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1. Introduction

One of the features of modern data is the data dimen&ishigh and the sam-
ple sizen is relatively low. We call such data HDLSS data. In HDLSS situations
such asi/n — oo, new theories and methodologies are required to develop for
statistical inference. One of the approaches is to study geometric representations
of HDLSS data and investigate the possibilities to make use of them in HDLSS
statistical inference. Hall et al. (2005), Ahn et al. (2007), and Yata and Aoshima
(2012) found several conspicuous geometric descriptions of HDLSS data when
d — oo while n is fixed. The HDLSS asymptotic studies usually assume either
the normality as the population distribution ompamixing condition as the de-
pendency of random variables in a sphered data matrix. See Jung and Marron
(2009) and Jung et al. (2012). However, Yata and Aoshima (2009) developed an
HDLSS asymptotic theory without assuming those assumptions and showed that
the conventional principal component analysis (PCA) cannot give consistent esti-
mation in the HDLSS context. In order to overcome this inconvenience, Yata and
Aoshima (2012) provided theoise-reduction (NR) methodolothat can success-
fully give consistent estimators of both the eigenvalues and eigenvectors together
with the principal component (PC) scores. Furthermore, Yata and Aoshima (2010,
2013) created theross-data-matrix (CDM) methodolodlyat is a nonparametric
method to ensure consistent estimation of those quantities. Given this background,
Aoshima and Yata (2011, 2015) developed a variety of inference for HDLSS data
such as given-bandwidth confidence regions, two-sample tests, tests of equality
of two covariance matrices, classification, variable selection, regression, pathway
analysis and so on along with the sample size determination to ensure prespecified
accuracy for each inference.

In this paper, suppose we havé & n data matrix,X ) = [Z1(q); ---, Tn(a))s
wherex;u) = (z1j(a) - Taja))’, 7 = 1,...,n, are independent and identically
distributed (i.i.d.) as al-dimensional distribution with a mean vectpr, and
covariance matriX¥:,; (> O). We assume:r > 3. The eigen-decomposition of
Y, is given byX,; = HdAdﬂg, whereA; =diag(\i(q), ..., Aaa)) iS a diagonal
matrix of eigenvalues) g > --- > A\gq)(> 0), andHy = [hy(q), ..., hgq)] iS an
orthogonal matrix of the corresponding eigenvectors. Xet — (1, ..., g =
H,AY?Z . Then,Z 4 is ad x n sphered data matrix from a distribution with
the zero mean and the identity covariance matrix. Zet, = [z1(4), ..., Zd(a)]"
andzi(d) = (Zﬂ(d), ey Zm(d))T, 1=1,..., d. Note thatE(Zij(d)Zi/j(d)) =0 (i 7& i/)
and Valkz;y) = I,, wherel, is then-dimensional identity matrix. Théth
true PC score ok is given byh, () — p,) = A/} 2isa) (hereafter called

)
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sij(a))- Note that Vafs;;a)) = Aiq for all 7, j. Hereafter, the subscript will

be omitted for the sake of simplicity when it does not cause any confusion. Let
Zoi = zi — (Ziy .y zi)T, 1 = 1,...,d, wherez; = n~t Y| 2. We assume that

A1 has multiplicity one in the sense that inf,; .., A /Ay > 1. Also, we assume
thatlim sup, ., E(z;) < oo forall 7, j and P(limy_. ||ze1|| # 0) = 1. Note

that if X is Gaussiang;;s are i.i.d. as the standard normal distributidf{0, 1).

As necessary, we consider the following assumption for the normalized first PC

scoresz; (= slj/)\}m),j =1,...n:
(A-) 2y, j=1,..,n,areiid. agv(0,1).

Note thatP(limy ., ||z.1]] # 0) = 1 under (A-i) from the fact that|z,||? is
distributed as¢?_,, wherey? denotes a random variable distributedydgdistri-
bution with v degrees of freedom. Let us write the sample covariance matrix as
S=n-1)I(X-X)(X-X)T=(n-1)" Z?Zl(wj —z)(x; —x)", where

X = [z,..,2] andz = Y- zj/n. Then, we define the x n dual sample
covariance matrix bySp, = (n —1)"1(X — X)7(X — X). Let), > .- >

M\o_1 > 0 be the eigenvalues & . Let us write the eigen-decomposition 8f,
asSp = Z;;l Xjajﬁf, wherew; = (i1, ..., 4;,)" denotes a unit eigenvector
corresponding té\j. Note thatS and S, share non-zero eigenvalues. Also, note
that tf.S) = tr(Sp).

Here, we emphasize that the first principal component is quite important for
high-dimensional data becausgeoften becomes much larger than the other eigen-
values asl increases in the sense thgy/\; — 0 asd — oo for all j > 2. See
Figure 1 in Yata and Aoshima (2013) or Table 1 in Section 2 for example. In
other words, the first principal component contains much useful information about
high-dimensional data sets. In addition,andh; can be accurately estimated for
high-dimensional data by using the NR methodology even whifixed. It is
likely that the first principal component is applicable to high-dimensional statisti-
cal inferences such as tests of mean vectors and covariance matrices. That is the
reason why we focus on the first principal component in this paper.

