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Abstract
　Geospatial techniques based on remote sensing and geo-
graphic information system (GIS) are important in urban 
studies. However, based on traditional techniques, the 
analysis of the intensity and spatial pattern of urban land 
use is, in most cases, based only on the lateral extent of 
built-up lands (two-dimensional). The increasing availabil-
ity of geospatial data, such as remote sensing satellite im-
ageries and digital surface models, provides an opportunity 
for the integration of the third dimension in urban analysis, 
i.e. height of urban features such as high-rise buildings, 
into urban studies, and thus enables the estimation of the 
so-called urban volume. This study introduces a geospatial 
technique for estimating urban volume, focusing on the 
use of a digital surface model (DSM) derived from ALOS 
PRISM data. It also presents a method for deriving a digi-
tal terrain model (DTM) from a DSM. The proposed tech-
nique was tested in Makati City, Metro Manila, Philip-
pines. Overall, the results show that the proposed technique 
is capable of taking into consideration the height dimen-
sion in urban analysis. The proposed two-step grid-based 
method for deriving a DTM from a DSM is also imple-
mentable and promising. In this method, there is a need to 
calibrate the size of the mesh for identifying the pixels or 
points to be used in DTM interpolation. This is because 
different mesh sizes can produce substantially different 
DTMs, surface feature height values and urban volume es-
timates.

Key words: ALOS PRISM, DSM, DTM, GIS, remote 
sensing, urban volume

1. Introduction
　Knowledge of urban forms, including intensity and spa-
tial pattern of urban land use, is important in urban studies 
– urban morphology, urban geography, urban ecology and 
urban sustainability, among others. In general, urban de-
velopment is sought for social and economic reasons. Con-
sequently, urban development often leads to changes in the 
intensity at which the already existing urban fabric is used 
(Koomen et al. 2009). During urban development process, 
high-rise buildings are often built for various uses and pur-

poses, such as condominiums/apartments, offices, hotels 
and commercial facilities.
　The emergence of land change science – a field of study 
that deals with the patterns, processes and impacts of land 
changes (Gutman et al. 2004; Rindfuss et al. 2004; Turner 
et al. 2007), and the advances in geospatial technologies, 
such as remote sensing and GIS, have been important in 
urban studies, e.g. monitoring and analysis of landscape 
changes due to urbanization. However, it should be noted 
that most studies on the geographical analysis of urbaniza-
tion have focused on the lateral expansion of built-up lands 
(two-dimensional) (e.g. Thapa and Murayama 2011; Es-
toque and Murayama 2013, 2015; Bagan and Yamagata 
2014). In most cases, two or more subsequent land-use/
cover (LUC) maps are used to detect and analyze the 
growth or expansion of urban areas. In this type of analy-
sis, the third dimension, i.e. height, is not taken into con-
sideration.
　In previous studies, individual address and postcode 
point-data have been used to characterize urban land use 
intensity (Longley and Mesev 2002; Batty et al. 2004). 
However, it has also been pointed out that such techniques 
fail to take into account the importance of the third dimen-
sion in urban analysis (Batty et al. 2004). High-rise and 
voluminous buildings characterize economic dominance 
and power, high-density zones, business centers and eco-
nomically active areas. However, without additional data 
on the third dimension, these studies fail to capture such 
important features (Koomen et al. 2009).
　The analysis of the third dimension of urban morpholo-
gy is scarce, mainly due to limited data availability 
(Koomen et al. 2009). However, the increasing availability 
of geospatial data, such as remote sensing satellite imager-
ies and digital surface models, provides an opportunity to 
integrate the third dimension into urban studies, and thus 
enables the estimation of the so-called urban volume. In 
this paper, urban volume refers to the volume of an urban 
area based on its built-up features such as buildings.
　In fact, there are still very few studies on urban volume 
using remote sensing data and geospatial techniques. 
Koomen et al. (2009) presented an approach for estimating 
urban volume based on elevation and vector layer (topo-
graphic) datasets. Santos et al. (2013) used LiDAR and 
other altimetric and planimetric data to characterize urban 
volumetry. The use of LiDAR data is also becoming popu-
lar in the field of urban green volume estimation (e.g. 
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Hecht et al. 2008; Huang et al. 2013). However, the avail-
ability of high spatial resolution data, including LiDAR 
data, across different urban landscapes is very limited. 
Furthermore, a methodological framework for estimating 
urban volume from non-LiDAR data is still lacking. Hence, 
this study introduces a geospatial technique for such a pur-
pose, focusing on the use of a digital surface model (DSM) 
derived from ALOS PRISM data. It also presents a method 
for deriving a digital terrain model (DTM) from a DSM.

