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INVERSE SCATTERING AT A FIXED ENERGY FOR
DISCRETE SCHRODINGER OPERATORS ON THE
SQUARE LATTICE

by Hiroshi ISOZAKI & Hisashi MORIOKA (*)

ABSTRACT. — We study an inverse scattering problem for the discrete Schro-
dinger operator on the square lattice Z%, d > 2, with compactly supported poten-
tial. We show that the potential is uniquely reconstructed from a scattering matrix
for a fixed energy.

RESUME. —  Nous étudions un probléme inverse de diffusion pour 'opérateur
de Schrédinger discret sur un réseau carré Z%, d > 2, avec un potentiel & support
compact. Nous montrons que le potentiel est uniquement determiné en utilisant la
matrice de diffusion a énergie fixée.

1. Introduction
1.1. Inverse scattering

Let Z¢ = {n = (n1,---,nq);n; € Z, 1 < i < d} be the square lat-
tice, and e; = (1,0,---,0),--- ,eq = (O,--- 70,1) the standard basis of
7. Throughout the paper, we shall assume that d > 2. The Schrédinger
operator H on Z% is defined by

H=Hy+V,
where for f = {fA(n)}nezd € (2(Z%) and n € Z4

~

d
(Bof)(n) =~ 3 S_ {Fln+ ) + Fln— )} + 570m)
j=1
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o~

(VF)(n) = V(n)f(n).

We impose the following assumption on V:
(A) V is real-valued, and 17(11) = 0 except for a finite number of n.

Under this assumption, o(Hy) = 0ess(H) = [0,d], and the wave operators
(1.1) W =5 —limeHetHo  (in (2(2%))

t—+oo
exist and are asymptotically complete, i.e. their ranges coincide with
Hae(H), the absolutely continuous subspace for H. Hence the scattering
operator
(1.2) §=WH)ywH)
is unitary. Associated with }AIO, we have a unitary spectral representation

Fo : C2(Z%) — L2((0,d); L2(My); dN),

where
d
(1.3) MA:{xer;d—Zcosxj:Q)\},
j=1
(1.4) T¢ = R?/(27Z%) = [—7, «]%.

Then ]?0§ (.7?0)* has the following direct integral representation
d
0

Here S()) is a unitary operator on L?(M,), and is called the S-matriz.

Our main concern in this paper is the inverse scattering, i.e. reconstruc-
tion of the potential V from the knowledge of the S-matrix. In [10] (see
also [6]), it has been proven that given S(A) for all energy A € (0,d) \ Z,
one can uniquely reconstruct the potential.

It is worthwhile to recall the case of the continuous model, i.e. the
Schrédinger operator —A + V(z) in L?(R%). In this case, it is known that
only one arbitrarily fixed energy A > 0 is sufficient to reconstruct the com-
pactly supported (and also exponentially decaying) potential V' (x) from the
S-matrix S(A). This was proved for d > 3 in 1980’s by Sylvester-Uhlmann
[22], Nachman [15], Khenkin-Novikov [12], Novikov [18]. There are two
methods. One way is applicable to the compactly supported potential and
based on the equivalence of the S-matrix and the Dirichlet-Neumann map
(called D-N map hereafter) for the boundary value problem in a bounded
domain. The other way relies on Faddeev’s theory for the multi-dimensional
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inverse scattering, in particular, on Faddeev’s scattering amplitude, and al-
lows exponentially decaying potentials. In both cases, Sylvester-Uhlmann’s
complex geometrical optics solutions to the Schrodinger equation, or Fad-
deev’s exponentially growing Green function played a crucial role. (See e.g.
an expositiory article [9].) However, since both of these methods use the
complex Born approximation, the case d = 2 remained open rather a long
time. Note that for the potential of the form coming from electric conduc-
tivities, the 2-dim. inverse scattering problem for a fixed energy was solved
by Nachman [16]. See also [8]. Recently Bukhgeim [2] proved that, based on
Carleman estimates, the D-N map determines the potential for the 2-dim.
boundary value problem. For the partial data problem, see [7]. This result
can be applied to the inverse scattering and to derive an affirmative answer
to the uniqueness of the potential for a given potential of fixed energy.

1.2. Main result

To study the inverse scattering from a fixed energy for the discrete model,
we adopt the above-mentioned former approach. Namely, we assume that
the potential is compactly supported, and derive the equivalence of the
S-matrix and the D-N map in a bounded domain.

We take a bounded set ;,,; C Z¢ which contains the support of ‘A/, and
define H;ny = Ho + V on Qi with Dirichlet boundary condition (see §6).
We need to restrict the energy in some interval. Let

[ (0,1)u(1,2), for d
(16) Id_{ (0,1/2)U(d—1/2,d), for d

The following theorem is our main aim.

~

THEOREM 1.1. — Fix A € I\ o(H;y:) arbitrarily. Then from the S-
matrix S(\), one can uniquely reconstruct the potential V.

Our proof not only states the uniqueness, but also explains the procedure
of the reconstuction of the potential. In fact, in Theorem 7.6, we derive
an explicit formula relating the S-matrix with the D-N map, which is a
discrete analogue of the formula known in the continuous case ([15], [8],
[17]). Furthermore, in the discrete case, there exists a finite procedure for
the reconstruction of the potential from the D-N map, which is a discrete
layer-stripping method.

TOME 65 (2015), FASCICULE 3
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1.3. The plan of the proof

After the preparation of basic spectral results in §2 and §3, the first task
is to relate the S-matrix with the far-field pattern at infinity of the gener-
alized eigenfunction of H. This is done in §4 by observing the asymptotic
expansion at infinity of the Green operator of H.In §5, we introduce the
radiation condition for the Helmholtz equation and prove the uniqueness
theorem for the solution. We then study the spectral theory for the exterior
problem in §6, with the aid of which we obtain in §7 the equivalence of the
S-matrix and the D-N map for a boundary value problem in a bounded
domain (Theorem 7.6). The potential is then reconstructed from the D-N
map in §8 via a constructive procedure.

Although the main stream of the proof is the same as the continuous
case, we need to be careful about the difference in the case of the discrete
model. The first one is the asymptotic expansion of the resolvent at infinity.
This is based on the stationary phase method on the surface M) defined by
(1.3), which is not strictly convex in general. This is the reason we restrict
the energy on I;. The second one, which is more serious, occurs when
we compare the far-field patterns of solutions to Schrodinger equations
in the whole space with those of the exterior domain. We need a Rellich
type theorem (see Theorem 5.7) and a unique continuation property for the
discrete Helmholtz equation, which do not seem to be well-known. However,
the former’s precursor has been given by Shaban-Vainberg [21], and the
latter follows rather easily from it. As a byproduct, it proves the non-
existence of embedded eigenvalues for H ([11]). We then go into the final
step of computing the potential from the D-N map. In the continuous case,
this is an elliptic Cauchy problem from the boundary, hence is ill-posed.
However, in the discrete case, this is a finite dimensional problem, therefore
a finite computational procedure. The whole proof does not depend on the
space dimension. In contrast, it took a long time to get the 2-dim. result
in the continuous case.

1.4. Remarks for references

There are important precursors of this paper. The work of Eskina [6]
has already announced the result of the inverse scattering for discrete
Schrodinger operators. In particular, this paper stresses the effectiveness
of several complex variables in the study of discrete Schrédinger operators.
Shaban-Vainberg [21] studied the spectral theory of discrete Schrédinger

ANNALES DE L’INSTITUT FOURIER
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operators. They introduced the radiation condition, proved the limiting ab-
sorption principle, and derived the asymptotic expansion of the resolvent
at infinity including the case of non-convex surface.

The computation of the D-N map for the discrete interior boundary value
problem was done in the work of Oberlin [19]. See also Curtis-Morrow [4]
and Curtis-Mooers-Morrow [3].

1.5. Notation

C’s denote various constants. For any x,y € R, -y = 2191 + - + Tqyq
denotes the ordinary scalar product in the Euclidean space where z; and y;
are j-th component of  and y respectively. For any = € R?, |z| = (z-x)/?
is the Euclidean norm. Note that even for n = (ny,--- ,ng) € Z%, we use
In| = (Z?:l In;|?) /2 For two Banach spaces X and Y, B(X;Y") denotes
the space of bounded operators from X to Y. For a self-adjoint operator
A on a Hilbert space, 0(A), ess(A), Tagisc(A), 0qc(A) and 0,(A) denote
its spectrum, essential spectrum, discrete spectrum, absolutely continuous
spectrum and point spectrum, respectively. For a set S, #S denotes the
number of elements in S. We use the notation

=0 +tHY2 teR.

2. Momentum representation
2.1. Discrete Fourier transform

From the view point of dynamics on the lattice, the torus T¢ in (1.4)
plays the role of momentum space. Let & be the unitary operator from
02(Z%) to L?(T9) defined by

U P @) = @02 Y Fnye e,

nezd

Using this discrete Fourier transformation, the Hamiltonian H is repre-
sented by

H=UHU*=Hy+V, Ho=UHyU*, V=UVU",

where Hj is the multiplcation operator:

(2.1) Hy = %(d - icosxj) =: h(z),

TOME 65 (2015), FASCICULE 3
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and V is the convolution operator
(Vu)(z) = (2m) 4> V(w — y)uly)dy,

V() = (20) d/zzv

nezd

2.2. Sobolev and Besov spaces

We define operators ]/\7]' and N; by
~ o~ —~ . ) a
(Ni(0) =nif(n), N;=UNU* =iz—.
Lj

We put N = (Ny,---,Ny), and let N2 be the self-adjont operator defined
by

d
N?*=) N}=-A, on T
j=1

where A denotes the Laplacian on T¢ = [—7, 71]¢ with periodic boundary
condition. We put

IN| = VN? = V-A.
For s € R, let H*® be the completion of D(|IN|*) with respect to the norm
l[ulls = [{(N) ] :
H* = {ue D'(T; [lulls = [{N)*ul| < oo},
where D’'(T¢) denotes the space of distribution on T¢. Put H = H° =
L?(T%).

