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The impurity-limited resistance and the effect of the phase interference among localized multiple

impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically

investigated under the framework of the scattering theory. We derive theoretical expressions of the

impurity-limited resistance in the nanowire under the linear response regime from the Landauer

formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation.

We show that the formula from the BTE exactly coincides with that from the Landauer approach

with the weak-scattering limit when the energy spectrum of the in-coming electrons from the

reservoirs is narrow and, thus, point out a possibility that the distinction of the impurity-limited

resistances derived from the Landauer formula and that of the BTE could be made clear. The

derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities

with short-range scattering potential and the validity of various approximations on the resistance

are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures

that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase

randomization simultaneously play a crucial role in determining the impurity-limited resistance

even under the fully coherent framework. When the impurity separation along the wire axis

direction is small, the constructive phase interference dominates and the resistance is much greater

than the average resistance. As the separation becomes larger, however, it approaches the series

resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the

uniform configuration of impurities, the space-average resistance of multiple impurities at room

temperature is very close to the series resistance of the single-impurity resistance, and thus,

each impurity could be regarded as an independent scattering center. The physical origin of this

“self-averaging” under the fully coherent environments is attributed to the broadness of the energy

spectrum of the in-coming electrons from the reservoirs. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4938392]

I. INTRODUCTION

Silicon nanowires (SNWs) have been receiving great

attention because of their possible application of future elec-

tronic and photonic devices as well as other novel applica-

tions such as chemical/biological sensors.1–3 In particular,

SNWs with gate-all-around structure could be fabricated

with diameter less than 10 nm and show excellent transistor

characteristics.4–6 Therefore, SNWs are considered to be one

of the most promising building blocks for future nano-

transistors because of their excellent gate-controllability.7,8

Transport characteristics of nanowires observed in vari-

ous experiments are, however, scattered over great ranges.

One of the main causes is due to the small volume through

which electrons flow so that the number of impurities and

surface roughness included in the volume is very small.9–11

Since “self-averaging,” by which the resistance is averaged

over the random spatial configuration of impurities and/or

surface roughness,12,13 is no longer valid in short channel

nanowires, the device performance greatly fluctuates

depending on the spatial configuration of surface roughness

and impurities in the channel.14,15 In fact, this is a rather

complicated problem because both incoherent and coherent

effects associated with electron’s wave nature simultane-

ously play a role in the variability of device properties: the

quantum phase interference along the longitudinal direction

as well as the potential modulation associated with localized

impurities and surface roughness is deeply involved. In addi-

tion, because of the singular nature inherent in the transport

equation, scattering is inevitable even in nano-scale channel

devices, in which the mean-free-path is much longer than the

channel length.16–18 So far, most theoretical studies on elec-

tron transport properties of SNWs are based on large-scale

numerical simulations, as briefly overviewed below, and the

effects of phase interference among ionized impurities on

electron transport and their consequence of “self-averaging”

are not fully explored or understood.

The effects of localized impurities on transport charac-

teristics under nanowire structures have been tackled by

quantum mechanical simulations such as the nonequilibrium

Green function (NEGF). The electronic structure of localized

impurities is obtained from either the first-principles calcula-

tions with the density-functional theory (DFT)19–23 or the

empirical tight-binding method.24–26 In both approaches, the

conductance is calculated by the Landauer formula in terms

of the transmission probability under the framework of thea)Electronic mail: sano@esys.tsukuba.ac.jp
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scattering theory. Under the low dimensional structures, the

electronic structure becomes rather sensitive to the atomistic

constituents of the device and the electrostatic potential is

greatly modulated by the difference in dielectric properties

of the surrounding materials (dielectric mismatch). In partic-

ular, this dielectric mismatch affects the screening of the

Coulomb scattering potential of ionized impurities, leading

to a strong dependence of the electron mobility on the sur-

rounding materials.27–29

Although charged impurities sometimes lead to numeri-

cal convergence problems in the first-principles calcula-

tions,21 these approaches indeed provide accurate electronic

structures and potential profiles under nanostructure once

proper boundary conditions are imposed on device geometry.

However, the incorporation of the whole device structure

including the surroundings is very difficult, and the number

of impurities included in such calculations is rather limited

due to the current computational capability. In many cases,

just one single-impurity is put at various location in the

transverse plane of the quasi-one dimensional (quasi-1D)

nanowire and the impurity-limited resistance (or equiva-

lently the mobility) is extracted. The mobility is found to be

strongly dependent of the type of charge and the radial posi-

tion of the ionized impurity in the nanowire.24,26 It is, thus,

claimed that the perturbative treatment of impurity scattering

based on the Boltzmann transport equation (BTE) would

completely fail to predict the accurate mobilities. It should

be noted, however, that the analyses based on a single impu-

rity could be justified only if each impurity doped in the

nanowire is regarded as independent so that the phase corre-

lation among the impurities is completely ignored. In addi-

tion, self-averaging is implicitly involved in the long channel

nanowires usually employed in the experiments and it is not

clear whether the self-averaged resistance would be identical

to that simply extracted from the single-impurity resistance.

There are several theoretical reports in which multiple

impurities, consistently with the average impurity density

imposed in the substrate of the nanowire, are introduced

explicitly to evaluate the transport properties in the tight-

binding NEGF simulations.25,30,31 They have demonstrated

how much the device characteristics could actually fluctuate,

depending on the configuration of impurities. However,

the number of simulations capable by the tight-binding

approaches is still limited, and it is very difficult to obtain

statistically reliable results. In addition, under the framework

of the NEGF simulations, the potential modulation induced

by multiple impurities over the whole channel region is

treated as a “single” scattering potential, and thus, the phase

coherence among the impurities is completely preserved

unless the phase breaking process such as phonon scattering

is explicitly included. Therefore, it is not clear how self-

averaging is actually involved in determining the transport

properties. Even if phase breaking scattering is included, it is

very difficult to extract the distinct effects of phase interfer-

ence among impurities from such brute-force simulations.

As a result, the physics behind the variability associated with

phase interference in transport characteristics is not clear and

its full understanding is still missing.

In the present paper, we carry out systematic investiga-

tions of the impurity-limited resistance and the effect of the

phase interference among localized multiple impurities in

the quasi-1D nanowire structures.

We derive theoretical expressions of the impurity-

limited resistance in the nanowire under the linear response

regime from the Landauer formula and the BTE with the

relaxation time approximation. We show that the formula

from the BTE exactly coincides with that from the Landauer

approach with the weak-scattering limit under certain condi-

tions. We point out a possibility that the distinction of the

impurity-limited resistances derived from the Landauer

formula and that of the BTE could be made clear experimen-

tally. The derived formulas are then applied to the quasi-1D

nanowires doped with multiple localized impurities with

short-range scattering potential. The range of validity of

various approximations on the impurity-limited resistance is

discussed. In order to clarify the physics behind the variabili-

ty associated with localized impurities in the nanowire,

numerical analyses are carried out based on these formulas,

and we show explicitly that both phase interference and

phase randomization play a crucial role simultaneously in

determining the impurity-limited resistance even under the

fully coherent framework where no phase breaking scattering

is included. We also show that under the uniform distribution

of impurities, the space-average resistance at room tempera-

ture becomes very close to the series resistance of the single-

impurity resistance, and thus, each impurity could be

regarded as an independent scattering center. We discuss the

physical origin of self-averaging under purely coherent

circumstances.

The present paper is organized as follows. The details of

the theoretical methodology are explained in Sec. II: The

impurity-limited resistances are derived from the Landauer

formula and the BTE. The reflection and transmission proba-

bilities are derived from the Lippmann-Schwinger theory.

The exact expressions of the resistance in the nanowire due

to multiple impurities with short-range potential are explic-

itly derived. In Sec. III, the derived formulas are applied to

the simple cases where single and multiple impurities

are doped in the nanowire, and the range of validity of vari-

ous approximations and the phase interference effects are

discussed. Finally, some conclusions from the present study

are drawn in Sec. IV.