2. Methodology
2.1. Study area and data used
　For the purpose of this study, a 10 km × 10 km subset of 
Metro Manila, Philippines, covering Makati City was used 
as a test site. Makati City is the financial center of the Phil-
ippines. It has the highest concentration of high-rise build-
ings in the country, which are used by various local and 
multinational corporations.
　The data used in this study include a multispectral satel-
lite image (Landsat image acquired in 2009) and a DSM. 
The DSM was derived from the Advanced Land Observing 
Satellite ‘DAICHI’ or ALOS-1 PRISM data (2006-2011) 
(Tadono et al. 2014; Takaku et al. 2014). The Landsat im-
age, with a spatial resolution of 30 m, was obtained from 
the United States Geological Survey (USGS) (http://earth-
explorer.usgs.gov/), while the ALOS PRISM DSM (c. 
2009), with a spatial resolution of 5 m, was obtained from 
the Japan Aerospace Exploration Agency (JAXA). Fig. 1 
shows the ALOS PRISM DSM and the classified built-up/
non-built-up maps of the test study site. The extraction of 
built-up and non-built-up classes from the Landsat image 
is described in section 2.2. A high spatial resolution satel-
lite image was preferred, but due to limitations on data 
availability, a medium spatial resolution satellite image 
was used instead.

2.2. Built-up/Non-built-up mapping
　The Landsat ETM+ image (surface reflectance data with 
Landsat Scene ID LE71160502009064EDC00; 5 March, 
2009) used in this study was a pre-processed data (http://
earthexplorer.usgs.gov/). During pre-processing by the 
USGS, the image went through the process of radiometric 
calibration and atmospheric correction (http://landsat.usgs.
gov/CDR_LSR.php). However, because the image was not 
gap-filled during the surface reflectance production pro-
cess, gap filling was undertaken following the procedure 
for filling gaps for scientific analysis (Erdas Imagine-Mo-
saicking Method, http://landsat.usgs.gov/sci_an.php). The 
clouds were also clipped and filled. The Landsat ETM+ 
image used as filler was also a pre-processed surface re-
flectance data (with Landsat Scene ID LE71160502008078 
EDC00; 18 March, 2008). The issue on seasonality and 
data quality and availability were considered in the selec-
tion of the filler image.
　The final pre-processed image, in its original spatial 
resolution of 30 m, was classified using maximum likeli-
hood supervised classification technique. This technique 
involves the digitizing of training sites or samples (e.g. 
built-up 1, 2,... n, and non-built-up 1, 2,... n) and using 
these samples to train and eventually classify the pixels in 
the image (Estoque and Murayama 2013). To produce a 
built-up/non-built-up map, the classified built-up and non-
built-up pixels based on the training samples were merged. 
The built-up/non-built-up map had an overall accuracy of 
88.89%.
　Furthermore, the built-up/non-built-up map was resam-
pled to 5 m using nearest neighbor algorithm, following 
the spatial resolution of the ALOS PRISM DSM (Fig. 2). 
This approach enabled further processing, while retaining 
the original information in the DSM and built-up/non-
built-up maps.