For a self-adjoint operator 7', let x(a < T < b) denote the operator
x1(T), where xr(A) is the characteristic function of the interval I = [a,b).
The operators x(T' < a) and x(7" > b) are defined similarly. Using the
series {r;}52, with r_; = 0, 7; = 27 (j > 0), we define the Besov space B
by

_ il = S 12
B={ren:|fls = D orIxtri < INL< )l < o}

Its dual space B* is the completion of H by the following norm

/2
[ulls- = Sgpr Plx(rj—1 < IN| < rj)ul.
]/

The following Lemma 2.1 is proved in the same way as in [1].

ANNALES DE L’INSTITUT FOURIER
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LEMMA 2.1. — (1) There exists a constant C' > 0 such that

1 1/2
o < (s (N < R)ul?) <
R>1

Therefore, in the following, we use

[[ul

1 1/2
o = (s £ INONT < Ryul?)
R>1
as a norm on B*.
(2) For s > 1/2, the following inclusion relations hold :
H CBCHYPCHCH P B CcH™

We also put H = ?2(Z%), and define H#, B, B* by replacing N by N.
Note that H® = U*H?® and so on. In particular, Parseval’s formula implies
that

lullfe = 1@1%, = Y (1+ nf*)*[a(n)P,
nezd
= |lal%. —Sup* > lan

\n\<R

u(n) being the Fourier coefficient of u(z).

2.3. Resolvent estimate

LEMMA 2.2. — (1) o(Hy) = 04.(Ho) = [0,d].
2) UESSLH) =100,d], odisc(H) CR\[0,d].
(3) op(H)N(0,d) =0.

Proof. — The assertions (1), (2) follow from (2.1) and Weyl’s theorem.
The assertion (3) is proven in [11]. O

Let R(z) = (H — z)~ L.

THEOREM 2.3. — (1) Let s > 1/2 and A € (0,d) \ Z. Then there exists
a norm limit R(A £ 40) := lim._,o R(A & i€) € B(H®;H~°). Moreover, we
have

(2.2) bup |R(A + i0)]| < 00.

B(B;B")

for any compact interval J in (0,d) \ Z. The mapping (0,d) \Z > X
R()\ +40) is norm continuous in B(’Hs H- ) and weakly continuous in

TOME 65 (2015), FASCICULE 3
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B(B;B*).
(2) H has no singular continuous spectrum.

For the proof of Theorem 2.3, see Lemma 2.5 and Theorem 2.6 of [10].
Note that

(2.3) Vh(z) = 0 <= h(z) € {0,1,--- ,d}.
This is the reason why the set of thresholds {0,1,--- ,d} appears.

3. Spectral representations and S-matrices

We recall spectral representations and S-matrices derived in §3 of [10].

3.1. Spectral representation on the torus

We begin with the spectral representation in the momentum space. Let

us note
1 d d 2
= i(d_ ]Z:;cosxj) = ;sinQ (?J) ,

which suggests that the variables y = (y1,--- ,%4) € [~1,1]%:
y; = sin %, x; = 2arcsiny;
are convenient to describe Hy. Note that for A € (0,d) \ Z
(31)  z(VA) = (2 arcsin(V\0y), - - - ,Qarcsin(ﬁﬁd» , fe s
gives a parametric representation of
(3.2) My = {z € T%; h(z) = A}.
We equip M, with the measure

dM), = Wj(ﬁe)de,

d
- osxj/2 1;[ /1_%

zg

X () being the characteristic function of [—1,1]¢. Then we have
dM)

dz = J(y)dy = dMy d\, dM, = ——>—
|Vah(z)|

ANNALES DE L’INSTITUT FOURIER
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where dM) is the measure on My induced from dx. Let L?(M)) be the
Hilbert space with inner product

(0, ¥)L2(a1y) :/M b dM,.

A

We define Fo(X)f = Trar, f, where Trpy, is the trace on M. More precisely,
(3.3) (Fo(NF) (6) = f(x(VA0)).
It then follows for Ry(z) = (Ho — 2)~!

L (Ro(A+10) = Ro(r — i0)), 9) 20ty = (FoN) 2 Fo(Ng) 12ars)-

2me
for A € (0,d)\ Z and f, g € C'(T%). We then have by (2.2)
(3.4) Fo(A) € B(B; L(My)).

Using this formula, we can derive the spectral representations of Hy and
H. However, we omit it.

3.2. Spectral representation on the lattice

We define the distribution §(h(z) — \) € D'(T¢) by
[ 1@3th() =Nz = [ j@)dids, £ e cx(r.
Td My
Then, from the definition of Fo(A)*:
(]:0(/\)f7 ¢)L2(MA) = (f7 ]:0()\)*¢)L2(Td)7
we see that Fo(A\)* defines a distribution on T¢ by the following formula

Fo(N)d = ¢(x)d(h(x) = A).

Here the right-hand side makes sense when, for example, ¢ € C*(M))
and is extended to a C'*°-function near My. Then Fo(A)*¢ = U*Fo(A)*¢
is computed as

(2) /2 /T TG0 (h(x) — N

a5 —em [ emoany

—my i [ a3 I S a an
Sd—l

TOME 65 (2015), FASCICULE 3
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In the lattice space, we define (9 (X, ) {d) ©)(n, A, 0)}n€Zd’ where
(3.6)
PO (n, ), 0) = (2w)*d/27(ﬁ2)d72eim(ﬁ%(ﬁe)
ein-z(VA0)
H?Zl cos (z;(VA0)/2) '

Here x(y) is the characteristic function of [—1,1]%, and x(v/\) is defined
by (3.1). By (3.5) and (3.6), we have for ¢ € L?(M))

(Fo(N)*6)(n) = (2m)~/2 / () iy

= (2m) 220 (VA) I (VA0)

= 0O (n, A, 0)(z(VA0)) do

gd—1

We can also see for rapidly decreasing fon z4

(FoNN(@(VA0)) = (2m) =42 37 emmeVA0 f(p),

nezd
The spectral representation for H is constructed as follows. We put
37 FEO) = F(\) (1 “VR(\ =+ m)) . Ae(0,d)\ Z.
Then by (3.4) and (2.2)
FE(\) € B(B; L2(M))).
We define the operator F&) by (]?(i)f) ) = (i)( )f for f e B.

THEOREM 3.1. — (1) F&®) g uniquely extended to a partial isometry
with initial set H,.(H) and final set L*(T%). Moreover it diagonalizes H:

(38) (FEHKN) = MFDF)N),  F e HaelH).

(2) The following inversion formula holds:

(3.9) F=s—lim [ FON(FOHNN, [ e HalH),

N—o0 In

where Iy is a union of compact intervals in (0,d) \ Z such that Iy —
(0,d) \ Z.
(3) FE(\)* € B(LA(M,); B*) is an eigenoperator for H in the sense that

(H=NFHON6=0, ¢eL*(M,).
(4) The wave operators

W& =g — lim eitH e —itHo
t—+oo

ANNALES DE L’INSTITUT FOURIER
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exist and are complete. Moreover,

o~

W = (FO) 7.

3.3. Scattering matrix

The scattering operator S is defined by
§— ().
We conjugate it by the spectral representation. Let
S = FoS(Fo)",
which is unitary on L2((0,d); L2(M,); d)). Since S commutes with Hy, S
is written as a direct integral

S= BS(\)dA.
(0.d)

The S-matrix, (), is unitary on L?(M,) and has the following represen-
tation.

THEOREM 3.2. — Let A € (0,d) \ Z. Then S(\) is written as
S(A) =1-2miA(N),

where

~

(3.10) A\ = Fo(N) (1 ~VRO+ m)) V) = FHONVE N,

and is called the scattering amplitude.

4. Asymptotic expansion of the resolvent at infinity
4.1. Stationary phase method on a surface

Let S be a compact C>®-surface in R? of codimension 1, and dS the
measure on S induced from the Euclidean metric. For a(z) € C*°(S) and
k € R, we put

(4.1) I(k) = /S ¢ R a(2)dS.

TOME 65 (2015), FASCICULE 3
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THEOREM 4.1. — Let N(x) be an outward unit normal field on S, and
W (z), K(x) the Weingarten map and the Gaussian curvature at x € S,
respectively. Assume that there exists a finite number of points xg) € s,
j=1,--- v, such that

K/Ik| = £N (),
and that K(x(ij)) #0,j=1,---,v. Then we have as p = |k| = o0

—(d— e i
I(k) = p~ @023 ek 4 (o))

(4.2) o
4 p (a2 Zeik-z(j)Ai(x(j)) 4 O(p~ 12y,
j=1
where
(4.3) Ai(z) = (27r)(d—1)/2|K(x)|—1/2e$sgnW(;c)7ri/4a<x).

and sgn W (z) = ny —n_, ny (n_) being the number of positive (negative)
eigenvalues of W (x).

