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PAPER

Power-Saving in Storage Systems for Cloud Data Sharing Services
with Data Access Prediction

Koji HASEBE†a), Member, Jumpei OKOSHI††b), Nonmember, and Kazuhiko KATO†c), Member

SUMMARY We present a power-saving method for large-scale storage
systems of cloud data sharing services, particularly those providing media
(video and photograph) sharing services. The idea behind our method is
to periodically rearrange stored data in a disk array, so that the workload
is skewed toward a small subset of disks, while other disks can be sent to
standby mode. This idea is borrowed from the Popular Data Concentration
(PDC) technique, but to avoid an increase in response time caused by the
accesses to disks in standby mode, we introduce a function that predicts fu-
ture access frequencies of the uploaded files. This function uses the correla-
tion of potential future accesses with the combination of elapsed time after
upload and the total number of accesses in the past. We obtain this func-
tion in statistical analysis of the real access patterns of 50,000 randomly
selected publicly available photographs on Flickr over 7,000 hours (around
10 months). Moreover, to adapt to a constant massive influx of data, we
propose a mechanism that effectively packs the continuously uploaded data
into the disk array in a storage system based on the PDC. To evaluate the
effectiveness of our method, we measured the performance in simulations
and a prototype implementation. We observed that our method consumed
12.2% less energy than the static configuration (in which all disks are in ac-
tive mode). At the same time, our method maintained a preferred response
time, with 0.23% of the total accesses involving disks in standby mode.
key words: power-saving, distributed storage system, cloud computing,
data sharing service, access prediction

1. Introduction

Energy efficiency is important to today’s computing sys-
tems. In particular, as a high percentage of the total com-
puting energy is consumed by storage systems, various at-
tempts at reducing the power consumption of storage sys-
tems have been made [4], [20], [21]. These studies were
essentially based on the commonly employed technique
of skewing the workload toward a small subset of disks,
thereby enabling the other disks to remain in standby (i.e.,
low-power) mode. Recently, rapid developments in cloud
computing have led researchers to consider datacenter-scale
systems instead of systems that consist of relatively few
disks [11], [14], [26], [27]. Thus, the major aim of these re-
cent studies has been how to enhance the scalability of this
basic idea while ensuring good performance.
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However, most previous studies either explicitly and
implicitly assumed that the set of stored data is fixed,
whereas this assumption is not valid for many of the real
datacenter-scale systems. Particularly, in today’s data-
intensive cloud services, as typified by media (video and
photograph) sharing services like YouTube∗ and Flickr∗∗,
vast amount of data are uploaded continuously. For exam-
ple, Flickr [7], [8] reported that their total number of stored
photographs reached 5 billion in September 2010 and 6 bil-
lion in August 2011, and now 3,000 photographs are up-
loaded every minute. A similar situation occurs for other
cloud data sharing services and massive computing environ-
ments such as those used for big data analysis and huge e-
commerce databases.

To address this issue, in our previous work [18], we
proposed a method based on the Popular Data Concentra-
tion (PDC) technique [20]. The idea behind PDC is to pe-
riodically reallocate stored data in a disk array by the order
of access frequency. Our approach in the paper [18] was to
extend the PDC by introducing a mechanism to effectively
pack the continuously uploaded data into the disk array. In
addition, the data stored in the array were autonomously ex-
changed such that frequently accessed disks tended to gather
frequently accessed data from neighboring disks up to their
capacity, while the opposite occurs for rarely accessed disks.

In our previous study, we also measured the perfor-
mance using the real access patterns of public photographs
on Flickr, which are observable outside the website. The re-
sults showed that our method skewed the workload up to a
point. However, to further reduce the power consumption, if
we increase the threshold time for transition from active to
standby mode, a significant number of accesses are of disks
in standby mode. Thus, because such accesses take extra
time (usually 5–10 seconds) to spin up disks, we faced a se-
rious trade-off between the performance in power consump-
tion and response time. A major reason for this problem is
that most of the uploaded data are rarely accessed as time
goes by, but occasional accesses persist and seem to occur
randomly. Thus, merely by sorting data by the latest num-
ber of accesses as is the case in PDC, it is difficult to identify
data that will not be accessed for a while and confine these
to a subset of disks.

The objective of this paper is to improve on our pre-
vious work, specifically by reducing accesses to disks in

∗http://www.youtube.com
∗∗http://www.flickr.com
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standby mode without degrading performance. For this ob-
jective, we first traced the access patterns of 50,000 ran-
domly selected public photographs on Flickr for 7,000 hours
(around 10 months). In this preliminary study, we observed
that potential future accesses correlate strongly with the
combination of elapsed time after upload and the total num-
ber of accesses in the past. Our method uses this correla-
tion, and periodically rearranges data according to potential
future accesses, instead of simply sorting the data by the or-
der of the latest number of accesses. Moreover, in this paper
we investigate a method that further increases the utilization
efficiency even when files are removed by clients.

