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1.1. Inflammatory bowel disease and colistis associated colon cancer 

     - Inflammatory bowel disease (IBD) comprises to types of disorders, Crohn’s disease (CD) 

and ulcerative coltitis (UC), which are chronic intractable diseases. Millions of patients in the 

world are suffering from these diseases.1 While CD involves any part of the gastrointestinal (GI) 

tract, the inflammation of UC merely exists at colon area (Figure 1.1).2,3 Although the exact 

etiology and pathogenesis of IBD remain uncertain, it is incriminated in a complex interaction of 

environmental, genetic, and immune-regulatory factors.4 It has been reported that the intestinal 

mucosa of patients with IBD is characterized by reactive oxygen species (ROS) overproduction 

and an imbalance of important antioxidants, leading to oxidative damage.5 ROS are highly reactive 

molecules containing oxygen, which cause strong oxidative damage to biomolecules such as lipid, 

protein, DNA, and other macromolecules. Self-sustaining cycles of oxidant production may 

amplify inflammation and mucosal injury.6–9 

 

Figure 1.1: Human gastrointestinal (GI) tract 
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     - On the other hand, the intestinal microflora also plays critical role in IBD. Human GI tract 

hosts a huge number of microflora. In particularly, the number of bacteria in large intestine can 

reaches upward of 1013 – 1014 bacteria, with more than 500 different bacterial species.10 In the 

normal conditions, these intestinal microflora attributes to the development of immune system, 

produces some key nutrients, and regulates the enery metabolism in intestine.11 However, the 

increase in a number of pathogeic bacteria has been assummed in development of IBD. It has been 

reported that antibiotics shows some effect to IBD patients, and intestinal microflora causes the 

inflammation to develop colitis mice models.12,13 

     - In addtion, IBD patients have high risk to develop colitis-associated cancer (CAC), an 

subtype of colon rectal cancer, which is difficult to treat and has high mortality. Colon rectal cancer 

is the 2nd most commone cause of cancer deaths in United States and other developed countries. 

More than 20% of IBD patients develop CAC within 30 years of disease onset, and 50% of these 

will die from CAC.14,15 In the UC patients, the inflammatory environment in colon can promote 

the accumulation of additional mutations and epigenetic changes. For example, overproduced ROS 

by activated inflammatory cells can induce DNA damage, genetic instability and mutations.16 

1.2. Current drugs for inflammatory bowel disease  

      - For many decades, a large number of drugs have been developed for treatment of patients 

with IBD. These drugs include anti-inflammatory drugs, immunosuppressant, biological agents, 

and antibiotics. Due to the significant advances in therapy for IBD, many new medications are now 

under investigation. Although they are effective in treating IBD in some extent, their severe side 

effects have raised significant concerns among both physicians and patients, and limited their 

use.17,18 

      - Mesalamine (or 5-aminosalicylic acid [5-ASA]) is an anti-inflammatory drug used to treat 
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the patient with mild to moderate active UC and for maintaining remission. Orally administered 

mesalamine has anti-inflammatory effect by moderating the production of pro-inflammatory 

cytokines, lipid mediators, and ROS. Sulfasalazine, a produg first developed in 1942, consists of 

mesalamine linked by an azo bond to sulfapyridine. Sulfasalazine is converted to sulfapyridine and 

mesalamine by bacterial enzyme in the colon, thus, orally administered sulfasalazine will delay the 

release of mesalamine in colon area.19 Corticosteroids are also anti-inflammatory agents, which 

have been used for more than 50 years, for moderate to severe both UC and CD. Corticosteroids 

can suppress the interleukin transcription, and the activation of nuclear factor kappa B (NF-κB), 

which inhibit the inflammatory responses. However, depending on the dose, these 

anti-inflammatory may cause some adverse effects such as headache, nausea, diarrhea, dyspepsia, 

etc… 

     - Since the early 1970s, azathioprine and 6-mercaptopurine have been used as 

immunosuppressants to treat IBD by inhibiting the proliferation and activation of lymphocytes. 

Azathioprine is metabolized to 6-mercaptopurine and subsequently to 6-thioguanine nucleotides. 

They are effective for both active disease and maintaining remission in CD and UC. The 

metabolized thioguanine causes severe adverse effects including GI toxicity, hepatotoxicity, and 

pancreatitis.   

     -  Because necrosis factor alpha (TNF-α) play an important role in the process of the 

inflammation in IBD, the new drugs have been recently developed to target the inflammatory 

immune factor such as TNF-α. The administration of humanized monoclonal antibodies is an 

entirely new and potentially highly successful concept for treating IBD. The first such product, 

infliximab, is available for treating refractory CD by inhibiting the functional activity of TNF-α.20 

Other available anti-TNF-α agents, adalimumab and certolizumab pegol, have been also approved 

to use in the United States. Although these anti-TNF-α antibody work well to suppress 



Chapter 1: General introduction 

9 
 

inflammation, the severe side effects such as antibody resistance, fever, heart failure still remains.  

1.3. Nitroxide radicals 

     - Cyclic nitroxides, also known as aminoxyls or nitroxyls, are stable free radicals. The 

methyl groups confer stability to the nitroxide radicals by preventing radical–radical dismutation 

and also limit access to reactive substances, which can quench the radical species. 

4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), six-membered piperidine nitroxide, is 

one of common used nitroxide radicals. Various states of TEMPOL are formed by the redox 

transformations between the oxidation states of nitroxide, hydroxylamine, and the oxoammonium 

cation (Figure 1.2).21 Because nitroxide radicals possess an impaired electron, they have been 

utilized as biophysical tools for electron paramagnetic resonance (EPR) spectroscopic studies such 

as spin label/oxymetry and spin strapping.22 However, possessing unique antioxidant properties 

nitroxide radicals have recently been used in novel therapies. Similar to Superoxide dismutase 

(SOD), nitroxide radicals act as a catalyst of superoxide anion to hydrogen peroxide (H2O2) and 

oxygen. Therefore, nitroxide compounds have been used for protection against oxidative damage in 

a number of cellular studies and clinical applications. TEMPOL and its hydroxylamine 

significantly protected Chinese hamster V79 lung fibroblasts from the damages induced by 

superoxide and H2O2.23 Similar protective effects of nitroxides were observed in cells exposed to 

oxidants indicating that nitroxides are effective in scavenging a wide variety of reactive 

intermediates.24,25  
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Figure 1.2: Nitroxide radical and the redox transformations between the oxidation states of 

nitroxide, hydroxylamine, and the oxoammonium cation.  

 

     - In addition, several clinical applications of nitroxide compounds have been discovered for 

radioprotection, functional imaging, and inflammation-cancer prevention. Whereas only 15% of 

the untreated C3H mice were alive at 30 days after irradiation with a single dose of 9 Gy, the 

nitroxide-treated mice showed significantly improved survival ranging from 35 to 100% depending 

on the nitroxide used.26 In another experiment, TEMPOL-treated pigs significantly improved 

alopecia, a severe side effect of ionizing radiation, as compared to untreated pigs.27 In a study of 

transient cerebral ischemia in rats, TEMPOL-treated group effectively prevented postischemic 

ROS formation and lipid peroxidation.28 Furthermore, Cuzzocrea et al reported that administration 

of TEMPOL reduces the activation of NF-κB in vivo,29 suppressing inflammation in several 

mouse models such as pancreatitis, pleurisy, arthritis, colitis, uveoretinitis, and atherosclerosis. 

30,31,32,33,34 For the cancer therapy, the antioxidant activity of TEMPOL reduced oxidative DNA 

damage in Fanconi anemia fibroblasts and mice, delaying the tumor progression.35 TEMPOL 

increased latency to tumorigenesis and doubled the lifespan of Atm-deficient mice, a mouse model 

of ataxia telangiectasia, which displays accelerated oxidative damage and stress.36 TEMPOL 
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administered in either the drinking water or food to C3H mice significantly reduced the tumor 

incidence and improved the lifespan as compared to untreated-mice.37 More studies on these 

nitroxide compounds now being conducted, more potential applications will be uncovered.  

     - Although these nitroxide radicals have a great potential as therapeutics, these compounds 

still face several problems under in vivo conditions. Because nitroxide radicals are 

low-molecular-weight (LMW) compounds, administration of these compounds results in the 

nonspecific dispersion in normal tissues, preferential renal clearance, rapid reduction of the 

nitroxide radical to the corresponding hydroxylamine, and unwanted adverse effects. Therefore, a 

novel approach is necessary to utilize these nitroxide compounds as an effective therapy.  

1.4. Drug delivery system  

1.4.1. Nanomedicine 

     - As mentioned above, administration of LMW compounds in vivo is not effective due to 

non-specific distribution, low stability, adverse effect. Recently, nanotechnology-based drug 

delivery systems have attracted a great attention of scientists from different fields. The term 

nanomedicne, the medical application of nanotechnology, was first used in the 2000. 38 

Nanoparticles are defined as materials with the dimesion between approximately 1 and 100 nm 

(Figure 1.3). 39  Nanoparticle-based drug delivery systems include nanocrystal, liposome, 

polymeric micelle, protein-based nanoparticle, dendrimer, carbon nanotube and polymer–drug 

conjugate.40 These drug loading nanocarriers, which have prolonged blood circulation property, 

can minimize the nonspecific accumulation in normal tissues to preferentially accumulate in 

diseased tissues such as inflamed and cancer tissues by enhanced permeability and retention (EPR) 

effect, charactered by microvascular hyperpermeability to circulating macromolecules and 

impainred lymphatic drainage in tumor tissues.41 To effectively deliver drug to the targeted tumor 
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tissue, nanoparticles must have the ability to remain in the bloodstream for a considerable time 

without being eliminated.  

 

Figure 1.3: Definition of nanotechnology and examples of nanotechnology platforms used in drug 

development. (Ref. 39) 

 

      - The size and surface characteristics have a great effect on biodistribution of nanoparticles. 

The size of nanoparticles used in a drug delivery system should be large enough to prevent their 

rapid leakage into blood capillaries but small enough to escape capture by fixed macrophages that 

are lodged in the reticuloendothelial system.42 After administration, small particles (<20–30 nm) 

are eliminated by renal excretion.43 Larger particles can be rapidly taken up by the mononuclear 

phagocytic system cells present in the liver, the spleen, and to a lesser extent, in the bone marrow. 

Nanoparticles of 150–300 nm are found mainly in the liver and the spleen,44 whereas particles of 

30–150 nm are located in bone marrow,45 the heart, the kidney and the stomach.46,47 Modifying 

the surface chemistry of nanoparticles also plays an important role in organ distribution and 

half-life bloodstream circulation. The absorption of plasma proteins to the surface, which are 
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caused by surface charge or hydrophobicity, results in the higher susceptibility of nanoparticle to 

phagocytosis.48 The most common method to improve the bloodstream circulation and prevent the 

plasma protein absorption is to block the surface using polymer such polyethylene glycol (PEG), 

polyvinyl alcohol (PVA), polysaccharides, ect…Among them, PEG appeared as an ideal candidate, 

and was extensively used to coat the surface of nanoparticles, since it has been shown to 

successfully prevent the uptake of mononuclear phagocytic system and lead to prolonged blood 

circulation time.49,50 

1.4.2. Gastrointestinal (GI) tract and oral drug delivery 

     - GI tract is a part of digestive system consisting of the stomach, small intestine, and large 

intestine (Figure 1.1). Intestinal epithelium is an efficient physical barrier that covers the surfaces 

of the GI tract, allowing selective absorption of nutrients, electrolytes and fluids, at the same time 

protecting the host from environmental pathogens. This epithelial cell layer comprises enterocytes, 

goblet cells, Paneth cells, and M cells, as shown in Figure 1.4.51 Enterocytes, the most abundant 

epithelial cells in the intestine, have the function to absorb nutrients. Goblet cells, the second most 

abundant cells interspersing among other cell types, secret the mucus on the surface. Paneth cells 

can secrete certain antimicrobial proteins that selectively bind and kill the bacteria. M cells, which 

are specialized epithelial cells that reside predominantly in the Peyer’s patches, can take up 

antigens and microorganisms from the intestinal lumen and then deliver them to the underlying 

immune system of mucosa.52 In addition, physical integrity of the intestinal epithelium can be 

attributed to the presence of tight junctions between contiguous epithelial cells, preventing 

paracellular uptake pathway of macromolecules in intestinal epithelium.53  
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Figure 1.4: Schematic illustrations of the structure of the intestinal epithelium. (Ref. 51) 

     - Compare to other routes of drug administration such as intravenous, subcutaneous, and 

local injections, oral administration is the most widely used and readily accepted form of drug 

adminitration due to its safety as well as patient convenience and compliance. Despite these 

potential advantages, oral formulations face several common problems, particularly for peptides 

and proteins: poor stability in the gastric environment, low solubility and/or bioavailability and the 

mucus barrier can prevent drug penetration and subsequent absorption.54 A number of drugs are 

susceptible to the variation of pH in the GI tract. The luminal pH in stomach is strong acidic in the 

stomach (pH 1–3), and rapidly changes to pH 6 in duodenum. The pH gradually increases in the 

small intestine from pH 6 to about pH 7.4 in the terminal ileum. The pH drops to 5.7 in the caecum, 

but again gradually increases, reaching pH 6.7 in the rectum.55,56 Oral administration of LMW 

drugs, particularly for protein drugs, is going to degradation not only by various pH but also a 

number of enzymes such as trypsin, elastase, carboxypeptidase existing in stomach and intestine.57 

On the other hand, mucus, a smooth and think subtract, covers the entire inner surface of the GI 



Chapter 1: General introduction 

15 
 

tract from stomach to colon. In the rat GI tract, the thickness of mucus layer increases from 

stomach (about 200 µm) to colon (about 800 µm).58 The mucus layer, a significant barrier, protects 

epithelial surfaces from the penetration of bacteria and foreign particles into mucosa. In the IBD 

patients, however, the overall thickness of the adherent mucus layer is reduced due to the reduction 

of goblet cells, and the opening tight junction of epithelium cells occurs, resulting the facile 

penetration of bacteria and foreign particles into mucosa.59,60 LMW drugs can be capsulated and 

protected from the harsh gastric environment by polymeric nanoparticles. The nanoparticle-based 

drug delivery systems may achieve mucoadhesion via hydrogen bonding, polymer entanglements 

with mucins, hydrophobic interaction, or combination of them.61 To improve oral delivery, 

polymeric nanoparticles can be applied by targeting M cells, which are more capable of 

transporting macromolecules as compared to other intestinal epithelial cells.62,63 In addition, 

transient opening of tight junctions could improve the permeation of drugs from the intestinal 

lumen to the systemic circulation.64,65 Therefore, if the anti-inflammatory drugs can be orally 

delivered to inflamed area of GI tract, it is anticipated to be an idea therapeutics for treatment of 

IBD patients. 

1.5. Objective of this study 

      - Antioxidants are promising agents for treatment of UC patients because colonic mucosa of 

these patients overproduces ROS, which induce oxidative stress and intestinal damages. However, 

oral delivery of LWM antioxidant compounds faces some issues such as degradation in acidic 

enviroment of stomach, absorption into bloodstream via small intesine, resulting low accumulation 

in colon regions. Recently, several nanoparticles have been developed for delivery of bioactive 

agents such as siRNA and antioxidants to inflamed colon regions. 66 , 67 , 68  Although these 

nanoparticles improve the effeciency to some extent, the accumulation of bioactive compounds in 

colon is still low due to the uncontrolled release of payload during delivery in GI tract, and the 



Chapter 1: General introduction 

16 
 

toxicity of these nanocarriers must be concerned.  