For the proof, see Lemma and appendix of [14]. See also [13]. If S is
represented by x4 = f(2'), 2’ = (x1,- -+ ,24-1), the Gaussian curvature is
given by

(4.4)  K(z)= (Z (gi (@))* +1

i=

det ( — 8228ij (J;’))

For d = 2, the Gaussian curvature of the curve f(z1,z2) = 0 is computed
as

)7(d+1)/2

|fz21:2' z2 _walzz'fa:lfwz"'_lewl'fa?
(@5 [K,w)| = BN =

4.2. Convexity of M)

As will be seen below, the shape of M), depends highly on the space
dimension and A. We know that Vhi(z) # 0 on My if A ¢ Z. Assume that
at a point in My, Oh/0x4 = (sinxy)/2 # 0. We take x1,--+ ,x4—1 as local
coordinates, and differentiate h(x) = X to get

. . Ozq
sinx; + sinxg =0,
3xi
8xd axd . 82xd
i COSxj + COS Xq —— +sinxzy =0,
8l‘i 8xj 8@‘161‘]

ANNALES DE L’INSTITUT FOURIER
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fori,j=1,---,d—1. We put ¢ = Z]d‘:1 k;jx;. Then we have on M)y

a 8 ~3 .
P kit kaa =k — kgt
ox; T, sin zg4
0% 0%xq
(91'2'8£Ej 6951895]
k
= _(sini;d)?’ (6ij cos z (sin x4)? + sin z; sin xj cos xd) )

Suppose d¢/0x; =0,i=1,--- ,d— 1. Then

k; =psinx;, 1=1,---,d,

p= |k“ ((Sin x1)2 4+ 4 (Sinl‘d)2)71/2 .
Therefore we have
8290 1 )
(4.6) O0x;0x; =- i) (6ijkd cosx; + kik; cos :Ed) .

Now let us compute the determinant det (0%¢/dz;0z;).
(1) The case d = 2. Using k; = psinx;, we have
k2 cosxy + k? coszo = p*(cos 1 + cos ) (1 — cos xy cos o)
=2p%(1 — \)(1 — cos z; cos z3).
Since A # 1, this vanishes if and only if cosz; = cosxzs = +1, i.e. z;1 =0
or m, and z3 = 0 or m. However in this case, h(z) = Zle sin?(x;/2) € Z.
This implies that
(4.7) D%p/0x2 £0 for A€ (0,1)U(1,2).

Therefore M) is a closed curve in T2, and convex in the fundamental domain
R?/(277Z)?, as is seen from the figures (Figures 4.1, 4.2, 4.3) below. Let us
remark here, in view of Figure 3, in the case 1 < A < 2, it is convenient to
shift the fundamental domain so that R?/(27Z)? = [0, 27]?.

(2) The case d = 3. By a direct computation, we have

2
det (éijk3 cosx; + kik; cos :1:3>
= k2 (k2 Ccos T k2 k2
= k3 (K] 2C0Sx3 + K5 COSx3COSx1 + K3 COSX1 COST2),

which can vanish when e.g. cosz; = cosxo = 0, coszg = 1/2. Therefore in
3-dimensions, My may not be convex. The following Figures 4.4, 4.5, 4.6
explain the situation in 3-dimensions.

Here, we note the following simple lemma.

LEmMMA 4.2, — If-1<y; < L,i=1,--- ,d,andd—1 < y1+- - -+ya < d,
we havey;, >0,1=1,---d.

TOME 65 (2015), FASCICULE 3
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3 ' 3
2 o
1 1
0 0
-1 -1
-2 -2
-3 1 _3_|
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 4.1. d =2, A = 0.25. Figure 4.2. d =2, A\ = 0.75.

ol Ara A ™
| . . |
2L .
] I
B T L
L] 1
_2 ]
. .
S R e,
-5 -4 =2 0 2 4 6

Figure 4.3. d =2, A = 1.25.

Figure 4.4. d = 3,A = 0.45. Figure 4.5. d = 3,\ = 2.55.

ANNALES DE L’INSTITUT FOURIER



DISCRETE SCHRODINGER OPERATORS 1167

Figure 4.6. d = 3, \ = 1.45.

Proof. — Suppose e.g. yg < 0. Then

y1+yes+ ot ya <yr+ -+ ygor <d—1,

which is a contradiction. O

By (4.6), we have

1

d—1 i .
Z 8:v é)x] oSk = (sin 24)2p (kﬁ Z (cos xz)ff + (cos xd) (Z kifi) )
' i—1 P

which has a definite sign if cosxz; > 0,7 = 1,--- ,d and sinxzy > 0. By
virtue of Lemma 4.2, it happens for 0 < A < 1/2. Let us also note that for
d—1/2 < X\ < d, we have the same conclusion since cosx; <0 (i =1,--- ,d),
sin x4 < 0. Recall that when d > 3 the definition of the Gaussian curvature
depends on the choice of direction of the unit normal N(x) on S. We choose
N(z) in such a way that K(z) > 0 on S.

With this convention, we have proven the following lemma. Recall the
interval I; defined by (1.6).

LEMMA 4.3. — If X € I, all the principal curvature of M) are positive.

As has been noted above, in the case 1 <A <2 (d=2)ord—1/2< A<
d (d > 3), we should shift the fundamental domain so that R?/(27Z)? =
[0,27]? (See Figures 3, 4, 5). To fix the idea, in the sequel, we deal with
the case R?/(27Z)¢ = T = [, n1]“.

Under the assumption of Lemma 4.3, M), is strictly convex. Let N(z) be
the unit normal field on M) specified as above. Then for any w € 41,
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there exists a unique pair of points z+(\,w) in M) such that
(4.8) N(z+(\,w)) = +w.

Since N(—z) = —N(z), we see that z_(\,w) = —z4+(\,w). Therefore, we
let

(4.9) 21 (A w) = 200N, w).

We can now compute the asymptotic expansion of the free resolvent
(4.10) (Bo(2)F)(m) = 3~ rolm —n,2)f(n),

nezd
ik

(4.11) ro(k,2) = (2m) ¢ /Td mdm.
We put
(4.12) wr = k/|k|, keR\{0}.

LEMMA 4.4. — Assume X € I;. Then we have as |k| — oo

ro(k, A £140)

—1/2
::ti(2W|k|)—(d—1)/2eii(k-zw(A,wk)—(d—l)ﬁ/zl)K(x:t()‘7wk)) /

IVah(z (X wr))l

+ O(‘k|7(d+1)/2).
Proof. — Take € > 0 small enough so that
)\ )\ (O’ 1)7 d = 27
— 2¢, 2¢) C
A=26A429C\ 012), a>s.

Let x(t) € C§°(R) be such that x(t) =1 for || < €/2, x(t) = 0 for [t]| > e,
and assume that [Rez — A| < ¢/4. We split ro(k, z) into two parts

TO(ka Z) = A(kﬂ Z) + B(sz)a

Ak, 2) = (Qw)*d/w ’W

Then, by integration by parts, for all N > 0

el

B(k,z) = O(Jk|™™), [k| = oo.
Letting S(t) = {z € T?; h(z) = t}, we write A(k, 2) as

Ate a i _
Ak, 2) = (2m) A ) %dt, alt, k) = /S (t)eZk'deS(t).
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We then have

Ate Ate
a(t, k) : a(t, k)
4.13 —2 2 dt = tima(\, k V. dt.
(4.13) /A t—XFi0 ima(d, HpV/H t—A
By Theorem 4.1, for t € (A—e€, A+¢€), a(t, k) admits the asymptotic expan-
sion

—€

a(t,k) = ao(t, k) + O(|k|~*T1)/2),

(4.14)
oy (@12 _(d-1)m K (24 (t,wr) "'/

Lk = (22 ik Too (twr)—(d=1)mi /4, (4 _ \ +\
witk) = () e = NG s )
<2£)(d_l)/2efik-xoo(t,wk,)+(d71)7ri/4x(t o )\) K(x—(tvwk))71/2
k| [Vah(z_(t, wi))|

= alP (8, k) + a7 (8, F),
where x4 (t,wy) is a stationary phase point on S(t).
We compute the asymptotic expansion of the 2nd term of the right-hand
side of (4.13). Differentiating h(z4(t,wy)) = t, we have
Vieh(xe(t,wi)) - Oprs(t, wy) = 1.
Therefore, letting
5= wk - T+ (t,wr) — Wi - T (A, W),

we have
ds Vaeh(z4(t, wi 1
o = Wk Oy (t,wi) = |th((:ci((t,wk)))| Oy (t,wi) = Voh(zstton)|’
which implies
t— X =s|Voh(ze(\ we))| + O(s?).
We then have
1 x(t=NK(@s(t,wr) V2 dt ba(s,wr)

t—A |Voh(za(t, wi)l ds s

where b (s,wy) is a smooth function such that
K(ze(\wy))~1/?
P09 = TG b v

Taking § > 0 small enough, we have by integration by parts

& 4ilkls [k|6 o
p.v./ - bi(s,wk)ds:i%/ " s b (0,006) + (K] ™)
—0 0

= +7i b1 (0,wr) + O(|k| 1),
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which implies

Ae (£)
ag ' (t, k)
V. ————dt
p-v /A Y

—€

0 oilkls

_ <|2k7:'(i)(d1)/2€iik'xoo(A,wk)I(d—l)iﬂ-/élp.v./ ' b (5, ) ds
-5
(4.15) + O(|k;|_(d+1)/2)
in(2) 4 rraings Kl o) 2
k| [Vah(zs (A, wr))]
FO(K4172),
Plugging (4.13), (4.14) and (4.15), we obtain the lemma. O
LEMMA 4.5. — We have as |m| — oo

(m - TL) . m:t()‘awmfn) = (m - TL) : m:ﬁ:(Aawm) + O(|m|71)

Proof. — We extend x4 (A, k) as a function of homogeneous degree 0 in
k. Letting e = 1/|m|, we have

Winen = (W — €n) /Wi — €n| = Wi + (W - M)wm — 1) + O(€).

