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Communicability angles reveal critical edges for network consensus dynamics
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We consider the question of determining how the topological structure influences a consensus dynamical
processes taking place on a network. By considering a large data set of real-world networks we first determine
that the removal of edges according to their communicability angle, an angle between position vectors of the
nodes in an Euclidean communicability space, increases the average time of consensus by a factor of 5.68 in
real-world networks. The edge betweenness centrality also identifies, in a smaller proportion, those critical edges
for the consensus dynamics; i.e., its removal increases the time of consensus by a factor of 3.70. We justify
theoretically these findings on the basis of the role played by the algebraic connectivity and the isoperimetric
number of networks on the dynamical process studied and their connections with the properties mentioned before.
Finally, we study the role played by global topological parameters of networks on the consensus dynamics. We
determine that the network density and the average distance-sum, which is analogous of the node degree for
shortest-path distances, account for more than 80% of the variance of the average time of consensus in the

real-world networks studied.
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I. INTRODUCTION

Complex networks are ubiquitous in many real-world
systems ranging from biological and ecological to social and
infrastructural ones [1]. A network is represented as a simple
graph I = (V,E), consisting of a set of n nodes (vertices)
V and a set of m edges between the nodes. One of the
most important aspects of these networked systems is the
transmission of information from one node to another. It can
be argued that networks exist for facilitating the information
transmission in those complex systems. The nodes of these
networks represent the entities of the complex system, and their
connections represent the interactions among these entities
from which information flows from one node to another.
Information is understood here generically and can represent
a variety of things such as the transfer of material or energy to
the spread of diseases or rumors.

The diffusion of information over a network is usually
analyzed by considering a simple diffusion model commonly
known as a consensus dynamic model [2—4]. It is based on
the idea that the pairs of connected nodes of the graph try to
reach an agreement over a given topic, e.g., opinions, position
in space, etc., and the network as a whole collapses to a steady
state of consensus. In this model we consider that the state of
the nodes of the graph at time  are stored in a vector i(¢). Then
the variation of the state of the node i with time is controlled
by the equation [2—4]

W)= Y [0 -0l i=12,...n (1)

(G, ))eE

where the sum is taken over all pairs of connected nodes in the
network. It is worth noticing that the consensus dynamics mod-
els based on Eq. (1) are limited to conservative dynamics and
that other models are cast in terms of different equations (see,
for instance, Ref. [3]). However, consensus protocols based on
Eq. (1), as they are known in technological applications, have
been widely used in the study of wireless sensor networks
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and peer-to-peer networks, where the problem consists of
making the scalar states of a set of agents converge to the same
value under local communication constraints [5—-8]. In Ref. [3]
there are many examples of the links between consensus
and other applications that involve the interconnection of
dynamical systems and other scientific areas. They include
(1) synchronization of coupled oscillators, (2) flocking theory,
(3) fast consensus in small worlds, (4) rendezvous in space,
(5) distributed sensor fusion, and (6) distributed formation
control. The consensus dynamics model can be considered for
both linear and nonlinear protocols in a network of dynamic
agents with undirected information flow [9] as well as in
cases of switching topologies, communication time delays,
and consensus for double-integrator dynamics [10].

In social network analysis consensus dynamics plays a
fundamental role in understanding the dynamics of infor-
mation spreading among actors in a social system and has
been applied for a diverse series of real-world situations
[11-14]. Castellano et al. [15] have analyzed the field of social
dynamics from a statistical-physics point of view. In the case of
consensus dynamics they have considered that the constituents
of the system are not particles, but humans, and that every
individual interacts with a limited number of peers. The
system then presents transitions from disorder (fragmentation
or disagreement) to order (consensus or agreement). Networks
are considered only as substrates where the social dynamics
take place, but they are recognized as an important aspect
always present in social dynamics. A prominent example of a
diffusive model in a social context is the so-called voter model
[16,17], in which a particle can have one of two opinions
(similar to a spin state) on a issue, and that the particles
adopt a particular opinion following a probabilistic approach.
The voter model is very much used in social physics, and a
few modifications of it have been developed in recent years
[15,17,18].