      - The objective of this study is to develop an effective and safe nanotherapy for the 

treatment of colitis and colitis-associated colon cancer via oral administration. To overcome the 

currents issues, we have developed a novel redox nanoparticles (RNPO), in which nitroxide radicals 

TEMPO, as ROS scavenging moiety, are covalently installed to large molecular weight chains in 

order to avoid the possible internalization in healthy cells and mitochondria, which prevents 

adverse effect of nitroxide radicals in normal tissues. In addtion, because ROS scavenging moiety 

is strongly connected in the nanoparticles, leakage of nitroxide radicals and toxicity of nanoparticle 

itself during drug delivery can be minimized. Redox nanoaprticle RNPO was prepared by 

self-assembly of methoxy-poly(ethylene 

glycol)-b-poly(4-[2,2,6,6-tetramethylpiperidine-1-oxyl]oxymethylstyrene)] (MeO-PEG-b-PMOT), 

which is an amphiphilic block copolymer with stable nitroxide radicals in a hydrophobic segment 

as a side chain via an ether linkage (Figure 1.5).  

 

Figure 1.5: Schematic illustration of redox polymer MeO-PEG-b-PMOT and redox nanoparticle 

RNPO using in this study. 
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This thesis includes six chapters. 

- Chapter 1 describes general introduction. 

- Chapter 2 describes the Synthesis of Redox polymers and Preparation of Redox nanoparticles. 

- Chapter 3 describes the specific Accumulation of orally administered redox nanoparticles in 

inflamed colon and Therapeutic effect of redox nanoparticle on colitis mice. 

- Chapter 4 describes the effect of redox nanoparticle on intestinal microflora.  

- Chapter 5 describes the therapeutic effect redox nanoparticles on colitis-associated colon cancer. 

- Chapter 6 describes the Summary and Conclusion. 
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Astract 

      In this chapter, the synthesis of redox polymer methoxy-poly(ethylene 

glycol)-b-poly[p-4-(2,2,6,6-tetramethylpiperidine-1-oxyl)oxymethylstyrene] (MeO-PEG-b-PMOT) 

and preparation of redox nanoparticles (RNPO) were described in detail. Firstly, 

methoxy-poly(ethylene glycol)-b-poly(chloromethylstyrene) (MeO-PEG-b-PCMS) block 

copolymer was synthesized using MeO-PEG-SH, possessing both sylfanyl and methoxy terminal 

groups, as a telogen. Then, MeO-PEG-b-PMOT was synthesized by converting chloromethyl 

groups of MeO-PEG-b-PCMS to TEMPOs via a Williamson ether synthesis. Finally, RNPO was 

prepared by dialysis method using a self-assembling block copolymer MeO-PEG-b-PMOT.  

2.1. Introduction  

      - The recent progess of living polymerization systems now enables the synthesis of versatile 

types of block copolymer. Especially, several kinds of living radical polymerization techniques, 

such as atom transfer radical polymerization, reversible addition fragmentation chain transfer 

polymerization and nitroxide-mediated radical polymerization, have been established during last 

two decades and are being applied to widely different monomers such as hydrophilic monomers 

and no-conjugate monomers.1 ,2 Living polymerization systems allow both precise molecular 

weight control as well as the synthesis of a wide array of polymer architectures.3,4,5 Living 

polymerization methods allow for the creation of virtually limitless types of new materials from a 

basic set of monomers.6 There are seven generally accepted criteria for a living polymerization:7 

- The polymerization proceeds to complete monomer conversion, and chain growth continues upon 

further monomer addition 

- Number average molecular weight (Mn) of the polymer increases linearly as a function of 

conversion 

- Number of active centers remains constant for the duration of the polymerization  
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- Molecular weight can be precisely controlled through stoichiometry  

- Polymers display narrow molecular weight distributions, described quantitatively by the ratio of 

the weight average molecular weight to the number average molecular weight (Mw/Mn∼1)  

- Block copolymers can be prepared by sequential monomer addition 

- End-functionalized polymers can be synthesized 

     - Poly(ethylene glycol) (PEG), non-ionic hydrophilic polymer with stealth behavior, is the 

most commonly used polymer in the field of nanoparticle-based drug delivery.8 The concept of 

PEGylation was first introduced back in the late 1970s; however, it only reached widespread 

application in different carrier systems in the 1990s.9,10 Several structural factors have an influence 

on the biological and stabilizing effects of PEG have to be considered. The molar mass and the 

polydispersity of the polymer have been shown in many applications to be important for 

biocompatibility and stealth behavior. The molar mass of PEG used in different pharmaceutical and 

medical applications ranges from 400 Da to about 50 kDa. PEG with a molar mass of 20 kDa to 50 

kDa is mostly used for the conjugation of low-molar-mass drugs such as small molecules, 

oligonucleotides, and siRNA. This results in fast renal clearance being avoided by increasing the 

size of the conjugates above the renal clearance threshold.11,12 PEGs with lower molar masses of 1 

kDa to 5 kDa are often used for the conjugation of larger drugs, such as antibodies or 

nanoparticulate systems. In this way, opsonization and subsequent elimination by the 

reticuloendothelial system (RES) is avoided, enzymatic degradation is reduced, and cationic 

charges are hidden.13,14 The number of advantages of PEG have been reported. PEG reduces the 

tendency of particles to aggregate by steric stabilization, thereby producing formulations with 

increased stability during storage and application. PEG shows a high solubility in organic solvents 

and, therefore, end-group modifications are relatively easy. At the same time, PEG is soluble in 

water and has a low intrinsic toxicity that renders the polymer ideally suited for biological 

applications. When attached to hydrophobic drugs or carriers, the hydrophilicity of PEG increases 
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their solubility in aqueous media.15,16 PEG also prevents interactions with blood components as 

well as protein interactions such as enzymatic degradation or opsonization followed by uptake by 

the RES.17,18 PEGylated products show less immunogenicity, suppressing the recognition of body 

immune due to the steric hindrance.19,20 Although PEG possesses promising properties for the field 

of drug delivery, several drawbacks of PEG such as metabolized side products, changing 

pharmacokinetic behavior, degradation, etc… under the physiological environments should be 

carefully considered.  

     - In this chapter, in order to synthesize block copolymers with PEG, we used 

poly(chloromethylstyrene) (PCMS) as hydrophobic segment, possessing chloromethyl group, 

which can react with various nucleophilic groups. The polymerization of chloromethylstyrene 

(CMS) monomers can be carried out in the presence of free radical and cationic initiators by not 

anionic initiators due to the benzylic chlorine. Block copolymer possessing PCMS was synthesized 

by classical free-radical telomerization reaction using methoxy-poly(ethylene glycol)-sulfanyl 

(MeO-PEG-SH). The sulfanyl groups are known to have a very high chain transfer constant in 

free-radical polymerization reactions.21,22 Because the sulfanyl group of MeO-PEG-SH acts as a 

telogen without any side reaction, the design novel polymers will become feasible. Then, the 

nitroxide radical can be introduced in the hydrophobic segment (PCMS) reaction of hydroxyl 

groups of TEMPOL and chloromethyl groups in the basic conditions.23,24 

2.2. Materials and Methods 

2.2.1. Materials  

     - MeO-PEG-SH (Mn = 5000), which possesses both sulfany and methoxy terminal groups, 

was purchased from NOF CORPORATION, Tokyo, Japan. 2,2’-Azobisisobutyronitrile (AIBN, 

Kanto Chemical Co., In., Tokyo, Japan) was purified by recrystallization in methanol (Wako Pure 
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Chemical Industries, Osaka, Japan). Chloromethylstyrene (CMS) was kindly provided by Seime 

Chemical Co., Ltd., Kanagawa, Japan. CMS was purified using a silica gel column to remove the 

inhibitor, followed a vaccum distillation. 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPOL, Tokyo Chemical Industry Co., Ltd., Tokyo, Japan). Sodium hydride (NaH) , 

2-propanol, N,N-dimethylformamide (DMF), toluene, diethyl ether were purchased from Kanto 

Chemical Co., Inc., Tokyo, Japan, and used without further purification.  

2.2.2. Synthesis of MeO-PEG-b-PCMS 

     - The scheme of synthesis of MeO-PEG-b-PCMS block copolymer was shown in Figure 2.1. 

Briefly, 10 g of MeO-PEG-SH (Mn = 5,000; 2 mmol) was added into a flask containning 1 mmol 

of AIBN. The flask as degassed and filled with nitrogen gas, and the degasssing-nitrogen-purge 

cycle was repeated three times. Then, 13.8 mL of purified CMS (100 mmol) and 100 mL of toluene 

were added to the flask under nitrogen flow. The flask was kept for 24 h at 60 oC in an oil bath for 

polymerization reaction. The yield of obtained MeO-PEG-b-PCMS copolymer was 82.2 % (13.3 

g).  

 

Figure 2.1: Scheme of synthesis of MeO-PEG-b-PCMS 

2.2.3. Synthesis of redox polymer (MeO-PEG-b-PMOT) 

      - The scheme of synthesis of MeO-PEG-b-PMOT block copolymer was shown in Figure 

2.2. Briefly, 10 g of obtained MeO-PEG-b-PCMS (Mw 7,800; 1.25 mmol) were added into a flask 

containing 200 mL of puried DMF. Then, 13 g of TEMPOL (62.5 mmol) and 3.5 g of NaH (125 
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mmol) were added into the flask. The reaction was kept at room temperature for 12 h under stirring. 

After reaction, the mixture was precipitated in cold 2-propanol (-20 oC), followed by centrifugation 

for 15 min at 5,000 rpm at 0 oC. The precipitation-centrifugation cycles was repeated three time, 

followed by freeze-drying with benzen. The yield of obtained MeO-PEG-b-PMOT copolymer was 

87.5 % (11.5 g).  

Figure 2.2: Scheme of synthesis of MeO-PEG-b-PMOT 

2.2.4. Preparation of redox naparticles (RNPO) 

     - 1 g of obtained MeO-PEG-b-PMOT (Mw = 10,000) was dissolved in 30 mL of DMF. 

RNPO was prepared by dislysis method (Figure 2.3). The disolved polymer was transferred into a 

dialysis membrane (Spectra/Por, molecular-weight cutoff 3,500; Spectrum, USA) to diayze for 24 

h against water. The fresh water was changed after 2, 5, 8, and 24 h to obtaind polymeric 

nanoparticles in water. The size of obtained RNPO was evaluated using dynamic light scattering 

(DLS) measurement. The TEMPO introduction rate in the core of RNPO was measured using 

electron spin resonance (ESR). 
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Figure 2.3: Preparation of RNPO by self-assembling MeO-PEG-b-PMOT 
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2.3. Results  

2.3.1. Synthesis of MeO-PEG-b-PCMS  

     - The MeO-PEG-b-PCMS copolymer was synthesized by the radical telomerization of CMS 

using MeO-PEG-SH as a telogen and AIBN as an initiator. The polymer molecular weight 

distribution of MeO-PEG-b-PCMS was evaluated by size exclusion chromatography (SEC, Tosoh 

HLC-8120GPC) using THF containning 2% triehtlylamine as solvent. As shown in Figure, the 

number-average molecular weight (Mn) and the weight-average molecular weight (Mw) values of 

MeO-PEG-b-PCMS were 6,300 and 7,800, respectively, by using standard PEG as calibration. The 

polymerization of CMS was determined by using 1H NMR spectrum. Based on 1H NMR, each 

MeO-PEG-b-PCMS possessed 16 unit of CMS (Figure 2.4). 

 

Figure 2.4: SEC diagram and 1H NMR spectrum of MeO-PEG-b-PCMS. SEC diagram was 

obtained by using Tosoh HLC-8120GPC with THF containing 2% triethylamine as sovent, flow 

rate at 0.35 mL/min and standard PEGs as cablibration. The 1H NMR spectrum of 

MeO-PEG-b-PMOT was obtained using chloroform-d on a JEOL JNM-ECS 400 MHz. 
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2.3.2. Synthesis of redox polymer (MeO-PEG-b-PMOT) 

     - The MeO-PEG-b-PMOT redox polymer was synthesized by converting chloromethyl 

groups were converted to TEMPOs via a Williamson ether synthesis of benzyl chloride in the 

MeO-PEG-b-PCMS block copolymer with the alkoxide of TEMPOL. The polymer molecular 

weight distribution of MeO-PEG-b-PCMS was also evaluated by size exclusion chromatography 

(SEC, Tosoh HLC-8120GPC) using THF containning 2% triethylamine as solvent.  

Figure 2.5: SEC diagram and 1H NMR spectrum of MeO-PEG-b-PMOT. SEC diagram was 

obtained by using Tosoh HLC-8120GPC with THF containing 2% triethylamine as sovent, flow 

rate at 0.35 mL/min and standard PEGs as cablibration. The 1H NMR spectrum of 

MeO-PEG-b-PMOT was obtained using chloroform-d (in presence of phenylhydrazine) on a JEOL 

JNM-ECS 400 MHz. 

     - As shown in Figure 2.5, based on molecular weight cabliration of standard PEGs, the Mn 

and Mw values of MeO-PEG-b-PMOT were 8,400 and 10,000, respectively. Figure 2.5 also 

showed 1H NMR of MeO-PEG-b-PMOT after redution of TEMPO radicals by phenylhydrazine. 

As compared to 1H NMR of MeO-PEG-b-PCMS, the new signals of 1H NMR of 

MeO-PEG-b-PMOT at 1.18 and 1.26 ppm are attributed to the tetramethyl protons of the TEMPO 
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(Figure 2.5). The extent of TEMPO modification in MeO-PEG-b-PMOT was approximately 85% 

(1.2 µmol of nitroxide radical per 1 mg of MeO-PEG-b-PMOT) by using ESR measurements. 

2.3.3. Preparation of redox naparticles (RNPO) 

     - Redox nanoparticles RNPO was prepared by dialysis method. MeO-PEG-b-PMOT was 

dissolved in DMF and dialyzed against water. Using DLS measurement, the size and polydispersity 

index of RNPO were ca. 40 nm and 0.1, respectively (Figure 2.6). The ESR signals of RNPO were 

analyzed by ESR measurement. Figure 2.6 showed the ESR spectra of low-molecular-weight 

(LMW) TEMPOL and RNPO. Basically, the ESR signal of LMW nitroxide radical TEMPOL has a 

sharp triplet due to an interaction between the 14N nuclei and the unpaired electron in the dilute 

solution. After the nitroxide radicals are introduced into the hydrophobic core of RNPO, the ESR 

spectrum of RNPO becomes broader. The broadened ESR signals of RNPO are attributed to the 

self-interaction and the restricted mobility of TEMPOs radicals in the core of RNPO. These results 

suggest that nitroxide radicals TEMPOs were successfully introduced into the core of RNPO.  

 

Figure 2.6: (A) Diameter of particles is determined by dynamic light scattering (DLS, Zetasizer 

Nano ZS, Worcestershire, UK). (B) ESR spectra of low-molecular-weight TEMPOL and RNPO. 