Using h(z4 (A, wm—n)) = A, we have

=0.

e=0

d
Veh(ze (N, Wim—n)) - %xi(/\, Wimn—n)

Since V h(zy (A, w)) is parallel to w, we then have

:07

d
m )\7 m—n
“ dexi( “ ) e=0

which implies
m - 21 (N, win—n) =m - (X, wn) +O0(Im| ™),

and the lemma follows immediately. O

Lemmas 4.4 and 4.5 imply the following lemma.

-~

LEMMA 4.6. — If A € Iy and f(n) is compactly supported, we have as
|k| — oo

(Bo(A % i0)F) (k)
_ e:i:(3—d)7ri/4(27r|k|)—(d—l)/2€:|:ik~acoo(>\,wk)ai(/\’ UJk) Z eFin T ()\,wk)f(n)

n

+O(|k|~(HD/2),
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K(ze(\wy))~Y/?

(4.16) ai()\,wk) =

Recalling the definition of z(v/A9) in (3.1) and the fact that the Gauss
map is a diffeomorphism for a strictly convex surface, define §(\,w) by the
relation (VA O\, w)) = zoo(\,w), i.c.

1 1 .

(4.17) () = —=sin (5 :cooj()\,w)), j=1,---,d.

We define the reparametrized Fourier transforms Go(A) and G ()) by
(4.18) (GoVr) @) = (FoNF) (BAw)),

(4.19) GHN) = Go(\)(1 = VR(A £ 40)).

Lemma 4.6, the definition (3.7) and the resolvent equation imply the fol-
lowing theorem.

~

THEOREM 4.7. — If A € I; and f(n) is compactly supported, we have
as |k| — oo

(E(A + iO)f) (k)
_ ei(3—d)m‘/4\/ﬁ|k|—(d—l)/Qeiikmo@(A,wk)ai()\’wk) (g\(i)o\)f) (wr)
+ O([k| =172,

5. Radiation conditions on Z¢

The aim of this section is to introduce the radiation condition (Definition
5.5) and prove the uniqueness theorem (Theorem 5.9).

5.1. Green’s formula

For m,n € Z9, we write m ~ n, if |m — n| = 1, i.e. there exists j such
that m = n £ e;. We define the discrete Laplacian Agjs. on 74 by

61 Bused)n) = ~(Hoi)n) = § 3 (alm) —a(n).

mn~n
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A set Q C Z< is said to be connected if for any m,n € €, there exist
m) e Q,j =0,---,k such that m0) ~ mU+tD j =0,... k—1, and
k) = n. A connected subset Q C Z is called a domain. For a
domain Q C Z%, we define

m® = m, m

(5.2) V={ndQ;ImeQst.m~n},
and put
(5.3) D=Qu.
For this set D, we define
(5.4) D=9,
(5.5) 0D = (V.
The normal derivative at the boundary is defined by
1

D~ ~ ~

(5.6) (007) (n) = 1 Z (u(n) —@(m)), neoD.

o
meD,m~n

Note that, compared with (5.1), m and n are interchanged. Then the fol-
lowing Green’s formula holds (see e.g [5] and [11]):

S (Adise@)(n) - 8(n) — ) - (Auiscd) ()

o

(5.7) n€D
= > ((8P@)(n) - B(n) — t(n) - (927)(n)).

nedD

5.2. Radiation condition

For m,n such that m ~ n, we define the difference operator 9,,_, by
(a’rn—n,f/‘) (’I’L) = f(m) - f(n)

LEMMA 5.1. — (1) Let n(s) = n + s(m — n), where m ~ n. Then we
have

Om—n(n-Teo(Nwy)) = /l(m —N) " Too (N, Wn(s))ds.
(2) If m ~ n, we have as |n| — oo '
Omn(n - Too(N,wp)) = (M —n) - oo (N, wy) + O(|n| 1),
O (ein-moo()\,wn)> _ (ei(mfn)-:coo(k,wn) _ 1) ez Own) 4 O (|| 1),
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Proof. — Differentiating h(zoo (A, wp(s))) = A, we have

d
(th)(xoo()‘vwn(s))) ' %xoo()‘vwn(s)) = 0.
Since (Vh)(Zoo (X, wy(s)) is parallel to n(s), we then have

d
TL(S) : %xoo(/\vwn(s)) =0,

which implies

d
75 18) - T (A win(s))) = (M = 1) - Too (A, wns) )-
Integrating this equality, we obtain (1). Since wy(s) = wn + O(|n|™1), (2)
follows from (1). O
We now introduce the rectangular domain D(R) such that
(5.8) D(R)={n€Z; ne[-R,R"}, R>0,
and the radial derivative Orqq by
~ 1 ~ -
(5.9) (Oraaw)(k) = 7 > (u(m) —u(k)),
medD(R(k)),m~k
— . d
(5.10) R(k) = Joax, k;l, kez®
We put
(5.11)
1 £i(m—k)zoo (Awk) _ _k
Ai()\,o.)k)f4 Z (e 1), wp = 7k

medD(R(k)),m~k

LEMMA 5.2. — (1) The right-hand side of (5.11) does not depend on
K.
(2) There exists a constant €o(\) > 0 such that

+ImAL (A, wg) > eo(N),
for any wy,.

Proof. —If m ~ k, m € OD(R(k)), then m — k = *e; for some j. This
+e; depends only on wy, which proves (1).

Recall that Vh(z) = (sinay, -+ ,sinzg), hence letting wy, ; be the j-th
component of wy, we have

SIN(Zoo; (A, wk)) = cwi j

for some constant ¢ > 0. Suppose m ~ k, m € OD(R(k)). If wi; > 0,
then either m; = k; or m; = k; + 1. If wy ; < 0, then either m; = k; or
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m; = k; — 1. We then have that sin((m — k) - o0 (A, wg)) = c|wy ;| for some
j such that wy ; # 0. Since

Z sin((m — k) - oo (A, wy))

medD(R(k)),m~k

= > |wk,j

medD(R(k)),m~k

and ) wi ;= 1, the lemma follows. O

NGRS

+ImAL (N wk) =

)

=10

Let us introduce two auxiliary norms, Bg-norm and Bj-norm, on B* by

~ 1 ~
@, = s 3 ),

R>1,RER
neD(R)
falg = s = 3 Jam
Bi  p>1ez P ’
n€D(p)
LEMMA 5.3. — These three norms |- ||z, || - [ 5., and || - || 5. are equiv-
R Z
alent.

Proof. — Let A(R) = {z € C% (X0, |%|*)"? < R}, B(R) = {z €
C% max; |zj| < R}. Then there is a constant § > 0 such that A(6R) C
B(R) C A(R/d), YR > 0. This implies

1 ~ 2 1 ~ 2 1 ~ 2
= 2 AP <z Y famP <y Y fam)

[n|<dR neD(OR) In|<R/d
Taking the supremum with respect to R > 6 or R > 1/§, we get the
equivalence of || - ||z, norm and || - ||z, norm.
R

Next we show the equivalence of the || - ||z, and [ - ||z, norms. Note that
R Z
fry=> " [ii(n)|? is a right-continuous non-decreasing step function
neD(r

on (0,00) with jump at integers. For R > 1, we take p(R) = [R] = the
largest positive integer such that p(R) < R. Then we have
1 N2 1 N2
sup — u(n)|” < sup —— u(n)|”.
r>1 R 220 i) r>1 p(R) z:c, )l
neD(R) neD(p(R))
The converse inequality is proven by the following inequality
1 ~ 2 2 -~ 2
sup ——- u(n)|” < sup —= u(n)l*. O
r>1 p(R) Z) [l r>1 R Z i)l

neD(p(R)) nED(OR)
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LEMMA 5.4. — (1) If f € £2°(Z%) satisfies | f(n)| < C(1 + |n|)~(4-1/2,
then

1 P
(5.12) Is%li[iﬁ Z ROKES ie. feB"
In|<R
(2) If|f(n)| < C(1 + |n|)=(@=D/2=¢ ¢ > 0, then
(5.13) lim E > |fn
In|<R

. We first show

Proof. — We compute the norm

(5.14) > |f(71)|2 =0(1),
neD(P\D(p-1)
as p — oo. In fact, for any p € Z, p > 1 and n € D(p) \ D(p — 1), we have
p—1< |n| < Vdp. Since #{n € D(p) \ D(p—1) } = (2p+1)4—(2p—1)*
defl’
S P <@ #neD(p)\ Do ~1) } < C.
neD(P\D(p-1)

On the other hand, since

Yo mP=3 > IfmP IO,

o P 1 o o
neD(R) neD(p)\D(p—1)
for every positive integer R, we have ) o 1(n)2 = O(R) by (5.14).
neD(R
This proves (1) by Lemma 5.3.

Assume |f(n)| < C(1 + |n|)=@=1/2=¢ for some € > 0. By the similar
computation, we have > o |f(n)|? = o(R), which proves (2). O
neD(R

For f, § € B*, we write

(5.15) fr~je lim — Z 1f(n n))? = 0.

R—oo R
In|<R

As we have seen above, (5.15) is equivalent to

. 1 iy ~ 2
Jm g 317 gl =0
n€D(R)
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Now let us consider the equation on Z<:
(5.16) (H - \i=f.