Fig. 1  The (a) ALOS PRISM DSM and (b) built-up/non-built-up maps of the test study site.
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2.3. DTM derivation
　Another core component of the proposed technique for 
estimating urban volume is the derivation of a DTM from 
a DSM (Fig. 2). Fig. 3 shows a graphical illustration of the 
ALOS PRISM DSM. In the illustration, the DSM value of 
hypothetical building x equals the sum of A, B, and C, 
which is also equal to the sum of C and D.
　The idea is to derive the topographic surface (brown line 
in Fig. 3, online version), herein referred to as the DTM, 
from the ALOS PRISM DSM. This study hypothesizes 
that if the DTM can be derived, the height of surface fea-
tures, like the hypothetical building x (i.e. labelled C in 
Fig. 3), from the ground (topographic surface) up to the 
top can also be determined. In this paper, this height is re-
ferred to as the surface feature height (SFH). However, the 
challenge centers on how to determine or approximate the 
DTM value of a topographic surface, especially those oc-
cupied by buildings, like the hypothetical building x.
　In this study, we proposed a two-step grid-based method 
for deriving a DTM from a DSM: (1) sample points identi-
fication, and (2) surface interpolation. Let us assume that 
Fig. 4a is a cross section of a 300-m hypothetical urban 
landscape. The idea is to identify and locate the point (or 
pixel in the DSM map) with the lowest DSM value within 
a grid (e.g. 100-m grid). Fig. 4b shows the pixel with the 
lowest DSM value within a 100-m grid. In this study, vari-
ous grid or mesh sizes were examined (i.e. 100 m, 150 m, 
200 m, 250 m, 300 m, 350 m, and 400 m). The identified 
sample points for each mesh size were used in the DTM 
interpolation, employing the Empirical Bayesian Kriging 
approach (Krivoruchko 2012). The process produced sev-

en DTMs, i.e. DTM100, DTM150, and so on.

2.4. Surface feature height (SFH) and urban volume mea-
surement

　The next step in the process before urban volume can be 
estimated involves the production of a SFH map (Fig. 2). 
Since there were seven derived DTMs, seven SFH maps 
were also produced (Eq. (1); Fig. 2) (SFH100, SFH150, 
and so on).

SFH (m) = DSM − DTM　　　(1)

　Using the map containing the extracted built-up pixels 
(pixel value = pixel area = 25 m2) and the derived SFH 
maps, seven urban volume (UV) (m3) maps of the test 
study site were produced (Eq. (2); Fig. 2) (UV100, UV150, 
and so on).

UVi (m3) = PAi × SFHi　　　(2)

where UVi, PAi and SFHi are, respectively, the urban vol-
ume (m3), area (m2) and surface feature height (m) of pixel 
i, where pixel i is a member of the built-up class.

3. Results and Discussion
3.1. Derived DTMs
　The derived DTMs had values ranging from 26 m to 91-
155 m (Fig. 5). The interpolation process had a root mean 
square error ranging from 0.372 m (for DTM150) to 0.599 
m (for DTM400). Smaller mesh sizes produced more sam-
ple points than the larger mesh sizes. This explains the dif-

Fig. 2  Flowchart of the proposed geospatial technique for estimating urban volume from remote sensing data.
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ference in the value ranges of the derived DTMs. It can 
also be observed that smaller mesh sizes (with more sam-
ple points), also produced finer or more detailed DTMs, 
while larger mesh sizes produced coarser and more gener-
alized DTMs. However, the question is ‘did the smaller 
mesh sizes also produce more accurate DTMs?’ Due to the 

lack of reference data that is more accurate than the de-
rived DTMs, we could not quantify the respective accuracy 
of the derived DTMs. Nevertheless, to help determine 
which DTM is likely more accurate, we paid closer atten-
tion to the derived SFH maps.

Fig. 4  Illustration of the collection of sample points for deriving a DTM from a DSM using a grid-based method. (a) cross section 
of a 300-m hypothetical urban landscape; and (b) a 100-m grid showing the hypothetical pixel with the lowest DSM value.

Fig. 3  Illustration of the ALOS PRISM DSM, highlighting the DSM value of hypothetical building x (DSM = A+B+C = C+D). 
Coordinate system/Ellipsoid model: ITRF97/GRS80.
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3.2. Derived SFH maps
　The results show that the derived SFH maps also had 
different value ranges. This was due to the input DTMs. 
The minimum SFH value ranges from -28.2 m (SFH100) 
to -10.3 m (SFH200), while the maximum SFH value 
ranges from 137.5 m (SFH100) to 149.4 m (SFH350) (Fig. 
6). Since the DSM values of built-up features, like the hy-
pothetical building x in Fig. 3, are supposedly higher than 
their respective DTM values (topographic surface, brown 
line in Figs. 3 and 4a, online version), pixels with negative 

SFH values can be considered errors. Among the seven de-
rived SFH maps, SFH100 had the highest quantity of pix-
els with negative SFH values, while SFH300 had the low-
est (Fig. 6). Based on the quantity of pixels that are in 
conflict with the premise DSM > DTM, SFH300 can be 
considered the most accurate among all seven SFH maps.