TEMPOL and RNPO were dissolved in MilliQ water and the ESR signal intensities were measured 

by an X-band ESR spectrometer (JES-TE25X, JEOL, Tokyo, Japan) at room temperature. 
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2.4. Discussions and Conclusion 

     - To prepare amphiphilic block compolymer, poly(ethylene glycol) (PEG) and 

poly(chloromethylstyrene) (PCMS) were used in this study. PEG is most common used in the field 

of nanopartilce-base drug delivery systems, as described above. On the other hand, PCMS is 

known to be one of the imporatant and the most widely studied fuctional polymers. Thousands of 

articles and patents have been presented about the systhesis, properties, and applications of these 

polymers. The PCMS or copolymers including PCMS units can react with various nucleophilic 

groups. The main nucleophilic substitution reactions of chloromethylstyrene include ether function, 

ester function, amine and ammonium salts, thioethers or thioesters, etc...Nitroxide radicles with 

different functional groups can be easily introduced in the PCMS or copolymer with PCMS. For 

examples, chloromethyl groups of PCMS were converted to TEMPOs via the amination of 

MeO-PEG-b-PCMS block copolymer with 4-amino-TEMPO.14 In this study, the chloromethyl 

groups were converted to TEMPOs via a Williamson ether synthesis of benzyl chloride in the 

MeO-PEG-b-PCMS block copolyer with the alkoxide of 4-hydroxy-TEMPO (TEMPOL). Based on 

the data of the SEC diagram, 1H NMR spectra, and ESR assay, it is concluded that redox polymer 

MeO-PEG-b-PMOT was successfully synthesized. Amphiphilic block copolymer 

MeO-PEG-b-PMOT formed the redox nanoparticle RNPO in the aqueous solution with the size of 

approximately 40 nm in diameter and remarkably narrow distribution. Because TEMPOs was 

covalently conjugated in a hydrophobic segment (PCMS) as a side chain via ether linkage, the 

problem about leakage of TEMPOs during delivery process will be solved. The ether linkage is 

stable against changing in pH, the prepared RNPO is anticipated to be an ideal oral 

nanotherapeutics to delivery ROS scavenging nitroxide radicals in gastrointestinal tract.  
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Abstract 

      Drugs used to treat patients with ulcerative colitis (UC) are not always effective because of 

non-specific distribution, metabolism in gastrointestinal tract, and side effects. A nitroxide 

radical-containing nanoparticle (RNPO) has been developed to accumulate specifically in the colon 

to suppress inflammation and reduce the undesirable side effects of nitroxide radicals. RNPO was 

synthesized by assembly of an amphiphilic block copolymer that contains stable nitroxide radicals 

in an ether-linked hydrophobic side chain. Biodistribution of RNPO in mice was determined from 

radioisotope and electron spin resonance measurements. The effects of RNPO were determined in 

mice with dextran sodium sulfate (DSS)-induced colitis and compared with those of 

low-molecular-weight (LMW) drugs (4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl [TEMPOL] 

or mesalamine). RNPO, with a diameter of 40 nm and a shell of poly(ethylene glycol), had a 

significantly greater level of accumulation in the colonic mucosa than LMW TEMPOL or 

polystyrene latex particles. RNPO was not absorbed into the bloodstream through the intestinal wall, 

despite its long-term retention in the colon, which prevented its distribution to other parts of the 

body. Mice with DSS-induced colitis had significantly lower disease activity index and less 

inflammation following 7 days of oral administration of RNPO, compared with DSS-induced colitis 

mice or mice given LMW TEMPOL or mesalamine. In conclusion, an orally administered RNPO 

accumulates specifically in the colons of mice with colitis and is more effective in reducing 

inflammation than LMW TEMPOL or mesalamine. RNPO might be developed for treatment of 

patients with UC. 

3.1. Introduction 

     - Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis 

(UC), affects millions of patients worldwide.1–4 Since the etiology and pathogenesis of IBD are not 

well understood, it is considered an intractable disease. The intestinal mucosa of patients with IBD 
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is characterized by reactive oxygen species (ROS) overproduction and an imbalance of important 

antioxidants, leading to oxidative damage. Self-sustaining cycles of oxidant production may 

amplify inflammation and mucosal injury. 5 – 8  In several experimental models, antioxidant 

compounds and free radical scavengers have improved colitis.9–11 However, these compounds are 

not completely effective due to a non-specific drug distribution, a low retention in the colon and 

side effects. If antioxidant compounds are specifically targeted to the diseased sites and effectively 

scavenge excessive generated ROS, they represent a safe and effective treatment for IBD. 

     - Nanoparticles such as liposome and polymeric micelles have gained worldwide attention as 

a new medical technology, because they change biodistribution of drugs to result in therapeutic 

effect of drugs significantly.12,13 In particular, the intratumoral microdistribution of nanoparticle 

has been studied for over two decades that nanoparticles can accumulate in sites of tumor due to 

the increased vascular permeability.14–17 Recently, we have developed an amphiphilic block 

copolymer, poly(ethylene 

glycol)-b-poly[p-4-(2,2,6,6-tetramethylpiperidine-1-oxyl)aminomethylstyrene] (PEG-b-PMNT), 

possessing stable nitroxide radicals in the hydrophobic segment as a side chain via an amine 

linkage, which forms core-shell-type micelles in the physiological environment with an average 

diameter of about 40 nm, and termed nitroxide radical-containing nanoparticle (RNPN).18 Nitroxide 

radicals are confined in the core of this micelle, which shows high biocompatibility, including 

long-term blood circulation when administered intravenously and low toxicity. Therefore, RNPN 

has been studied for therapy in oxidative stress injuries18–22 and bioimaging.23,24 For example, 

pH-sensitive RNPN works effectively in acute renal injury18 and cerebral ischemia-reperfusion19 

because it disintegrates in acidic conditions of diseased area by protonation of amino groups. 

However, pH-disintegrative character is not suitable for the treatment of UC via oral 

administration.  
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     - In this chapter, I describe a novel nanotherapy for the treatment of UC via oral 

administration. In order to target the nanoparticle to the colon area, its accumulation in the colonic 

mucosa is optimized, preventing its uptake into the bloodstream. I designed a new redox polymer, 

methoxy-poly(ethylene 

glycol)-b-poly[p-4-(2,2,6,6-tetramethylpiperidine-1-oxyl)oxymethylstyrene] (MeO-PEG-b-PMOT), 

which is an amphiphilic block copolymer with stable nitroxide radicals in a hydrophobic segment 

as a side chain via an ether linkage and forms 40-nm-diameter core-shell-type micelles (RNPO) by 

self-assembly in the aqueous environments regardless of pH (Figure 3.1A). Here, the specific 

accumulation of RNPO in colon after oral administration was investigated by comparison to 

low-molecular-weight (LMW) compound, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPOL) and commercial available polystyrene latex particles with different sizes from 40 nm to 

1 µm. Also, I examine the therapeutic effect of RNPO on dextran sodium sulfate (DSS)-induced 

colitis model in mice, compared to LMW TEMPOL and mesalamine, a commercial anti-ulcer drug. 

These results show that RNPO significantly accumulates in colonic mucosa area, especially 

inflammatory sites, without absorption into bloodstream and has an extremely high therapeutic 

efficiency in mice with DSS-induced colitis (Figure 3.1B).  
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Figure 3.1. Schematic illustration of RNPO and nanotherapy for DSS-induced UC in mice. (A) 

RNPO is prepared by self-assembly of a poly(ethylene glycol)-b-poly(4-methylstyrene) block 

copolymer possessing nitroxide radical TEMPO moieties. (B) After oral administration, LMW 

drugs, such as TEMPOL, are degraded and absorbed into the bloodstream in stomach and small 

intestine before reaching the colon. In contrast, orally administered RNPO is stable and withstands 

the harsh conditions of the gastrointestinal (GI) tract, and reach the colon to scavenge ROS, 

especially sites of inflammation. 
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3.2. Materials and Methods 

3.2.1. Preparation of RNPO  

     - RNPO was prepared by a self-assembling MeO-PEG-b-PMOT block copolymer, as 

previously reported.18 Briefly, methoxy-poly(ethylene glycol)-b-poly(chloromethylstyrene) 

(MeO-PEG-b-PCMS) was synthesized by the radical telomerization of chloromethylstyrene (CMS) 

using methoxy-poly(ethylene glycol)-sulphanyl (MeO-PEG-SH; Mn = 5,000) as a telogen. The 

chloromethyl groups were converted to TEMPOs via a Williamson ether synthesis of benzyl 

chloride in the MeO-PEG-b-PCMS block copolymer with the alkoxide of TEMPOL, as previously 

reported. RNPO was prepared from MeO-PEG-b-PMOT by dialysis method; Micelle without 

nitroxide radicals was similarly prepared from MeO-PEG-b-PCMS as a control and termed 

“micelle”. 

3.2.2. Preparation of rhodamine-labeled RNPO 

     - Rhodamine-labeled RNPO was prepared via thiourethane bond between 

MeO-PEG-b-PMOT possessing reduced TEMPO moieties and rhodamine B isothiocyanate in 

DMF involved sodium hydride. Briefly, after 30 µmol (300 mg) of the obtained 

MeO-PEG-b-PMOT (Mn = 10,000) were weighed into a 100 mL flask, a CHCl3 solution (2 mL) of 

phenylhydrazine (300 µmol, 33 mg) was added to the flask and stirred for 10 min at room 

temperature. The reacted polymer was recovered by precipitation into 10 mL of diethylether, 

followed by filtration to obtain reduced TEMPO possessing polymer. The obtained precipitate is 

recovered by freeze-drying with benzene. The yield of the obtained MeO-PEG-b-PMOT possessing 

reduced TEMPO moieties was 200 mg (66.6%). The obtained polymer (200 mg) was dissolved in 

anhydride DMF (1 mL) and added to sodium hydride (150 µmol, 5.4 mg) and rhodamine B 

isothiocyanate (90 µmol, 48 mg) in anhydride DMF solution (1 mL) and stirred for 10 h at room 

temperature. The yield of the obtained copolymer (MeO-PEG-b-PMOT-Rhodamine) was 205 mg. 

Rhodamine-labeled RNPO was prepared from the obtained copolymer by the dialysis method. 

3.2.3. Preparation of 125I-labebled RNPO 

     - 125I-labebled RNPO was prepared via reaction between RNPO and Na[125I] with present of 
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chloramine-T as a catalyst. RNPO has polystyrene segment in its core, which acts as radioisotope 

(RI) labeling sites. Briefly, Na[125I] solution (40 µL, 1480 kBq, Perkin-Elmer) and chloramine-T 

(600 mM, 20 µL) were mixed with RNPO solution (60 mg/mL) at room temperature for 20 min. 

After reaction, ultracentrifugation (6,200 rpm, 40 min) was carried out 4 times and the obtained 

solution was passed through a gel filtration column (PD-10 column, GE Healthcare) to remove 

unreacted Na[125I] and the starting reagents. Each 500 µL fraction was collected and its 

radioactivity was measured by a γ-counter (ARC-380, Aloka, Tokyo, Japan) to confirm 
125I-labeling of RNPO and purification. The obtained 125I-labeled RNPO solutions were diluted with 

water to adjust the radioactivity to 1,179,836 cpm/mL, after which they were used for the in vivo 

body distribution studies. 

3.2.4. Preparation of different sized polystyrene latex particles with nitroxide radicals 

     - Carboxylated polystyrene suspension (40 nm, 100 nm, 0.5 µm and 1 µm, 10% wt/vol, 

Magsphere Inc., USA) (1 mL) was poured into a 20 mL of glass tube and diluted with 5 mL of 

phosphate buffer solution (10 mM, pH 4.8). Then, 200 µL of an aqueous solution 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC, 25 mg/mL) was add, 

followed by shaking for 20 min at 25 oC (shaking velocity = 1,000 rpm; shaking incubator SI-300, 

As One Cooperation, Japan). Activated carboxylated polystyrene was mixed with 150 mg of 

amino-TEMPO and this mixture was continuously vibrated for 4 hours. Then, pH was adjusted to 

pH 7 by NaOH 1N. This mixture was transferred into a preswollen membrane tube (Spectra/Por; 

molecular-weight cut off size: 3500) and then dialyzed for 24 hours against 2 L of water to remove 

unreacted amino-TEMPO. DLS and ESR measurement were carried out to determine the diameter 

and amount of reacted TEMPO of obtained nanoparticles.  

3.2.5. Animals 

     - All experiments were carried out using 7-week-old male ICR mice (32–35 g) purchased 

from Charles River Japan, Inc. Mice were maintained in the experimental animal facilities at the 

University of Tsukuba. All experiments were performed according to the Guide for the Care and 

Use of Laboratory Animals at the University of Tsukuba. 

3.2.6. Localization of RNPO in the colon  
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     - Localization of RNPO in the colon was determined by fluorescent rhodamine-labeled RNPO. 

Rhodamine-labeled RNPO was prepared via thiourethane bond between MeO-PEG-b-PMOT 

possessing reduced TEMPO moieties and rhodamine B isothiocyanatein. Mice were killed 4 hours 

after oral administration of 1 mL of rhodamine-labeled RNPO (5 mg/mL). Residues in the colon 

were gently removed with phosphate buffered saline (50 mM, pH 7.4), and 7-µm thick colon 

sections were prepared. Localization of rhodamine-labeled RNPO was recorded using a fluorescent 

microscope. 

3.2.7. Accumulation of RNPO in the colon 

     - Accumulation of RNPO was determined by ESR assay. One mL of LMW TEMPOL, RNPO 

and different sized polystyrene latex particles with an equivalent nitroxide concentration (1.33 mg; 

7.5 µM) were orally administered to mice. Mice were killed 1, 4, 12, 24, and 48 hours after oral 

administration. Whole colons were homogenized in 1 mL of phosphate buffered saline (50 mM, pH 

7.4) containing potassium ferricyanide (50 mM). The ESR signal intensities in homogenized 

samples were measured by an X-band ESR spectrometer (JES-TE25X, JEOL, Tokyo, Japan) at 

room temperature. The amount of nitroxide radicals in the colon was determined by ESR 

measurements under the following conditions: frequency, 9.41 GHz; power, 10.00 mW; center 

field, 333.3; sweep width, 5 mT; sweep time, 0.5 min; modulation, 0.1 mT; time constant, 0.1 s. 

3.2.8. Biodistribution of RNPO 

     - 125I-labebled RNPO was prepared via reaction between RNPO and Na[125I] with present of 

chloramine-T as a catalyst (see Supplementary Materials and Methods). Mice were fasted for 1 day 

before the experiment and 0.5 mL of 125I-labeled RNPO (20 mg/mL) was orally administered. Then, 

mice were sacrificed at 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after oral administration. The major 

digestive organs (small intestine, cecum, and colon) and blood were isolated, and their 
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radioactivities were measured by a γ-counter (ARC-380, Aloka, Japan). The percentage of 

radioactivity in each organ was determined based on the initial total radioactivity. 

3.2.9. Induction of colitis by DSS and drug administration 

     - Colitis in mice was induced by 3% (wt/vol) DSS (5,000 daltons; Wako Pure Chemicals) 

supplemented in the drinking water for 7 days. The experiment was designed to six groups: normal 

control group, DSS-injured group, LMW TEMPOL-treated group, micelle-treated group, 

RNPO-treated group and mesalamine-treated group. The equivalent doses of drugs (0.2 mM/kg) 

were orally administered daily during the 7 days of DSS treatment. The concentrations of LMW 

TEMPOL, micelle and RNPO were adjusted in distilled water, and the solutions were filtered with a 

0.25-µm cellulose acetate filter. Mesalamine was suspended in 0.5% (wt/vol) carboxymethyl 

cellulose. 

3.2.10. Evaluation of colitis severity by disease activity index (DAI) and colon length 

      - During 7 days of treatment, body weight change, visible stool consistency, and fecal 

bleeding were assessed daily. DAI is the summation of the stool consistency index (0–3), fecal 

bleeding index (0–3), and weight loss index (0–4). After 7 days of treatment, mice were sacrificed 

after anesthesia with sodium pentobarbital (40 mg/kg), and the entire colon (from cecum to rectum) 

was collected. Colon length was measured and gently washed with physiological saline. Then, 1 

cm of the distal section was used for histological assessment. The remaining section was used to 

measure MPO activity, interleukin (IL)-1β and superoxide.  

3.2.11. Histological assessment 

     - After washing, 1 cm of the distal colon was fixed in 4% (vol/vol) buffered formalin for 1 

day and 70% (vol/vol) alcohol for 2 days prior to paraffin embedding. Then, 7-µm thick sections of 
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the distal colon were prepared and stained with hematoxylin and eosin. Histology of the colon was 

evaluated using a microscope. 

3.2.12. Myeloperoxidase (MPO) activity 

     - Colon tissue samples were collected immediately after mice were sacrificed and were 

homogenized in cold 50 mM phosphate buffer (pH 6) supplemented with 0.5% (wt/vol) 

hexadecyltrimethylammonium bromide (Sigma-Aldrich). Supernatants were collected by 

centrifugation for 10 min at 10,000 rpm at 4 °C and kept at –80 °C until the assay. The enzymatic 

reaction was carried out in a 96-well plate by adding 190 µL of 50 mM phosphate buffer (pH 6), 5 

µL of 10 mg/mL o-dianisidine hydrochloride, 5 µL of 20 mM H2O2, and 10 µL of the supernatant 

sample. After 30 min at room temperature, the absorbance at 460 nm was measured. The protein 

concentration of the supernatant sample was measured using a BCA kit (Thermo Scientific Pierce 

Protein Research Products). MPO activity was determined by comparison to a standard MPO curve 

(Sigma-Aldrich M6908). 