DEFINITION 5.5. — A solution ii(k) € B* of (5.16) is said to be outgoing
(for +) or incoming (for —) if it satisfies

(5.17) (Oraatt) (k) = Ax (X, wp)u(k),
in the sense of (5.15).

THEOREM 5.6. — Let A € 1. If]?is compactly supported, E()\:tiO)]?is
an outgoing (for +) or incoming (for — ) solution of the equation (H —\)u

f

Proof. — Since % (A, wy) is homogeneous of degree 0 in & (see also the
proof of Lemma 4.5), we have as |k| — oo

xoo()\vwkiej-) = xOO(A7 Wk;) + O(|k|_1)
Then we have for any fixed n € Z¢
(5.18) Tt Awite;) _ phinzeMwr) — O(|k|7Y),  |k| = oo.

If f is compactly supported, (gA(i)(/\)ﬂ(wk) is smooth with respect to k,
so that we have from (5.18)

(5.19) Om—k (ai()\ W) g(i) ﬂ (Fwk ) O(|k~ 1)

We put u(*) = ﬁ()\ + ZO)]? Theorem 4.7 yields
(5.20)
(8Tadu( ))(k)

= C|k| =1/ > (Om—s®$) () | + O(lk|~(@+D/2),
medD(R(k)),m~k

as |k| — oo, where

oy = 16:&(37d)m‘/4\/ﬂ
4 bl
(I)g\i)(k‘) :i:zk Too (A, “k)ai()\ U-}k g(:i:) J/f) iwk

Lemma 5.1 (2) and (5.19) imply the theorem. O
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5.3. Rellich type theorem

The following is an analogue of the Rellich type theorem for Schrodinger
operators in R? ([20]).

THEOREM 5.7. — Let A € (0,d)\ Z. Suppose a sequence {u(n)} defined
for |n| = Ry > 0 satisfies
(_Adisc — /\)ﬂ =0, |n| > Ry,
1
lim — > [a(n)* =0.

R—oo R
Ro<|n|<R

Then there exists Ry > Ry such that u(n) = 0 for |n| > Ry.

For the proof, see [11], Theorem 1.1.

5.4. Uniqueness theorem

THEOREM 5.8. — Let A € I;, and suppose that f is compactly sup-
ported. Let @*) be the outgoing (for +) or incoming (for —) solution of
the equation (H — \)u*) = f. Then

@, )= (Fa)=2iim 37 ImAL(hw)[a® (k).

k€D(R)\D(R—1)

Proof. — By Green’s formula, we have

> ((Baise@ ™) (k) - T (k) = @ () - (Basoca®) ()
keD(p)
= Y (@PVID) k)T (k) - @S k) - (0P (k) ) -
k€dD(p)
The left-hand side converges to (u(*), ]?) - (f, a(*)) by the equation. Chang-

ing the order of the summation,we can see that the right-hand side is equal
to

1 ~ T~ —
> > (9w T ) - @S m) - T ()
kedD(p) ng(()p) ok

— 3 ((&adﬂ(i))(m) @ (m) — 2@ (m) - (amda(i))(m)) ,

o

meD(p\D(p—1)
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As p — 00, we can replace 9,440 by A (), wi)a®), and prove the the-
orem. O

THEOREM 5.9. — Let A € I;. If f is compact]y supported then the
outgoing solution of (5.16) is unique and given by R()\+20)f The incoming
solution is also unique and given by R()\ — zO)f

Proof. — In view of Theorem 5.6, we have only to prove the uniqueness.
Let @ be the outgoing solution of (H — A)u = 0. Then, by Theorem 5.8 and

Lemma 5.2 (2), we have limp_, 00 > [@(k)|? = 0. This implies
keD(R)\D(R—1)

1 12
Jim Z [a(k)|* = o0,
keD(R)

i.e. U ~ 0. We can then use the Theorem 5.7 and the unique continuation
theorem (see [11], Theorem 2.1) to see that u = 0. O

6. Exterior problem
6.1. Helmholtz equation in an exterior domain

Let D(R) be a rectangular domain in (5.8), and take a sufficiently large
integer Ry > 0 such that

(6.1) suppV C D((}%o) .
We put

(6.2) Qint = D(Ro),
(6.3) et = Z\ Qs -

Therefore ;h'nt: D(Ry) = [~Ro, Ro]* N Z%, and
d
(64) annt = agzezt = U {TL, |nz| < RO? (1 7& .7)3 |nj| = RO + ]-}

Jj=1

The spaces g, B* and ﬁs on éezt are defined in the same way as in the
whole space. Let Hepp = —Agise on Qe+ with Dirichlet boundary condition,
which is defined as follows. Let

K(QJ(Qewt) = {fe EQ(Qewt); .]/C\: 0 on aQemt}7
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which is naturally unitarily equivalent to EQ(SO)wt), and
ﬁo : EQ(QEIt) — gg(Qea:t)

be the associated orthogonal projection. In view of (5.7), _ﬁOAdiscﬁO is
self-adjoint on £2(Qe,). Here, we extend any ¥ € £2(Qezt) to be 0 outside
Qeqt S0 that Ag;se can be applied to U. As a total Hilbert space, we take

ﬁ - Eg(Qezt) ~ EQ(Qezt);
and define
Hezt = _POAdiscPO ~
H
Then, He.p is self-adjoint on H. As mentioned above,we extend ¥ € £2 (Soleg;t)
to be 0 outside (ozm, so that © = 0 on 9Q.y;. Let
ﬁezt('z) = (ﬁext - Z)_l = ﬁO(ﬁext - Z)_la
which can be applied to any ]?E (?2(Z%) by restricting fto 59251,5. Letting
@ = Rest()f = Reat(9) (s
and computing
(—Daise = 2)8 = (~PoAaise Py — 2)8+ (PoAasse Py — Aaise )i
= ﬂ{’) + (PoAaiscPo — Adise )T,

we have, since Py = 4,

{ (_Adzsc )U - fv in éextv

(6.5)
=0, on O00..

LEMMA 6.1. — (1) FAIezt is self-adjoint, and a(ﬁemt) = [0,d].
(2) op(Hewt) N (0,d) = 0.

Proof. — The assertion (1) follows from the standard perturbation the-
ory, and (2) is proved in Theorem 2.4 of [11]. O

-~ [e]
For the solution of the equation (—Agisc — A)u = f in Qeqt, the radiation
condition is defined in the same way as in §5. The following theorem is
proved in the same way as in Theorem 5.9.

THEOREM 6.2. — Let A € I;. Then the solution of the equation
[e]
(—=Agisc — A)u = 0 in Qeqt, satisfying the Dirichlet boundary contidion
and the outgoing (or incoming) radiation condition vanishes identically on
Qe:ct-
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We prove the limiting absorption principle for Eext(z).
THEOREM 6.3. — (1) For A € I; and f € B, the weak *-limit exists
lim Regt(A\ £ i€)f =t Rew(\ £i0)f € B*.
(2) For any compact set J C I, there exists a constant C > 0 such that
[Ree (A £i0)fllg. < ClIfllg. A€ .

(3) For f, G € B,
I35 A (Rear(A £00) f, §)
is continuous.
(4) If f is compactly supported, ﬁemt()\ + ZO)]/C\ satisfies the outgoing (for
+) or incoming (for —) radiation condition.

Proof. — We prove the theorem for A+ i0. We extend f € B and u(z) =

Ret(2)f to be 0 outside Qc,¢. Then it satisfies
(Ho — 2)u(z) = Ku(z) + f on Z%

where K = Yon cnP(n) is a finite sum of projections P(n) to the site n.
Therefore
(6.6) U(z) = Ro(2)Kii(z) + Ro(2)f.

Let J be a compact set in I4, and take s > 1/2. We first show that there
exists a constant C' > 0 such that

(6.7) G +ie)ll5 . <ClIflg YA€ Ve>o.

In fact, if this does not hold, there exists z, = A, + i€, ﬁt € B, such that
Uy = Reqi(2,,) [y satisfies

(6.8) zu—=AEJ, |fullg =0, luullgo. =1 as p— oo

One can then select a subsequence, which is denoted by {4, } again, such
that u,, converges weakly in H~*. Since K is a finite dimensional operator,

K U, converges in B. Therefore, in view of (6.6), we see that @, converges
in B*, hence in H~*, to & such that |[u]|;_, = 1. It satisfies

(—Adgise = Na =0, @=Ro(A+i0)Ka, i Qusr -
Moreover, u satisfies the Dirichlet boundary condition, since so does .
Therefore u is an outgoing solution. By Theorem 6.2, 7 = 0, which is a
contradiction.

