10(a).
Therefore, the spectrum of (b, ↑) appears on the left side of
the peak, which is different from the data set in Fig. 4.
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