3.2.13. Interleukin IL-1β measurement 

     - Colon tissue samples were collected immediately after mice sacrifice and were 

homogenized in cold phosphate buffer saline. After centrifugation for 10 min at 10,000 rpm 4 °C, 

supernatants were collected and measured concentration of IL-1β by using an enzyme-linked 

immunosorbent assay (ELISA) kit for mice (Thermo Scientific Pierce Protein Research Products), 

according to the manufacturer’s instructions. 

3.2.14. Measurement of colon superoxide production in vivo 

     - To determine superoxide production, colon supernatant (100 µL) was added to a 96-well 

black plate (NUNC) containing 3.3 mM dihydroethidium (DHE; Wako Pure Chemicals), followed 
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by incubation at 37 °C for 20 min. The fluorescence intensity of each well was measured using an 

excitation wavelength of 530 nm and an emission wavelength of 620 nm. DHE alone was read to 

calculate a zero-point. Superoxide values, from which the zero-point value was subtracted, were 

expressed as intensity per mg of protein. The superoxide value of the control group was 

standardized to 100%. 

3.2.15. Intravital observation by in vivo live imaging 

     - Aqueous solution of DSS (3% wt/vol) was administered by free access for 7 days to induce 

colitis in mice. One mL of RNPO (10 mg/mL) was orally administered daily. After 7 days of 

treatment, mice were anesthetized with urethane (15 g/kg, Sigma-Aldrich) and an arc-shaped 

incision was made in the peritoneum to expose the colon. Then, approximately 1 cm length incision 

was made to observe the colonic mucosa and the remained contents in the colon were removed 

gently by physiological saline. Mice were set on the stage of microscope and in vivo live imaging 

was acquired after 2 hours with a microscope. Dead cells in colonic mucosa were identified by 

staining of propidium iodide in physiological buffer (50 µg/mL; Wako Pure Chemicals) under an 

excitation wavelength of 488 nm and an emission wavelength of 515 nm.  

3.2.16. Survival rate experiment  

     - The survival rate of mice was determined by replacing drinking water with a 3% (wt/vol) 

solution of DSS for 15 days. Starting on day 5, drugs were oral administered daily until day 15, and 

the number of surviving mice was counted until day 15. 

3.2.17. Statistical analysis 

     - All values are expressed as mean ± standard error of mean (SEM). Differences between 

groups were examined for statistical significance using the one-way and two-way ANOVA, 
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followed by Bonferroni post-hoc test (SPSS® software, IBM Corp., NY, USA). A P-value < .05 was 

considered significant for all statistical analyses. 

 

3.3. Results 

3.3.1. Specific accumulation of RNPO in colonic mucosa and inflamed colon area 

     - The accumulation of nanoparticles in the colon area is one of the most important features 

for an effective nanomedicine against UC. Firstly, fluorescently labeled nanoparticles was orally 

administered, and analyzed the accumulation of these nanoparticles in the colon by fluorescent 

microscopy. Here, rhodamine-labeled RNPO was prepared. After oral administration of 

rhodamine-labeled RNPO, there was a strong fluorescent signal at the colonic mucosa area, as 

compared to oral administration of LMW fluorescein (Figure 3.2). This result indicates effective 

accumulation of RNPO in the colonic mucosa. 

 

Figure 3.2. Localization of RNPO in the colon was determined with rhodamine-labeled RNPO. 

Localization of rhodamine-labeled RNPO in the colon was analyzed by fluorescent microscopy. 

Scale bars, 200 µm.  

     - In order to quantify the accumulation of nanoparticles in the colon area, I compared RNPO 

with different sizes of commercial available polystyrene latex particles and LMW compound, 
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TEMPOL. Because nitroxide radicals were introduced into the particles, their accumulation could 

be quantitatively monitored by electron spin resonance (ESR) measurements. When LMW 

TEMPOL was orally administered to mice, almost no ESR signal was observed in the colon, as 

shown in Figure 3.3A. In contrast, polystyrene latex particles showed a higher accumulation in the 

colon compared to LMW TEMPOL. From these results, the size-dependent accumulation in colon 

was observed. Polystyrene latex particles with 40 nm and 100 nm in size accumulated higher than 

large-sized particles (0.5 µm and 1 µm), which is consistent with previous reports.25,26 Interestingly, 

when RNPO was administrated orally to mice, considerable high accumulation of RNPO in colon 

was observed, as compared to polystyrene latex particles, even though the same size (40 nm). The 

area under the concentration-time curve (AUC), an important parameter in biopharmaceuticals and 

pharmacokinetics, of RNPO was 1223.3, which was significantly higher than 27.8 of LMW 

TEMPOL. The AUC of polystyrene latex particles with sizes 40 nm, 100 nm, 0.5 µm and 1 µm 

were 249.5, 204.7, 83.7 and 32.9, respectively. High colloidal stability of RNPO due to the PEG 

tethered chains on the surface might be effective to accumulate in colonic mucosa as compared to 

polystyrene latex particles. The extremely high accumulation of RNPO in colonic mucosa can be 

anticipated for high performance efficiency as a colitis therapy. 

     - Next, the specific accumulation of RNPO in the injured colon was investigated. Aqueous 

solution of DSS (3% wt/vol) was administered by free access to induce colitis in mice. RNPO was 

orally administered at day 5 and quantified the amount of RNPO in the colon by ESR measurements 

4 hours after administration. Interestingly, the amount of accumulated RNPO in the colon of 

DSS-injured mice was 50% higher than that in the normal colon under the same administration 

conditions (1.57 ± 0.18 µg/cm of colon length for DSS-treated mice and 1.01 ± 0.13 µg/cm of 

colon length for normal mice) (Figure 3.3B). This result suggested that RNPO accumulates to a 

greater extent in inflammatory sites, such as in UC.  
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Figure 3.3: Specific accumulation of RNPO in colon. (A) Accumulation of LMW TEMPOL, RNPO 

and polystyrene latex particles in the colon. Amount of nitroxide radical was measured by ESR. (B) 

Specific accumulation of RNPO in the inflamed colon. The amount of nitroxide radicals in the 

normal colon and the inflamed colon was determined by ESR measurement 4 hours after 

administration of RNPO. The data are expressed as mean ± SEM, n = 3. 

3.3.2. Distribution and non-absorption into bloodstream of RNPO after oral administration 

- As previously mentioned, I confirmed the specific accumulation of RNPO in the 

DSS-injured colon. It is also important to estimate the non-specific distribution in whole body. 

Therefore, to precisely evaluate non-specific distribution, I used radioisotope 125I-labeled RNPO, 

which moved from the small intestine, to the cecum, and to the colon over time after oral 

administration (Figure 3.4A). Specifically, in the first hour after administration, 3.2% of the initial 

dose of RNPO had reached the colon. It accumulated to a maximum of 14.5% of the initial dose 4 

hours after administration. Twenty-four hours after administration, there was 0.5% of the initial 

dose of RNPO remaining in the colon. Importantly, no the uptake of RNPO into the bloodstream 

was observed (Figure 3.4A). This is in sharp contrast to LMW compounds, such as TEMPOL. 
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This difference in bloodstream uptake via the gastrointestinal (GI) tract was further confirmed by 

ESR measurements. LMW TEMPOL was absorbed into the bloodstream through the GI tract in 

normal mice and even more in DSS-treated mice (Figure 3.4B). However, when RNPO was 

administered orally, there was no observable ESR signal in the blood, which was consistent with 

the results from the experiments of 125I-labeled RNPO. In this chapter, oral nanotherapy with RNPO 

prevented uptake into the bloodstream, suggesting a lack of systemic side effects. 

 

Figure 3.4. Biodistribution of RNPO in GI tract and bloodstream. (A) The biodistribution of RNPO 

was determined using 125I-labeled RNPO. The percentages of radioactivity in each organ and in the 

blood were determined by comparison to the initial total radioactivity. The data are expressed as 

mean ± SEM, n = 5. (B) Absorption of LMW TEMPOL and RNPO into the bloodstream of normal 

mice (solid line) and colitis mice (dashed line). After administration of LMW TEMPOL and RNPO, 

the amount of nitroxide radicals in the plasma was determined by ESR measurement. The data are 

expressed as mean ± SEM, n = 3. (Inset) The ESR spectra of LMW TEMPOL (grey spectrum) and 

RNPO (black spectrum) in the colon homogenate after 4 h oral administration. 
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3.3.3. Stability of RNPO in GI tract 

Next, the stability of orally administered RNPO in the GI tract was evaluated using ESR 

spectra of RNPO in the colon. The ESR signals of LMW TEMPOL in the colon showed a sharp 

triplet due to an interaction between the 14N nuclei and the unpaired electron, as previously 

reported18 (Figure 3.4B, inset, grey spectrum). In contrast, the ESR signals of RNPO in the colon 

were broad (Figure 3.4B, inset, black spectrum), suggesting that RNPO remains as core-shell type 

micelle even in the GI tract. The stability of self-assembled RNPO with several tens of nanometers 

in GI tract could prevent the uptake into the bloodstream through the intestinal wall. After reaching 

colon, RNPO is accumulated in inflamed and mucosal area, followed by effectively scavenging 

ROS. It is noted that RNPN, which contains amino group as side chains in the hydrophobic segment, 

is absorbed into the bloodstream when administered orally (data not shown). It is likely that the 

disintegration of RNPN in the stomach facilitates its uptake into the bloodstream through the 

intestinal wall, which was not observed in RNPO.  

3.3.4. Therapeutic effect of RNPO on DSS-induced colitis in mice 

     - Since orally administered RNPO accumulated in the colonic mucosa of DSS-injured mice 

and was not absorbed into the bloodstream, it is anticipated to be an ideal nanomedicine for UC 

treatment. Therefore, its therapeutic and suppressive effects on DSS-induced colitis model in mice 

was investigated. RNPO was orally administered daily to DSS-injured mice for 7 days. Additional 

DSS-injured mice were treated with LMW TEMPOL, commercially anti-ulcer mesalamine and 

micelle without nitroxide radicals as controls. After 7 days of treatment, the severity of colitis was 

assessed on the basis of DAI27, colon length, and histological analysis. Mice treated with DSS had 

a significant increase in DAI and shortening of the colon compared to control mice (Figure 3.5A 

and B). The treatments with LMW TEMPOL or mesalamine showed efficiency to decrease DAI as 

compared to DSS-treated mice, though this efficiency was not significant. On the contrary, 
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RNPO-treated mice showed much lower DAI and preserved colon length compared to DSS-treated 

mice (P < 0.01) and other LMW drugs-treated mice. It should be noted that no effect was observed 

when polymeric micelle without nitroxide radicals was administered instead of RNPO. 

 
Figure 3.5. Therapeutic effect of RNPO on DSS-induced colitis in mice. (A) Changes in disease 

activity index. The data are expressed as mean ± SEM, *P < 0.05, **P < 0.01 and ***P < 0.001 vs. 

control group; ‡P < 0.05 and ¶P < 0.001 vs. DSS groups, n = 6–7, two-way ANOVA, followed by 

Bonferroni post-hoc test. (B) Preservation of colon length. After 7 days of treatment, the colon was 

collected and measured. The data are expressed as mean ± SEM, **P < .01, n = 6–7.  

     - Additionally, histological analyses showed that mucosal structures of DSS- and 

micelle-treated mice were significantly damaged, viz., destruction of crypts and high levels of 

neutrophil invasion were observed in these mice. LMW TEMPOL- or mesalamine-treated mice 

showed moderately damaged mucosal structures. Contrary of those treatments, RNPO-treated mice 

showed almost similar to that of control mice (Figure 3.6), indicating the significant therapeutic 

effect of RNPO on DSS-induced colitis in mice.  
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analyzed. Hematological analyses were performed to reveal the massive infiltration of leukocytes. 

Blood from RNPO-treated mice had a significant lower level of white blood cells compared to DSS- 

and micelle-treated mice (P < 0.05), indicating lower levels of neutrophil invasion in RNPO-treated 

mice (Figure 3.7A). 

 

Figure 3.6: Oral administration of RNPO protects mucosal architecture form DSS-induced 

injury. Sections of the distal colon were stained by H&E. Scale bars, 200 µm. 

LMW TEMPOL and mesalamine showed the effect to suppress white blood cells in DSS-treated 

mice; however, the significance was not observed. Furthermore, results of the hematological 

analysis indicated higher levels of red blood cells and hemoglobin in the blood of RNPO-treated 

mice (Figure 3.7B and C). This suggests that the intestinal wall was protected from hemorrhage in 

RNPO-treated mice. I further investigated the desquamation of impaired epithelial cells and cell 

death in colonic mucosa by intravital observation using in vivo microscopic live imaging and 

propidium iodide staining.28 The results showed that a great number of desquamated cells and cell 

death existed in colonic mucosa of DSS-treated mice (Figure 3.7D). In contrast, in colonic mucosa 

of RNPO-treated mice, the desquamation and cell death was remarkably suppressed. On the basis of 

these results, it was confirmed that colonic injury is protected by the oral administration of RNPO. 
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Figure 3.7. Hematological analyses in the peripheral blood and intravital observation of colon. (A–

C) After 7 days of treatment, hematological analyses were performed by automatic hematology 

analyzer (Celltac α, MEK-6358; Nihon Kohden Co., Tokyo, Japan). Blood samples were analyzed 

for white blood cells (A), red blood cells (B), and hemoglobin (C). The data are expressed as mean 

± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, n = 6. (D) The desquamation of impaired epithelial 

cells and cell death in colonic mucosa were determined by in vivo microscopic live imaging and 

propidium iodide staining.  
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3.3.5. RNPO suppresses pro-inflammatory mediators and enhances survival rate in mice 

- In addition, after 7 days of treatment, pro-inflammatory mediators in the colonic mucosa, 

including MPO activity, IL-1β and superoxide, were determined. These pro-inflammatory 

mediators are well-known markers of inflammation and play an important role in UC. LMW 

TEMPOL and mesalamine did not effectively suppress these pro-inflammatory mediators induced 

by DSS (Figure 3.8A–C). On the other hand, RNPO-treated mice showed a significant suppression 

of pro-inflammatory mediators in colonic tissue (P < 0.01). It should be noted that no therapeutic 

effect was observed for polymeric micelle without nitroxide groups, indicating that effective 

delivery of nitroxide groups in colonic mucosa area is one of the most important factors for UC 

treatment. Because LMW drugs tend to be absorbed into the bloodstream via mesentery, sufficient 

dose of drugs might not reach to target area to result in low therapeutic efficacy. Side effects in 

whole body should also be considered such kind of LMW drugs. Finally, I investigated the effect of 

orally administered RNPO on the survival rate of mice with colitis induced by 5-day administration 

of DSS. After 15 days of treatment, orally administered LMW TEMPOL and mesalamine slightly 

increased the survival rate (33.3% and 50%, respectively) compared with DSS- and micelle-treated 

mice (16.7%) (Figure 3.8D). On the other hand, RNPO treatment significantly increased the 

survival rate of DSS-treated mice to 83.3%. This indicates that RNPO has not only suppressive but 

also therapeutic effects on mice with DSS-induced colitis.  
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Figure 3.8. RNPO reduced pro-inflammatory mediators and increased survival rate in colitis mice. 