We next prove that for s > 1/2 and f e B, }Aiemt()\ + ze)f converges
strongly in H* as ¢ — 0. To prove it, we consider a sequence u, =

ANNALES DE L’INSTITUT FOURIER



DISCRETE SCHRODINGER OPERATORS 1181

ﬁext()\+ieu)ﬁ €, — 0. Then by the same arguments as above, one can show
that any subsequence of {u,} contains a sub-subsequence {u,}, which
converges in H~° to one and the same limit (independent of the choice of
sub-subsequence). This proves the convergence of éem()\ + ze)f as € — 0.
Arguing similarly, one can also show that

Ii3 A Rege(A+i0)f € H™*

is strongly continuous. The assertions of the theorem then follow from those
for Ro(A 4+ ¢0) and the formula

Regt(A+10) = Ro(A +i0) (1 + K Regr (X + i0)).

a
6.2. Exterior and interior D-N maps

Let ﬁmt = —Agisc + V be defined on Qint with Dirichlet boundary
condition. The interior D-N map is defined by
(6.9) Ao F = 0 Ty | Y Hint),
where U;,,; is the solution of the equation
(610)  (“Dgise + V- NBir =0 0 Qies Gine| =

The exterior D-N map is defined by .
(6.11) Al Wf =—-0p=agy| . A€l
where ﬂgi) € B* is the unique outgoing (for +) and incoming (for —)

solution of the equation
~(+) )

(612) (*Adisc — )Aﬁft) =0 in Qemta Uert 90 = f

The existence of ﬂ((,ft) is shown by extending f to be zero on Z¢ \ 0Qext,

putting
(6.13) Q) = = Rear(\ £00)(—Agise — N,
and using (6.5). The uniqueness follows from Theorem 6.2.

We represent ﬁgt) in terms of exterior and interior D-N maps. In the

following, for a subset A in Z¢, we use x4 to mean both of the operator of
restriction

(6.14) Xa: 22 5 Frs ﬂA,
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and the operator of extension

oo -~ f, on A,
(6.15) xa:l (A)9f|—>{ 0. on Zi\ 4,

which will not confuse our argument. We put

O(RO) = 8ant = aQPZt == Qint N Qerta
(6.16) Sc(ry) = ZXC 7o) (S5 + (S)") Xe(Ro):

(5,1)(n) = u(n +e;), ((S)0)(n) =(n—e;),
and also for n € C'(Ry)

— 1
(6.17) degc (g, (n) = 1 #{m € C(Ry) ; Im—n|= 1}.
For A € I\ o(Hin:), we define the operator Béﬂzo)()\) € B(?(C(Ry))) by
(6.18) Béﬂzo)()\) =Ap(N) — AGT () = A+ degC(Ro) Sc(re):

where (@C(RO) is the operator of multiplication by &EC(RO)(H).

~(£)

ext

LEMMA 6.4. — Assume that A € I;\ o(Hnt), f € £2(C(Ro)). Let i
and U;p; be the solutions of (6.12) and (6.10), respectively, and put

~ ~ ~(£ N
ad = Xé Uint + X{} ut(ewt) + XC(Ro)f-

int ext

Then we have

~

(619) @) (n) = (B £i0)xc(my BE g, WD ®), n ez

In particular,

~(£ 5 . A °
(6:20) Gl (n) = (R(A % i0)xc(r,) B C%)( (), 1€ Qeat,

(6.21) f(n) = (RO % i0)Xc(ry) BS (hyy N (), n € C(Ry).

Proof. — Let 7(n, m; A £40) be the resolvent kernel, i.e.

P(n,m; A+ 0) = (E(A + iO)Sm) (n),
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where gm (n) = Omn- As in the proof of Theorem 5.8, by Green’s formula,

(6.22)
"E(Elmtuéem)ﬁD(OR)

— ﬂ(i)(n) (Agiser)(nym; A £ 20))

= > (@@= )i, m A & i0)
neEIint
= ) () (9524 7) (n, i A+ 70))
+ > ((3§€wtﬂ(i))(n)?(n, m; X +40) — A (n) (05t 7) (n, m; A & m))
nEIext

+ > ((&ada(i))(n)?(n,m;AM))

neD(R)\D(R—1)
= @) (1) (Braa?) (n,mi A £ i0) ),

for sufficiently large integer R > 0. By the equations (6.10) and (6.12), the
left-hand side of (6.22) is equal to

3 @ (1) (= Daise + V = NF) (3 A i0)

ne(fzintus3czt)ﬂD€R)
=X @0,

o o °
NE(QintUQext)ND(R)

(6.23)

for any m € Z%. Note that, by our definitions of A () and Agt) N,

a?z‘nt a(i) — 8’§li"taint = Aﬁ(A)fﬂ\a

ORertg@®) = 9esrgE) = _AE () F.

ext
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Thesum ), s, + 2 ncaq,,, it the right-hand side of (6.22) is then equal

to

(6.24)

> (AW D @)F(mi A £ i0) = Fn) (2 F) (n,mi A % i0) )
neC(Rop)

= 3 (A NHOF,mi A i0) + F(n) (07 (n,mi A & i0) )

ext
n€C(Ro)
= > Fmm A i0)xome () ((Ap () = AL O F) (0)
neC(Ro)
Z F(n) (O + 9t )7) (n,ms A £ 40).
neC(Ro)

For n € C(Ry),
((8,?”‘ + 83“‘)?) (n, m; A £140)
1
i > (P(n,m; X £40) — 7k, m; X £ 40))

keéintuéeztvk’\’n
— (Agiser) (n, m; A +40)

-3 > (F(n,m; A £i0) = F(k, m; A+ 40)).
kEC(Rg),k~n

Therefore, the second term of the right-hand side of (6.24) is computed as

follows:
— Y F(n) (—AgiscP) (n,m; A £ 0)
n€C(Ro)
+f S Y (Fnmia£i0) - 7k mi A+ 00)) )
neC (Ro) k€C(Ro),k~n
1— N
= > Faumt Y (= A+ qdeseqny () F(m) Fln,mi £ i0)
n€C(Ro) n€C(Ro)
1 ~
—< > Fkmiaxi0) > f(n),
keC(Ro) neC(Ro),n~k

where, in the 3rd line, we have used the fact that

((—Adisc — )\)?) (nym; A £140) = 6y, n,mM E ze,
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and exchanged the order of summation in the 4th line. Note that
d

Z f(n) Z ((S + (§ XC(RO)J/C)

neC(Rp),n~k j=1

(o]

Since we have for any m € D(R)

3 T )0 + Y (1) =0 (m),

ne(&intuéezt)mD(oR) nec(fo)
(6.22) turns out to be
@ (m) = Y Flnmi A2 i0) (AN = AT () ) (n)
neC(Ro)
+ Y (—a+ degCRo())A() 7(n,m; A £ i0)
neC(Ro)
1 d .
~1 Z nm)\:I:ZOZ S+S XCRO})
neC(Ro) j=1

Y ((5’mdu( ) (n)7(n, m: A + 70)

neD(R)\D(R—1)

— D) (1) (Byaa?) (1, ms A £ m)),

for any m € D(R). In view of (6. 18) we have thus arrived at
a(:l:)( )= ( (/\ + ZO)XC Ro) C(Rg) J/C)
+ Y ((amda< ) (n)7(n, m; A £ 70)

neD(R)\D(R—1)
— ) (1) (Byaal) (n, m; A £ z’O)).

Taking the average of the sum with respect to R in the above equality, we
have

= (RO\ % 10)Xc (o) BE (hyy (M F) (m
+ ]1% ((&ad Ay (A, wn))a(i)) (n)7(n, m; A +i0)
(6.25) neD(R)
f% @) (n) ((Oraa — Ax (N wn))F) (n,m; X £ 40),
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up to a term of O(R™1). By the radiation condition, we have

1
= Z ((amd — AL (), wn))@(i))(n)?(n, m; A £ i0)
nED(OR)
1/2
1 ~ 2
<z X Qs = A w0.))a®) ()]
nGD(OR)
1/2
1 -~ N2
<& Z [7(n, m; A £ 40)] ,
nED(OR)

which tends to zero as R — oo. The third term of the right-hand side of
(6.25) is estimated similarly. This proves the lemma. O

LEMMA 6.5. — Suppose A € Iy \ o(H;ni). Then for f.ge ?2(C(Ry)),
we have

(6.26) (A’\()\)f, A)gz(c(RO)) = ( ’ Av()\)g)fZ(c(Ro))’
A

(6.27) ASIOVF D) ey = B AT NG ey

Proof. — The first equality (6.26) follows from Green’s formula. We shall
prove (6.27). Let u be the outgoing solution of (6.12), and v the incoming
solution of (6.12) with f replaced by g. For a sufficiently large integer
R > 0, we have by Green’s formula

0= > ((“Adise = ND®) - 5] — @) - (~Baise — NO) (1))

n€(D(R)NQezt)®
= > (~@PD@m) -5 +am) - (07 B)(m))
n€dD(R)
+ Y ( (O%eot7) (n)-mm(n).(aﬁemm(n)).
n€Eest
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As in the proof of Theorem 5.8, we have
> (~@P™a)m) - T + ) - (075 (n))
n€dD(R)

= Y (@) 5] + () - Braa ()
neD(oR)\D(ROq)

This implies
(A()AAIA —(AIA())\A
( ) 79)@2({998“) ’ ezt( )9)52(3983”)

=Y (@) — A (N w,)i(n))E()

o o

neD(R)\D(R—1)
- S ) ((Frea)(n) — AN\, wa)5 ().

o o

neD(R)\D(R—1)
Then, taking the average of the sum with respect to R, we have

(A(+)()\)ﬁ g)wmm) — (ﬁ Ag;g(A)/g\)p(an)

= % Z ((5md — A+()\7wn))ﬁ(n))@
nGD(OR)

_ % (1) ((Orad — A—(A, wn))B(n)),
nGD(OR)

up to a term of O(R™!). By the radiation condition, we can see that the

right-hand side tends to zero as R — oo as in the estimate of (6.25). This
O

proves (6.27).

7. Scattering amplitude and D-N maps

7.1. Far-field pattern

We introduce the operator I'®)(X) by

(7.1 THO) =GB N)Xcry) BE(hy (V) 1 C(C(Ro)) = LA (S7).