II. THEORETICAL METHODOLOGY

A. Landauer formula and impurity-limited resistance

We consider a quasi-1D quantum wire which has the

spherical cross-section with radius rs. The unperturbed

Hamiltonian Ĥ0 under the effective mass approximation for

the cylindrical wire is expressed as

Ĥ0 ¼ �
�h2

2m
r2 þ Ucyl R̂ð Þ; (1)

where m is the electron effective mass and UcylðR̂Þ is the

single-particle potential energy, which confines electrons

inside the cylindrical wire. In fact, Si has 6 equivalent
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valleys with anisotropic effective masses in bulk, which lead

to the subband splitting under nanostructures. In principle,

the extension to anisotropic band structure is also possible

by introducing the anisotropic effective masses in the above

Hamiltonian. However, since the emphasis in the present

study is paid on the physics involved in localized impurities

in conventional semiconductors, we employ an isotropic

band structure with single-valley for simplicity. The wave-

function in the cylindrical coordinates is then given by

/kln Rð Þ ¼ 1ffiffiffi
L
p eikznln rð Þ

¼ 1ffiffiffi
L
p eikz 1ffiffiffi

p
p

rsJlþ1 xlnð Þ
Jl xln

r

rs

� �
eilu; (2)

where R ¼ ðr; zÞ ¼ ðr;u; zÞ, L is the wire (channel) length,

Jl(x) is the Bessel function of order l (integer), and xln is the

n-th root of Jl(x)¼ 0. The total electron energy is given by

Ekln ¼ ek þ eln ¼
�h2k2

2m
þ �h2

2m

xln

rs

� �2

: (3)

According to the Landauer picture, the electrical current

I through the nanowire connected to the two reservoirs with

chemical potential lL for the left (source) and lR for the right

(drain) is expressed by

I ¼ e

p�h

ð1
�1

dE
X

A

TA Eð Þ fFD E; lLð Þ � fFD E; lRð Þ
� �

; (4)

where TA(E) is the transmission coefficient (probability) for

the incoming electron in the subband A¼ (l, n) with total

energy E (>0) and fFD(E; l) is the Fermi-Dirac distribution

with the chemical potential l. The spin degeneracy is

included in the above expression. Under the linear response

regime where the applied bias V is small, we obtain the

Landauer formula for the conductance G as

G ¼ e2

p�h

ð1
�1

dE
X

A

TA Eð Þ � @fFD Eð Þ
@E

� �
; (5)

where we have eliminated the chemical potential lL from its

argument of the Fermi-Dirac distribution fFD for simplicity.

The total resistance Rtot given by the inverse of G in

Eq. (5) consists of two contributions: the contact (quantum)

resistance R0 and the channel resistance Rc. The former is

caused by the difference in the number of modes in the reser-

voirs and the lead. On the other hand, Rc is associated with

the scattering potential by ionized impurities, phonons, sur-

face roughness, and the potential modulation, resulting from

the long range part of the Coulomb potential of ionized

impurities and carriers as well as the applied gate voltage.32

Therefore, the channel resistance Rc could be obtained by

subtracting the contact resistance from the total resistance

Rc ¼ Rtot � R0 ¼
1

G
� 1

G0

: (6)

The contact resistance R0 would be given by simply assum-

ing that the transmission probability TA(E) is unity (ballistic)

and, thus, the channel resistance Rc is calculated by

Rc ¼
p�h

e2

1

gsub

X
A

RA Eð Þ
* +

X
A

TA Eð Þ
* + ; (7)

where gsub is the number of subbands (modes) available for

the in-coming electrons from the source and the drain with

the Fermi energy lL and RA(E) is the reflection coefficient

(probability) for the electron with energy E. We have used

the fact that TAðEÞ þ RAðEÞ ¼ 1. h� � �i represents the thermal

average defined by

h� � �i ¼
ð1
�1

dE � � �ð Þ �
@fFD Eð Þ
@E

� �
: (8)

If the Fermi energy is close to or below the conduction band

edge in the channel region, Eq. (8) is not normalized to unity.

Thus, the averaged quantities such as hRAi should be inter-

preted as those properly normalized.

It should be noted that the scattering-limited resistance

Rc in Eq. (7) has no lower or upper bound, as it should be,

and approaches zero (or infinity) as RA(E) (or TA(E))

approaches zero. Therefore, Eq. (7) allows us to directly

compare the scattering-limited resistance with that calculated

from the BTE, which does not include the contact (quantum)

resistance and takes the value in the ranges of [0,1).

When only the lowest subband, A¼ (l¼ 0, n¼ 1), is

involved in the transport (we call it the “extreme quantum

limit” hereafter), Rc reduces to the following expression:

Rc ¼
p�h

e2

hRAi
1� hRAi

¼ p�h

e2
hRAi þ hRAi2 þ � � �
� �

� p�h

e2
hRAi: (9)

The last expression holds true under “the weak-scattering

limit” where the transmission probability hTAi is very close

to unity, i.e., hRAi � 1. Therefore, this expression of Rc is

bounded above and physically inappropriate. We shall show

below that the semi-classical treatment based on the BTE

under the linear response regime yields the identical results

to the Landauer’s under the weak-scattering limit.

We should notice that under the framework of the scat-

tering theory, the potential modulation in the whole channel

region is regarded as a “single” scattering potential. This

potential modulation is attributed to the following two parts.

One is the short-range part of the Coulomb potential due to

ionized impurities and carriers. In addition, the smooth poten-

tial induced by the long-range part of the Coulomb potential

of impurities/carriers and the applied gate voltage also con-

tributes to the channel resistance Rc. Therefore, the channel

resistance Rc results from the two different origins in the

Landauer approach. Figure 1 shows a schematic drawing of a

typical potential profile encountered in the channel of

nanowire FETs. We would like to stress that under the semi-
classical analyses based on the BTE, this long-range potential
modulation is not treated as the scattering potential and does
not directly contribute to the resistance. It simply affects the
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carrier density in the channel region. Therefore, it is crucial to

eliminate the long-range part of the scattering potential from

the potential modulation in the Landauer approach in order to

make the direct comparison with the semi-classical analyses

based on the BTE meaningful. In the present study, we con-

sider the transport properties associated with localized impur-

ities with short-range scattering potential under the flat

channel potential. If the long-range potential along the wire

axis in the channel is flat by properly applying the gate volt-

age, the channel resistance Rc could be identified as the

impurity-limited resistance Rs by ionized impurities with the

short-range screened Coulomb potential.33

B. Transmission and reflection probabilities

The transmission and reflection probabilities, TA(E) and

RA(E), could be calculated by the Lippmann-Schwinger

equation.34 The complete state vector jwþðEÞi of the incom-

ing electron with total energy E from the reservoirs under the

influence of the full Hamiltonian is described by

jwþðEÞi ¼ j/ðEÞi þ Ĝ
þ
0 ðEÞT̂ðEÞj/ðEÞi; (10)

where j/ðEÞi is the unperturbed state vector with energy E,

which coincides adiabatically with jwþðEÞi at very far dis-

tant (in space and/or time) from the interaction (channel)

region.35,36 Ĝ
þ
0 ðEÞ is the free retarded Green operator

defined with the unperturbed Hamiltonian Ĥ0, and T̂ðEÞ is

the T-operator defined by

T̂ðEÞ ¼ V̂ þ V̂ Ĝ
þ
0 ðEÞT̂ðEÞ (11)

with the interaction operator V̂ associated with the scattering

potential, which may include the hopping term to connect

the unperturbed parts of the whole system.