(A) MPO activity was determined by a colorimetric assay using o-dianisidine hydrochloride and 

H2O2 as substrates. (B) Measurement of IL-1β in colon homogenate was performed with an ELISA 

kit for mice. (C) Generation of superoxide in colon homogenates was measured by 

dihydroethidium (DHE) fluorescence. The data are expressed as mean ± SEM, *P < .05, **P < .01, 

***P < .001, n = 6. (D) The survival rate of mice was determined after 15 days of 3% (wt/vol) DSS 

treatment, n = 6. 
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3.4. Discussion and Conclusions  

     - Despite significant advances in treatments, IBD remains a major clinical problem, because 

no drug is entirely effective. For many years, there were only 2 treatment options for IBD: 

corticosteroids and mesalamine.29,30 Although they are effective in treating IBD in some extent, 

their severe side effects have raised significant concerns among both physicians and patients, and 

limited their use. In addition, anti-TNF-α antibody is employed to suppress inflammation of UC, 

which works well though it is cost-oriented therapy with multiple side effects.31 Recently, many 

promising LMW medications, such as antioxidants, have been found beneficial in experimental 

models of UC.9–11,32 Unfortunately, results of clinical trials investigating these promising drugs 

have been largely negative. The drawbacks of current LMW drugs are poor stability in stomach, 

low solubility and side effects on whole body when they enter the bloodstream. In this chapter, I 

have developed a novel nitroxide radical-containing nanoparticle RNPO that accumulates 

specifically in colon area to suppress the inflammation in DSS-induced colitis mice. For UC 

treatment via oral administration, this nanoparticle showed excellent properties, including high 

accumulation in inflamed tissues of colon and non-absorption into the bloodstream.  

     - Here, it was found that the accumulation in colon area depends on the sizes and PEGylated 

character of particles. Both LMW drugs, submicron- and micron-sized polystyrene latex particles 

showed poor accumulation in colon, whereas higher accumulation of particles with approximately 

several tens of nanometers was observed. Optimal size of several tens of nanometers allowed easier 

diffusion in the mucosa compared to larger sized particles.25,26,33 In addition, 40-nm-diameter 

RNPO with PEG shell showed significantly high accumulation and long retention in colon area 

compared to polystyrene latex particles with similar size of 40 nm. PEGylated character of RNPO 

might protect nitroxide radicals in the hydrophobic core from hash conditions of GI tract after oral 

administration, resulting in the significant accumulation in colon area.34 Furthermore, PEG chains 
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of RNPO may achieve mucoadhesion due to their ability to inter-diffuse among the mucus network 

and polymer entanglement with mucin, which is composed of glycoprotein. 35  Therefore, 

PEGylated character of RNPO showed much significant effect on its accumulation in colonic 

mucosa. Eventually, I observed the accumulation of RNPO in colon is almost 50 times higher than 

that of l LMW TEMPOL. To deliver sufficient dose of anti-inflammatory drugs for UC treatment, 

high dose of drugs is required, however it leads to undesirable side effects, because almost all 

LMW drugs tend to metabolize in upper GI tract or absorb into bloodstream.36,37 In case of RNPO, 

no absorption into bloodstream was observed via oral administration route, which improves 

accumulation in colon region and prevents side effects to whole body. Another interesting 

phenomenon in this chapter is the higher accumulation of nanoparticles in inflammatory colon than 

healthy colon. Mucus layer in colon area is significantly thicker than that in small intestine, which 

is considered as a significant barrier to nanoparticle penetration.38 In colon of patients with UC, the 

overall thickness of the adherent mucus layer is reduced due to the reduction of goblet cells,38,39 

resulting in the facile penetration of nanoparticles in inflammatory tissues. In addition, the opening 

tight junction of epithelium cells in UC is another explanation for higher accumulation of 

nanoparticles.40 It should be noted that no absorption of RNPO into bloodstream was observed 

even in colitis mice.   

     - After investigating the distribution of RNPO in GI tract, DSS-induced colitis model mice 

was used to compare suppressive effect of RNPO with LMW TEMPOL and mesalamine, a 

commercial medication for UC treatment. These results showed that LMW TEMPOL and 

mesalamine did not clearly show their effects, whereas RNPO effectively reduced the severity of 

colitis by suppression of DAI and damage of colonic architecture. It is noted that micelle without 

nitroxide radicals did not show any therapeutic effect at all on colitis mice, indicating that ROS 

scavenging character of nitroxide radicals plays critical role in the effect of RNPO on colitis mice. 

Further investigations, it is confirmed that RNPO did not simulate the whole body immune system 
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as well as effectively suppressed pro-inflammatory mediators such as MPO, IL-1β and superoxide. 

The therapeutic efficiency of RNPO was further confirmed by survival data, which showed higher 

survival rate of RNPO-treated mice compared to LMW TEMPOL- or mesalamine-treated mice.  

     - In conclusion, I have developed a novel nitroxide radical-containing nanoparticle, RNPO, 

which possesses anti-oxidative nitroxide radicals in the core for treatment of DSS-induced colitis 

mice. RNPO significantly accumulated not only in the mucosa but also higher in inflammatory sites 

of the colon, resulting in a high therapeutic effect, which was not observed in LMW drugs. In 

addition, RNPO may lack the undesirable side effects of LMW TEMPOL, since it is not absorbed 

into the bloodstream. Based on obtained results in this study, the therapeutic efficiency of nitroxide 

radicals could be successfully enhanced by using nanoparticles to suppress inflammation in the 

colon area and reduce undesirable side effects. Therefore, I believe that RNPO may become an 

important therapeutic agent for the treatment of UC. 
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Abstract  

     Patients with ulcerative colitis (UC) exhibit overproduction of reactive oxygen species 

(ROS) and imbalance of colonic microflora. In chapter 3, a novel redox nanoparticle (RNPO), 

which effectively scavenged ROS in the inflamed mucosa of mice with dextran sodium sulfate 

(DSS)-induced colitis after oral administration, was developed. The objective of this chapter was to 

examine whether the orally administered RNPO changed the colonic microflora in healthy mice and 

those with colitis. RNPO was synthesized by self-assembly of an amphiphilic block copolymer that 

contains stable nitroxide radicals in hydrophobic side chain via ether linkage. Colitis was induced 

in mice by supplementing DSS in drinking water for 7 d, and RNPO was orally administered daily 

during DSS treatment. The alterations of fecal microflora during treatment of DSS and RNPO were 

investigated using microbiological assays. It was investigated that RNPO did not result in 

significant changes to the fecal microflora in healthy mice. Although total aerobic and anaerobic 

bacteria were not significantly different between experimental groups, a remarkable increase in 

commensal bacteria (Escherichia coli and Staphylococcus sp.) was observed in mice with 

DSS-induced colitis. Interestingly, orally administered RNPO remarkably reduced the number of 

these commensal bacteria increasing in mice with colitis. On the basis of the obtained results, it is 

confirmed that the oral administration of RNPO did not change any composition of bacteria in feces, 

which strongly suggests protective effect of RNPO on healthy environment in intestinal microflora. 

RNPO may become an effective and safe medication for treatment of UC. 

4.1. Introduction  

    - Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis (UC), 

affects millions of patients worldwide.1,2 Although the exact etiologies of IBD remain uncertain, 

the intestinal mucosa of IBD patients is reported to be characterized by overproduction of reactive 

oxygen species (ROS) and imbalances of important antioxidants, leading to oxidative damage and 
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destruction of the mucosal barrier.3,4 In addition, intestinal microflora has attracted considerable 

attention because it contributes to the intestinal function of improving healthy gastrointestinal (GI) 

tract and plays a potential role in the pathogenesis of UC.5,6 An imbalance in the constitution of 

intestinal microflora could lead to the dysregulation of host immunoreactivity towards intestinal 

bacteria, resulting in GI disorders and IBD.  

     - It has been reported that intestinal microflora play important role in regulating host 

inflammatory response and in maintaining the immunological homeostasis.7,8 The distal ileum and 

the colon are the areas with the highest bacterial numbers and are the main sites of inflammation in 

IBD. The number of bacteria in large intestine can reaches upward of 1013 – 1014 bacteria, with 

more than 500 different bacterial species living together in a state of balance.9,10 In addition, the GI 

surface has regular contacts with food components and chemical substances, which may positively 

or negatively affect the balance of intestinal microflora. For instance, oral administration of dextran 

sodium sulfate (DSS), a well-known polysaccharide used to induce colitis in a murine model, is 

toxic to the colonic epithelium and alters the constitution of intestinal microflora,11 leading to the 

activation of inflammatory responses and inflammation. 

     - In chapter 3, a novel redox nanoparticle (RNPO) with ROS scavenging potential of stable 

nitroxide radicals has been developed. RNPO is a core-shell-type polymeric micelle that is 40 nm in 

diameter and prepared by self-assembly of methoxy-poly(ethylene 

glycol)-b-poly[4-(2,2,6,6-tetramethylpiperidine-1-oxyl)oxymethylstyrene] (MeO-PEG-b-PMOT), 

which is an amphiphilic block copolymer that contains stable nitroxide radicals in a hydrophobic 

segment as a side chain via ether linkage (Figure 4.1A). It was investigated that the orally 

administered RNPO specifically accumulated in the colonic mucosa and effectively scavenged ROS 

in the inflamed colon of mice with DSS-induced colitis.12 However, the impact of RNPO on the 

colonic microflora remains unknown. In this chapter, I examined whether orally administered 
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RNPO would induce the alteration of fecal bacteria in healthy control mice and mice with 

DSS-induced colitis to elucidate action of RNPO in the GI tract. 

 

Figure 4.1. Schematic illustration of the redox nanoparticle RNPO and the experimental design. (A) 

RNPO was prepared using a self-assembling amphiphilic block copolymer (MeO-PEG-b-PMOT) 

composed a hydrophilic PEG segment and a hydrophobic poly(4-methylstyrene) segment 

possessing 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) moieties via ether linkage. (B) Murine 

colitis was induced by supplementation of 3% (wt/vol) DSS in the drinking water for 7 d and RNPO 

(166.7 mg/kg) was orally administered daily during the 7 d of DSS treatment. The animals were 

divided into 4 groups, n = 5 mice per group. 
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4.2. Materials and Methods 

4.2.1. Preparation of redox polymer and RNPO 

     - RNPO was prepared by self-assembling of the MeO-PEG-b-PMOT block copolymer, as 

previously reported. 13 , 14  Briefly, poly(ethylene glycol)-b-poly(chloromethylstyrene) 

(MeO-PEG-b-PCMS) was synthesized by radical telomerization of chloromethylstyrene (CMS; 

AGC Seimi Chemical, Ibaraki, Japan) using methoxy-poly(ethylene glycol)-sulfanyl 

(MeO-PEG-SH; Mn = 5,000; NOF Co., Inc., Tokyo, Japan) as a telogen. Nitroxide radical moieties 

were introduced as a side chain of the PCMS segment via Williamson ether synthesis of benzyl 

chloride in the MeO-PEG-b-PCMS block copolymer with the alkoxide of 

4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; Tokyo Chemical Industry, Tokyo, 

Japan). MeO-PEG-b-PMOT was dissolved in N,N-dimethylformamide (Wako Pure Chemicals, 

Osaka, Japan) followed by transfer into a membrane tube (Spectra/Por, molecular weight cut-off 

size: 3,500 Da, Spectrum Laboratories Inc., Savannah, GA, USA) and then dialyzed for 24 h 

against 2 L of distilled water, which was changed after 2, 4, 8, 12, and 20 h to obtain the polymeric 

nanoparticle RNPO. The average size of RNPO (42.1 ± 1.7 nm, polydispersity index = 0.18) was 

measured using dynamic light scattering (Zetasizer Nano ZS, Worcestershire, UK). The amount of 

nitroxide radicals inside the nanoparticle (1.2 µmol of nitroxide radical per 1 mg of 

MeO-PEG-b-PMOT) was measured using electron spin resonance spectroscopy (JES-TE25X, 

JEOL, Tokyo, Japan). 

4.2.2. Animals 

     - All experiments were performed using 7-week-old male ICR mice (32–35 g) purchased 

from Charles River Japan, Inc. (Yokohama, Japan). Mice were maintained in the experimental 

animal facilities at the University of Tsukuba. The animals were housed in the Laboratory Animals 

Resource Center of the University of Tsukuba on a 12 h-light-dark cycle with controlled humidity 

and temperature. Mice were given ad libitum access to food and water according to the Guide for 

the Care and Use of Laboratory Animals Resource Center of the University of Tsukuba.  

4.2.3. Murine model of DSS-induced colitis and experimental groups 
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     - Murine colitis was induced by supplementation of 3% (wt/vol) DSS (5,000 Da; Wako Pure 

Chemicals, Osaka, Japan) in the drinking water for 7 d. The experiment was designed to include 4 

groups: healthy control mice (Control group), RNPO administered-healthy mice (RNPO group), 

DSS-induced colitis mice (DSS group), and RNPO administered-colitis mice (RNPO+DSS group) 

(Figure 4.1B). The dose of RNPO was 166.7 mg/kg/d, which contained 0.2 mmol of nitroxide 

radicals. The concentration RNPO was adjusted in distilled water, and the solutions were filtered 

with a 0.25-µm cellulose acetate filter (Advantec, Toyo Roshi Ltd., Tokyo, Japan) before oral 

administration. 

4.2.4. Microbiological assay and medium 

     - Mouse fecal samples were collected at predetermined time points, as shown in Figure 4.1B. 

The fecal specimen (50–100 mg) was immediately transferred into 1 mL of cold sterile brain-heart 

infusion medium (BHI; Becton Dickinson, Sparks, MD, USA) containing 0.5% cysteine (Sigma, St. 

Louis, MO, USA), followed by mixing for 1 min at a low temperature (4–10 °C). Ten-fold serial 

dilutions (10-1–10-7) were performed in BHI medium and 100 µL of the appropriate dilutions were 

spread onto agar plates to calculate colony forming units (CFU)/g feces. BHI agar was used to 

count the number of aerobic bacteria. Gifu anaerobic medium (GAM) agar was used to count the 

number of anaerobic bacteria, which were incubated in anaerobic condition (AnaeroPack, 

Mitsubishi Gas Chemical, Tokyo, Japan). Bromothymol blue (BTB) lactose agar were used for 

detection and quantification of Escherichia coli (E. coli). Mannitol salt agar (MSA) was used for 

detection and quantification of Staphylococcus sp. The colonies were counted and expressed as 

colony numbers after 24 h of incubation at 37 °C. All GAM, BTB, and MSA media were purchased 

from Nissui Pharmaceutical Co. Ltd. (Tokyo, Japan). E. coli and Staphylococcus sp. were 

identified using the BBL Crystal Enteric/Nonfermenter Identification Kit (Becton Dickinson) and 

MicroScan WalkAway-96 system with a Pos Combo 3.1J panel (Siemens Medical Solutions 



Chapter 4: Effect of redox nanoparticle on intestinal microflora 
 

64 
 

Diagnostics, Tokyo, Japan), respectively. 

4.2.5. Statistical analysis 

     - The data are expressed as mean ± standard deviation (SD). Differences between groups 

were examined for statistical significance using 1-way analysis of variance (ANOVA), followed by 

Tukey’s honestly significant difference (HSD) post-hoc comparison (Statistical Package for the 

Social Sciences [SPSS] software, IBM Corp., Endicott, NY, USA). A probability value of less than 

0.05 was considered significant for all statistical analyses. 

4.3. Results 

4.3.1. Effect of RNPO on DSS-induced colitis mice 

     - Colitis in mice was induced by oral administration of DSS because the DSS model of colitis 

has numerous clinical and pathological similarities to human IBD, particularly UC. 15  The 

symptoms of DSS-induced colitis may include watery diarrhea, bloody feces, and body weight loss. 

As shown in Figure 4.2A, the severity of colitis in the mice steadily increased during 7 d of DSS 

treatment, and the symptoms of watery diarrhea, bloody feces, and loss of body weight were 

evident in these mice. The therapeutic effect of RNPO was confirmed again by the daily oral 

administration, which significantly reduced the symptoms of mice with DSS-induced colitis 

(Figure 4.2B and C). Changes in the fecal characteristics after oral administration of DSS, such as 

color and consistency, were clearly observed in the mice with colitis compared to that of control 

mice. In contrast, treatment with RNPO did not result in any significant changes in the fecal 

characteristics of the mice with colitis relative to control mice (Figure 4.2B). In addition, a 

significant loss of body weight was observed in the DSS-treated mice after 7 d. However, the body 

weight of mice treated with RNPO+DSS was similar to that of the control mice (Figure 4.2C), 

confirming the therapeutic effect of orally administered RNPO on the mice with DSS-induced 
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colitis. 