To evaluate the effectiveness of our method, we mea-
sured the performance in both simulations and an implemen-
tation of a prototype using the real access traces of public
photographs on Flickr. In the experiments, we observed that
our method reduced energy consumption by 12.2% when
compared with the static configuration (in which all disks
are always in active mode). At the same time, our method
maintains a preferred response time, where 0.23% of all ac-
cesses involved disks in standby mode.

This paper is an extended version of the paper [19],
and includes the following new results. First, we evaluate
the proposed method using a power-consumption model of
disk drives. We thus evaluate the results according to the
estimated power consumption, instead of measuring the to-
tal running time of the active disks. Second, we consider
file deletion and improve the data rearrangement algorithm.
Third, we improve the data access prediction function using
data access tracing over a longer period.

The remainder of this paper is organized as follows.
Section 2 presents related work. Section 3 gives the results
of our preliminary investigations into the access patterns of
public photographs on Flickr. Section 4 describes the pro-
posed method and Sect. 5 introduces the power model. Sec-
tions 6 and 7 present our simulation results and an evalua-
tion of our prototype. Finally, Sect. 8 concludes the paper
and presents future work.

2. Related Work

There have been a number of studies on saving power in
storage systems (cf. also the paper [2] for a comprehensive
survey of this research area). The key idea in these studies
is to gather the workload into a subset of disks, thereby en-
abling other disks to be in standby mode. These techniques
can be classified into the following three categories accord-
ing to variations in their approach.

The first category focuses on popularity and concen-
trates popular data on specific disks. Massive Array of Idle
Disks (MAID) [4] provides specific disks that are used as a
cache to store frequently accessed data, thereby reducing ac-
cesses to other disks. PDC [20] periodically reallocates data
in the storage array according to the latest access frequen-
cies.

The second category uses NVRAM to extend the
standby mode period by caching data to a write store. A

typical example is Pergamum [24], which uses NVRAM to
buffer write accesses and store data signatures and thus re-
duce the number of direct accesses to the disks.

The final category considers redundancy (i.e., data
replication). In DIverted Accesses (DIV) [21], original and
redundant data are separated onto different disks, thereby
allowing I/O requests to be concentrated onto the disks
that contain the original data. Hibernator [30] applies the
idea of PDC to RAID and Dynamic Rotations Per Minute
(DRPM) [10]. RIMAC [29] provides two-layered caches,
one for storing data and the other for parity conserva-
tion. Power-Aware RAID (PARAID) [28] is another power-
saving technique for RAID. It allocates the replicas in a spe-
cific way so that data are collected or spread to adapt to
changes in operational workloads.

Many of these studies have restricted their scope to
storage systems with a specific kind of central controller
to manage the data access or storage systems consisting
of a relatively small number of disks. However, in recent
years, researchers have shifted their target to large storage
systems. Harnik et al. [11] attempted to apply the idea
of DIV to a large distributed storage system. Kaushik et
al. [14] proposed dividing disks in the Hadoop Distributed
File Systems (HDFS) [22] into hot and cold zones. Verma
et al. [26] proposed Sample-Replicate-Consolidate Map-
ping (SRCMap), which gathers accesses to the replicas on
active disks, whereas Vrbsky et al. [27] proposed a repli-
cation approach called the Sliding WINdow replica strat-
egy (SWIN). In our previous studies [12], [13], we proposed
power-saving methods based on the Distributed Hash Table
(DHT) technique, such as Chord [23]. These methods skew
the workload by migrating virtual nodes in the storage array.

The present paper investigates an effective technique
for skewing the workload in large-scale distributed stor-
age systems, taking an approach from the first category
of techniques. In particular, the proposed method can be
considered to be a direct successor to PDC. However, our
main motivation is to explore power saving in an environ-
ment where a vast amount of data is continuously uploaded,
whose prime target is cloud data sharing services. Addi-
tionally, we explore a technique for predicting future access
patterns and apply it to PDC-based systems to reduce the
accesses to disks in standby mode.

3. Data Access Tracing on Flickr

As a preliminary study, we traced access patterns of pho-
tographs uploaded to Flickr, which is one of the largest
photo-sharing services in the world. In this study, we ran-
domly selected 50,000 photographs and traced the cumula-
tive number of accesses for each file every hour for 7,000
hours, using APIs provided by the website. Owing to lim-
itations on observable data, all the selected photographs
were publicly available, although the website supposedly
has around four times as many private photographs as public
photographs (according to a Flickr’s report and our observa-
tions).
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Fig. 1 Hourly average number of accesses of photographs on Flickr.