A very important question when analyzing a dynamical
model, like consensus, is to understand the role played
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by the network structure on the dynamical process. These
structure-dynamics relations allow us to understand the roles
played by different structural parameters over the dynamics,
which permit us to engineering the systems to change their
dynamical properties. The important problem of network
controllability [19-22], for instance, very much resides in
understanding the influence of structural parameters on the
control of a dynamical process taking place on the network.
These works have concentrated on the identification of critical
nodes for the studied dynamical processes. For instance, in
Ref. [23] the authors focus on identifying those nodes that
are important for collective dynamics and propose a centrality
measure thatrelates dynamics and network structure. However,
in the current paper we concentrate on a different problem, the
identification of critical edges (not nodes) for the dynamical
process. Consequently, we explore the structure-dynamics
relations for the consensus model in real-world networks. First,
we consider the problem of identifying critical edges for the
consensus dynamics, i.e., those edges whose removal signifi-
cantly increases the average time of consensus in the network.
We find that among a few structural parameters describing
the capacity of an edge to transmit information through it,
the communicability angle identifies the most critical edges
for the consensus dynamics in a wide variety of networks.
We then consider the influence of a few structural parameters
characterizing global structural properties of networks over the
average time of consensus. We find that the network density
and the average shortest path distance are global indicators of
the network capacity to perform consensus in an efficient way.

II. THEORETICAL METHODS
A. Mathematical definitions

The graph is said to be undirected if the edges are formed
by unordered pairs of vertices. A path of length k in G is
a set of nodes iy,is, ...,i,ix+1 such that for all 1 <1 <k,
(i1,i;+1) € E, and there are no repeated nodes. The graph is
connected if there is a path connecting every pair of nodes.
The length of the shortest of all paths connecting two nodes
in the graph is known as the shortest path distance between
the corresponding nodes. A graph with unweighted edges,
no self-loops (edges from a node to itself), and no multiple
edges is said to be simple. Hereafter we will always consider
undirected, simple, and connected graphs.

The matrix A = (a,,), called the adjacency matrix of the
graph, has entries

1
ayy = 0

The adjacency matrix can be decomposed by A = QAQ7,
with A a diagonal matrix containing the eigenvalues of A
and Q =[qy,...,q,] an orthogonal matrix containing the
associated eigenvectors.

The degree k; of the node i is the number of edges incident to
it, equivalently k; = ) j aij- We will designate by 8 = min (k;)
and A = max (k;) the minimum and maximum degree in the
network. The matrix K = diag(k;) is named the degree matrix
of the graph. The matrix £ = K — A is known as the graph

if (u,v) € E

. Yu,veV.
otherwise
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Laplacian. It has entries [2,3]

ki, ifu=v
Lyp=13—-1 if(u,v) e E

0 otherwise

Yu,v e V.

The Laplacian matrix is positive semidefinite with eigenval-
ues denoted here by 0 = u; < o < -+ < w,. If the network
is connected the multiplicity of the zero eigenvalue is equal to
one,i.e.,0 = pu; < ur < --- < u, and the smallest nontrivial
eigenvalue p, is known as the algebraic connectivity of
the graph [24,25]. Let U be the matrix_of orthonormalized
eigenvectors ; of L, i.e., V = [y - - - ¥, ]. The eigenvector
1}2 associated with the algebraic connectivity is known as
the Fiedler vector [24]. Let X be the diagonal matrix of
eigenvalues of the Laplacian matrix. Then £ =V X VT,

B. Consensus dynamics on networks

The consensus dynamics equation (1) can be written as
follows for the kind of graphs we analyze in this work:

i) ==Y ayli () — i), i=12....n (2

Jj=1

This equation indicates that the evolution of the state of the
node i in time depends on the “agreement” that this node
reaches with all its nearest neighbors. It is obvious now that
we can write (1) by using the Laplacian matrix of the graph:

(1) = —Lii(r), ?3)

u(0) = z. 4)
The solution of this equation is
ut) = e 47, (5)

Then the solution of the consensus equation on the graph is
given by

u(t) = e_t“'(lljl DY+ 6_””(1/72 D+
+e "M (W - DY, (6)

where 0 = ) < o < --- < u, are the eigenvalues, @j(p)
is the pth entry of the corresponding jth eigenvector of the
Laplacian matrix, and X - y represents the inner product of the
corresponding vectors. When the time tends to infinity every
node tends to the state dictated by the average of the values
of the initial condition. This state is usually known as the
consensus set [2], and it can be formally defined as the set
A € R" which is the subspace span{1}:

A={ueR"u; =u;,Vi,j eV} (7

The following is a well-known result in the theory of consensus
dynamics on networks.

Let G be a connected graph. Then the consensus dynamics
converges to the agreement set with a rate of convergence that
is dictated by ;. That is, as t — 00

—1

i) = (1 - D = —1 ®)

|
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and hence ii(t) — A. As ., is the smallest positive eigenvalue
of the graph Laplacian, it dictates the slowest mode of
convergence in Eq. (6).