In this paper, we study asymptotic properties of the first principal component
in the HDLSS context. We apply them to a one-sample test and equality tests of
covariance matrices for high-dimensional data sets. We consider HDLSS asymp-
totic theories ag — oo for both the cases whenis fixed andn — oco. In Sec-
tion 2, we introduce an eigenvalue estimator by the NR methodology and provide
asymptotic distributions of the largest eigenvalue in the HDLSS context. We con-
struct a confidence interval of the first contribution ratio and give a one-sample
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test. In Section 3, we give asymptotic properties both for the first PC direction
and PC score as well. In Section 4, we apply the findings to equality tests of two
covariance matrices in the HDLSS context. Finally, in Section 5, we provide nu-
merical results and discussions about the performances both on the estimates of
the first PC and the equality tests of two covariance matrices.

2. Largest eigenvalue estimation and its applications

In this section, we give asymptotic properties of the largest eigenvalue. We
construct a confidence interval of the first contribution ratio and give a one-sample
test.

2.1. Asymptotic distributions of the largest eigenvalue
Letd; = tr(22) — S _ A2 =37, A2fori = 1,...,d — 1. We consider the
following assumptions for the largest eigenvalue:

(A-ii) % = o(1) asd — oo whenn is fixed, i\i; = o(1) asd — oo for some
1

1
fixedi. (< d) whenn — oo.

d 2 2
MAE{(22 —1)(2% — 1 _
(A-iii) 2onsz2 {E;Z JEw = D) o(1) asd — oo either whem
1

is fixed orn — oo.

Note that (A-ii) implies the conditions that /\; — 0 asd — oo whenn is fixed
and\;,1/M\1 — 0 asd — oo for some fixedi, whenn — oco. Also, note that
(A-iii) holds when X is Gaussian and (A-ii) is met. See Remark 2.2.

Remark 2.1. For a spiked model such as
)\j :ajdo‘j (]: 1,...,m) and >\j:Cj (j:m+1,,d)

with positive (fixed) constants,;s, c;s anda;s, and a positive (fixed) integet,
(A-ii) holds under the condition that; > 1/2 anda; > as whenn is fixed.
Whenn — oo, (A-ii) holds undera; > 1/2 even ifay = «,,. See Yata and
Aoshima (2012) for the detalils.

Remark 2.2. For several statistical inferences of high-dimensional data, Bai and
Saranadasa (1996), Chen and Qin (2010) and Aoshima and Yata (2015) assumed
a general factor model as follows:

x; =Tw; + p
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for j = 1,...,n, wherel is ad x r matrix for some- > 0 such thal'T'? = ¥, and
w;, j =1,...,n, arei.i.d. random vectors havifg(w;) = 0 and Vafw,) = I,.
Asforw; = (wyj, ..., w,;)", assume thak (w;w?;) = 1 andE (wgjwgjwjw,;) =
0 for all ¢ # s,t,u. From Lemma 1 in Yata and Aoshima (2013), one can claim
that (A-iii) holds under (A-ii) in the factor model. Also, we note that the factor

model naturally holds wheX is Gaussian.
Letk =tr(X) — \ = Zf:g Xs. Then, we have the following result.
Proposition 2.1. Under (A-ii) and (A-iii), it holds that

AL PR —" =05 (1
iz VTP = ot = 0(1)

asd — oo either whem is fixed orn — oc.

Remark 2.3. (A-ii) and (A-iii) are milder whenn — oo compared to when fixed.
Jung et al. (2012) gave a result similar to Proposition 2.1 wNers Gaussian,
p = 0 andn is fixed.

It holds thatE(]|z.1/vn — 1||?) = 1 and||z, /v —1||* = 1+ 0,(1) as
n — oo. If K/(nX\;) = o(1) asd — oo andn — oo, A is a consistent es-
timator of A\;. Whenn is fixed, the conditionx/\; = o(1)" is equivalent to
‘A1/tr(3) = 1+0(1)" in which the contribution ratio of the first principal compo-
nent is asymptotically. In that sensex/\; = o(1)’ is quite strict condition in
real high-dimensional data analysétereafter, we assuman inf,; .., k/A; > 0.

Yata and Aoshima (2012) proposed a method for eigenvalue estimation called
thenoise-reduction (NR) methodologyat was brought by a geometric represen-
tation of Sp. If one applies the NR method to the present cageare estimated
by A
tr(Sp) — X0,

n—1—1

(t=1,...,n—2). (2.1)

Note that\; > 0w.p.1 fori = 1, ...,n—2. Also, note that the second term in (2.1)
with ¢ = 1 is an estimator of;/(n — 1). See Lemma 2.1 in Section 2.2 for the
details. Yata and Aoshima (2012, 2013) showed thatas several consistency
properties wher — oo andn — oo. On the other hand, Ishii et al. (2014) gave
asymptotic properties of, whend — oo while n is fixed. The following theorem
summarizes their findings:



Theorem 2.1(Yata and Aoshima (2013), Ishii et al. (2014Ynder (A-ii) and
(A-iii), it holds that asd — oo

M { |zo1/v/n — 1]|> + 0,(1)  whenn is fixed

)\_1 )1 + 0,(1) whenn — oo.

Under (A-i) to (A-iii), it holds that agl — oo

A

(n— 1))\— = X2, whenn is fixed
1
—1 /)
n 5 (i—i — 1) = N(0,1) whenn — cc.

Here, “ = ” denotes the convergence in distribution.

2.2. Confidence interval of the first contribution ratio
We consider a confidence interval for the contribution ratio of the first princi-

pal component. Let andb be constants satisfying(a < x2 , <b) =1—q,
wherea € (0, 1). Then, from Theorem 2.1, under (A-i) to (A-iii), it holds that

A1 (n— 1)\ (n—1)\
P(tr(E) © [b/ﬂ +(n =D\ ak+ (n— 1)5\1})

:P<a§(n—1)%§b>:1—a+o(l) (2.2)

1

asd — oo whenn is fixed. We need to estimatein (2.2). Here, we give a
consistent estimator of by = = (n — 1)(tr(Sp) — A\1)/(n —2) =tr(Sp) — A;.
Then, we have the following results.