Projecting Eq. (10) onto the coordinate space, we obtain

the complete wave-function as

wþ Rð Þ ¼ 1ffiffiffi
L
p eikAznA rð Þ þ 1ffiffiffi

L
p
X

B

nB rð Þ

�
ð

dz1dz2 gþkB
z; z1ð Þ �TBA z1; z2ð ÞeikAz2 ; (12)

where the eigenstate of the unperturbed Hamiltonian Ĥ0 is

denoted by ðE; l; nÞ � ðE;BÞ and kB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� eBÞ

p
=�h

(> 0). We assume that the electron in the eigenstate (E, A) is

injected into the scattering region. The reduced Green func-

tion gþkB
ðz1; z2Þ is expressed by

gþkB
z1; z2ð Þ ¼ �i

m

�h2kB

eikBjz1�z2j; (13)

and the reduced T-matrix is given by

�TBAðz1; z2Þ ¼ �VBAðz1Þdðz1 � z2Þ þ
X

C

�VBCðz1Þ

� gþkC
ðz1; z2Þ �VCAðz2Þ þ

X
C;D

�VBCðz1Þ
ð

dz3gþkC

� ðz1; z3Þ �VCDðz3ÞgþkD
ðz3; z2Þ �VDAðz2Þ þ � � � :

(14)

Here, the effective interaction potential �VBA is defined by

�VBAðz1Þ ¼
ð

d2r1n
�
Bðr1ÞVðR1ÞnAðr1Þ: (15)

The asymptotes at z !61 of the complete wave-

function allows one to calculate the transmission and reflec-

tion amplitudes, tBA(E) and rBA(E), respectively. The results

are given by

tBAðEÞ ¼ dB;A þ I�BA (16)

and

rBAðEÞ ¼ IþBA; (17)

where I7
BA is defined by

I7
BA ¼

ð
dz1dz2 e7ikBz1 �i

m

�h2kB

� �
�TBA z1; z2ð ÞeikAz2 : (18)

The transmission and reflection probabilities for the incom-

ing electron with energy E are given by

TA Eð Þ ¼
X

B

jtBA Eð Þj2 kB

kA
(19)

and

RA Eð Þ ¼
X

B

jrBA Eð Þj2 kB

kA
; (20)

respectively. The exact impurity-limited resistance Rs is

evaluated with Eq. (7) and we have

Rs ¼
p�h

e2

1

gsub

X
A;B

jrBA Eð Þj2 kB

kA

* +

X
A;B

jtBA Eð Þj2 kB

kA

* + : (21)

In particular, under the extreme quantum limit where

only the lowest subband A is involved in electron transport,

the exact impurity-limited resistance Rs becomes

FIG. 1. Schematic drawing of a typical potential profile encountered in the

channel of nanowire FETs. The whole scattering potential consists of the

long-range potential induced mainly by the applied gate voltage and the

short-range potential due to the screened impurities. The entire potential pro-

file is treated as a single-scattering potential under the framework of the

scattering theory.
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Rs ¼
p�h

e2

hRA Eð Þi
hTA Eð Þi ¼

p�h

e2

hRA Eð Þi
h1� RA Eð Þi ; (22)

where the reflection probability RA(E) is given by

RA Eð Þ ¼ m

�h2kA

� �2
ð

dz1dz2eikA z1þz2ð Þ �TAA z1; z2ð Þ
����

����
2

: (23)

The resistance under the weak-scattering limit Rs,weak is

expressed as

Rs;weak ¼
p�h

e2

m

�h2kA

� �2
ð

dz1dz2eikA z1þz2ð Þ �TAA z1; z2ð Þ
����

����
2

* +
:

(24)

We should notice that impurity scattering is treated non-per-
turbatively through the exact T-matrix in the above formulas.

If the T-matrix in Eq. (14) is approximated with the lowest

order: �TAAðz1; z2Þ ’ �VAAðz1Þdðz1 � z2Þ, the resistance RB
s;weak

becomes

RB
s;weak ¼

p�h

e2

m

�h2kA

� �2
ð

dz1ei2kAz1 �VAA z1ð Þ
����

����
2

* +
; (25)

and this is usually referred to the Born approximation.

C. Semiclassical approach: Boltzmann picture

The BTE for nonequilibrium distribution f(k, eA, z) under

the nanowire structures is given by37,38

@f

@t
þ _z

@f

@z
þ _k

@f

@k
¼
X
k0;B

P k0B; kAð Þf k0; eB; zð Þ 1� f k; eA; zð Þ
� �

�
X
k0;B

P kA; k0Bð Þf k; eA; zð Þ 1� f k0; eB; zð Þ
� �

¼
X
k0;B

P k0B; kAð Þ f k0; eB; zð Þ� f k; eA; zð Þ
� �

;

(26)

where Pðk0B; kAÞ is the transition probability per unit

time from the eigenstate ðk0BÞ to (kA) of the unperturbed

Hamiltonian Ĥ0. In the last equality, we have used the fact

that Pðk0B; kAÞ ¼ PðkA; k0BÞ for elastic scattering under the

isotropic band structure.39 We now assume that the distribu-

tion function is approximated by a shifted equilibrium dis-

tribution under the locally uniform electric field F such that

f k; eA; zð Þ � fFD k; eA; zð Þ � es
�hk

m
� @fFD k; eA; zð Þ

@E

� �
F; (27)

where fFD(k, eA, z) is the local equilibrium distribution at the

axial position z and given by the Fermi-Dirac distribution.

The relaxation time s is determined from the BTE and given40

1

s k;Að Þ ¼
X
k0;B

P kA; k0Bð Þ 1� k0

k

� �
: (28)

The transition probability PðkA; k0BÞ is calculated by

Fermi’s Golden rule

P kA; k0Bð Þ ¼ 2p
�h
jh/k0BjT̂ j/kAij2d E� E0ð Þ; (29)

where T̂ is the T-operator defined in Sec. II B associated with

the scattering potential operator V̂ . E and E0 are the total

energies of the electron before and after scattering, respec-

tively, and they are given by E ¼ �h2k2=ð2mÞ þ eA and

E0 ¼ �h2k02=ð2mÞ þ eB.

The electric current I at position z is evaluated by

I ¼ � e

p

X
A

ð1
�1

dk
�hk

m
f k; eA; zð Þh E� eAð Þ; (30)

and we find that the impurity-limited resistance RBTE
s under

the linear response regime is given by

RBTE
s ¼ p�h

e2

1

gsub

gsubX
A

2 vth E; eAð Þs E; eAð Þh E� eAð Þ
L

� 	 ; (31)

where vth(E, eA) is the magnitude of electron velocity along

the axis direction and given by vthðE; eAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� eAÞ=m

p
.

Here, we have used the fact that the electric field F at the

axial position z is approximated by the mean electric field in

the channel region with no impurity and, thus, expressed by

the potential drop V divided by the channel length L. This is

physically reasonable because the applied drain voltage is

assumed to be small and the potential modulation caused by

ionized impurities is just the screened short-range potential.

Hence, the electrical current I could be evaluated at any posi-

tion z in the channel, and z-dependence could be eliminated

from the local equilibrium distribution fFD. It should be

noted that the equilibrium distribution fFD(E) in Eq. (31) is

the equilibrium distribution inside the nanowire. Under the

linear response regime, however, fFD(E) becomes identical

to the equilibrium distribution fFD(E) in the source and drain

regions. Therefore, thermal average represented by h� � �i in

Eq. (31) becomes identical to the one we have defined in the

Landauer approach by Eq. (8).