 

Figure 4.2. Effect of orally administered RNPO on DSS-induced colitis in mice. (A) Severe 

symptoms of the mice with colitis at 0, 3, 5, and 7 d after DSS treatment (3% wt/vol). (B) Fecal 

characteristics of the 4 groups after 7 d of DSS and RNPO treatment. (C) Body weight changes 

during 7 d of DSS and RNPO treatment (Control: white circle; RNPO: white diamond; DSS: black 

circle; RNPO+DSS: black diamond). The data are expressed as mean ± standard deviation, *P < 

0.05 and ** P < 0.01 versus the control group, #P < 0.05 and ##P < 0.01 versus the colitis group, n = 

5 mice per group. 

4.3.2. Effect of RNPO on microflora in normal and DSS-induced colitis mice 

     - The effect of RNPO on population of intestinal microflora was then evaluated. Van der 

Waaij et al. reported that the composition of microflora in the lumen of intestinal mucosa is similar 
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to that of feces.16 Since I wanted to confirm the time-dependent variation of bacteria population in 

intestinal mucosa during treatment of DSS and RNPO, the fecal specimens were analyzed. The 

fecal microflora population was evaluated using the spread plate method in specific 

microbiological media as described by Xia et al. and Verrecke et al.17,18 The numbers of anaerobic 

and aerobic bacteria were determined using GAM and BHI media, respectively. As shown in 

Figure 4.3A and B, no remarkable differences in the total numbers of anaerobic and aerobic 

bacteria between experimental groups were observed during the DSS and RNPO treatments. 

 
Figure 4.3. Alteration of anaerobic and aerobic bacteria during treatment with DSS and RNPO. (A) 

The number of anaerobic bacteria was counted in GAM medium and (B) the number of aerobic 

bacteria was counted in BHI medium (Control: white circle; RNPO: white diamond; DSS: black 

circle; RNPO+DSS: black diamond). The data are expressed as mean ± standard deviation, n = 5 

mice per group. 

     - To further investigate the alterations of the fecal microflora composition in the mice with 

colitis after oral administration of RNPO, commensal bacteria such as E. coli and Staphylococcus sp. 

were focused on. The E. coli produces brown-yellow colonies in the yellow zone on BTB medium 

(Figure 4.4A). Using a bacterial identification kit, these colonies were identified as E. coli (data 

not shown). Under normal conditions, the average number of E. coli was 104–106 CFU/g of tissue 
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and it was not changed by orally administered RNPO. However, the number of E. coli significantly 

increases in DSS-treated mice, corresponding to the presence and severity of inflammation in 

colitis mice. Interestingly, the number of E. coli in mice treated with RNPO+DSS was significantly 

reduced compared to DSS-treated mice (Figure 4.4B). 

 

Figure 4.4. Alteration of E. coli during treatment with DSS and RNPO. (A) The E. coli colonies in 

BTB medium after 7 d of DSS and RNPO treatment (brown-yellow colonies with yellow zones; red 

arrow). (B) Alteration of E. coli number during treatment with DSS and RNPO (Control: white 

circle; RNPO: white diamond; DSS: black circle; RNPO+DSS: black diamond). The data are 

expressed as mean ± standard deviation, *P < 0.05 and **P < 0.01 versus the control group, #P < 

0.05 versus the colitis group, n = 5 mice per group. 

 - Similarly, changes in number of Staphylococcus sp. were also observed on MSA medium during 

treatment with RNPO and DSS. As shown in Figure 4.5A, the small brown-yellow colonies in the 

yellow zones in MSA medium caused by mannitol fermentation were identified as 

mannitol-positive Staphylococcus sp., which increased significantly in the fecal samples of the 
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mice with DSS-induced colitis. In contrast, treatment with RNPO remarkably reduced the number 

of Staphylococcus sp. in the fecal samples of the mice with DSS-induced colitis (Figure 4.5B). 

Importantly, the numbers of Staphylococcus sp. in mice treated with RNPO alone were also similar 

to those of the control mice (104–106 CFU/g feces), indicating that oral administration of RNPO did 

not affect the growth of these commensal bacteria. 

 

Figure 4.5. Alteration of Staphylococcus sp. during treatment with DSS and RNPO. (A) The 

Staphylococcus sp. colonies in MSA medium after 7 d of DSS and RNPO treatment (yellow-brown 

colonies with yellow zones). (B) Alteration of Staphylococcus sp. number during treatment with 

DSS and RNPO (Control: white circle; RNPO: white diamond; DSS: black circle; RNPO+DSS: 

black diamond). The data are expressed as mean ± standard deviation, *P < 0.05 and **P < 0.01 

versus the control group, #P < 0.05 versus the colitis group, n = 5 mice per group. 

4.4. Discussion and Conclusions 

     - UC is a chronic, relapsed and inflammatory disease because its pathogenic mechanism is 

still unclear. Current medications such as aminosalicylates and glucocorticoids used to treat UC 
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patients are not always effective because of their non-specific distribution, absorption into the 

bloodstream and undesired side effects.19 ,20 In addition, these commercial drugs have been 

reported to affect the intestinal microflora after oral administration. For example, oral mesalamine 

and sufasalazine, mainstays of treatment for UC patients, significantly decreased the total 

concentration of mucosa-associated bacteria.21,22 For the last decade, IBD was treated with 

chimeric anti-tumor necrosis factor alpha monoclonal antibodies, which suppressed inflammation 

in the GI tract to some extent. However, these costly therapies have been reported to have several 

adverse effects associated with systemic administration.23 Therefore, development of an effective 

and safe medication for treatment of IBD is becoming very important. 

     - In chapter 3, a novel oral nanotherapy using redox nanoparticle RNPO was developed for 

treatment of UC. It was revealed that orally administered RNPO significantly accumulates in colon 

area, and the ROS scavenging capacity of RNPO is the key factor responsible for the therapeutic 

effect in mice with DSS-induced colitis by reducing the oxidative stress and inflammatory 

responses. In addition, orally administered RNPO was not absorbed into the bloodstream of normal 

and even mice with DSS-induced colitis, indicating that RNPO did not affect on intestinal 

permeability of nanoparticle.12 However, the effect of RNPO on the colonic microflora, which plays 

a potential role in UC pathogenesis, remains unknown. Thus, in this chapter, I investigated the 

effect of orally administered RNPO on the fecal microflora in healthy control mice and those with 

DSS-induced colitis. 

     - The results in this chapter showed that oral administration of RNPO did not show the 

significant changes in microflora in healthy mice, indicating the innocuousness of this oral 

nanoparticle therapeutics against healthy colonic microflora. RNPO possesses the shell of PEG, 

which is an excellent biocompatible polymer,24 improving the stability of nanoparticle in GI tract, 

and reducing the immune responses and toxicity to microflora in colon. Actually, RNPO did not 
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affect at all to the microflora in normal mice. It was also found that the number of commensal 

bacteria such as E. coli and Staphylococcus sp. remarkably increased in the fecal samples of 

DSS-induced colitis mice. 

 

Figure 4.6. The hypothesis of RNPO-mediated suppression of the infection by commensal bacteria 

in the colonic mucosa via ROS scavenging. In the inflamed colonic mucosa induced by DSS, 

immune cells such as macrophages and neutrophils are recruited and activated to release ROS and 

pro-inflammatory cytokines, leading to colonic tissue damages. A defect of the mucosal barrier 

induces translation and infection by commensal bacteria and repeatedly activates the immune cells 

as a “vicious cycle”, which amplifies the inflammation and mucosal injury. Accumulation of RNPO 

in the colon scavenges the overproduced ROS and inhibits pro-inflammatory cytokines, which 

protects the colonic mucosa from damage, resulting in inhibition of bacterial infection and 

inflammatory responses. 

     - The association between the abundance of E. coli and Staphylococcus sp. and the severity 

of colitis suggests that these bacteria have a pro-inflammatory action by activating the immune 
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responses and imbalance of microflora.25–28 The balance of intestinal microflora plays a pivotal 

role to maintain the immunological homeostasis to the healthy host; however, the disruption of the 

normally stable microflora might be predicted to result in the pathological conditions of IBD.29,30 

Interestingly, RNPO treatment restored the balance of intestinal microflora in both normal and 

colitis mice, indicating the safety of RNPO for clinical trials.       

     - In the healthy colonic mucosa, epithelial cells are covered by a thick layer of mucus, which 

enables colonization by commensal and beneficial bacteria and provides a barrier to pathogenic 

bacteria.31 However, the thin mucus layer and crypt loss were observed in the inflamed colons of 

DSS-treated mice.32 , 33  In DSS-induced intestinal inflammation, interstitial macrophages and 

leukocytes produce ROS and epithelial cells produce antimicrobial proteins to prevent the 

translocation and infection of bacteria into the tissue.34–36 A low level of luminal colonic ROS 

innately protects epithelial cells from bacterial antigens, contributes to intracellular signaling 

pathways, and promotes the production of pro-inflammatory cytokines. However, in the case of 

severe intestinal inflammation, a high level of ROS induces epithelial tissue damage and increased 

permeability, leading to the translocation and infection by commensal bacteria.37,38 In chapter 3, 

oral administration of RNPO effectively scavenged the overproduced ROS, reduced the production 

of pro-inflammatory mediators in the mice with DSS-induced colitis, and did not stimulate the 

immune system. The results of this chapter showed that orally administered RNPO significantly 

reduced the number of increased commensal bacteria in DSS-treated mice, indicating that the 

anti-inflammatory effect of RNPO might reduce translation and infection by commensal bacteria in 

the colonic mucosa. Based on the results in this chapter, it is assumed that although RNPO did not 

directly affect the colonic microflora, RNPO scavenged the overproduced ROS and inhibited 

pro-inflammatory mediators to protect the colonic mucosa, thus preventing the increase in 

commensal bacteria in the inflamed mucosa (Figure 4.6). Taken together, these results 

demonstrated the protective effect of RNPO on the colonic mucosa due to ROS scavenging, 
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suppression of inflammatory responses, and inhibition of commensal bacterial 

translocation/infection.  

     - In conclusion, the oral nanotherapeutic RNPO, which possesses a biocompatible PEG shell 

and anti-oxidative nitroxide radicals in the core, did not affect the balance of microflora in healthy 

large intestines and inhibited the increase in commensal bacteria in the colonic mucosa of mice 

with DSS-induced colitis by scavenging ROS and suppressing inflammation. The results in this 

chapter contribute to the clarification of the therapeutic and safe effects of RNPO for the treatment 

of UC via oral administration. Based on these results, RNPO is a promising therapeutic medication 

for UC treatment. 
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Abstract 

     Oral chemotherapy is the preferred treatment for colon cancer. However, this strategy faces 

many challenges, including instability in the gastrointestinal (GI) tract, insufficient bioavailability, 

low tumor targeting, and severe adverse effects. In this chapter, I investigated the effect of redox 

nanoparticle (RNPO) as an ideal oral therapeutics for colitis-associated colon cancer treatment. 

RNPO possesses nitroxide radicals in the core, which act as reactive oxygen species (ROS) 

scavengers. Orally administered RNPO highly accumulated in colonic mucosa, and specifically 

internalized in cancer tissues, but less in normal tissues. Despite of long-term oral administration of 

RNPO, no noticeable toxicities were observed in major organs of mice. Because RNPO effectively 

scavenged ROS, it significantly suppressed tumor growth after accumulation at tumor sites. 

Combination of RNPO with the conventional chemotherapy, irinotecan, led to remarkably improved 

therapeutic efficacy and effectively suppressed its adverse effects on GI tract. Therefore, RNPO is 

promising oral nanotherapeutics for cancer therapies. 

5.1. Introduction 

    - Inflammatory bowel disease (IBD), which includes chronic gastrointestinal (GI) disorders 

such as Crohn’s disease (CD) and ulcerative colitis (UC), affects millions of patients worldwide.1–4 

After 30 years of living with these diseases, 18–20% of UC and 8% of CD patients develop 

colitis-associated colon cancer (CAC), the third most common malignancy and one of the major 

causes of cancer-related death. 5,6  In IBD patients, the increasing of reactive oxygen species (ROS) 

causes oxidative stress and oxidative cellular damage promoting carcinogenesis.7,8 It has been 

reported that antioxidants such as N-acetylcysteine and resveratrol inhibited CAC development.9,10 

While oral administration of drugs are preferred by patient due to its convenience and compliance, 

these low-molecular-weight (LMW) compounds are not always effective due to nonspecific drug 

distribution, low retention in the GI tract, and absorption in the bloodstream, causing undesired 
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adverse effects in the entire body. On the other hand, chemotherapy using 5-fluorouracil (5-FU) or 

irinotecan (Iri) has been used alone or in combination with other drugs as the first-line therapeutic 

agents for colorectal cancer.11,12 However, these anticancer drugs are insufficient bioavailability 

and low tumor targeting. Furthermore, patients treated with these chemotherapeutic agents suffer 

from severe adverse effects such as mucositis and diarrhea, which limits the dose intensification 

and compromises efficacy.13 

     - Nanotechnology has enabled significant advances in the areas of cancer diagnosis and 

therapy.14–16 Though a number of nanoparticle-drug combinations are assessed in preclinical or 

clinical applications, most of delivery systems are intravenously injectable formulations and are 

incapable of oral administration.17,18 On the other hand, it has been reported that nanocomposites 

such as silver nanoparticle for therapeutics itself exhibits the undesired toxicity on the GI tract after 

repeated oral administration.19,20  Oral nanotherapy using a redox nanoparticle (RNPO) has been 

developed for suppressing inflammation in mice with colitis,21 and indomethacin-induced small 

intestinal inflammation.22 RNPO was prepared by self-assembly of methoxy-poly(ethylene 

glycol)-b-poly(4-[2,2,6,6-tetramethylpiperidine-1-oxyl]oxymethylstyrene)] (MeO-PEG-b-PMOT), 

which is an amphiphilic block copolymer with stable nitroxide radicals in a hydrophobic segment 

as a side chain via an ether linkage (Figure 5.1A). The size of RNPO is approximately 40 nm in 

diameter, with a remarkably narrow distribution (Figure 5.1B) and extremely high colloidal 

stability owing to the PEG shell layer. As shown in Figure 5.1C, RNPO is stable and maintains 

micelle form under physiological conditions without aggregation. This stable character improves 

accumulation tendency of RNPO to colonic mucosa, but not commercially available polystyrene 

particles. Furthermore, these 40 nm particles prevent the uptake into bloodstream via mesentery. 

Along with these characteristics, it has been confirmed that RNPO effectively scavenges ROS to 

result in significant suppression of inflammation in mice with colitis.21 Suppression of 

inflammation in the tumor microenvironments is reported to work as suppressor of tumor 
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progression and resistance against chemotherapy.23 Notably, RNPO did not cause any disturbance 

to the population of intestinal bacteria.24 Based on these characteristics of RNPO, I proposed that it 

would be a suitable oral therapeutics for cancer. Thus, it is interesting to apply RNPO as a novel 

oral therapeutics for treatment of colon cancer.  

 

Figure 5.1. Schematic illustration of RNPO and its characteristics. (A) RNPO was prepared by 

self-assembly of a poly(ethylene glycol)-b-poly(4-methylstyrene) block copolymer possessing 

nitroxide radical TEMPO moieties. (B) The size of RNPO and C, the stability of RNPO under 

physiological conditions (PBS pH 7.4, 10% FBS) were measured by dynamic light scattering using 

a Zetasizer Nano ZS (Malvern Instruments, Ltd., Malvern, UK). 