Lemma 2.1. Under (A-ii) and (A-iii), it holds that

K K K

—=1 1) and — = — 1
K +0p( ) )\1 )\1 +Op( )
asd — oo either whem: is fixed orn — oo.

Theorem 2.2. Under (A-i) to (A-iii), it holds that

( A [ (n— 1)\ (n—1DX
tr(X) ~ Lo+ (n— DA ai+ (n— 1A

]) =1—a+o(1) (2.3)

asd — oo whenn is fixed.



Remark 2.4. From Theorem 2.1 and Lemma 2.1, under (A-ii) and (A-iii), it holds
that t(Sp)/tr(X) = (& + A1) /tr(X) = 1 + 0,(1) asd — oo andn — oco. We
have that .
A A
= 1 1
t(Sp) ey LoD
Remark 2.5. The constantéa, b) should be chosen for (2.3) to have the minimum
length. If \;/x = o(1), the length of the confidence interval becomes close to
{(n — 1)\;/&}(1/a — 1/b) under (A-ii) and (A-iii) whend — oo andn is fixed.
Thus, we recommend to choose constdnats) such that

argmin(1/a — 1/b) subjecttoG,_1(b) — G,_1(a) =1 — «,
a,b

whereG,,_;(-) denotes the c.d.f. of?_,

We used gene expression data sets and constructed a confidence interval for the
contribution ratio of the first principal component. The microarray data sets were
as follows: Lymphoma data with129 (= d) genes consisting of diffuse large B-
cell (DLBC) lymphoma (58 samples) and follicular lymphoma (19 samples) given
by Shipp et al. (2002); and prostate cancer data W25 (= d) genes consisting
of normal prostate (50 samples) and prostate tumor (52 samples) given by Singh
etal. (2002). The data sets are given in Jeffery et al. (2006). We standardized each
sample so as to have the unit variance. Then, it holds thif t= tr(Sp)) = d,
so that\; + & = d. We gave estimates of the first five elgenvaluegpyand/\ S
in Table 1. We observed that the first eigenvalues are much larger than the others
especially for prostate cancer data. We also observed}hﬂs larger thalf\j for
j=1,...,5, as expected theoretically from the fact tE\Qx;\j > 0 w.p.1 for allj.

We considered an estimator &fby 4, = W,, — A2 havingI¥,, by (4) in Aoshima

and Yata (2015), wher&/, is an unbiased and consistent estimator ().

We calculated that; /A\? = 0.163 for DLBC lymphoma,s; /A\} = —0.082 for
follicular Iymphoma,&/)\2 = —0.245 for normal prostate anéjl/)\2 = —0.235

for prostate tumor. From these observations, we concluded that these data sets
satisfy (A-ii). In addition, from Remark 3.1 given in Section 3, by using Jarque-
Bera test, we could confirm that these data sets satisfy (A-i) with the level of
significance).05. On the other hand, it is difficult to check whether (A-iii) holds

or not. However, from Remark 2.2, (A-iii) must be a natural condition under (A-
i), so that we assume (A-iii) for these data sets. Hence, from Theorem 2.2, we
constructed &5% confidence interval of the first contribution rate for each data
set by choosinga, b) as in Remark 2.5. The results are summarized in Table 2.
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Table 1. Estimates of the first five eigenvalues bys and)\;s, for the microarray
data sets.

n 5\1, ;\2, 5\3, 5\4, 5\5 ;\1, :\2, 5\3, 5\4, 5\5
Lymphoma data wittT129 (= d) genes given by Shipp et al. (2002)
DLBC 58 1862,564,490,398,324 1768, 479, 412, 326, 257

Follicular 19 2476, 704, 614,533,369 2203, 457, 392, 333, 182
Prostate cancer data witR625 (= d) genes given by Singh et al (2002)

Normal 50 6760, 562, 426,371,304 6637, 450, 320, 271, 209
Prostate 52 6106, 687,512, 462,298 5976, 568, 401, 359, 199

Table 2. The95% confidence interval (Cl) of the first contribution ratio, together
with \; andk, for the microarray data sets.

(n,d) Cl A 5
DLBC lymphoma  (58,7129) [0.183,0.322] 1768 5361
Follicular lymphoma (19,7129) [0.178,0.467] 2203 4926
Normal prostate (50, 12625) [0.422,0.622] 6637 5988
Prostate tumor  (52,12625) [0.374,0.569] 5976 6649

2.3. Test of mean vector
We consider the following one-sample test for the mean vector:

Ho: p=py Vvs. Hi:p#py, (2.4)

wherep,, is a candidate mean vector suchgs= 0. Here, we have the following
result.

Lemma 2.2. Under (A-ii), it holds that

o~ ul? = t(So)/n _ o |lza/Vi=TI?
Y - n P

asd — oo whenn is fixed.

(1)

Let ) 5
T — —tr
Pl uog (Sp) |
1
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Note thatE(\; (Fy — 1)/n) = ||pu — we]|*. Then, by combining Theorem 2.1 and
Lemma 2.2, we have the following result.

Theorem 2.3. Under (A-i) to (A-iii), it holds that
Fy = Fi,,—1 underH,in (2.4)

asd — oo whenn is fixed, where-,, ,, denotes a random variable distributed as
F distribution with degrees of freedom, and vs.