3.3. Estimated urban volume
　The different SFH maps (Fig. 6), produced using differ-
ent DTMs (Fig. 5), also produced different urban volume 

Fig. 5  The DTMs (m) derived from the ALOS PRISM DSM using the two-step grid-based method (section 2.3).

Fig. 6  The SFH maps (m) produced using the ALOS PRISM DSM and the seven derived DTMs.
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estimates (Fig. 7). The maximum urban volume value 
ranges from 3439 m3 (UV100) to 3736 m3 (UV350) (Fig. 
7). It can be observed that the urban volume maps pro-
duced using larger mesh sizes (for collecting sample points 
for DTM interpolation) had more dark pixels, indicating 
that they had higher estimates of urban volume. This is be-
cause the larger mesh sizes also produced lower DTM val-
ues (Fig. 5) and higher SFH values (Fig. 6). Based on 
UV300, produced by SFH300, the test study site had a to-
tal urban volume of 618.74 million m3. This translates to 

an urban volume index of 61,874.2 m3 per ha.
　The estimated urban volume of the test study site can be 
used to indicate the degree of urban land use intensity and 
pattern in the area. It can be observed that the intensity and 
pattern of urban land use is not uniformly distributed 
across the whole area. There are hot spots (high urban vol-
ume) and cold spots (low urban volume). The comparison 
between UV300 and a Google Earth image is shown in 
Fig. 8. The comparison shows that the spatial distribution 
of high-rise buildings in the test study site as shown in the 

Fig. 7  The urban volume (UV) maps (m3) of the test study site. Built-up pixels with negative SFH values were not included in 
the calculation.

Fig. 8  Comparison between (a) UV300 (c. 2009) and (b) Google Earth image (2010).
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reference image mirrors the spatial distribution of pixels 
with higher urban volume estimates (dark pixels in UV300 
map). This indicates a certain degree of confidence on the 
estimated urban volume of the test study site, in particular, 
and on the proposed technique for urban volume estima-
tion, in general.

3.4. Relevance of urban volume in urban studies
　The characterization and analysis of urban forms, in-
cluding intensity and spatial pattern of urban land use, is 
important in urban studies (e.g. urban geography and ur-
ban morphology) (Longley and Mesev 2002; Batty et al. 
2004; Koomen et al. 2009; Estoque and Murayama 2015). 
In this study, urban volume, which is based on built-up 
volume, has been used as a proxy measure for characteriz-
ing and examining the intensity and spatial pattern of ur-
ban land use in Makati City, Metro Manila. Urban volume 
can also be used as a proxy indicator for characterizing so-
cial structure, intensity of economic activity, relative levels 
of economic supremacy and power, as well as relative re-
source consumption levels, across various units of analy-
sis. In addition, we postulate that urban volume can also be 
used as an indicator or parameter in urban ecological stud-
ies. For example, the spatial distribution of urban ecosys-
tem services can be examined in relation to urban volume. 
Urban volume can also be used in the context of urban heat 
island studies. A time-series urban volume analysis can 
also provide new perspectives in urban studies. Hence, 
once multi-temporal DSM data become available, it is also 
important to add the time dimension in the analysis, e.g. 
spatiotemporal analysis of urban volume.

4. Conclusions and future prospects
　Overall, the results show that the proposed geospatial 
technique for estimating urban volume is capable of taking 
into consideration the height dimension in urban analysis. 
The proposed two-step grid-based method for deriving a 
DTM from a DSM is also implementable and promising. 
In this method, there is a need to calibrate the size of the 
mesh for identifying the pixels or points to be used in DTM 
interpolation. This is because different mesh sizes can pro-
duce substantially different DTMs, SFH values and urban 
volume estimates. The future prospects of this study in-
clude the development of validation methods for the esti-
mated urban volume, implementation of the proposed 
technique in other cities, including Bangkok and Jakarta, 
as well as the integration of high spatial resolution satellite 
imageries as sources of built-up footprints.
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