Under the extreme quantum limit where only the lowest

subband is involved in electron transport, RBTE
s is simplified

as

RBTE
s ¼ p�h

e2

L

h2vth Eð Þs Eð Þi : (32)

Here, A¼ (l¼ 0, n¼ 1) and, thus, the subband index A has

been eliminated from the arguments of vth and s. The relaxa-

tion time s(E) is calculated from the BTE with Eq. (28) and

we obtain

1

s Eð Þ ¼
2m

jkj�h3

1

L

ð
dz0dzeik z0þzð Þ �TAA z0; zð Þ

����
����
2

: (33)

Multiplying both sides of Eq. (33) by p�h
e2

L
2vthðEÞ and taking the

thermal average as defined by Eq. (8), we find

p�h

e2

L

2vth Eð Þs Eð Þ

� 	
¼ p�h

e2

m

�h2k

� �2 ð
dz0dzeik z0þzð Þ �TAA z0; zð Þ

����
����
2

* +
:

(34)
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This expression is identical to the impurity-limited resistance

under the weak-scattering limit Rs,weak in the Landauer

approach, as given by Eq. (24). If electrons in the source and

drain are highly degenerate, the derivative of the equilibrium

distribution included in Eq. (8) has a peak structure around

the Fermi energy lL and, thus, the energy spectrum of the

incoming electrons becomes narrow unless temperature is

very high.41 Therefore, we may relate Eq. (34) with RBTE
s

such that

Rs;weak ¼
p�h

e2

L

2 vth Eð Þs Eð Þ

� 	

� p�h

e2

L

2 vth lLð Þs lLð Þ

� p�h

e2

L

h2 vth Eð Þs Eð Þ i ¼ RBTE
s : (35)

Since Rs,weak is obtained by truncating the series with

respect to hRAi by the first term, Eq. (35) indeed confirms the

fact that the BTE holds true only in the regime of the weak

scattering limit (and the Born approximation).42 If scattering

is strong, it is inevitable to employ the Landauer approach

along with the exact T-matrix, i.e., impurity scattering is

treated non-perturbatively and the denominator (the trans-

mission probability) in Rs is taken into account.

In addition, we would like to stress that in both
approaches, the potential modulation over the whole channel

region is treated as a single scattering potential and com-

pletely coherent. Therefore, the above claim that RBTE
s is

nearly identical to Rs,weak holds true only for short channel

wire structures, under which the channel length is shorter

than the incoherent scattering length so that no self-averaging

is involved. In this case, we are able to obtain Landauer’s

results even from the BTE as far as the weak-scattering limit

holds. In the long channel wires, on the other hand, the phase

coherence is easily broken due to phase breaking processes

such as phonon scattering, and thus, scattering with different

impurities could be regarded as independent. This is equiva-

lent to saying that the spatial average over the impurity

configuration (self-averaging) is inevitably involved in long

channel wires. Then, it is rather unrealistic to regard the

potential modulation caused by many impurities over the

whole channel region as a single scattering potential because

the electron distribution would change its shape at each scat-

tering center.43 Under the framework of the BTE, this is usu-

ally avoided by replacing the localized scattering potential by

the space-averaged potential and multiplying the impurity

density to the transition probability (not to the transition

amplitude). In the case of scattering approaches, however,

self-averaging seems to be possible only if phase-breaking

scattering is explicitly included in the calculations.

To summarize, the impurity-limited resistance RBTE
s

from the BTE approach in short channel nanowires becomes

identical to Rs,weak from the Landauer approach under the

weak-scattering limit if the energy spectrum of the in-
coming electrons from the source and drain regions where
electrons are highly degenerate is narrow, i.e., at low
temperature.

1. Landauer versus BTE in scattering-limited
resistance

The above results lead to another interesting observa-

tion. As the broadness in energy spectrum of the incoming

electrons from the reservoirs is changed, we are able to dis-

tinguish the impurity-limited resistances obtained from the

Landauer formula and that from the BTE.

Assuming that the scattering time s(E) due to scattering

is related with electron kinetic energy E by

sðEÞ ¼ c0 Eg; (36)

RBTE
s and Rs,weak could be evaluated. Here, c0 is constant and

g¼ 3/2 for impurity scattering, and the phonon scattering

roughly corresponds to g¼ 1/2 for 1D wire structures.44,45

Figure 2 shows the resistances as a function of the broadness

of energy spectrum of the incoming electrons. The Fermi

level lL of the source and drain is assumed to be higher than

the bottom of the lowest subband of the nanowire. Both RBTE
s

and Rs,weak indeed coincide at small energy broadening.

However, as the energy broadening becomes large, they

begin to deviate. In the case of impurity scattering, Rs,weak

rises rapidly, whereas RBTE
s slightly decreases. Such a large

difference in the resistance results from the energy depend-

ence of the scattering time and peculiar to impurity scatter-

ing. For phonon scattering, the difference between RBTE
s and

Rs,weak is not so significant. Therefore, it would be very inter-

esting to investigate experimentally the impurity-limited

resistance under the weak-scattering regime to figure out

which energy dependence is more realistic.

D. Short-range scattering by localized impurities

The formulas derived in Sec. II B are quite general;

they could be applied to any type of elastic scattering poten-

tial to derive the transmission and reflection amplitudes.

FIG. 2. Impurity-limited and phonon-limited resistance under the weak-

scattering regime as a function of the broadness of energy spectrum of the

in-coming electrons. Rs,weak obtained from the Landauer approach is plotted

with red lines and RBTE
s from the BTE approach is plotted by blue lines. The

cases of impurity scattering (g¼ 3/2) and phonon scattering (g¼ 1/2) are

shown with solid and empty symbols, respectively.
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Here, in order to pursue the analytical means as much as pos-

sible and to make the physics involved clearer, we apply the

formulas for a very simple, yet fruitful case; the scattering

potential of ionized impurities is given by the localized d-

function. This corresponds to the extreme case in which the

screening is so strong that the long-range part of the impurity

scattering potential is completely suppressed.

Suppose that there are Nimp impurities doped in the

channel region and the scattering potential is given in the

coordinate space by

VðRÞ ¼
XNimp

r¼1

ðvcaSÞ dð3ÞðR� R0rÞ; (37)

where a represents the characteristic length along the wire

axis direction over which the scattering potential is effective

and S is the cross-sectional area of the wire. vc is the scatter-

ing potential energy and assumed to be constant for simplic-

ity.46 The position vector R0r of the r-th impurity in the

cylindrical coordinates is denoted by R0r ¼ ðr0r; z0rÞ
¼ ðr0r;u0r; z0rÞ. It should be noted that under the present the-

oretical framework, the impurity density is determined by

the number of impurities Nimp in Eq. (37) and by the normal-

ization constant 1=
ffiffiffi
L
p

of the subband wavefunction along

the wire axis direction in Eq. (2). Since the impurity density

in the channel region is assumed to be constant in this study,

the channel length L varies according to the number of

impurities Nimp doped in the channel. In addition, the elec-

tron density is assumed to be the same as the impurity den-

sity, to be consistent with the flat potential assumption in the

channel region. In fact, the electron density dependence of

the average impurity-limited resistance is of great impor-

tance from the application standpoint. However, for this

purpose, it is essential to include the self-consistent potential

by solving the Poisson equation, and thus, this part is left for

future study.

The integral I7
BA including the reduced T-matrix in Eqs.

(16) and (17) can be expanded as

I7
BA ¼ I

ð1Þ
BA þ I

ð2Þ
BA þ I

ð3Þ
BA þ � � � : (38)

In order to clarify the structure inherent in I7
BA, we introduce

the following shorthand notations:

gI
rs ¼ �i

m

�h2kI

eikI jDrsj ¼ gI
0eikI jDrsj � hIjĝrsjIi; (39)

where ĝrs ¼ ĝ0eik̂ jDrsj with Drs ¼ z0r � z0s. jIi represents the

eigenstate of the subband I in the nanowire. Also, we define

Nr
IJ ¼ ðvcaSÞn�I ðr0rÞnJðr0rÞ � hIjN̂

rjJi: (40)

Then, the reduced scattering potential �VBAðzÞ defined by Eq.