For a given € (0,1/2) we test (2.4) by
accepting; <= Fy > F1,-1(«),

where F,, ,,(«) denotes the uppet% point of £ distribution with degrees of
freedom,; andv,. Then, under (A-i) to (A-iii), it holds that

size= a + o(1)

asd — oo whenn is fixed.
For the same gene expression data as in Section 2.2, we tested (2.4) with
0 anda = 0.05. We observed thal/; was accepted for all four data sets.

3. First PC direction and PC score

In this section, we give asymptotic properties of the first PC direction and PC
score in the HDLSS context.

3.1. Asymptotic properties of the first PC direction
Let H = [h,, ..., hy], whereH is ad x d orthogonal matrix of the sample

eigenvectors such thdl SH — A havingA — diagA1, ..., A¢). We assume
hiT@i > 0 w.p.1 for all: without loss of generality. Note that; can be calculated
by h; = {(n — 1)\;}~Y2(X — X)u,. First, we have the following resuilt.

Lemma 3.1. Under (A-ii) and (A-iii), it holds that

T K -1/2
h,h, — <1+—) =0,(1
1741 )‘1HZ01H2 P( )

asd — oo either whem is fixed orn — oc.



If k/(n\) = o(1) asd — oo andn — oo, hy is a consistent estimator of

h; in the sense thdi?hl =1+ 0,(1). Whenn is fixed, h, is not a consistent
estimator becaudén inf, .., k/A; > 0. In order to overcome this inconvenience,
we consider applying the NR methodology to the PC direction vectorhl et
{(n — 1)\ }"/2(X — X)u,;. From Lemma 3.1, we have the following result.

Theorem 3.1. Under (A-ii) and (A-iii), it holds that
hyhy =1+ 0,(1)
asd — oo either whem: is fixed orn — oc.

Note that||hy|[> = A;/A; > 1 w.p.1. We emphasize that is a consistent
estimator ofh, in the sense of the inner product even wheis fixed thoughh,
is not a unit vector. We give an application/ef in Section 4.

3.2. Asymptotic properties of the first PC score
Let zo;; = zi; — z for all i, j. Note thatz,; = (21, -, 20in)” for all i. First,
we have the following result.

Lemma 3.2. Under (A-ii) and (A-iii), it holds that

~

U = 201j/||2a1]| +0,(1) fOrj=1,...n
asd — oo whenn is fixed.

Remark 3.1. From Lemma 3.2, by using, ;s and the test of normality such as
Jarque-Bera test, one can check whether (A-i) holds or not.

By applying the NR methodology to the first PC score, we obtain an estimate
by 51, = ¢/ (n — 1)5\1a1j, j =1,...,n. A sample mean squared error of the first

PC score is given by MSE;) = n~' 377, (315 — 51;)*. Then, from Theorem 2.1
and Lemma 3.2, we have the following result.

Theorem 3.2. Under (A-ii) and (A-iii), it holds that
I . _ .
\/—)\_1(81]‘ — slj) =—z1 + Op(l) forj =1,...,n
asd — oo whenn is fixed. Under (A-i) to (A-iii), it holds that

MSHE s
,//\%(élj —s1;) = N(0,1) forj=1,..,n; and n@ = X]

1

asd — oo whenn is fixed.
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Remark 3.2. The conventional estimator of the first PC score is givershy=

\/ (n — 1);\1121]-, j =1,...,n. From Theorems 8.1 and 8.2 in Yata and Aoshima
(2013), under (A-ii) and (A-iii), it holds that as — oo andn — oo

4. Equality tests of two covariance matrices

In this section, we consider the test of equality of two covariance matrices in
the HDLSS context. Even though there are a variety of tests to deal with covari-
ance matrices wheth — oo andn — oo, there seem to be no tests available in
the HDLSS context such as— oo while n is fixed. Suppose we have two inde-
pendentd x n; data matricesX; = [1(), ..., s, 5], @ = 1,2, wherex;;), j =
1,...,n;, are i.i.d. as al-dimensional distributions;, having a mean vectqu;
and covariance matri¥; (> O). We assume:; > 3, i = 1,2. The eigen-
decomposition oE; is given byX; = H,A, H!, whereA,; = diag A1) -, Adgs))
havingAi;) > -+ > Mgy (= 0) andH; = [hy(y), ..., hqg)] is an orthogonal matrix
of the corresponding eigenvectors. We assume lthainf; .. i) /Az@) > 0
for i = 1,2. Also, we assume thdtmsup, .., E(zﬁj) < oo for all s,5 and
P(limg—,o ||zo1]| # 0) = 1, for each;.

4.1. Equality test using the largest eigenvalues
We consider the following test for the largest eigenvalues:

HO : )\1(1) = )\1(2) vs. H,: )\1(1) 7£ /\1(2) (Or Hy - )\1(1) < )\1(2)) (41)

Let 5\1@ be the estimate ok, ;) by the NR methodology as in (2.1) fas;. Let
vy =ny — 1 andwy, = ny — 1. From Theorem 2.1, we have the following result.
Corollary 4.1. Under (A-i) to (A-iii) for eachr;, it holds that
M/ A
A1)/ Ai2)

asd — oo whenn;s are fixed.

= FVl sV2

Let Fi = A/ i) For a givem € (0,1/2) we test (4.1) by

acceptingll, <= Fi ¢ [{F,..(a/2)} 7 Fun(e/2)]  (4.2)
or acceptingd, <= Fy < {F,,,, ()} . (4.3)
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Then, under (A-i) to (A-iii) for eachr;, it holds that
size= a + o(1)

asd — oo whenn;s are fixed.