The main purpose of this subsection is to show that f(i)()\) is1tol

(Lemma 7.4).
Although defined through G*)(\), T(*)()) does not depend on V. It is

seen by the next lemma which follows from Lemma 6.4 and Theorem 4.7.
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LEMMA 7.1. — Suppose A € Iy \ o(Hny). Let u((;;t) be the solution of
(6.12). Then we have

A(eft)(k) (3= d)m/4\ﬁ|k| (d=1)/2 ,Eik-zoo (X, w’“)ai(A wk F(i) ﬂiwk
+ O(|k‘|_(d+1)/2)
as k| — oo.

We need resolvent equations for }ABeIt()\ + ¢0). Note that by (6.18) and
Lemma 6.5

+ *
(BSq () = Ag (V) = A () — A+ degc 1) — Sctre) = BSE (N).

LEMMA 7.2. —
(7.2)

Rept(A £i0) = Ro(A +i0) — R(A £ i0)xc(ro) BSe) (X)X (ro) Ro(A £ i0).
(7.3)

Reat(A+10) = Ro(A +0) — Ro(A £ i0)Xc (a0 Blg) (N Xc(re) RO + i0).

Proof. — Since Ty = R(A £ 'L'O)XC(RO)BSZQO)(A)XC(RO)EO (A +1i0)f satis-
fies the equation

(—Adgise = NT0 =0 in Qear, Bolog,,, = Ro(A=£i0)7,

we have (7.2) by using (6.13). Taking the adjoint, we obtain (7.3). O

We introduce the generalized Fourier transform in the exterior domain.
We put

+ = + R ;
FS ) =Fo(N) (1 - XC(RU)B(C'(}QO)(A)XC(RU)R()‘ * 20)) :
for A € Iy \ op( mt) and, in the same way as (4.18), we define
o ~ " ~
(G N w) = (FZ NN OO w)).
Lemmas 4.6 and 7.2 imply that as |k| — oo,

(Rexe(A £ 0) ) ()
— ot(B- d)7TZ/4\/7|k| (d=1)/2 ik w0 (Awr) a:t(/\ wk)(gext( )A)(:lzwk)
+O(k~@D72)

This formula shows that gm (A) does not depend on V.
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LEMMA 7.3. — For any 5 € L2(S4h), Q\(_)()\)*a satisfies the equation

ext
Adise — NG NE=0 in O A) (V< _
(~Adise = NGLN =0 in Qe (G127 V) ¢)‘6Qm 0,
and G} (\)*¢ — Go(\)*6 is outgoing.

Proof. — By the definition, we have

GLIN* @ = (1= RO+ i0)Xorg BE hyy NXemo) ) Go(N)* 0.

By Lemma 6.4, v = ﬁ(A + Z'O)XC(RO)B&}:{O)()\)XC(RO).éO()\)*a satisfies the
equation

(*Adisc - )\)6 =0 in Qemtv 6|8S2em = Q\O ()\)*;5
The lemma then follows if we note that Q\O(A)*% satisfies

(_Adisc - A)Q\O()‘)*g =0 in SO)ea:t .0

O
LEMMA 7.4. — Suppose X € I;\ a(f[im).
(1) TE(N): 2(C(Ry)) — L*(S4 1) is 1 to 1.
(2) TE(N)*: L2(S91) — £2(C(Ry)) is onto.
Proof. — Let us show (1). Suppose f(i)()\)f = 0 and let ﬂgft) be the
solution of (6.12). From Lemma 7.1 and the assumption, we have ﬂgt) ~ 0.

St) is compactly supported by Theorem 5.7. By the

unique continuation property (see [11], Theorem 2.3), we then obtain f: 0,
which proves (1). This implies that the range of T(*)()\)* is dense. Since
(2(C(Ry)) is finite dimensional, (2) follows. O

Then we see that ©

7.2. Scattering amplitude

Recall that the scattering amplitude in the whole space is defined by
(3.10). Passing to M), we rewrite it as

(7.4) AN = GH N VG(N)*

The scattering amplitude for the exterior domain is defined by
(7.5) Acat(N) = FO N)Xe(ro) Botkyy MXer) Fo(V)
As in the case of Z¢, we use its reparametrization on M,:
(7.6) Acat(N) = GO (VX0 B hyy VX Go (V).
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Then we have as |k| — oo
(Gead (V)7 0) (k) = (Go(A) D) (k)
(17) = ==/ Bl D ek i) (0, ) (A (V) )
+O(R~ (@ 2),
In fact, the left-hand side is equal to

— R\ +0)Xc(50) BE hyy (VX (7o) G0 (V)6
Using Theorem 4.7, we obtain (7.7).

7.3. Single layer and double layer potentials

We have already introduced the operator E()\ + iO)Xc(RO)B(Ci&%O)()\),
which is an analogue of the double layer potential. We also need a counter
part for the single layer potential, which is an operator on £2(C(Ry)) de-
fined by

~ N

My N = (RO i0)xen) |

for f € 2(C(Ry)).
The following lemma is a direct consequence of (6.21) and the fact that

) ‘C(Ro)

+ 3 .
Mé(})%)()\) corresponds to X (ry) R(A £10) X (Ry)-

~

LEMMA 7.5. — For X € Ig\o'(Hint), MG (N B, (V) is the identity
operator on £*(C(Ry)).

7.4. S-matrix and interior D-N map

-~

THEOREM 7.6. — For A € Iy \ 0(H;nt), we have
(7.8) Acat(V) = AQ) =TO N MEL (T (V)
As a consequence, S(A) and Ag(A) determine each other.

Proof. — Let us show (7.8). For any ¢ € L2(S9=1), let
i=G00N6 0L/ (N6

= RO+ 10) (Xc(ro) B& gy M X (o) — V) Go(N) .
In view of Lemma 7.3, u is the outgoing solution of the equation

(_Adisc - )\)a =0 in 661?157 a|aﬂm = é\(_)(A)*a

(7.9)

ANNALES DE L’INSTITUT FOURIER



DISCRETE SCHRODINGER OPERATORS 1191

By (6.20), we can rewrite U as

(7.10) i = RO\ +10)xc (ro) BS ryy Mxc(rn G (V) 6.
By (7.9), we have as |k| — o0
a(k,) — C+\k|_(d_l)/geik‘m“’(k’“k)a+()\, Wk:)
X (G (N (Xro) BE ey MXero) = V) Go(V)*0) (wi)
+ O(|k‘7(d+1)/2),
where C = e(3=D7/4/27 On the other hand, by (7.10), we have as
|| = o0
a(k) _ C+|k|_(d_l)/26ik'm°°(/\’wk)aJr()\, Wk)
X (G (V)Xo BE hyy M xR G (1) 6) (wi)
+ O(|k|7(d+1)/2).

These two expansions imply

GO N (Xero) BE hyy Mxc(re) — V)Go (V)
= G N0 BE ry Mxcrn G (V)"
The left-hand side is equal to Aeyt(A) — A(A). On the right-hand side, we

insert

L= Mgy (N Bgiryy (V) : €4(C(Ro)) — £3(C(Ro))

after ng%o)(/\) to obtain

G NXC(R) Bk N ME R (N BE k) MXern G (V)
= GD X By WM () (BS ) X G 0"
=T )M, VT ()",

We have thus proven (7.8).
We show the equivalence of Ag;(A) and A(X). Due to (6.18), giving A (M)

is equivalent to giving Bg&o)()\), which in turn is equivalent to giving

Méf(})%)()\) by virtue of Lemma 7.5.

From Mggl)%o)()\), we can then construct A(X) by (7.8), since [(*)())

does not depend on 1% by Lemma 7.1.
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By (7.8), we have
T (Aers (V) = AX) T )
=T THNME, WEO W) TOW).
Lemma 7.4 implies that f(i)()\)*f(i)()\) is 1 to 1 on the finite dimensional

space £2(C(Rp)), hence bijective. Therefore, one can construct M, g(_l)%)()\)

from A(N). O

8. Reconstruction from the D-N map

In this section, we reconstruct V from the D-N map As(N).

8.1. Some properties of Schrodinger matrices

We identify —Ag;sc and A‘?()\) with matrices as follows. Let n(") ... n(®)
are vertices in (Ozm and ntD ... n+1) are those in 9. We put
No={nW ... n} AN = WD o pltey
and
__ # o) — 0.
Qe (n) = § 7€ Qe s md = 2 € e
M EQine ; m~n} =1, n€ Q.

In view of the Laplacian on graphs, we construct a (v+ ) X (v + p) matrix
H, = (hY;) as follows (For the definition, see also [5]).

Hy = (D~ A),

0 (i # )

A— (aij)’ ai; = { 1, if n® ~ nl for n® Gfolmt or n) €§02mt7

EPys (4) .
D= (dij)a dij = { degﬂmt (n ) (7’ - .])

0, if n® ol n, or n nl) € Q.
The potential V is identified the diagonal matrix V = (vi5) with
ey =g
Yo 0 (i # j or
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Then H = }AIO +V corresponds to the symmetric matrix H = Hy + V.
Moreover, identifying u with a vector (@(Np), u(N7)) € C*T#, the equation
(8.1) (~Bise + V)T=0 0 Qin,

is rewritten as

(8.2) H(No; M)u(N1) + H(No; No)u(No) =0,

where by H(N;; NV;) we mean a matrix of size #N; x #Aj. The D-N map
Ag 1 a(Ny) — g is rewritten as

(83) H(N; MUV + H(N No)a(No) = gNg).