(15) is simply written as

�VBAðzÞ ¼
XNimp

r¼1

Nr
BAdðz� z0rÞ: (41)

The first term I
ð1Þ
BA is expressed as

I
ð1Þ
BA ¼

XNimp

r¼1

e7ikBz0r gB
0 Nr

BAeikAz0r

¼ B
XNimp

r¼1

e7ik̂ z0r ĝ0N̂
r
eik̂z0r

�����
�����A

* +
: (42)

Similarly, the second and third terms, I
ð2Þ
BA and I

ð3Þ
BA , are given

by

I
ð2Þ
BA ¼

XNimp

r;s¼1

e7ikBz0r gB
0

X
C

Nr
BCgC

rsN
s
CAeikAz0s

¼ B
XNimp

r;s¼1

e7ik̂z0r ĝ0N̂
r
ĝrsN̂

s
eik̂z0s

�����
�����A

* +
(43)

and

I
ð3Þ
BA ¼

XNimp

r;t;s¼1

e7ikBz0r gB
0

X
C;D

Nr
BCðgC

rtN
t
CDgD

tsÞNs
DAeikAz0s

¼ B
XNimp

r;t;s¼1

e7ik̂z0r ĝ0N̂
rðĝrtN̂

t
ĝtsÞN̂

s
eik̂z0s

�����
�����A

* +
: (44)

Consequently, each term in Eq. (38) could be compactly

rewritten by employing the matrix representation with

respect to the position indices of the impurities. We obtain

I7
BA ¼

*
Bj e7ik̂z01 e7ik̂z02 � � � e7ik̂z0Nimp


 �

� ĝ0N̂
1

1� ĝN̂

 ! eik̂z01

eik̂z02

..

.

eik̂z0Nimp

0
BBBBBBB@

1
CCCCCCCA
jA
+
; (45)

where we have defined

N̂ ¼

N̂
1

0 0 0

0 N̂
2

0 0

0 0 . .
.

0

0 0 0 N̂
Nimp

0
BBBBB@

1
CCCCCA (46)

and

ĝ ¼ ĝ0

1 eik̂ jD12j � � � eik̂ jD1Nimp
j

eik̂ jD21j 1 � � � eik̂ jD2Nimp
j

..

. ..
. . .

. ..
.

eik̂ jDNimp1j eik̂ jDNimp2j � � � 1

0
BBBBB@

1
CCCCCA: (47)

Since no approximation has been made so far, Eq. (45) is

exact. Under the extreme quantum limit where only the low-

est subband A is involved, the operators ĝ and N̂ commute

each other and the resulting expressions are used in the fol-

lowing numerical calculations.
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III. NUMERICAL CALCULATIONS AND DISCUSSION

A. Single-impurity under extreme quantum limit

Let us consider the simplest case; there is only one im-

purity doped in the nanowire.24,26,47 Employing Eq. (45)

under the extreme quantum limit, the transmission and

reflection amplitudes are, respectively, given by

tAA Eð Þ ¼ 1þ I�AA ¼
1

1þ ic E; r01ð Þ (48)

and

rAA Eð Þ ¼ IþAA ¼ �
ic E; r01ð Þ

1þ ic E; r01ð Þ e
i2kAz01 ; (49)

where the scattering parameter cðE; r01Þ ð2 RÞ for the

incoming electrons with total energy E (	 eA) scattered by

the impurity at the radial position r01 is defined by

c E; r01ð Þ ¼ igA
0N1

AA ¼ vc
a

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2 E� eAð Þ

r
SjnA r01ð Þj2: (50)

The exact impurity-limited resistance Rs(r01) associated with

the single-impurity at r01 is calculated from Eq. (22) and

given by

Rs r01ð Þ ¼
p�h

e2

hRAi
hTAi

¼ p�h

e2

c E; r01ð Þ2

1þ c E; r01ð Þ2

* +

1

1þ c E; r01ð Þ2

* + : (51)

The resistance under the weak-scattering limit Rs,weak is cal-

culated from (24) and given by

Rs;weak r01ð Þ ¼
p�h

e2
hRAi ¼

p�h

e2

c E; r01ð Þ2

1þ c E; r01ð Þ2

* +
(52)

and the resistance under the Born approximation is calcu-

lated from (25) and given by

RB
s;weak r01ð Þ ¼

p�h

e2
hc E; r01ð Þ2i: (53)

Notice that the restriction imposed on the scattering parame-

ter, jcðE; r0Þj < 1, by the condition that the Born series

should be convergent is removed in Eqs. (51) and (52), in

which impurity scattering is treated non-perturbatively. Also,

Rs is not bounded above, whereas Rs,weak and RB
s;weak are

bounded. We notice that Rs,weak is somewhat inconsistent

with the approximations employed in its derivation since Rs

is truncated by the first term with hRAi. Roughly speaking,

this is equivalent to ignoring the vertex corrections in the

conductivity calculation, and this point will be discussed

elsewhere. Of course, both Rs,weak and RB
s;weak approach the

exact result Rs when jcj � 1.

We should also point out that the impurity-limited resist-

ance at T¼ 0 reduces to

Rs r01ð Þ !
T¼0

p�h

e2
hc E; r01ð Þ2i ¼ p�h

e2
c lL; r01ð Þ2; (54)

assuming that the Fermi energy of the reservoirs is above the

bottom of the lowest subband of the nanowire, lL> eA. This

expression becomes identical to RB
s;weak, and thus, the Born

approximation, rather than Rs,weak in which impurity scatter-

ing is treated nonperturbatively, becomes exact at very low

temperature.

1. Scattering strength

We now estimate the magnitude of the scattering param-

eter c(E, r01) under the quasi-1D nanowires. Assuming that

the impurity potential Vsc(R) is given by the Yukawa poten-

tial with the screening length ksc such that

Vsc Rð Þ ¼ e

4pes

e�
R

ksc

R
; (55)

where es is the dielectric constant of the semiconductor sub-

strate of the nanowire, we could estimate the scattering

potential energy vc as

jvcj �
e

Xsc

ð
d3R Vsc Rð Þ 
 0:36609

1

ksc nmð Þ eVð Þ; (56)

where Xsc is the volume of the sphere with radius ksc. Hence,

the magnitude of the scattering parameter is approximately

given by48

jc E; r01ð Þj 
 16:6365� a

ksc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� eA meVð Þ

p ; (57)

where we have assumed that SjnAðr01Þj2 
 1.

Since the Coulomb potential due to ionized impurities

is confined in a very limited region under the gated nano-

device structure, jvcj tends to be larger as the structure

shrinks. In addition, the lowest subband wave-function has a

peak on the wire axis so that the effective scattering potential

weighted with the wave-function is enhanced as the size of

the wire cross-section shrinks. Consequently, jcj becomes

larger than unity, and the weak-scattering limit easily breaks

down in the nanowire. It is, thus, expected that both the

higher-order corrections of impurity scattering and the

denominator of the impurity-limited resistance in Eq. (51)

should be taken into account.

2. Radial position dependence of resistance

Figure 3 shows the impurity-limited resistances at

T¼ 300 and 30 K as a function of the radial position of the

single impurity in the cylindrical wire with rs¼ 2 nm. The

scattering potential energy vc is assumed to be vc¼ 183 meV,

corresponding to the screening length of ksc¼ 2 nm. The

contact (quantum) resistance R0 is given by R0 ¼ p�h=e2. The

numerical values of the parameters employed are summar-

ized in Table I.

At room temperature, Rs,weak and RB
s;weak largely deviate

from the exact result Rs, and thus, the weak-scattering limit

indeed breaks down. Especially, Rs,weak is always bounded
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by the upper limit of the reflection probability (due to the

non-perturbative treatment of impurity scattering) and under-

estimates the impurity-limited resistance at any temperature.

It is also clear that the variation of the resistance with respect

to the radial location of the impurity results from the

position-dependence of the subband wave-function jnAðr0Þj,
which also has a maximum on the wire axis and decreases

along the radial direction. In reality, the impurity scattering

potential is greatest on the wire axis and gets weaker in the

radial direction toward the interface of the gate oxide. The

present results, though the scattering potential is constant

and no long-range part of the potential is included, are con-

sistent with the previous results of the tight-binding NEGF

simulations with more realistic scattering potential.24,26

Furthermore, we notice that as temperature is lowered, the

Born approximation becomes close to the exact result

although the scattering parameter jcj exceeds unity above

which the weak scattering limit (the Born approximation)

breaks down. This is consistent with Eq. (54).

These results confirm the conjecture mentioned above:

The higher order corrections associated with the multiple

scattering with the same impurity are significant at room

temperature in short-channel nanowires. Thus, in general,

the non-perturbative treatment for the transition matrix as

well as the inclusion of the denominator hTAi in Rs is crucial

under the nanowire structures.