Now, we consider a test by the conventional estimétg{). Letr; = tr(%;)—
My = 20, Ay fori = 1,2. From Proposition 2.1, if;/ A1) = o(1), i = 1,2,
under (A-i) for eachr; it holds that

M/ M)
Ai2)/ M)
asd — oo whenn;s are fixed. As mentioned in Section 2, the conditiofi A,y =

o(1) for i = 1,2 is quite strict in real high-dimensional data analyses. See Table
2 for example Hereafter, we assumén infy_. ki /M) > 0fori =1,2.

= FVl sV2

4.2. Equality test using the largest eigenvalues and their PC directions

We consider the following test using the largest eigenvalues and their PC di-
rections:

Hy : ()\1(1), h1(1)) = ()\1(2)>h1(2)) vs. H,: ()\1(1)7h1(1)) # (>\1(2), h1(2))'
. (4.4)
Let hy(;) be the estimator of the first PC direction forby the NR methodology

given in Section 3.1. We assurhg(i)ﬁl(i) > 0w.p.1fori = 1,2, without loss of
generality. Here, we have the following result.

Lemma 4.1. Under (A-ii) and (A-iii) for eachr;, it holds that
’;’?(1)’;’1(2) = h{(l)h1(2) + 0p(1)
asd — oo either whem; is fixed orn; — oo fori =1, 2.
We note that undef, in (4.4)
Mwhie) g b)) =1 fori=1,2; j #1i.
Hence, one may consider a test statistic SUCH,#8, ;11| O Fi|fuy 1) for (o) ~".

From Corollary 4.1 and Lemma 4.E1|ﬁ?(1)l~11(2)\ andFl\ﬁlT(l)ﬁl(Q) |~! are asymp-
totically distributed asF,, ,,. Leth = max{|fz1T(1)ﬁ1(2)|, |B1T(1)ﬁ1(2)|*1}. Note
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thath > 1 w.p.1. Then, in view of the power, we give a test statistic for (4.4) as
follows:

i) ~ 5
F=2"Yh, (= Rk,

where 3 ) 3
_ h if Ay > M)
i h~' otherwise

From Lemma 4.1, we have the following result.

Theorem 4.1. Under (A-i) to (A-iii) for eachr;, it holds that
F, = F, ,, underH,in (4.4)
asd — oo whenn;s are fixed.

From Theorem 4.1, we consider testing (4.4) by (4.2) withnstead ofF.
Then, the size becomes closeit@sd increases.

4.3. Equality test of the covariance matrices
We consider the following test for the covariance matrices:

Hy: X1 =%y Vvs. H,:3; 7& . (45)

Whend — oo andn;s are fixed, one can estimake; s andh;;)s by the NR
methodology, however, one cannot estimafgs andh;;)s forj = 2,....d. In-
stead, we consider estimatings. LetS ;) be the dual sample covariance matrix
for ;. We estimatey; by &; = tr(Sp)) — A fori = 1,2. From Lemma 2.1, un-
der (A-ii) and (A-iii) for eachr;, %;S are consistent estimatorsg in the sense
thatr;/x; = 14+0,(1) asd — co whenn;s are fixed. Le§ = max{~,/Rq, Ra/R1}.
Similar to F», we give a test statistic for (4.5) as follows:

F3 == s (: F2ﬁ/*)7
where

- 0 if Ay > 5\1(2),
41 otherwise

Then, we have the following result.
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Theorem 4.2.Under (A-i) to (A-iii) for eachr;, it holds that
F3; = F,, ,, underHin (4.5)
asd — oo whenn;s are fixed.

From Theorem 4.2, we consider testing (4.5) by (4.2) withnstead ofF.
Then, the size becomes closert@asd increases.

We analyzed lymphoma data given by Shipp et al. (2002) and prostate cancer
data given by Singh et al. (2002) which are the same gene expression data as in
Section 2.2. When each sample is standardized, we notethat; if \,;)/x; =
o(1), i = 1,2, since t{(Spn)) = tr(Sp@)) = d, so that one loses information
about the difference between andx,. Hence, we did not standardize each
sample. We sett = 0.05. We considered two cases: () : DLBC lymphoma
(n; = 58) andm, : follicular lymphoma ., = 19) and (II) 7; : normal prostate
(n; = 50) andm, : prostate tumor{, = 52). We compared the performance of
F3 with two other test statisticg)2 and7Z, by Srivastava and Yanagihara (2010).
The results are summarized in Table 3. We observed RhatcceptedH,, for
() and H, for (1), namely, F; rejectedH, in (4.5) for (I). On the other hand,

Q3 and 7% did not work for these data sets becadgeand Ty are established
under the severe conditions that< limg . tr(32%)/d < oo (i = 1,...,4) and
d'/? /n = o(1). As observed in Table 1, the conditions seem not to hold for these
data sets. Hence, there is no theoretical guarantee for the resd@tsdnd7? .

Table 3. Tests ofH, : 31 = 35 vs. H, : 31 # 35 with size0.05 for two
data sets: (I) lymphoma data with= 7129 given by Shipp et al. (2002) and (lI)
prostate cancer data with= 12625 given by Singh et al. (2002).