Taking into account the Dirichlet data

(84) oo, = I,

the above two equations are rewritten as
(8.5)

(H(N();M)) H(No; ;) ) ( @(N) ) :< 0 -

H(N1;N0) H(Nl;,/\/l) J/C\(Nl) g/ﬁ\(/\) ) o o(f) = g(NY).

Assume that zero is not a Dirichlet eigenvalue of —Agsc + ‘A/, which
means that if w(N;) = 0 in (8.2), then W(Np) = 0. Hence H(Ny; Np) is
nonsingular. Then by using (8.2), the D-N map corresponds to the g x p

matrix

(8.6)

~ ~ ~

A‘/}f(./\/l) = H(WN;; M) fF(N) — H(Nl;No)H(No;No)_lﬂ(./\/o;./\/l)f(/\/l).
To simplify the explanation, we translate £2;,; so that
(8.7) Q= {ne€z?; 1<n; <M, j=1,---,d}
for a positive integer M. We put
89;_ = {n € OQnt ;M= M + 1},
89;:{n€8§2im;nj20}, j:].,,d
LEMMA 8.1. — Given a partial Dirichlet data f on 90, \GQIr and a

[e]
partial Neumann data g on 9, there is a unique solution @ on Qe U OS2
to the equation

(—Adgisc + ‘7)@ =0 in Solmt,
(8.8) U=f on 0\ 007,

Qin/\_/\ —
0,)"tu=9g on O0§].
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Proof. — From the boundary values f(O, ng, -+, ng) and g(0,na, -, ng),
we can determine uniquely @(1,n9, - ,nq) for all 1 < n; < M for j =

2’.-q7d:

a(l,TLQ,"' 7’I’Ld) = _4/9\(()’”2"" 7nd) +J/f\(0an2a"' 7nd)-

From the equality ((—Agise + V)@)(1,n2,- -+ ,ng) = 0 and the Dirichlet
data f|a§2,i for j =2,--- ,d, we can compute u(2,ns,- -+ ,ng) as follows:

a(27n27 e 7nd)

=~ =
—_

d
~ 1~
ZZZ o U 1 y 12,0 anj+a7"' and)fzf(07n2a"' and)

+ (1,712,"' ,’I’Ld) “1“7(1,712,"' ,nd)ﬂ(l,n2,~-~ 7nd);

M\&

forall 1 < n; < M, j =2,---,d. We repeat this procedure to compute
u(n) forallmy =1,--- , M+ 1. O

For subsets A, B C 9€;,,:, we denote the associated submatrix of A\A, by
AG(B;A).

COROLLARY 8.2. — Let U be the solution of (8.1), (8.4). If f =0 on
OQint \89?’, Aaf =0 on 007, then U =0 in Q.

COROLLARY 8.3. — The submatrix A@(@Ql_;aﬁf) is nonsingular, i.e.
A5 (097 007 : 097 — 0Q7 is a bijection.

Proof. Suppose f: 0 on 094, \ 0 and Af\/f: 0 on 027 . By Corollary

8.2, the solution @ of (8.1), (8.4) vanishes identically. Hence f=0on o0 .
This implies that Ag (09 ; o) is nonsingular. O

COROLLARY 8.4. — Given D-N map Ag;, partial Dirichlet data fg on

Ot \ 0Q] and partial Neumann data § on 9§, there exists a unique f
on Qs such that f = fo on OQype \ 89?‘ and A\A,f|aQ; =g ondQ;.

Proof. We seek fsuch that

~

AG Slpo: = AG(0Q SO0 i+ AG(O97 50t \ 00 f2 = G,
where fl = f|891+. By Corollary 8.3, we take

Fi = (Ag(097:091) 7 (7 - Ag (097 0% \ 99 ) . D

ANNALES DE L’INSTITUT FOURIER



DISCRETE SCHRODINGER OPERATORS 1195

8.2. Reconstruction procedure from A\A/

We can now reconstruct V from A\A,. When d = 2, the procedure has
been already given in [4], [3], [19]. For d > 3, we generalize this method as
follows.

n

Figure 8.1. The shape of C1(0) in the case d = 3.

We introduce the cone with vertex n € ;,+ by

(8.9) Ci(n) = {megm; S I — el < —(ml—nl)}.
k#1

If @ satisfies the equation (8.8), we have

(8.10) in)= Y cpi(m)
meC1(n)\{n}
for some constants ¢,,. In particular, if w(m) = 0 for all m € Cy(n) \ {n},
we see that u(n) = 0 from (8.10) (See also Figure 8.1).
Let II(p) be the rectangular domain defined by
(8.11)
(p) = {(n1, -+ ,na) € Qi +na=p, 1<n; <M (2<i<d-1)},

where M is from (8.7), and for v’ = (rg,--- ,74_1) € [1, M]?2, we consider
its section
(8.12) (p;r') = {(n1,n',na) € U(p); n' ="}

For d = 3, see Figure 8.2.
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ng

n2

Figure 8.2. Situation of Lemma 8.5.

LEMMA 8.5. — Assume M + 1 < p < 2M, and take a point (p — M —
1,7/, M +1) € II(p; r’). Let u be the solution of (8.8) with Dirichlet bound-
ary data f such that

f(prflaT/aM+1):13
F=0 on 9\ (007 U{(p— M — 1,7/, M +1)}),

and Neumann data g = 0 on 9927 . Then we have

(8.13)

un)=0 if ny+ng <p,
an)=0 if ni+ng=p, n #r,

(8.14)
alp—M —14+d7  M+1—i)=(=1)" for p—M—-1+i<M+1.
If p= M + 1, taking the Dirichlet data f such that

~

f(O,T/,M) =1,
F=0 on 9\ (09 U{(0,7, M)}),

we have the same assertion.
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Proof. — We put m = (p— M — 1,7/, M + 1). First we show that m ¢
Cy(n), if ny +ng < p. In fact,

—(m—nm)=m—p-M-1)<p—ng—(p—M—-1)=M+1—ng,
and on the other hand,

Z\mk—nk|>|md—nd|=M—&—1—nd.
k#1

Then, in view of the condition for f, the Neumann data 0, 1| sa; =0 and
(8.10), we have u(n) =0 if ny + ng < p.
Assume that n; +ng = p and n’ # r’. (See Figure 8.3.) Then

—(my—n1)=M+1—ng.
On the other hand, since n’ # 7/, we see that

Z|mk—nk\>|md—nd|:M—i—l—nd.
£l

They imply m ¢ Ci(n), hence @(n) = 0 as above.
Let us prove (8.14). Using the equation

((—Adise + V)A)(p— M — 1,7/, M) =0,
and the fact that

u=0 for ni+ng<p, Up-—M-—1,7 M+1)=1,

we have u(p—M,r’, M) = —1. Here we do not use the value of the potential
V(p— M,r", M). (See Figure 8.4.) Repeating this procedure, we see u(p —
M —1+id,7",M+1—i)=(—1)" inductively. O

Figure 8.3. Extension of the solution for the case (8.13).
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—M—1,7",M+1
n3 1 .(P T )
/
/ 0
(p;r") 7/
/
ng 0 / 0 0
/
G & ©
/
ny /
/
-1
(p— M, ', M)
O
0

Figure 8.4. Extension of the solution for the case (8.14).

Now we show the reconstruction procedure.
1st step. We construct the boundary data fsuch that
f(Mﬁ laT/aM+1) = 17
F=0 on 9\ (00 U{(M - 1,7, M +1)}),
AGf=0 on 09y,

by Corollary 8.4. Then the solution @ of (8.1) and (8.4) satisfies the as-
sumption of Lemma 8.5. By virtue of Lemma 8.8, we have

R -1 (n=(M,r",M)),
u(n) = o
0 (other n € Qynt)-
Then, using the equality
((—Adgise + V)A) (M, 7/, M) = 0

~

and the boundary value f(M + 1,7/,M), we can compute the value
V(M, ', M). Applying this procedure for all 7/, we recover V on all vertices
(n1,7’',nq) such that ny + ng = 2M.

2nd step. Assume that we have recovered V on vertices such that ni+ng >
pfor M +1 < p < 2M. We construct the boundary data f such that

fo—M -1,/ M+1)=1,

F=0 on 0\ (09 U{(p— M —1,7',M +1)}),

AGf =0 on 09;.
By the same argument as in Step 1, the solution @ of (8.1) and (8.4) satisfies
(8.13), (8.14). Since we have already recovered V on ny + ng > p, we can
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compute u(n) on ny + ng > p using the equation (—Ag;s. + ‘7)17 =0 and
the boundary data f. Hence, using the equality

(= Agise + VVa)(p— M —1+i,7', M +1—14)) =0,

and the fact that W(p — M — 1 +i,7', M +1 —i) = (—1), we can compute
XA/(p — M —1+4r,M+1—14) for every i. Applying this procedure for
all 7', we recover V on all vertices (n1,7’,nq) such that n; +ng = p with
M+1<p<2M.

3rd step. For p = M + 1, we construct the boundary data J?such that
FO,7, M) =1,
F=0 on 9\ (007 U{(0,7, M)}),
A f=0 on o0y

By the same argument as in Step 1, the solution @ of (8.1) and (8.4) satisfies

a(n) _ (_1)i_1 (n = (ivrlvM +1- Z))7
o 0 (n+ng<p or ni+ng=p, n #r).

Then we can compute IA/(Z, ', M + 1 — 1) for every i as above.

4th step. In the case ny +ng < M + 1, we have only to rotate the whole
domain.

We have thus completed the proof of Theorem 1.1.
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