3. Ensemble average resistance over impurity location

The meaning of spatial average and the variations of Rs

are rather trivial in the single-impurity case. Averaging Rs in

the coordinate space simply implies that the impurity loca-

tion is averaged over the cross-sectional area, irrespective of

the wire axis direction. The probability density of the

impurity-limited resistance F(Rs) is calculated from

FðRsÞ ¼
ð

d3R01 dðRs � RsðR01ÞÞpimpðR01Þ; (58)

where pimp(R01) is the probability density of the impurity

position R01. If the impurity is distributed uniformly over the

volume of the channel region, the probability density

becomes constant and F(Rs) becomes

F Rsð Þ ¼
2

rs
2

ðrs

0

dr01 r01d Rs � Rs r01ð Þ
� 

: (59)

The probability density F(Rs) calculated from Eq. (59) is

shown in Fig. 4 as a function of Rs. F(Rs) has a peak at very

low resistance, which comes from the resistance near the

edge of the nanowire where the subband wave-function

almost vanishes, whereas the peak at high resistance is due to

the contribution from the wire axis where the subband wave-

function has a peak. Therefore, Rs is dominantly determined

by the resistance near the interface with the gate-oxide if the

spatial configuration of impurities is uniform. This trend is

expected to hold true even stronger if the impurity potential

is more realistic because the impurity potential is strongly

screened by the surrounding materials near the interface.

The average impurity-limited resistance �Rs under the

uniform impurity distribution is obtained from

�Rs ¼
ð1

0

dRs RsF Rsð Þ ¼
2

rs
2

ðrs

0

dr01 r01Rs r01ð Þ: (60)

Figure 5 shows �Rs as a function of the scattering potential

energy vc at T¼ 300 and 30 K. �Rs calculated from the exact

FIG. 3. Impurity-limited resistance as a function of the radial position of the

single impurity in the cylindrical wire for (a) T¼ 300 and (b) 30 K. The scat-

tering potential energy is vc¼ 183 meV. The resistances from the exact for-

mula of Rs (red solid line), and from the two approximations, Rs,weak (blue

dashed line) and RB
s;weak (black dotted line), are shown.

TABLE I. List of parameters.

rs Radius of wire 2 nm

a Characteristic length 0.5 nm

Sð¼ pr2
s Þ Cross-sectional area 12.6 nm2

nel Electron density 2� 1019 cm�3

L Channel length (single impurity) 3.98 nm

Channel length (two impurities) 7.96 nm

m Effective mass 0.315 m0

es Dielectric constant (wire) 11.8 e0
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formula of Rs and from the two approximations of Rs,weak

and RB
s;weak are also shown. As expected from the probability

density F(Rs), the average resistance �Rs is much smaller than

the resistance of the single-impurity located on the wire axis.

Hence, �Rs obtained from the Born approximation RB
s;weak

becomes very close to the exact �Rs. At lower temperature

(T¼ 30 K), these two average resistances nearly coincide.

On the other hand, �Rs obtained from the weak-scattering

limit Rs,weak, in which the scattering is treated nonperturba-

tively, is very poor unless the scattering potential energy is

very small. These results imply that unless the impurity den-
sity is extremely high, the Born approximation should work

quite well for the ensemble average resistance of short-

channel nanowires or the resistance of long-channel nano-

wires where self-averaging of the impurity configuration

inside the nanowire is implicitly involved. If the impurity

density is high, the multiple-scattering with different impur-

ities could affect the transport properties, as we shall discuss

below.

B. Two correlated impurities under extreme quantum
limit

Let us consider the case where two localized impur-

ities are doped in the channel region so that the phase in-

terference among the impurities at different sites comes

into play.

As before, we consider the extreme quantum limit where

only the lowest subband is involved in electron transport and

we introduce the scattering parameter crðE; r0rÞ ð2 RÞ for

the r-th impurity (r¼ 1, 2) at position R0r¼ (r0r, z0r) by

cr E; r0rð Þ ¼ vc
a

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2 E� eAð Þ

r
SjnA r0rð Þj2: (61)

Hereafter, we eliminate the subscript A in kA, etc. Also, we

assume that the relative position of the two impurities along

the wire axis direction satisfies D�D12	 0 since there is no

essential difference in the axial position of two impurities.

The integral I�AA given by Eq. (45) is expressed as

I�AA ¼ �
i c1 þ c2ð Þ þ c1c2 ei2kD � 1ð Þ

1þ i c1 þ c2ð Þ þ c1c2 ei2kD � 1ð Þ ; (62)

and the transmission probability TA(E) becomes

TAðEÞ ¼ j1þ I�AAj
2: (63)

Similarly, the integral IþAA given by Eq. (45) is expressed as

IþAA ¼ ei2kz02
c2 c1 � ið Þ � ei2kDc1 c2 þ ið Þ

1þ i c1 þ c2ð Þ þ c1c2 ei2kD � 1ð Þ ; (64)

and the explicit expression of the reflection probability

RA(E) is given by

FIG. 5. Space-averaged impurity-limited resistance �Rs as a function of the

scattering potential energy vc for (a) T¼ 300 and (b) 30 K. The average

resistances from the exact formula of Rs (red solid line), and from the two

approximations, Rs,weak (blue dashed line) and RB
s;weak (black dotted line), are

shown.

FIG. 4. Probability density F(Rs) of the impurity-limited resistance as a

function of resistance Rs at T¼ 300 K (red solid line) and 30 K (blue dotted

line).
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RA Eð Þ ¼ jIþAAj
2 ¼

c1
2 þ c2

2 þ 2c1
2c2

2 þ 2c1c2 1� c1c2ð Þcos 2kDð Þ þ c1 þ c2ð Þsin 2kDð Þ
� �

1þ c1
2 þ c2

2 þ 2c1
2c2

2 þ 2c1c2 1� c1c2ð Þcos 2kDð Þ þ c1 þ c2ð Þsin 2kDð Þ
� � : (65)

Notice that the above expression is symmetric with respect

to c1 and c2, as it should be. Also, no approximation has

been made to derive the above expressions, and thus, we

could easily confirm the fact that the electron flux is

conserved

TAðEÞ þ RAðEÞ ¼ 1: (66)

The exact impurity-limited resistance Rs of two impur-

ities is then obtained by

Rs r01; r02;Dð Þ ¼ p�h

e2

hRA Eð Þi
h1� RA Eð Þi : (67)

Following the arguments for the single-impurity case, two

approximations, Rs;weakðr01; r02;DÞ and RB
s;weakðr01; r02;DÞ,

are expressed by

Rs;weak r01; r02;Dð Þ ¼ p�h

e2
hRA Eð Þi (68)

and

RB
s;weak r01; r02;Dð Þ ¼ p�h

e2
hCA Eð Þi; (69)

where CA(E) is given by the numerator of Eq. (65).

1. Coherent and incoherent limits

Let us consider the two extreme cases: the most coher-

ent and incoherent cases.

Under the most coherent case, in which the axial separa-

tion between two impurities diminishes (D ! 0), the trans-

mission and reflection probabilities reduce to the following

expressions:

TA Eð Þ ¼ 1

1þ c1 þ c2ð Þ2
(70)

and

RA Eð Þ ¼ c1 þ c2ð Þ2

1þ c1 þ c2ð Þ2
: (71)

Equations (70) and (71) exactly coincide with those of the

single-impurity case if one replaces the scattering parameter

c1þ c2 by nimpc, where nimp is the number density of impu-

rity. Roughly speaking, the resistance Rs is proportional to

the ratio of RA to TA, and thus, Rs could be approximated as

Rs 
 ðc1 þ c2Þ2 ! Rs / nimp
2c2: (72)

That is, Rs becomes proportional to the square of nimp and is

strongly enhanced by the constructive phase interference

among the impurities.