For the sake of simulations it is sometimes useful to
consider the discrete-time model of consensus, whose equation
can be written as follows [2,3]:

itk +1) = ui(k) + €y ayjlu k) — ui (k)] €))

j=1

where 0 < e <k, is the time step for the simulation.

Equation (9) can be written in matrix form as follows:
Uk +1) = (I — eLyu(k), (10)

where [ is the identity matrix. The matrix (I — €L) is usually
known as the Perron matrix [3].

C. How to identify critical communication edges?

The intuition behind the identification of critical edges
for consensus dynamics is very simple. Consensus is a
dynamical process in which information, generically speaking,
is transmitted through the nodes via the edges of the graph.
Then those edges which support most of the information traffic
should be critical for the global agreement of the network.
In other words, the removal of those critical edges, taking
care of not disconnecting the graph, will significantly increase
the average time of consensus of the network. The simplest
index fulfilling this intuition is the edge betweenness centrality
(EBC) [26]. The EBC of the edge e is defined as

ZZ p(v;,e, v, (11

E(e) =
VeV v;eV ,O(U,,Uj)
where p(v;,e,v;) is the number of shortest paths between the
nodes v; and v; that go through the edge e € E, and p(v;,v;)
is the total number of shortest paths from v; to v;. Obviously
a large value of the EBC for a given edge indicates that it is
critical in the transmission of information through the network,
and we should expect that the removal of that edge increases
significantly the average time of consensus of the network.
Assuming that the information is not only flowing through
the shortest paths allows us to consider a series of other
measures that quantify the amount of potential routes that
the information can use to go from one node to another in the
network. The best known of these measures is the so-called
communicability function [27,28], which is defined as

}:“4””—(A»u
k=

n

M qr)qe(v), Yu,v e V. (12)

>~

=1

It counts the total number of walks starting at node u and
ending at node v, weighting their length by a factor 1> hence
considering shorter walks more influential than longer ones
(see Refs. [27,28]).

Here we consider the communicability between a pair of
nodes connected by an edge G,,, where (u,v) € E. In this case,
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it is clear that

(A | (A
2! 3!

Then small values of 5,“, indicate that only very long walks
connect the nodes u# and v apart from the edge bonding them
together. Because these long walks receive a large penalization,
the edge communicability mainly depends on the transmission
of information through the edge u,v.

We now consider a measure that accounts not for the
“volume” of information transmitted from one node to another
in the network but mainly the “quality” of the information
transmission. That is, suppose that two nodes u and v are
communicating to each other, then the quality of their com-
munication depends on two factors: (1) how much information
departing from the node u (v) arrives at the node v (z) and (2)
how much information departing from the node u (v) returns
to that node u (v) without ending at its destination. Then
the goodness of communication increases with the amount of
information which departs from the originator and arrives at
its destination and decreases with the amount of information
which is frustrated due to the fact that the information returns
to its originator without being delivered to its target. Then
a natural way to account for this quality of information is
by considering the recently proposed communicability angle
between a pair of nodes [29]:

éuv=1+

(u,v) € E. 13)

G
1 uv
VGuGyy

It represents the angle between the position vectors of the
nodes u and v in a Euclidean space, namely, a high dimensional
Euclidean sphere where the nodes are placed on the surface
separated by their communicability distance [30-32]:

'guv = \/Guu + Guv - 2Guv (15)
The connection between both concepts can be expressed as

%-MZU = Guu + Gvu - 2\/ Guquu Cos 9uv~ (16)

We notice here that for simple unweighted undirected networks
the communicability angle is bounded as

0° < 6,, < 90°. (17

04y = cOS™ (14)

A large value of communicability between two nodes
indicates that there are many short walks connecting them. In
this case the information has many different routes for going
from one node to the other and there is a kind of redundancy
in the topology of the network. Thus, removing those edges
with large communicability is not expected to have a dramatic
effect on the consensus time for this network. On the contrary,
if we remove those edges with poor communicability, we are
removing essential links for the transmission of information
between two nodes due to the fact that very few walks exist
that connect them or they are very long, which will delay
significantly the consensus process. Extending this reasoning
to the communicability angles we should expect that edges
with the largest angles are more probably the critical ones
for the transmission of information in the network. Thus, the
critical edges should be found among those having angles close
to 90°.
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III. RESULTS AND DISCUSSION
A. Time of consensus in networks

The time at which the global consensus is reached is
an important parameter of the general dynamical process.
In the particular case of synchronization, Almendral and
Diaz-Guilera [33] have found that the synchronization time
scales with the inverse of the smallest nonzero eigenvalue
of the Laplacian matrix. In a seminal review paper Arenas
et al. [34] state that “Surprisingly, this relation qualitatively
holds for very different networks where synchronization is
achieved, indicating that this eigenvalue alone might be a
relevant topological property for synchronization phenomena.”
Here we will show analytically the fundamental role of the
inverse of the smallest nonzero eigenvalue of the Laplacian in
the consensus dynamics process.