      

     - In this chapter, azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to 
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chemically induce CAC in mice, and the efficacy of oral RNPO as a nanomedicine and combination 

therapy was investigated. No blood absorption and non-toxicity of RNPO were observed despite of 

long-term oral administration, which improves accumulation in colon region and prevents 

undesired adverse effects to entire body. Orally administered RNPO tends to internalize in colon 

cancer cells, but not normal colon cells, indicating the extremely low adverse effects of this oral 

nanotherapeutics. Oral administration of RNPO effectively suppressed inflammation in the colon 

region, resulting in both high protective and therapeutic effects against CAC development. It is 

interesting to note that when RNPO was combined with conventional chemotherapy, the therapeutic 

effect on CAC was significantly enhanced, retaining low adverse effects of the chemotherapy on 

the GI tract.  

5.2. Materials and Methods  

5.2.1. Preparation of RNPO  

      - RNPO was prepared by a self-assembling MeO-PEG-b-PMOT block copolymer, as 

previously reported.21,25 Briefly, methoxy-poly(ethylene glycol)-b-poly(chloromethylstyrene) 

(MeO-PEG-b-PCMS) was synthesized by the radical telomerization of chloromethylstyrene (CMS; 

Seimi Chemical Co., Ltd., Kanagawa, Japan) using methoxy-poly(ethylene glycol)-sulphanyl 

(MeO-PEG-SH; NOF Corporation Co., Ltd., Tokyo, Japan; Mn = 5,000) as a telogen (the degree of 

polymerization of CMS = 16 units). The chloromethyl groups were converted to TEMPOs via a 

Williamson ether synthesis of benzyl chloride in the MeO-PEG-b-PCMS block copolymer with the 

alkoxide of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; Tokyo Chemical Industry 

Co., Ltd., Tokyo, Japan), as previously reported (the extent of TEMPO modification = 85%). RNPO 

was prepared from MeO-PEG-b-PMOT using a dialysis method. 
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5.2.2. Cell lines and cultures 

     - The mouse colorectal carcinoma cell line C-26 (RCB2657) was obtained from Riken 

BioResource Center (Riken Tsukuba Institute, Ibaraki, Japan). C-26 cells were grown in 

Dulbecco’s modified eagle medium (DMEM; Sigma-Aldrich, St. Louis, MO) containing 10% fetal 

bovine serum (Sigma-Aldrich, St. Louis, MO), and 1% antibiotics 

(penicillin/streptomycin/neomycin; Invitrogen, Carlsbad, CA) in a humidified atmosphere of 5% 

CO2 at 37 °C.  

5.2.3. Cellular uptake of RNPO in vitro 

      - The experiment was carried out using rhodamine-labeled RNPO (Rho-RNPO) to analyze 

the cellular uptake of these nanoparticles by fluorescent confocal microscope. Rho-RNPO was 

prepared via a thiourethane bond between MeO-PEG-b-PMOT possessing reduced TEMPO 

moieties and rhodamine B isothiocyanate (Sigma-Aldrich, St. Louis, MO) in 

dimethylformamide-involved sodium hydride, as previously reported (21). C-26 colon cancer cells 

were seeded in 12-well plates at a certain density (5 × 104 cells per well). After 2 d of culturing, the 

DMEM was replaced with fresh media, and the Rho-RNPO solution (100 µg/mL) was added. At a 

predetermined time intervals, the cells were washed 3 times with fresh media. Hoechst 33342 

(Invitrogen) and LysoTracker (Green DND-26, Invitrogen) were added for 15 min at 37 °C before 

imaging in order to stain nuclei and lysosomes, respectively. Photos of cellular uptake were taken 

and analyzed using a fluorescent confocal microscope system (Zeiss LSM 700, Carl Zeiss 

Microscopy GmbH, Jena, Germany) under oil immersion at 63× magnification.  

5.2.4. Animal  

     - All experiments were carried out using 7 to 8-week-old male ICR mice (32–35 g) 

purchased from Charles River Japan, Inc. (Yokohama, Japan). Mice were maintained in the 
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experimental animal facilities at the University of Tsukuba under controlled temperature (23 ± 

1 °C), humidity (50 ± 5%) and lighting (12 h light-dark cycles). The animals were given free access 

to food and water. All experiments were performed in accordance with the Regulation for Animal 

Experiments in the University of Tsukuba and the Fundamental Guideline for Proper Conduct of 

Animal Experiments and Related Activities in Academic Research Institutions under the 

jurisdiction of the Ministry of Education, Culture, Sports, Science, and Technology. 

5.2.5. Cellular internalization of RNPO in vivo 

      - Cellular isolation procedure was based on a previous report with modifications.26 Colon 

tissues were collected from normal mice and mice with AOM/DSS-induced CAC at 5 h after oral 

administration of RNPO (300 mg/kg); then, gently removed feces with PBS, followed by a 

mechanical fragmentation. Colonic tissues were treated with collagenase (10 mg/mL; Wako Pure 

Chemical Industries, Osaka, Japan) for 30 min at 37 °C with slow agitation, followed by a 

centrifugation at 10,000 rpm at 4 °C for 5 min. Cell pellets were gently resuspended in acetic acid 

(0.1 M, pH 3). Samples were centrifuged to separate extracellular RNPO and intracellular 

internalized RNPO. Supernatants and cell pellets were oxidized by potassium ferricyanide (10 mM; 

Kanto Chemical Co., Inc, Tokyo, Japan) for electron spin resonance (ESR) measurement under 

conditions described in the Supplementary Materials.  

5.2.6. Induction of colitis and CAC by AOM and DSS 

     - Colitis was induced in mice by 3% (wt/vol) DSS (5,000 daltons; Wako Pure Chemical 

Industries, Osaka, Japan) supplemented in the drinking water for 7 d. For the CAC model, mice 

were injected intraperitoneally with 10 mg/kg body weight of AOM (Sigma-Aldrich, St. Louis, 

MO) followed by 2 cycles of 7-d of 3% DSS in the drinking water for 70 d.   

5.2.7. Endoscopic imaging and tumor scoring  



Chapter 5: Therapeutic effect of redox nanoparticle on colitis-associated colon cancer 
 

82 
 

     - To continuously observe the tumor development in CAC mice, a video endoscopy system 

(TESALA AVS, Olympus, Tokyo, Japan) for mouse was used according to the manufacturer's 

instructions. The experimental endoscope setup consisted of a probe (2.7 mm outer diameter) with 

a rod lens containing a light-emitting diode light source, a camera unit connected to a laptop 

monitor, and an air supply to facilitate regulated inflation of the mouse colon. After setting up the 

endoscope system, the mice were anesthetized by inhalation of isoflurane (Intervet, Inc., Tokyo, 

Japan). The endoscopic procedure was viewed on a color monitor and real time video was recorded 

via firewire connected to a laptop with Light Capture software (I-O Data device, Inc., Kanazawa, 

Japan). 

     - A previously described tumor scoring system was used to evaluate tumor development in 

mouse colons.27 Tumors observed during endoscopies were counted to obtain the overall number of 

tumors. The sizes of all tumors in a given mouse were also scored to yield the tumor score. Tumor 

size was graded as follows: grade 1 (very small but detectable tumor), grade 2 (tumor covering up 

to 1/8 of the colonic circumference), grade 3 (tumor covering up to 1/4 of the colonic 

circumference), grade 4 (tumor covering up to 1/2 of the colonic circumference), and grade 5 

(tumor covering more than 1/2 of the colonic circumference). The endoscope analysis was 

performed weekly or every 2 weeks starting after the second cycle of DSS administration until the 

end of the experiment.  

5.2.8. Iri-induced intestinal mucositis in mice 

     - Intestinal mucositis was induced in mice by daily intraperitoneal injection of Iri (50 mg/kg) 

for 4 d.28 To confirm the effect of RNPO, mice were given RNPO (300 mg/kg) by oral gavage daily 

during Iri treatment. Diarrhea assessment was performed after the treatment. The severity of 

diarrhea was scored as previously described.29 [0 (normal–normal stools or absent), 1 (slight–wet 

and soft stools), 2 (moderate–wet and unformed stools), 3 (severe–watery stools)]. At day 5, mice 
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were sacrificed, and blood and intestinal samples were collected for hematological and histological 

assessments, respectively.  

5.2.9. Statistical analysis  

     - All values are expressed as mean ± standard error of the mean (SEM). Differences between 

groups were examined for statistical significance using 1-way analysis of variance, followed by 

Bonferroni or Turkey’s post hoc test (SPSS software; IBM Corp, Armonk, NY). A value of P < 

0.05 was considered significant for all statistical analyses. 

5.3. Results  

5.3.1. Accumulation of free drinking RNPO in the GI tract and its non-toxicity 

      - The accumulation of nanoparticles in the colon region is one of the most important 

features of an effective nanomedicine for colon diseases including cancer. RNPO was given to mice 

in free drinking water for a week and ESR assays were used to assess the distribution of RNPO in 

the GI tract. ESR assays were performed for the blood and the main GI tract organs (stomach, 

small intestine, cecum, and colon) at a predetermined time. As shown in Figure 5.2A, RNPO 

accumulation in the GI tract gradually increased over the administration time, particularly in the 

small intestine, cecum and colon regions, indicating high accumulation and long retention of RNPO 

in these areas. Conversely, no RNPO uptake in the bloodstreams of mice was observed, even for 

long-term administration. Lack of bloodstream uptake prevented potential adverse effects of the 

nitroxide radicals to the entire of body. 

     - To investigate the toxicity of RNPO in the GI tract, healthy mice were treated long-term 

with orally administered RNPO; hematology was analyzed and histology was assessed for tissues 

from the GI tract as well as other organs. There were no remarkable differences in the 
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hematological analysis of RNPO-treated mice as compared to healthy mice (Figure 5.2B). 

Additionally, there were no noticeable toxicities in tissues from the GI tract and other organs, even 

in mice treated with a high concentration of RNPO (5 mg/mL) for a month (Figure 5.2C). These 

results indicate that, during long-term oral administration, RNPO highly accumulates in the GI tract 

without any observed toxicity to healthy organs.  

 

Figure 5.2. Accumulation of free drinking RNPO in the gastrointestinal (GI) tract and its 

non-toxicity. (A) Accumulation of free drinking RNPO in the GI tract and blood. (B) Hematological 

analyses were performed using an automatic hematology analyzer (Celltac α, MEK-6358; Nihon 

Kohden Co, Tokyo, Japan). White blood cell (WBC), red blood cell (RBC), hemoglobin (Hgb), 

hematocrit (Htc), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean 

corpuscular hemoglobin concentration (MCHC), and platelets (Plt) were measured. (C) 

Histological assessments of GI tissues in mice given RNPO (5 mg/mL) for a month. The data are 

expressed as mean ± SEM, n = 5 mice. The images are representative of n = 3. Scale bar = 100 µm. 
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5.3.2. Specific cellular internalization of RNPO in cancer tissues 

     - Specific cellular internalization of RNPO in colon tissues was analyzed in vivo using mice 

with AOM/DSS-induced CAC and compared to healthy mice. After oral gavage of RNPO, colon 

tissues were collected from these mice and isolated cells were oxidized for ESR assays. It is 

interesting to note that the total ESR intensity of RNPO is significantly higher in cancer tissues 

compared to normal tissues (Figure 5.3A). Alternatively, RNPO remarkably surrounded mucosa of 

tumor sites due to the defective structure of mucus layer in these sites,30 resulting in the facile 

penetration of the nanoparticles to mucosa. Additionally, clear ESR signals were detected inside 

cancer cells, but not inside normal cells (Figure 5.3A), indicating that RNPO did not internalize in 

healthy cells. This result demonstrates that RNPO tends to accumulate in cancer cells, where large 

amounts of ROS and pro-inflammatory cytokines are produced. The ESR spectra of RNPO also 

give the information about its morphology. Basically, the ESR signal of LMW nitroxide radical 

TEMPOL has a sharp triplet due to an interaction between the 14N nuclei and the unpaired electron 

in the dilute solution. After the nitroxide radicals are introduced into the hydrophobic core of 

RNPO, the ESR spectrum of RNPO becomes broader. The broad ESR signals of RNPO were 

observed outside of both normal cells and cancer cells (Figure 5.3B and C), indicating that RNPO 

remains in a core–shell-type micelle form when it exists outside of cells. Notably, no ESR signals 

were detected inside normal cells (Figure 5.3D), which is in sharp contrast to the signals observed 

in cancer cells (Figure 5.3E). Interestingly, a triplet peak on ESR spectrum was observed inside 

cancer cells (Figure 5.3E), indicating exposure of the nitroxide radicals after disintegration of 

RNPO inside cancer cells. 
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Figure 5.3. Cellular uptake of RNPO in vivo (A) Cellular uptake of RNPO in normal and cancer 

tissues in vivo. The data are expressed as mean ± SEM, *P < 0.05 and **P < 0.01, n = 3 mice. (B – 

E) ESR spectra of cellular surface surrounding RNPO and cellular internalized RNPO in normal 

cells and cancer cells, respectively. 

     - In order to investigate the intracellular internalization mechanism of RNPO in cancer cells, 

the uptake of RNPO in C-26 colon cancer cells in vitro was carried out. Here, RNPO was labeled 

using Rhodamine, making its red under a fluorescent microscope. Nuclei were blue and lysosomes 

were green when stained with Hoechst 33342 and Lysotracker Green DND-26, respectively. The 

merged image in Figure 5.4 shows yellow and red fluorescence in the cytoplasm, suggesting 

uptake of RNPO into C-26 cells via both endocytosis pathway and simply diffusion due to the leaky 

cellular membranes of damaged cancer cells. Higher accumulation in colonic mucosa, specific 

internalization in cancer cells, and low uptake in normal cells are the most important characteristics 

of RNPO, which are anticipated for high therapeutic efficiency with extremely low adverse effects.   
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Figure 5.4. Cellular uptake of RNPO in vitro. Cellular uptake of RNPO in C-26 colon cancer cells 

after 1 h incubation with Rho-RNPO. Rho-RNPO (red), lysosomes (green, stained by Lysotracker 

Green DND-26), and nuclei (blue, stained by Hoechst 33342) were imaged. Scale bar = 20 µm. 

5.3.3. RNPO prevents AOM/DSS-induced CAC by suppressing inflammation 

     - Since RNPO preferentially accumulates at the site of colon tumor, it will be interested in the 

efficacy of RNPO in the CAC model mice. In this model, colon cancer is driven by the combination 

of a carcinogenic agent (AOM) and an inflammatory agent (DSS). In chapter 3, I confirmed that 

orally administered RNPO strongly scavenges ROS in DSS-induced colitis mice and almost 

completely cures.21 Separately, it was reported that intravenously administered RNPO suppresses an 

activation of nuclear factor kappa B (NF-κB) in cancer cells of mice with subcutaneously 

transplanted tumors.31 If oral administration of RNPO works similarly in CAC mice without any 

adverse effects to the entire body, it will be an ideal cancer chemotherapeutics. Figure 5.4 shows a 

protective effect of orally administered RNPO to the CAC mice. Here, RNPO (200 mg/kg) was 

administered daily by oral gavage for 1 week for the first and fourth weeks, which are the same 

terms of DSS treatment (Figure 5.4A). In contrast to the CAC mice, which experience a 

significantly reduction in body weight during DSS treatment, no body weight loss was observed 

during RNPO administration (Figure 5.4B). As anticipated, a disease activity index significantly 

decreased (Figure 5.4C) in RNPO-treated mice. The pro-inflammatory cytokine interferon-gamma 

(IFN-γ) was also significantly reduced in RNPO-treated mice (Figure 5.4D), suggesting that oral 
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administration of RNPO effectively suppressed inflammation in the colon, even in CAC mice.  