On the other hand, in the incoherent case where the

phase interference between the impurities is ignored, the

terms including the trigonometric functions in Eqs. (63) and

(65) vanish and we obtain

TA Eð Þ ¼ 1

1þ c1
2 þ c2

2 þ 2c1
2c2

2ð Þ �
1

1þ c1
2 þ c2

2ð Þ (73)

and

RA Eð Þ ¼ c1
2 þ c2

2 þ 2c1
2c2

2

1þ c1
2 þ c2

2 þ 2c1
2c2

2ð Þ �
c1

2 þ c2
2

1þ c1
2 þ c2

2ð Þ ; (74)

where higher order terms with respect to c1 and c2 are

ignored. Again, Eqs. (73) and (74) coincide with those of the

single-impurity case if one replaces the scattering parameter

c1
2 þ c2

2 by nimpc
2. Therefore, the resistance Rs becomes

Rs 
 ðc1
2 þ c2

2Þ ! Rs / nimpc
2; (75)

and Rs is now proportional to nimp. Therefore, each impurity

behaves as an independent scattering center, and phase inter-

ference plays no role. We are, therefore, able to recover the

classical Ohm’s law under the incoherent limit.49

2. Phase interference between impurities on wire axis

The impurity-limited resistance of the nanowire with

two impurities doped in the channel is now evaluated

numerically. For simplicity, two impurities are assumed to

reside on the wire axis, so that c0ðEÞ � c1ðE; r01 ¼ 0Þ
¼ c2ðE; r02 ¼ 0Þ. The transmission and reflection probabil-

ities are greatly simplified and the impurity-limited resistan-

ces under various approximations are evaluated with Eqs.

(67), (68), and (69).

Figure 6 shows the impurity-limited resistance Rs(D) at

T¼ 300 and 30 K as a function of the impurity separation D
along the wire axis direction. The scattering potential energy

is set at vc¼ 183 meV, corresponding to the screening length

of ksc¼ 2 nm. The results from the exact formula Rs and

two approximations, Rs,weak and RB
s;weak, are shown. The

horizontal dashed line shows twice of Rsingle
s , where Rsingle

s is

the impurity-limited resistance obtained from the single-

impurity located at r01¼ 0. It is clear that both Rs,weak and

RB
s;weak break down and a large oscillatory behavior in the

exact Rs is observed in the first few nm for T¼ 300 K.

This oscillation becomes much clearer as temperature is low-

ered. This results from the trigonometric dependence in Rs

and caused by electron’s phase interference among the two

impurities. However, the oscillation rapidly damps at

T¼ 300 K and Rs approaches 2Rsingle
s . Since no averaging

with respect to the configuration of impurities or phase-

randomizing scattering is involved in the present calcula-

tions, this phase randomization is caused purely by the

broadness of the energy spectrum of the in-coming electrons
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from the reservoirs. That is, Rs is averaged by the incoming

electrons with different kinetic energies (wavelengths). At

T¼ 30 K, the energy spectrum of the in-coming electrons is

limited to be a very narrow range around the Fermi energy

of the reservoirs and the phase interference lasts much longer

distances. The characteristic length Ddamp, over which the

phase interference is preserved, is roughly estimated by the

broadness of the energy spectrum of the incident electrons,

which is the temperature of the source and drain. Hence,

Ddamp is estimated by

Ddamp 

1

Dk

 �hffiffiffiffiffiffiffiffiffiffiffi

mkBT
p : (76)

We find Ddamp� 3 nm for T¼ 300 K and Ddamp� 10 nm for

T¼ 30 K.

The extension to the case of three or more impurities is

in principle straightforward, although numerical calculation

becomes much more extensive and complicated. The essen-

tial features are, however, expected to be the same: The con-

structive interference among the impurities dominates as the

axial separation between impurities is smaller than the char-

acteristic length of the broadness of the energy spectrum of

the incoming electrons from the reservoirs. As the impurity

separation becomes larger, owing to the phase randomization

caused by the broadness of the energy spectrum of incident

electrons, the impurity-limited resistance becomes close

to the value expected by the series resistance of single-

impurity.

3. Space-average resistance of two correlated
impurities

When two impurities are located on the wire axis, the

impurity-limited resistance is greatly exaggerated since the

impurities become most resistive on the wire axis. In reality,

however, impurities are doped at random in nanowires, and

spatial position control of impurities is almost impossible.

Therefore, the impurity-limited resistance averaged over the

channel region is more realistic. This is also equivalent to

the (non-averaged) resistance of long-channel nanowires

where the impurity configuration is self-averaged.

Assuming that impurities are uniformly distributed in

the nanowire and generating the positions, R01 and R02, of

two impurities at random, the impurity-limited resistance Rs

(r01, r02, D) for each impurity configuration is calculated.

The results are shown as a function of the impurity separa-

tion D in Fig. 7, where the resistances Rs (r01, r02, D) of

2000 different configurations of the two-impurity are shown.

For comparison, similar plots obtained from the more elabo-

rate tight-binding NEGF simulations for donor and acceptor

impurities are shown in Fig. 8, in which the resistances of

500 different configurations of two impurities are plotted.50

The shape of the cross-section is square with the side length

of 3.5 nm, rather than sphere. However, the cross-sectional

area is nearly the same as that of the circular nanowire

employed in this study, and thus, the difference in shape is

insignificant. Since many simulations under different impu-

rity configurations are required to be performed, the scatter-

ing potential of ionized impurities is modeled by the

analytical screened Coulomb potential along with the image

charges to take into account the dielectric mismatch between

the substrate and the gate-oxide. The impurity density in the

substrate is assumed to be 1019 cm�3, and the screening

length is set at ksc¼ 1.3 nm. The transmission coefficient is

calculated from the Fisher-Lee formula with the retarded

FIG. 7. Impurity-limited resistance Rs(r01, r02, D) of two correlated impur-

ities as a function of the impurity separation D along the wire axis. The scat-

tering potential energy is vc¼ 183 meV and the location of two impurities

are generated at random and 2000 different configurations are shown. The

horizontal dashed line (green) shows the value of the series resistance of two

single-impurities, 2 �Rsingle.

FIG. 6. Impurity-limited resistance Rs of two impurities located on the wire

axis at (a) T¼ 300 and (b) 30 K as a function of the impurity separation D
along the wire axis. The scattering potential energy is vc¼ 183 meV. Rs from

the exact formula (red solid lines) and two approximations, Rs,weak (blue

dashed lines) and RB
s;weak (black dotted lines), are plotted. The horizontal

dashed lines (green) show 2Rsingle
s ; twice of the single-impurity resistance at

r0¼ 0.
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Green function.51 The horizontal (green) dashed lines show

2 �Rsingle; �Rsingle being the space-average resistance of the

single-impurity determined from the “single-impurity”

NEGF simulations. There are some distinct features in

between the present results and those from the NEGF simu-

lations, for example, the dependence of the type of ionized

impurities, etc. They mainly result from the long-range part

of the screened Coulomb potential of impurities in the

NEGF calculations. Nevertheless, an essential feature is

common in these results: The constructive interference dom-

inates for small D in Rs, whereas Rs becomes close to the se-

ries resistances of two impurities, 2 �Rsingle, with �Rsingle being

the space-average resistance due to single-impurity.

The space-average resistance �Rs is calculated with the

probability density of impurity position pimp(R0r) (r¼ 1, 2)

by

�Rs ¼
ð

d3R01d3R02 pimp R01ð Þpimp R02ð ÞRs r01; r02;Dð Þ

¼ 1

L

ð
dD

1

prs
2ð Þ2
ð

d2r01d2r02Rs r01; r02;Dð Þ; (77)

where L is the channel length for the two-impurity system.

Figure 9 shows the space-average resistance �Rs of two corre-

lated impurities at T¼ 300 and 30 K as a function of the

scattering potential energy vc. The resistances from the exact

formula Rs and two approximations, Rs,weak and RB
s;weak, are

shown. It is clear that the two approximations greatly deviate

from the exact results and, thus, the multiple-impurity cannot

be properly described by the weak-coupling approximations

unless the coupling strength is extremely small. In other

words, both the full details of the transition matrix and the

inclusion of the denominator hTAi in Rs are crucial even for
space-average resistances. We should stress again that this

is true as far as the scattering potentials due to multiple

impurities are treated as a single-scattering potential so that

the phase coherence among the impurities is fully preserved.