As we have seen in Sec. 3 the consensus dynamics is
controlled by the Laplacian matrix of the network. Here we
are interested in considering the influence of the network
structure, as captured by the spectral properties of the network
Laplacian, on the time of consensus ¢, i.e., the time for which
lu; —uj| < e, where ¢ is a given threshold. First, we write
Eq. (6) for a given node p as

n n R .
iip(t) =Y ) Y Ui(p)i(ge", (18)
g=1 j=1
which represents the evolution of the state of the corresponding
node as time evolves. Now, let us consider that the time tends

to the tigle of consensus t — 1, where ¢, is the time at which
u; — (Yliip) . Let us designate this time by 7.

L3 )

g=1

- —

up(tc ) =

L e S Gz | a9)

j=2 g=1

here ¢ (p) means the time at which the node p is close to
reaching the consensus state. Let (Z) = %Z;zl Z(g) and let
us write (19) as follows:

n

iip(17) = @ =Y [ i (pe P Pig)ig) | (20)

j=2 g=1

Let us select a node p such that 1}2( p) has the same sign
as Y - Z. Since w, corresponding to j = 2 is the smallest
eigenvalue in the sum on the right-hand side of the expression,
this term tends to 0 slower than the terms for the other values
of j. This means that, if we choose a small enough value of §,
the values of ¢, and thus ¢ will be very large. Thus, we can
ensure that the left-hand 51de of the equation is small enough
that 3" _, (wj(p)e te (”)“f(l// -Z)) < 0. This implies that

(@i, (1) — () < Ya(pe ™ PH(y, - 7). Q1)
Now, because |i,(7,) — (Z)| > & we have

< i p(tD) — @) < [Wa(ple™ Py, -3 (22)
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Then the time at which the consensus is reached 7.(p) is
bounded by

1 [ Va(p) W -2
W) > 1 (p) > | P2 D) o
“2 &
Finally, the average time of consensus is bounded by
Wz(P)(Wz Z)
(tc) = In|———— (24)
Mzn Z

B. Critical edges for the time of consensus

In order to investigate the role played by the edges on the
transmission of information through the network we design
the following experiment. We consider a series of real-world
networks described in the Appendix which represent complex
systems in a variety of scenarios ranging from social and
technological to biomolecular and ecological ones. We then
remove 20% of their edges by using the following strategies:
(1) removal of the edges with the smallest values of C,,,, and (2)
removal of the edges with the largest values of C,,,. Here C,,,
corresponds to any of the edge indicators described previously,
i.e., edge betweenness centrality, edge communicability, edge
communicability distance, and edge communicability angle.
In all cases we take care that the network does not become
disconnected. We then obtain the average time of consensus
for each of the networks generated by using the corresponding
removal strategy and compare them with the original network.
The results are illustrated in Fig. 1 (see also Table I on the
Appendix for specific values), where we give the values of
the average consensus time relative to those of the original
networks; values larger than one indicate relative increase of
the consensus time produced by edge removal with respect to
the original network.

As can be seen from Fig. 1 the removal of 20% of the edges
having the largest communicability angle increases the average
time of consensus by a factor of 5.68 £ 4.32. In other words,
removing the edges with the largest angles multiplies by 5.68
the time of consensus of the real-world networks studied. In

Networks

FIG. 1. (Color online) Relative increase in the time of consensus
for the real-world networks studied according to different edge
removal strategies. Red (solid line): communicability angle; green
(chained line): edge betweenness; blue (dotted line): communicabil-
ity; magenta (spaced broken line): random removal.
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seven networks the average time of consensus is increased
more than 10 times when the edges are removed according
to the communicability angle, and in three cases the time of
consensus is increased by more than 15 times.

The removal of the edges with the largest EBC also
increases significantly the average time of consensus by a
factor of 3.70 £ 2.87. In only one case is the time of consensus
increased by a factor of 10. In contrast, the random and
independent removal of edges increases the time of consensus
only by a factor of 1.12 & 0.20, and in no case is the time of
consensus duplicated after the random removal of edges. The
removal of the edges ranked according to the other indices
studied here does not increase as significantly the time of
consensus of the networks studied. For instance, removal of
edges by the smallest communicability increases the average
time of consensus by 2.41 £ 1.70.