Ha by F3 Ha by Q% Ha byT22
(I) m: DLBC, m,: Follicular | Accept Accept Reject
(1) 71: Normal,m,: Tumor | Reject Reject Reject

5. Numerical results and discussions

5.1. Comparisons of the estimates on the first PC

In this section, we compared the performancéloﬂil ands,; with their con-
ventional counterparts by Monte Carlo simulations. Wedset2*, k = 3,...,11

14



andn = 10. We considered two cases fays: (a)\; = d'/%,i = 1,...,d and
(b) \; = &%) i = 1, .. d. Note that\, = d for (a) and\; = d*/* for
(b). Also, note that (A-ii) holds both for (a) and (b). Lét = [d'/?], where
[x] denotes the smallest integer x. We considered a non-Gaussian distribu-
tion as follows: (21, ..., z4-a.;)%, j = 1,..,n, are i.i.d. asNy4. (0,1, 4.)
and (zg—d,+1j, - 245)", j = 1,...,n, are i.i.d. as thel,-variate¢-distribution,
tq.(0,I,4,,10) with mean zero, covariance matily, and degrees of freedoin,
where(z1;, ..., za—a,;)" and(zq—4,+1, ---, zqj)" are independent for eagh Note
that (A-i) and (A-iii) hold both for (a) and (b) from the fact th@is>2 MAEL{ (22—
D22 = D} = 230000 X2 4 O(X7 o a0 MAs) = 0(AD).

The findings were obtained by averaging the outcomes #@if (= R, say)
replications. Under a fixed scenario, suppose that-ttfereplication ends with
estimates, Xi,, h1,, MSE(5,),) and Qi,, h1,, MSE(5,),) (r = 1,..., R). Letus
simply write \;, = R~ 3°% A, and), = R )y,. We also considered
the Monte Carlo variability by v, /A;) = (R — 1)~ 3% (A1, — A1)?/A2 and
var(h /A) = (R—1)"" 3% (A, — A1)?/A2. Figure 1 shows the behaviors of
(A1/A1, Ai/Ay) in the left panel and (V&h, /);), var(A;/),)) in the right panel
for (a) and (b). We gave the asymptotic variance\of\; by Var{x2_,/(n —

1)} = 0.222 from Theorem 2.1 and showed it by the solid line in the right panel.
We observed that the sample mean and varianéqph become close to those
asymptotic values asincreases.

Similarly, we plotted &, ki, h, h1) and (vath, hi), var(h, hy)) in Figure
2 and (MSEs;) /A, MSE(S1)/)\;) and (var(MSEs;)/\;), var(MSE3;)/A1)) in
Figure 3. From Theorem 3.2, we gave the asymptotic mean of (M$E\; by
E(x%/n) = 0.1 and showed it by the solid line in the left panel of Figure 3. We
also gave the asymptotic variance of MSE/\; by Var(x?/n) = 0.02 in the
right panel of Figure 3. Throughout, the estimators by the NR method gave good
performances both for (a) and (b) whéns large. However, the conventional
estimators gave poor performances especially for (b). This is probably because
the bias of the conventional estimatotg{(n — 1)\ }, is large for (b) compared
to (a). See Proposition 2.1 for the detalils.

5.2. Equality tests of two covariance matrices

We used computer simulations to study the performance of the test procedures
by (4.2) with F; for (4.1), F; for (4.4) andF; for (4.5). We setv = 0.05. Indepen-
dent pseudo-random normal observations were generatedrfrofd; (0, X;), i =
1,2. We set(ny, ny) = (15,25). We considered the cases= 2%, k =4, ..., 12,
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Figure 1. The values of A§\1/)\1 and B:;\l/)\l are denoted by the dashed lines for

(a) and by the dotted lines for (b) in the left panel. The values of A(ﬁw;ml) and

B: var(\;/\;) are denoted by the dashed lines for (a) and by the dotted lines for (b)
in the left panel. The asymptotic variance)af/ \; was given by Vafy?_,/(n —

1)} = 0.222 and denoted by the solid line in the left panel.

and

S Oog-
> = W F2d=2 ) =19, 5.1
( Oi2p Xy ®.1)

whereOy,; is thek x [ zero matrix,¥, ;) = diag(d**, d"/?) andX, ) = (0.3/*~1).
When considered the alternative hypotheses, we set

— 1/\/§ 1/\/§ i 3/4 1/2 1/\/§ 1/\/§
22(1)_(1N§ _1/\/§>d|ag(3d/,1.5d/)(l/\/§ _1/\/5) (5.2)

andX,) = 1.5(0.3*7"1). Note that;s)/ A1) = 3, ko/k1 = L5 andhj bz =
1/v/2. Also, note that (A-i) to (A-iii) hold for eachr;. Let h = max{|h hy ()|,
|hihie)) ™'} andy = max{r /Ky, ka/k1}. From Lemmas 2.1 and 4.1, it
holds thath = h + 0,(1) andy = v + 0,(1). Thus, from Corollary 4.1, The-

orems 4.1 and 4.2, we obtained the asymptotic powers;pff;, and F3 with
(he,3%) = (71, 771) as follows:

Powe(F) = P{(\iy/Mi@)f & {From (@/2)} 7, Fy, ug(a/Q)]} = 0.577,

PowelFy) = P{h™" (M) /M) S & {F, ul(a/Q)} LE, u2(04/2)]} = 0.823

and Powe(F) = P{y '"h ™ (\iqy/ M) f € [{F,, ul(a/Q)} L Fon(@/2)]}
= 0.963,
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and denoted by the solid lines in both panels.
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The asymptotic powers were given by Powan = 0.577, PowerF,) = 0.823
and Powe(F3) = 0.963 which were denoted by the solid lines in the right panel.

where f denotes a random variable distributedraslistribution with degrees of
freedomy, andw,. Note that Poweir,) and PowefF;) give lower bounds of the
asymptotic powers whel, = »~! and?, = L.