 

Figure 5.5. RNPO suppressed the inflammation in AOM/DSS-induced CAC in mice. (A) Scheme 

of AOM/DSS-induced CAC and RNPO administration. (B) Body weight change during 70 d of 

treatment. (C) Disease activity index of colitis on day 7 of DSS treatment. (D) The production of 

pro-inflammatory cytokine IFN-γ. The data are expressed as mean ± SEM, *P < 0.05, **P < 0.01 

and ***P < 0.001, n = 6 mice. 
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During 70 d of treatment, an endoscope system was used to confirm colon tumor development in 

mouse and evaluated the tumor score, which significantly increased in mice treated with 

AOM/DSS. In contrast to the AOM/DSS-treated mice, mice given RNPO did not show the increase 

in tumor scores (Figure 5.6A and B). Furthermore, histologically, the colons of AOM/DSS-treated 

mice possessed high levels of adenoma-carcinoma, which were not observed in mice treated with 

RNPO (Figure 5.6C). This result indicates that oral gavage of RNPO during DSS administration 

effectively suppressed inflammation, completely preventing colon tumor development. 

 
Figure 5.6: Protective effect of orally administered RNPO on AOM/DSS-induced CAC in mice. 

(A) Tumor development profile. The data are expressed as mean ± SEM, ***P < 0.001, n = 6 mice. 

(B) Endoscopic imaging of mice after 70 d of treatment. White arrows indicate tumors. (C) 

Histology of colon by H&E staining. Sections was stained by H&E, and assessed histologically. 

Representative sections are shown for n = 3 mice. Scale bars = 100 µm. 
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after the DSS administration and continuing until the end of the experiment, as shown in Figure 

5.7A.  

 

Figure 5.7. Therapeutic effect of free drinking RNPO on AOM/DSS-induced CAC in mice. (A) 

Scheme of AOM/DSS-induced CAC and RNPO administration. (B) The therapeutic effect of RNPO 

against CAC development was evaluated by analysis of tumor scores. The data are expressed as 

mean ± SEM, *P < 0.05, n = 6 mice. (C) Endoscopic imaging of mice after 70 d of treatment. 

White arrows indicate tumor. (D) histology of colon by H&E staining. Black arrows indicate the 

necrotic cells surrounded by carcinoma, blue arrows indicate adenoma, and red arrows indicate 

normal crypts. Representative sections are shown for n = 3 mice. Scale bars = 100 µm. 
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     - Figure 5.7B and C shows a profile of tumor progression during this treatment. As shown 

in the figure, no significant differences in tumor score were observed in mice treated with 1 mg/mL 

or 2.5 mg/mL RNPO compared to AOM/DSS-treated mice. In contrast, mice given 5 mg/mL RNPO 

had significantly reduced tumor scores compared to AOM/DSS-treated mice (Figure 5.7 B and C). 

Histological assessments (Figure 5.7D) revealed carcinoma tissues in mice treated with 1 mg/mL 

or 2.5 mg/mL RNPO; however, only adenomas, but not carcinomas, were observed in mice given 5 

mg/mL RNPO (Figure 5.7D). These results indicate that free drinking RNPO also works effectively 

to retard tumor growth, even after tumor generation in CAC mice.  

5.3.5. RNPO improves the anticancer efficacy of Iri and reduces its adverse effects 

     - On the basis of above investigation, it is confirmed that this antioxidative strategy based on 

polymer nanotherapeutics is a robust colon cancer treatment. However, treatment with a single 

antioxidative agent may not completely cure colon cancer. There are a large number of anticancer 

drugs that function by versatile mechanisms to eliminate cancer cells. Combination of these 

anticancer drugs with RNPO is a promising strategy. Iri is used to treat lung, esophageal, gastric, 

and colon cancers. Iri interacts with cellular DNA topoisomerase I, causing the apoptosis and death 

of cancer cells. However, Iri efficiency is strongly suppressed by the cancer microenvironment. In 

particular, oxidative stress in the tumor environment, such as overproduction of ROS and activation 

of NF-κB increases cancer cell resistance to Iri treatment.32 It was interesting in examining whether 

the ROS scavenging effect of RNPO enhanced chemotherapy of Iri in CAC mice. Here, Iri (0.25 

mg/kg, 2.5 mg/kg or 5 mg/kg) was given by oral gavage 5 times per week for 3 weeks, while RNPO 

(2.5 mg/mL) was given to mice in free drinking water (Figure 5.8A).  
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Figure 5.8. Oral administration of RNPO enhances the anticancer effect of Iri .(A) Scheme of 

AOM/DSS-induced CAC and administration of Iri and RNPO. (B–D) Combination effect of Iri and 

RNPO against CAC development was evaluated by assessment of tumor scores: 0.25 mg/kg Iri (B), 

2.5 mg/kg Iri (C), or 5 mg/kg Iri (D). The data are expressed as mean ± SEM, *P < 0.05, n = 6 

mice. The data are expressed as mean ± SEM, *P < 0.05, n = 5 mice.  
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to mice treated with Iri alone (Figure 5.8C). Furthermore, combination with Iri (5 mg/kg) and 

RNPO completely inhibited tumor growth in CAC mice (Figure 5.8D). This result demonstrates 

that combination with free drinking RNPO effectively improves the anticancer efficacy of Iri.  

 

Figure 5.9. Oral administration of RNPO reduces side effect of Iri on the GI tract. (A) Diarrhea 

score and (B) Histological assessment of intestinal sections by H&E staining. The data are 

expressed as mean ± SEM, *P < 0.05 and ***P < 0.001, n = 5 mice. Representative sections are 

shown for n = 3 mice. Scale bars = 100 µm. 
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     - Since that high dose of Iri administration is known to cause severe adverse effects in the GI 

tract such as diarrhea and intestinal inflammation, I also investigated the efficacy of RNPO against 

Iri-induced mucositis. Mice receiving Iri alone (50 mg/kg, daily intraperitoneally injection for 4 d) 

exhibited severe diarrhea scores, weight loss, and neutropenia. These adverse effects were 

remarkably reduced in RNPO-treated mice (Figure 5.9A). Histological investigation of GI tract 

organs (duodenum, jejunum, ileum, and colon) showed a remarkable recovery of these tissues in 

RNPO-treated mice compared to mice treated Iri alone (Figure 5.9B). Notably, superoxide levels 

were also suppressed in mice treated with Iri and RNPO compared to mice treated with Iri alone, 

once again confirming that suitable ROS scavenging at inflammation sites is a robust strategy for 

tumor treatment. These results indicate that oral administration of RNPO not only significantly 

enhances the anticancer efficacy of Iri against CAC development, but also effectively suppresses 

the severe adverse effects of Iri.  

5.4. Discussion and Conclusions  

     - Despite important advances in detection, surgery, and chemotherapy, colon cancer is 

difficult to treat and has a high mortality rate.33 Current clinical trials and treatment strategies use 

single agents and combination strategies, but many of these regimens have severe adverse effects 

and complicated administration processes.34,35 For many years, a number of anticancer drugs for 

colon cancer treatment have been developed and used alone and combination in clinical such as 

5-FU, oxaliplatin, leucovorin, bevacizumab and Iri.36,37 Although they are effective in suppressing 

development of carcinoma to some extent, they have severe adverse effects that raise significant 

concerns among both physicians and patients, limiting their use.38  

     - High doses of drugs are required to achieve sufficient delivery of anticancer drugs to treat 

CAC. However, high doses are associated with undesirable adverse effects, because almost all 

LMW drugs tend to metabolize in the upper GI tract or be absorbed into the bloodstream. LMW 
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TEMPOL is well-known as a stable nitroxide radical with ability to scavenge ROS. It has been 

used for therapeutic applications, including antioxidative stress and cancer therapies.39–41 However, 

LMW TEMPOL spreads to entire body after administration, especially internalizes in healthy cells 

and even in mitochondria, disturbing normal respiratory system, which causes severe adverse 

effects to healthy cells. Most of antioxidants investigated so far have the similar issue limiting their 

clinical application. This strategy is to covalently install ROS scavenging moiety to large molecular 

weight chains in order to avoid the possible internalization in healthy cells and mitochondria. For 

this objective, 2 types of nitroxide radical containing nanoparticles (RNPs) have been developed: 

pH-sensitive RNPN and pH-insensitive RNPO, viz., RNPN disintegrates under acidic environments, 

while RNPO does not disintegrate regardless of changes in pH. Nitroxide radicals are covalently 

conjugated to the matrix and confined in the core of these nanoparticles, which shows high 

biocompatibility, including long-term blood circulation via intravenous administration and low 

toxicity.42 In addition, RNPs have been studied as therapies for oxidative stress injuries such as 

cerebral and renal ischemia reperfusion injuries, hemorrhage,25,43,44 and cancer.31 Since the 

pH-disintegrative character of RNPN is not suitable for CAC treatment via oral administration, I 

have developed an oral nanotherapeutics using RNPO with therapeutic effects against CAC model 

mice in this study. 

     - Although many nanoparticles used in biomedical fields have been known by bio-benign 

materials, they cause more or less inflammation or toxicity.45,46 Though we have already confirmed 

the safety characteristics of orally administered RNPO via gavage daily for 1 week, but further 

investigation is required for the long-term applications. Here, free drinking RNPO significantly 

accumulates in GI tract after 1 week administration, especially in the small intestine, cecum and 

colon regions, while no blood uptake is observed, which prevents undesired adverse effects of 

nitroxide radicals to entire body even for the long-term administration (Figure 5.2A). After oral 

administration, RNPO highly internalizes in cancer tissues compared to healthy colon tissues, 
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resulting in a high therapeutic effect and extremely low GI toxicity with this nanotherapeutics. In 

fact, even when a high dose of RNPO was given orally for 1 month, no toxicities were observed in 

the GI tract or other organs (Figure 5.2B and C).  

     - In the chapter 3 and 4, I have confirmed that oral administration of RNPO highly 

accumulates in the colonic mucosa and effectively scavenges ROS, leading to suppression of 

inflammation in mice with DSS-induced colitis without damaging the intestinal microflora.21,24 If 

RNPO works against inflammation in CAC via the same mechanism, RNPO may be an ideal 

nanomedicine for these types of diseases. As anticipated, I found that oral administration of RNPO 

along with DSS treatment clearly suppressed inflammation in the colon, significantly preventing 

carcinoma progression in the CAC mouse model. It is not surprising, because inflammation is an 

important factor to promote cancer development. Simultaneous administration of RNPO with DSS 

protected again the generation of inflammation, resulting in suppression of carcinoma propagation 

(Figure 5.5 and 5.6). It should be rather noted that administration of RNPO after DSS treatment 

also effectively suppressed tumor progression in mice given free drinking water with 5 mg/mL 

RNPO (Figure 5.6). It was confirmed that the stability of RNPO in the GI tract and exposure of 

nitroxide radicals inside cancer cells are critical factors for achievement of an effective oral drug 

for colon cancer therapy (Figure 5.3). It has been reported that the decrease of inflammation in the 

tumor microenvironments prevents activation of NF-κB to result in suppression of resistance of 

cancer cells from apoptotic tendency.47 Because RNPO clearly suppressed inflammation around 

tumor microenvironment, a combination treatment with RNPO and conventional cancer drugs is a 

robust strategy. In this chapter, I also investigated the combination of oral RNPO with Iri and found 

that the anticancer efficacy was significantly enhanced with the combination compared to treatment 

with Iri alone (Figure 5.8). It is also interesting to note that co-treatment with RNPO significantly 

suppressed the adverse effects in GI tract caused by Iri treatment (Figure 5.9), indicating that a 

synergistic effect was successfully achieved.  
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     - In summary, a novel antioxidative redox nanoparticle, RNPO, has been developed for CAC 

mice. RNPO possesses capacity to highly accumulate in colon area and selectively internalize in 

cancer cells. Long-term oral administration of RNPO exhibited extremely low toxicity due to a lack 

of RNPO absorption into the bloodstream and lower uptake by healthy intestinal cells. Oral 

administration of RNPO protected against tumor progression and displayed an anticancer 

therapeutic effect to prevent tumor development in a CAC mouse model. In addition, co-treatment 

with RNPO and Iri achieved a significantly enhanced anticancer effect with suppression of the 

severe adverse effects of Iri on the GI tract. Taken together, these results indicate that the 

combination of novel antioxidative nanotherapeutics with conventional anticancer drugs is a 

strategy for patients-friendly anticancer therapy. 
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Summary and Conclusions

     - The oxidative stress induced by reactive oxygen species (ROS) has been implicated in a 

pathogenesis of various disorders and diseases. In fact, ROS are related to a large number of diseases 

such as cardiovascular and neurodegenerative diseases, inflammatory bowel disease, pulmonary 

disease, renal and cerebral ischemia-reperfusion injuries, as well as cancer. A high amount of ROS is

generated at the inflammatory and cancerous sites. Suppressing overproduction of ROS in these sites 

becomes promising aprroach for treatments of many diseases. In this thesis, I described a novel 

antioxidative redox nanoparticle (RNPO) possessing ROS scavenging capacity for therapies of 

ulcerative colitis and colitis-associated colon cancer. Oral administration of RNPO highly accumulated 

in the colonic mucosa and effectively scavenged ROS, leading to suppression of inflammation in mice 

with DSS-induced colitis without damaging the intestinal microflora. Long-term oral administration of 

RNPO exhibited extremely low toxicity due to a lack of RNPO absorption into the bloodstream and 

lower uptake by healthy intestinal cells.

     - This thesis is composed of six chapters. Summaries of each chapter are described as follow.

     - Chapter 1 described the general introduction of the present thesis concerning inflammatory bowel 

disease and current medications. In addition, the development and advantages of nanoparticle-based 

drug delivery systems are summarized. 

     - Chapter 2 describes the design and synthesis of block copolymer MeO-PEG-b-PCMS by the 

radical polymerization reactions using MeO-PEG-SH as a telogen. Redox polymer MeO-PEG-b-

PMOT was synthesized by converting chloromethyl groups were converted to TEMPOs. The 

preparation and characteristics of redox nanoparticles RNPO were also described in this chapter. 

     - Chapter 3 describes the specific accumulation of orally administered RNPO in vivo as compared 

to LWM TEMPOL and commercial polystyrene latex particles. The biodistribution of orally 

administered RNPO was also investigated. In addition, chapter 3 described the therapeutic effect of 

RNPO on dextran sodium sulfate (DSS)-induced colitis mice model compared to LMW TEMPOL and 

mesalamine, a commercial anti-inflammatory drug. The results showed that 40-nm-diameter RNPO

with PEG shell showed significantly high accumulation and long retention in colon area compared to 

LMW TEMPOL and polystyrene latex particles with similar size. Higher accumulation of RNPO in 

inflamed colon than normal colon was observed. Oral administration of RNPO showed significantly 
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higher therapeutic effect on DSS-induced colitis mice as compared to LMW drugs. 

     - Chapter 4 described the effect of RNPO on intestinal bacteria. The results in this chapter showed 

that oral administration of RNPO did not show the significant changes in microflora in healthy mice, 

indicating the innocuousness of this oral nanoparticle therapeutics against healthy colonic microflora.

On the other hand, RNPO treatment inhibited the number of commensal bacteria such as E. coli and 

Staphylococcus sp. increasing in the fecal samples of DSS-induced colitis mice.

     - Chapter 5 described the specific accumulation of orally administered RNPO in colonic cancer 

tissues and effect of RNPO on colitis-associated colon cancer (CAC) chemically induced by 

azoxymethan and DSS. Accumulation of RNPO in cancer tissues was significantly higher than in 

normal tissues. In addition, nitroxide radicals were exposed inside cancer cells after cellular 

internalization, and no cellular uptake of RNPO was observed in normal cells. The toxicity of long-term 

RNPO treatment was also described in this chapter. Free drinking RNPO also works effectively to retard 

tumor growth, even after tumor generation in CAC mice. Interestingly, combination with free drinking 

RNPO effectively improves the anticancer efficacy of Irinotecan, an anticancer drug, and effectively 

suppresses it severe adverse effects on GI tract. On the basis of these results, oral administration of 

RNPO presents a promising nanotherapeutics for treating patients with ulcerative colitis and colitis-

associated colon cancer. 

     - Through this thesis, the author revealed a high potential of redox nanoparticles RNPO as oral 

nanotherapeutics for treatment of not only inflammatory bowel disease, but also many kinds of ROS-

related diseases. With the great potential, the author wishes that the redox nanotherapeutics in present 

studies would have a great contribution to the clinical applications in near future.  
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