A significant difference among all the indices studied here
is the fact that removing the edges by the smallest communi-
cability angle decreases the average time of consensus of the
networks. In general, the decrease of the time of consensus
is not very dramatic: On average it decays by a factor of
0.96 £ 0.24 with respect to the original networks, but in some
cases there is an acceleration of the consensus process by
a factor of almost two. This means that while the largest
communicability angles identify those critical edges whose
removal increases significantly the time of consensus, the
smallest angles correspond to such edges which are redundant
in the network and whose elimination in some way optimizes
the network for the consensus protocol. Care should be taken
in considering such “optimization” of the network due to the
fact that removal of these edges could make the networks more
vulnerable to random failures.

1. Theoretical analysis

So far we have presented the use of the EBC and the
communicability angle based on intuitive reasoning. As we
have seen in the previous paragraphs this intuition has worked
very well due to the fact that they identify critical edges for
consensus dynamics in a very good way. Here we would like to
present mathematical justification for these empirical findings
which will allow us to better understand the role of these
structural parameters on the dynamical process studied. We
first start with the EBC for which Comellas and Gago [35]
have found the following lower bound. Let EBC,x be the
maximum of the EBC in a graph, then

n

Bmﬂx 2 e ————
V2 (2A — o)

Consequently, the larger the EBC, the smaller the algebraic
connectivity, which implies that the average time of consensus
increases according to (24). From the structural point of view
this bound is probably showing that the edges with the largest
EBC are those bottlenecks (or bridges) connecting highly
dense clusters of the network. Indeed, this is what the following
bound obtained by Comellas and Gago indicates [35]:

(25)

(26)
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where i (G) is the isoperimetric number defined as

0S|

i(G) = u;f 5]

) (27)
where S is a subset of the set of nodes in the network (having
less than the half of the total number of nodes) and 9.S is
the set of edges having one endpoint in S and the other
in its complement. Loosely speaking, a large isoperimetric
number indicates that the network does not have structural
bottlenecks, i.e., small sets of edges whose removal disconnect
the graph into two almost identical components. Thus, the
relation between EBC and i (G) indicates that edges with large
EBC are contained in networks with a small isoperimetric
number, i.e., containing structural bottlenecks.

Let us now turn our analysis to the communicability angle.
We first consider a combined bound for the isoperimetric
number obtained by Mohar [36]:

36 —22) <i(G) < /A2 =A%

That is, the isoperimetric number increases with the increase
of the largest eigenvalue A;, and with the decrease of the
second largest eigenvalue of the adjacency matrix A,. We
can resume this result by saying that the isoperimetric
number increases with the increase of the spectral gap of the
adjacency matrix, i.e., A; — A,. Let us consider what happen
to the communicability angle between a pair of nodes when
(A1 — A2) — oc. In this case we have that

(28)

Gpg —> VY1,p¥14exp (A1), Vp,qg € V. (29)

Thus, when (A; — X,) — oo the communicability angle is
G
Opg = =
VGrpGyq
In other words, when the graph has a large isoperimetric

number the communicability angle tends to zero degrees.
A large isoperimetric constant implies a large algebraic

connectivity, i.e., i(G) < /2(2A — uy) [36], which indeed
implies small average time of consensus.

—cos” 1 =0°. (30)

C. Time of consensus and global network structure

Here we investigate how the global structure of networks
influences the average time of consensus. In this case we are
guided by the existence of analytic bounds for the algebraic
connectivity of graphs. That is, Eq. (24) indicates that the aver-
age time of consensus is bounded by the algebraic connectivity
of the network. Thus, we should expect a nice correlation
between these two parameters for networks. However, for a
better understanding of this relation we should dig more deeply
about the structural meaning of the algebraic connectivity. The
algebraic connectivity is related to the minimum degree § of a
network via the following inequality:

né

m2(G) < .
n—1

3D

By combining two bounds obtained respectively by Alon
and Milman [37] and by Mohar [38] we have that the algebraic
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FIG. 2. (Color online) Illustration of the correlations between the average time of consensus for the real-world networks studied and the

network density and average distance minus the sum.

connectivity is bounded as

—— login. (32)

We also consider a lower bound for the algebraic connectiv-
ity reported by Mohar [39] in terms of the average path length
[(G) of the graph

4
(n—DIG)—(n—2)

w2(G) = 3 (33)
These bounds clearly indicate a relation between the average
time of consensus and the metrical properties of the networks.