In Figure 4, we summarized the findings obtained by averaging the outcomes
from 4000 (= R, say) replications. Here, the firg8000 replications were gen-
erated by settingz, = X; as in (5.1) and the lag1000 replications were gen-
erated by setting2, as in (5.2). LetF;, (:« = 1,2,3) be therth observation
of F; for r = 1,...,4000. We definedP, = 1 (or 0) when H, was falsely
rejected (or not) forr = 1,...,2000, and H, was falsely rejected (or not) for
r = 2001, ...,4000. We definedy = (R/2)~* Zfﬁ P, to estimate the size and
1-B8=1-(R/2)7! Zf:R/%-l P, to estimate the power. Their standard devi-
ations are less than011. Whend is not sufficiently large, we observed that the
sizes of F, and F are quite higher than. This is probably because. (> 1)
and?. (> 1) are much larger than 1. Actually, the sizes became closeasd
increases. Whed is large, F5 gave excellent performances both for the size and
power.

Appendix A.

Throughout, letP,, = I, — 1,17 /n, where1,, = (1,...,1)T. Lete, =
(e1,...,en)T be an arbitrary (randomy-vector such thafe, || = 1 ande’1,, = 0.
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Proof of Proposition 2.1.We assumqu = 0 without loss of generality. We write
that X" X = 3 Aze2l + 37, \z2T fori, = 1 whenn is fixed, and
for some fixedi.(> 1) whenn — oo. Here, by using Markov’s inequality, for
any7 > 0, under (A-ii) and (A-iii), we have that

P{ i ( i M)Q > 7_} < ZiszQ MASE{(Z2, —1)(2%, — 1)} 0

nAp ™mA?

=1 s=i,+1

g a AsZsjZsi’ \ 2 di,
andP{Z( > n—)\l) >T}_T)\%—>0 (A.1)

G5 s=iet1

asd — oo either whenn is fixed orn — oco. Note thatd 7 e < 1and
> iy €3e3 < 1. Then, under (A-ii) and (A-ii)), we have that

‘iG? ;1% < {ie?}lm{i< Z %&—1»2}1/2

=1  s=i.+1

n 1/2 ¢ & o Nriz N2y 1/2
22 525§ 7s]
Sasy AL ( X =)

5! JAG s=iet]

asd — oo either whem: is fixed orn — oco. Thus, we claim that

T Tx T
e X' X e, = el Yo AsZs2, e & K

+ 0,(1) (A.2)

from the fact thagjzw1 A/ {(n=1)A\} = 6/{(n—1)\ }40(1) whenn — cc.
Note thate! P,, = el andP,z, = z,, for all s. Also, note that” z,, /n =

0,(1) for s # s’ asn — oo from the fact tha?{(z%. z,+ /n)?} = o(1) asn — oo,
Then by noting thatP(limg . ||ze1|| # 0) = 1, liminf, .o A\1/A2 > 1 and
211, = 0, it holds that

max
€n

{TZ L Aszszl

(n— D\ { P e”}

e"} I (n SN

= llzo1/vn = 1||* + 0,(1) (A.3)
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asd — oo either whem: is fixed orn — oo. Note thati! 1,, = 0 anda! P, = ol

whenSp # O. Then, from (A.2), (A.3) and®?, X" X P,,/(n — 1) = Sp, under
(A-ii) and (A-iii), we have that

S XT'x K

~TD ~T ~ 2

Ly =al = ||zg/Vn — 1 — 1) (A4
U, )\1 Uy U, (n—1)>\1U1 ||Z 1/ n || + (n—l))\l +0P< ) ( )
asd — oo either whem is fixed orn — oo. It concludes the result. O

Proof of Lemma 2.1.By using Markov's inequality, for any > 0, under (A-ii)
and (A-iii), we have that

(S

T (= 1) 30 (22 = 1) /n = 3 Zakzans [0} 2
:P{<; (n— D . k ) >T}

_ O{ Zf«l,szz /\TASE{@Ek - 1)(sz - 1)}

nA?
asd — oo either whemn is fixed orn — oo. Thus it holds that t1Sp) /A =
k/A1 +zo1/v/n = 1]|2 + 0,(1) from the fact that 1S p) = A\i||zo1||?/(n — 1) +
ZiZQ As||Zos|[?/(n — 1). Then, from Proposition 2.1 adén infy .., k/\; > 0,
we can claim the results. O

b +0{8,/ ()} — 0

Proof of Theorem 2.1.Whenn — oo, we can claim the results from Theorems
4.1, 4.2 and Corollary 4.1 in Yata and Aoshima (2013). Whes fixed, we can
claim the results from Theorem 3.1 and Corollary 3.1 in Ishii et al. (2014)0

Proof of Theorem 2.2From Theorem 2.1 and Lemma 2.1, under (A-i) to (A-iii),
it holds that

A1 (n— 1)\ (n—1)X\
P(tr(E) © [b/% +(n -1\ ak+ (n— 1)X1D
_ P( (n— 1)\ < A1 < (n—1)\ )

bii+(n—1DX\ ~ () = ai + (n— 1)\

:p<ﬁgigﬁ>zp<ag(n—l)%gb>
=1—a+o(1)
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asd — oo whenn is fixed. It concludes the result. O

Proof of Lemma 2.2 We write that
d n Z
nl|z — pll? —tr(Sp) = YA <nz = s;l_ls )
s=1 j=1

Then, from (A.1) anchz? — 77 (24 — 2:)?/(n — 1) = 30 245255 /(n — 1)
for all s, under (A-ii), we have that