Therefore, the perturbative Born approximation of the impu-

rity scattering under the framework of the NEGF would

greatly overestimate the impurity-limited resistance at room

temperature. It is necessary to treat scattering due to multiple

impurities nonperturbatively. As temperature is lowered,

however, the average resistance �Rs;weak under the Born

approximation becomes much better.

Figure 10 shows the space-average resistance �Rs of the

two-impurity systems and 2 �Rsingle of the single-impurity sys-

tems at T¼ 300 and 30 K as a function of the scattering

FIG. 9. Space-average impurity-limited resistance �Rs of two correlated

impurities as a function of the scattering potential energy vc for (a)

T¼ 300 K and (b) 30 K. The average resistances from the exact formula Rs

(red solid lines) and two approximations, Rs,weak (blue dashed lines) and

RB
s;weak (black dotted lines), are shown.

FIG. 8. Impurity-limited resistance Rs obtained from the tight-binding

NEGF simulations for the case of (a) donor impurities and (b) acceptor

impurities in the square nanowire of the side length of 3.5 nm. The scattering

potential of ionized impurity is described by the screened Coulomb potential

and the resistances for 500 different configurations of two impurities are

shown.
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potential energy vc. The two results at T¼ 300 K agree quite

well up to large vc where the weak-scattering limit breaks

down. Since 2 �Rsingle represents the uncorrelated series resist-

ance of two impurities, this agreement implies that it is the

phase randomization which cannot be taken into account

properly in the weak-scattering approximations, leading to

the deviations from the exact result as seen in Fig. 9.

Therefore, each impurity under the uniform impurity distri-

bution could be regarded as an independent scattering center,

and phase interference among the impurities almost dimin-

ishes at room temperature. Notice again that the system is

purely coherent and no energy dissipating scattering is

included. This is exactly equivalent to the mechanism of

“self-averaging,” and thus, it is conjectured that the self-

averaging is caused by the phase randomization by the

incoming electrons with broad energy spectrum from the

reservoirs.

As the temperature is lowered, the phase randomization

is not strong enough due to narrow energy spectrum of

incoming electrons, and the phase interference is preserved

even in the space-average resistance. Then, it is essential to

treat the whole potential modulation induced by multiple

impurities as a single scattering potential and to take into

account the phase coherence among the impurities. As a

result, the “single-impurity scattering” picture completely

breaks down. It is also clear from Fig. 10 that as vc gets

larger, the deviation between the two results become noticea-

ble even at T¼ 300 K. However, vc is unrealistically high

there, and thus, in many cases, the space-average impurity-

limited resistance at room temperature, which is equivalent

to the ensemble average of the resistance in short-channel

nanowires or the resistance in a long-channel nanowire,

would be well described by the “single-impurity scattering”

picture. In other words, the classical Ohm’s law holds true as

far as the average impurity-limited resistance is concerned.

Here, we would like to comment on the impurity (or

electron) density dependence of the average resistance

because of its crucial importance in technological applica-

tions. Under the present formulation, the impurity density

dependence of the resistance is not so obvious as in the clas-

sical cases: The impurity density dependence is hidden in the

form of the scattering potential operator (see Eq. (37)) and

does not appear explicitly. On the other hand, the resistance

is inversely proportional to the electron density,52 and this

dependence explicitly appears in the classical expression of

resistance. Of course, the impurity density dependence of the

average resistance could be obtained from the present theory

if one carries out similar calculations for more than three

correlated impurities. In principle, this is possible, but ana-

lytical expressions of the reflection coefficients become

extremely complicated as the number of impurity increases

and actual numerical calculations are rather difficult, as men-

tioned in Sec. III B 2. However, it is expected that the

“single-impurity scattering” picture, under which there is no

correlation among impurities, holds true for multiple impur-

ities at room temperature. In this case, the average resist-

ance becomes trivially proportional to the inverse of the

electron density. Therefore, it is conjectured that the impu-

rity density dependence of the average resistance would

be very similar to the classical one even if the phase coher-

ence is fully taken into account by following the present

formalism.

IV. CONCLUSIONS

We have systematically investigated the impurity-

limited resistance and the phase interference effects due to

localized impurities in quasi-1D nanowires under the frame-

work of the scattering theory.

Theoretical expressions of the impurity-limited resist-

ance under the linear response regime have been derived

from the Landauer formula in terms of the transmission

and reflection probabilities obtained from the Lippmann-

Schwinger equation. We have shown that the impurity-

limited resistance under the weak-scattering limit coincides

with that derived from the Boltzmann transport equation

under the relaxation approximation unless the energy spec-

trum of the in-coming electrons from the reservoirs is very

broad. From this finding, we have pointed out that the dis-

tinction of the impurity-limited resistances derived from the

Landauer formula and that from the BTE could be made

clear experimentally by varying the broadness of the energy

spectrum of the electrons injected into the channel region.

The deriving formulas have been applied to the cases where

multiple localized impurities with the short-range scattering

potential are doped in the nanowire and the exact theoretical

expressions of the impurity-limited resistance have been

derived.

We have shown explicitly through the numerical analy-

ses that the scattering is so strong under the nanowire struc-

tures that the weak-scattering limit breaks down in most

cases. When the impurity separation along the wire axis

direction is comparable to or smaller than the characteristic

length of the energy spectrum of the incoming electrons

from the reservoirs, the constructive phase interference dom-

inates and the resistance is much greater than the average

FIG. 10. Space-average resistance �Rs of the two-impurity systems and

2 �Rsingle at T¼ 300 and 30 K as a function of the scattering potential energy

vc. �Rsingle is the space-average resistance of the single-impurity systems.
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resistance. As the separation becomes larger, however, it

approaches the series resistance of the single-impurity resist-

ance due to the thermal average taken over the incoming

electrons from the reservoirs. These results are consistent

with those from more elaborate tight-binding NEGF simula-

tions in which the realistic screened Coulomb potential is

employed for the donor and acceptor impurities. Under the

uniform distribution of impurities, the space-average resist-

ance of multiple impurities cannot be accurately described

by the weak-scattering approximation, as far as the whole
potential modulation due to impurities is treated as a single
scattering potential. At room temperature, the space-

averaged resistance of multiple impurities is very close to

the value of the series resistance of the single-impurity resist-

ance, and thus, each impurity could be regarded as an inde-

pendent scattering center. This phase randomization is

caused by the incoming electrons from the reservoirs with

broad energy spectrum, and this is the physical origin of

“self-averaging” under the fully coherent circumstances. As

the temperature is lowered, the phase randomization is not

strong enough due to the narrow energy spectrum of incom-

ing electrons and the phase interference is preserved even in

the space-average resistance. Then, it becomes crucial to

treat the whole potential modulation induced by multiple

impurities as a single scattering potential and to fully take

into account the phase coherence among the impurities.

Finally, we would like to comment on the form of the

scattering potential employed in the present study. In reality,

the scattering potential always contains the long-range

potential component and the detail shape of the long-range

part of the potential indeed becomes crucial to predict the

transport properties of nanowires quantitatively. In particu-

lar, it has been reported24 that the impurity-limited resistance

greatly changes, depending on the sign of the charge of ion-

ized impurities; acceptor impurities are more resistive than

donor impurities. This is, however, trivially explained by the

fact that the long-range part of the Coulomb potential of the

acceptor impurity blocks electron wave propagation,

whereas the donor impurities yield the potential depressions

which are less resistive for free carriers. In fact, the phase in-

terference among the ionized impurities is somewhat

smoothed and less violent under the realistic scattering

potential because of the long-range nature of the potential, as

shown in Figs. 7 and 8. Furthermore, since the dominant role

in scattering-limited resistance is played by the short-range

part of the scattering potential, it is expected that the present

results would well represent the essential features of the

impurity-limited resistance in the nanowire even under more

realistic impurity scattering potentials.
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