There are many descriptors used to characterize the struc-
ture of graphs and networks [1]. Based on the analytic relations
existing between the time of consensus and some structural
parameters of networks we consider here a few network
structural parameters to be correlated with the average time of
consensus of networks. They include the average node degree

kG) = %Zk
i=1

where k; is the degree of the corresponding node and the
network density

(34)

k
0(G) = ——.

p— (3%)

These parameters can be related to the algebraic connectivity
via the bounds (31) and (32); we recall that § < k < A.

On the other hand we consider the following metrical
properties measured in terms of the shortest-path distance.
They are the average shortest path length, which is given by

_ 1
dG) = —— d(u,v), (36)
nn—1) Mzev
and the network diameter, which is defined by
(37

D(G) = max {d(u,v)}.
u,veV(G)

We also consider the average distance-sum index, a sort of
average degree based on the sum of distances from a given
node to every other node in the network,

1
$G) =~ stw), (38)

ueV

where s(u) = )", d(u,v).

We then obtain empirical correlations between these mea-
sures and the average time of consensus of all the real-world
networks considered in this work. As expected the algebraic
connectivity of the studied networks displays a significant
correlation with the average time of consensus with a Pearson
correlation coefficient equal to —0.792. That is, an increase of
the algebraic connectivity shortens the time of consensus of
the network as expected from Eq. (24). However, the Pearson
correlation coefficient for the average time of consensus and
the density is —0.920 and that with the average distance minus
the sum is 0.967 (see Fig. 2), indicating that these global
structural parameters capture much better than the algebraic
connectivity the structural influence over the consensus dy-
namics. Thus, in analyzing the influence of the global structure
over the consensus dynamics in real-world networks with
heterogeneous structures, the network density and the average
distance minus the sum play a more fundamental role than the
algebraic connectivity. That is, increasing the density of the
networks and reducing the average distance minus the sum of
the nodes will decrease significantly the time of consensus,
mainly as a consequence of the fact that information has
significantly more ways to reach the same node from another
using significantly shorter paths.

IV. CONCLUSIONS

We have investigated the relation between local and
global structural parameters over the consensus dynamics on
networks. At the local level we have identified the structural
characteristics that make an edge critical for consensus; that
is, those edges whose removal increases significantly the time
necessary for a global consensus in a network. The removal
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of edges with the largest edge betweenness centrality, which
accounts for the volume of information flowing through a
given edge, increases the time of consensus in real-world
networks by a factor of 3.70. On the other hand, the removal
of edges based on their largest communicability angles, which
accounts for the quality of information transmitted through a
given edge, increases the consensus time by a factor 5.68.
We have also considered global structural parameters that
influence the consensus dynamic of a network. In particular,
the network density and the average distance minus the sum
accounts for more than 80% of the variance in the time of
consensus of a large series of real-world networks arising in a
variety of different scenarios. In closing, we have identified
a few structural parameters, both local and global, which
critically influence the dynamical properties of networks,
allowing further studies to design networks with more efficient
and robust consensus dynamics.
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APPENDIX: DATA SET DESCRIPTION

Biological networks

(1) Drosophila PIN: Protein-protein interaction network in
Drosophila melanogaster (fruit fly).

(2) Hpyroli: Protein-protein interaction network in H.
pyroli.

(3) KSHYV: Protein-protein interaction network in Kaposi
sarcoma herpes virus.

(4) Macaque: The brain network of macaque cortex.

(5) Malaria-PIN: Protein-protein interaction network in P.
falciparum (malaria parasite).

(6) neurons: neuronal synaptic network of the nematode
C. elegans. Included all data except muscle cells and using
synaptic connections.

(7) PIN-Afulgidus: Protein-protein interaction network in
A. fulgidus.

(8) PIN-Bsubtilis: Protein-protein interaction network in
B. subtilis.

(9) PIN-Ecoli: Protein-protein interaction network in
E. coli.

(10) Transc-yeast: Transcriptional regulation between
genes in Saccaromyces cerevisiae.

(11) Trans-urchin: Developmental transcription network
for sea urchin endomesoderm development.

(12) YeastS: Protein-protein interaction network in S.
cerevisiae (yeast).

Ecological networks
(1) Benguela: Marine ecosystem of Bengela, off the
southwest coast of South Africa.
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(2) BridgeBrook: Pelagic species from the largest of set of
50 Adirondack lake (NY) food webs.