{llz — pll> —tr(Sp)/n}/ M = 2] = [|z01/Vn = 1|[/n+ 0,(1)

asd — oo whenn is fixed. It concludes the result. O

Proof of Theorem 2.3. Under (A-i), we note that; and z,; are independent,
andnz? is distributed as¢?. Then, from Theorem 2.1 and Lemma 2.2, we can
conclude the result. O

Proofs of Lemmas 3.1 and 3.2Me note that|z.,||*/n = 1 + 0,(1) asn — .
From (A.4), under (A-ii) and (A-iii), we have that

ﬁ'?zol/HzolH =1+ Op(l) (A5)

asd — oo either whem is fixed orn — oo, so thati] 2z, = ||ze1]| + 0,(n'/?).
Thus, we can claim the result of Lemma 3.2. On the other hand, with the help of
Proposition 2.1, under (A-ii) and (A-iii), it holds that from (A.5)

'{ﬁl _ h{(X _Ay)ﬁ'l _ >\1/2Z31'&1 _ ||201|| + 0p(7’L1/2)
{(n=DA}2 {(n—=1A}2 {llzall? + £/ M+ 0p(n)}1/?2
1

= T/l ot

asd — oo either whem is fixed orn — oo. It concludes the result of Lemma
3.1. O

Proof of Theorem 3.1With the help of Theorem 2.1, under (A-ii) and (A-iii), we
have that from (A.5)

hi(X = X)in _|lzall +0p(n'/?)
{(n—1A}2 {llzall* + 0p(n) 72
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asd — oo either whem is fixed orn — oo. It concludes the result. O

Proof of Theorem 3.2.By combing Theorem 2.1 with Lemma 3.2, under (A-ii)
and (A-iii), we have that

S1/V M = g/ (n = DA/ M = dugl|zal| + 0p(1) = zo1; + 0,(1)

asd — oo whenn is fixed. By noting that,,; = z;; — z; andz, is distributed as
N(0,1/n) under (A-i), we have the results. O

Proof of Corollary 4.1 From Theorem 2.1, the result is obtained straightfor-
wardly. O

Proof of Lemma 4.1.Let Z; = [z(), ..., zd(i)]T be a sphered data matrix of
fori = 1,2, wherez;, = (2j10), ---, zjm(i))T. We assumer, = u, = 0 without
loss of generality. Let,; = (As(l M)t 2hT yhiz) for all s,t. Leti, be a fixed

constant such thazs i S(] />‘1(J o(1 )asd — oo for j = 1,2. Note that
1, exists under (A-ii) for each;. We write that

XTX2 Zﬁstzs(l zt + Z Bstzs(1 Zt(2)

$,t<1y s,t>04+1

d ix ix d
D D BumEe ) Y Buziwe

s=iy+1 t=1 s=1 t=1,+1
Note that

E{( i iz*ﬁstzsj(l)ztj’(2))2}

s=i,+1 t=1

d i
T T :
:tr< Z )\s(l)hs(l)hfs(l)Z)\t(Q)ht(Q)ht(g)> < A1) A1)
t=1

s=1x+1
for all 5, j/. Also, note that

E{( zd: ﬁstzsj(l)ztj/(2)>2}:tr< zd: Asyh th) Z AP ht(2)

S,t>0,+1 s=1,+1 t=1,+1
d , \1/2
( Z Ny D At@))
s=i,+1 t=i,+1
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for all j,j’. Then, by using Markov’s inequality, for any > 0, under (A-ii) for
eachr;, we have that

niy n2 d T
st2si(1) R’ 2
PULY (30 3 s )t o) o,
j=1j3'=1 s=i.+1 t=1 711712/\1(1)/\1(2))/

niy  n2 d

LS (8 e )t

j=1j5'=1 s=1t=i,+1

niy n2

d
ﬁs Zsj(1)~t5(2)
andp{ ZZ ( Z nln;)\j )\tj@ )1/2) > T} -0

Jj=1j4'=1 st>is+

asd — oo either whem; is fixed orn; — oo fori = 1,2. Hence, similar to (A.2),
it holds that

engergem _ ezl $,6<i, ﬁstzs(l) (2 )en2 o (1)
(1/11/2)\1(1))\1(2))1/2 (Vll/Z)\l )‘1 )1/2 . ‘
Note thatel P, = eZ; and szl(z) = zq) fori = 1,2, wherezol() =

Z10) — (21(1), ey 21(0 )) andzl(l =n, Zk 1 %1k(i) - Also, note thatX, P
(X; — X;) fori = 1,2, whereX; = [z;,..., ;] andz; = ijl () /M- Let
Uy(;) be the first (unlt) eigenvector ¢fX; — X;)7(X; — X,) fori = 1,2. Note
thatay, P, = @, when(X;—X;)"(X;—X;) # O fori = 1,2. Then, under
(A-ii) for eachwl, we have that

ﬁlT(1)<X1 — Yl)T<X2 - Y2)'5"1(2) o "llT(l) Zs,tﬁi* ﬁstzos(l)ZoTt(z)ﬁlw)
(V1V2)\1(1)/\1(2))1/2 (V17/2>\1(1))\1(2))1/2

+ 0p(1)

(A.6)
asd — oo either whenmn; is fixed orn; — oo fori = 1,2. Note thatle(l =
{vidi }V2(X,; — X))t for i = 1,2. Also, note that”, (i) Zos (i) /T = 0p(1)
(s # ') whenn; — oo for i = 1,2. Then, by combining (A 6) with Theorem 2.1
and (A.5), we can claim the result. O

Proofs of Theorems 4.1 and 4.2By combining Theorem 2.1, Lemmas 2.1 and
4.1, we can claim the results. O
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