(3) canton: Primarily invertebrates and algae in a tributary,
surrounded by pasture, of the Taieri River in the South Island
of New Zealand.

(4) Chesapeake: The pelagic portion of an eastern U.S.
estuary, with an emphasis on larger fish.

(5) Coachella: Wide range of highly aggregated taxa from
the Coachella Valley desert in southern California.

(6) ElVerde: Insects, spiders, birds, reptiles, and amphib-
ians in a rainforest in Puerto Rico.

(7) grassland: All vascular plants and all insects and trophic
interactions found inside stems of plants collected from 24 sites
distributed within England and Wales.

(8) ReefSmall: Caribbean coral reef ecosystem in Puerto
Rico/Virgin Island shelf complex.

(9) ScotchBroom: Trophic interactions between the her-
bivores, parasitoids, predators, and pathogens associated
with broom, Cytisus scoparius, collected in Silwood Park,
Berkshire, England.

(10) Skipwith: Invertebrates in an English pond.

(11) StMarks: Mostly macroinvertebrates, fish, and birds
associated with an estuarine seagrass community, Halodule
wrightii, at the St. Marks Refuge, Florida, USA.

(12) StMartin: Birds and predators and arthropod prey of
Anolis lizards on the island of St. Martin in the northern Lesser
Antilles.

(13) Stony: Primarily invertebrates and algae in a tributary,
surrounded by pasture, in native tussock habitat, of the Taieri
River on the South Island of New Zealand.

(14) Ythanl: Mostly birds, fish, invertebrates, and meta-
zona parasites in a Scottish estuary.

(15) Ythan2: Reduced version of Ythanl, without para-
sites.

Informational networks

(1) centrality-literature: Citation network of papers pub-
lished in the field of Network Centrality.

(2) GD: Citation network of papers published in Proceed-
ings of Graph Drawingduring the period 1994-2000.

(3) Roget: Vocabulary network of words related by their
definitions in Roget’s Thesaurus of the English language. Two
words are connected if one is used in the definition of the other.

(4) SmallWorld: Citation network papers which cite Mil-
gram’s 1967 Psychology Todaypaper or include Small World
in the title.

Social networks

(1) BF (3, 70, 71): Networks of friendship ties from the
communities identified as 23, 70, and 71 from the Brazilian
Farmers longitudinal study on the adoption of a new corn seed.

(2) ColoSpg: The risk network of persons with HIV
infection during its early epidemic phase in Colorado Springs,
USA, using analysis of community-wide HIV/AIDS contact
tracing records (sexual partners) during 1985-1999.

(3) CorporatePeople: American corporate elite formed by
the directors of the 625 largest corporations that reported the
compositions of their boards, selected from the Fortune 1,000
in 1999.

(4) dolphins: Social network of a bottlenose dolphins
(Tursiops truncates) population near New Zealand.
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TABLE I. Dataset: n number of nodes, G, average communicability, EBC edge-betweenness centrality, 6,, communicability angle, Rnd
random. The largest increase in the average time of consensus are boldfaced.

Relative increase of (¢.) according to:

No. Network n Gy EBC 0pq Rnd Ref.
1 Coachella 30 3.83 9.68 19.68 0.71 [40]
2 Skipwith 35 9.52 7.89 16.85 0.76 [41]
3 electronic3 512 8.61 9.97 15.55 1.13 [42]
4 Software-XMMS 971 4.51 14.91 14.49 1.00 [79]
5 electronic2 252 6.22 9.52 14.43 0.93 [42]
6 hs_2 69 2.57 6.97 14.27 0.95 [43]
7 electronicl 122 4.95 9.95 11.00 1.03 [42]
8 Software-Mysql 1480 3.03 2.55 9.96 0.73 [79]
9 centrality-literature 118 1.23 2.21 8.98 0.81 [44]
10 Transc-yeast 662 1.48 4.70 8.54 1.08 [45]
11 social3 32 3.01 1.65 8.41 0.95 [43]
12 dolphins 62 1.82 3.94 8.25 0.79 [46]
13 StMarks 48 2.28 6.75 7.94 0.85 [47]
14 Drugs 616 1.62 1.79 7.87 0.97 [48]
15 Software-VTK 771 3.60 4.01 7.41 0.82 [79]
16 Malaria-PIN 229 2.27 1.50 7.36 1.23 [49]
17 CorporatePeople 1586 3.84 5.26 7.10 1.02 [50]
18 ElVerde 156 2.55 5.87 6.34 0.77 [51]
19 Math Method 30 2.39 3.99 6.08 0.85 [52]
20 Roget 994 1.72 1.92 5.69 0.96 [53]
21 PINEcoli 230 1.35 3.62 5.44 0.91 [54]
22 Benguela 29 2.24 3.66 5.39 0.72 [41]
23 Galesburg2 31 3.13 5.43 5.22 0.93 [55]
24 BridgeBrook 75 1.51 2.88 5.18 2.17 [56]
25 SmallWorld 233 1.16 4.81 5.15 1.00 [57]
26 PRISON 67 2.50 2.06 5.09 1.13 [58]
27 Stony 112 1.07 1.59 4.87 1.01 [59]
28 Hi-tech 33 2.08 2.80 4.56 0.60 [60]
29 Zackar 34 1.55 2.80 4.35 1.15 [61]
30 Software-Digital 150 1.91 241 4.07 1.33 [79]
31 Trans-Ecoli 328 1.94 4.57 4.00 0.72 [45]
32 GD 249 2.27 3.30 3.93 0.86 [57]
33 Hpyroli 710 1.79 2.67 3.70 0.63 [62]
34 ScotchBroom 154 1.72 5.78 3.58 0.98 [63]
35 canton 108 1.66 1.97 3.57 1.01 [64]
36 Chesapeake 33 1.26 2.08 3.54 1.55 [65]
37 Software-Abi 1035 1.18 0.74 3.28 0.62 [79]
38 BF-70 48 1.26 2.64 3.17 1.40 [66]
39 Sawmill 36 1.94 2.32 3.14 1.18 [67]
40 YeastS 2224 1.37 2.27 3.06 0.98 [68]
41 Ythan2 92 1.17 0.73 3.06 0.96 [70]
42 PIN-Ecoli 1251 1.90 3.32 2.82 0.96 [54]
43 Internet-1997 3015 2.67 6.76 2.68 0.99 [80]
44 Macaque 30 5.11 3.78 2.67 1.04 [81]
45 USAir97 332 1.47 2.88 2.65 0.90 [57]
46 Ythanl 134 1.14 0.70 2.65 0.97 [69]
47 neurons-A 280 2.27 1.14 2.41 0.70 [71]
48 grassland-A 75 1.75 2.08 2.41 0.97 [72]
49 BF-71 71 2.85 2.33 2.29 0.96 [66]
50 KSHV 50 1.29 1.71 1.77 0.79 [73]
51 Trans-urchin 45 1.13 1.32 1.62 0.78 [45]
52 BF-23 40 1.98 1.71 1.62 1.11 [66]
53 ColoSpg 324 1.03 0.98 1.00 0.99 [74]
54 PIN-Afulgidus 32 0.95 1.04 0.95 0.92 [75]
55 StMartin 44 1.26 1.55 0.95 0.83 [76]
56 Pin-Bsubtilis 84 0.98 1.04 0.94 0.96 [77]
57 ReefSmall 50 2.84 2.28 0.84 0.79 [78]
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(5) Drugs: Social network of injecting drug-users (IDUs)
who have shared a needle in the last six months.

(6) Galesburg2: Friendship ties among 31 physicians.

(7) High-tech: Friendship ties among the employees in
a small high-tech computer firm which sells, installs, and
maintains computer systems.

(8) hs_2: Heterosexual contacts, extracted at the Cadham
Provincial Laboratory; a six-month block data from November
1997 to May 1998.

(9) Math Method: This network concerns the diffusion of a
new mathematics method in the 1950s. It traces the diffusion of
the modern mathematical method among school systems that
combine elementary and secondary programs in Allegheny
County (Pennsylvania, USA).

(10) PRISON: Social network of inmates in prison who
chose “Which fellows on the tier are you closest friends with?”’

(11) Sawmill: Social communication network within a
sawmill, where employees were asked to indicate the fre-

PHYSICAL REVIEW E 92, 052809 (2015)

quency with which they discussed work matters with each
of their colleagues.

(12) social3: Social network among college students
participating in a course about leadership. The students
choose which three members they want to have on a
committee.

(13) Zackar: Social network of friendship between mem-
bers of the Zackary karate club.

Technological networks

(1) electronic (1-3): Electronic sequential logic circuits
parsed from the ISCAS89 benchmark set, where nodes
represent logic gates and flip-flops.

(2) Internet-1997: The internet at the Autonomous System
(AS) level, as of September 1997.

(3) Software (Abi, Digital, Mysql, VTK, XMMS): Soft-
ware network development for different programs.

(4) USAIir97: Airport transportation network between air-
ports in the United States in 1997.
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