Fig. 2 Distributions of the popularities of all photographs.

In the remainder of this section, we first present our ob-
servations and characteristics of the photographs on Flickr,
and then discuss why PDC cannot be directly applied in our
target environment. We also show that potential future ac-
cesses correlate strongly with a combination of the elapsed
time after upload and the total number of past accesses. Our
proposed system uses this measure to sort data according
to potential future accesses. Next, we present other char-
acteristics that were revealed during this study. Finally,
we discuss the advantages and limitations of our prediction
method.

Figure 1 shows the change in the hourly average num-
ber of accesses of all files over the 7,000 hours, where the
horizontal and vertical axes indicate the elapsed time af-
ter upload and the average number of accesses of all pho-
tographs. This figure shows a strong negative correlation
between the access frequency and elapsed time. The number
of accesses rapidly decreases immediately after the upload
and eventually reaches, on average, 2.0 · 10−3 and 8.2 · 10−4

accesses per hour after 2,000 and 7,000 hours, respectively.
Figure 2 shows the distributions of the popularities of

all photographs measured at every 100 hours after the up-
load. Here, the horizontal axes indicate the photographs

Fig. 3 Access patterns of 40 randomly selected photographs.

arranged according to the cumulative number of accesses
and the elapsed time after upload, while the vertical axis
indicates the cumulative number of accesses for each pho-
tograph. The figure shows that the access frequencies are
highly skewed. At a lapse of 100 hours, 759 most popu-
lar photographs were accessed more than 100 times, among
which the highest number of accesses was 490, whereas at
a lapse of 7,000 hours, 19.6% of all photographs have never
been accessed and 68.8% of all photographs have been ac-
cessed less than 10 times.

Figures 1 and 2 indicate that the number of accesses
has a tendency to decrease over time (more specifically, it
decreases rapidly in the first several hundred hours), and
these accesses are concentrated on a small subset of files.
These results suggest that merely sorting the data according
to the latest access frequency will split the storage array into
a group of frequently accessed disks and a group of rarely
accessed disks, without degrading the performance. How-
ever, as demonstrated in our previous study [18], this is not
the case.

Figure 3 (which was also presented in the paper [19])
shows the access patterns of 40 randomly selected pho-
tographs. Here, the selected photographs are represented on
the vertical axis and the accesses are plotted on a horizontal
line, with the number of accesses after each elapsed hour in-
dicated by different shapes. This figure shows that, although
a photograph is rarely accessed after a certain time period,
it continues to be accessed to some extent. Moreover, the
access patterns are quite different from one another. Thus,
even if we confine rarely accessed data to specific disks,
these seemingly random accesses frequently invoke a state
transition from standby to active mode, which degrades the
response time of the system.

To solve the above problem, a possible approach is to
raise the estimation accuracy of potential future accesses.
For this we focus on the correlation between potential future
accesses and a combination of the elapsed time after upload
and the total number of accesses in the past. Our method
uses this as a measure for predicting future accesses accord-
ing to past access patterns. As indicated by Figs. 1 and 2, a
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Fig. 4 Smoothed raw data using the average of 2,500 neighborhood cells.

Fig. 5 Three-dimensional array indicating the number of accesses in the
future.

shorter elapsed time after upload correlates to more photo-
graph accesses, and more accesses in the future. To use this
correlation as a measure for sorting data according to pre-
dicted future accesses, we smooth the raw data in two steps.
First, we draw a three-dimensional graph, in which the hor-
izontal axes indicate the elapsed time after upload and the
cumulative number of past accesses of all photographs, and
the vertical axis indicates the cumulative number of accesses
over the past 1,000 hours. We then obtain Fig. 4 by smooth-
ing the previous result using the average of 2,500 neighbor-
ing cells. Finally, we approximate the number of future ac-
cesses after each elapsed time with a power function using
the least-squares method. We eventually obtain the result as
presented in Fig. 5.

We also obtained the statistical characteristics of the
size and the number of deletions of photographs on Flickr.
Figure 6 shows the distribution of the file size of the traced
photographs. This figure indicates that there are very few
photographs of large file size. Indeed, 96.9% of the pho-
tographs were less than 10 MB, the average file size was
2.65 MB and the median was 1.76 MB. Figure 7 shows the
change in the ratio of deleted photographs. This figure indi-
cates that many of the deletions occurred immediately after
upload. For example, 63.3% of deletions were within 1,000

Fig. 6 Distribution of the file size.

Fig. 7 Change in the ratio of deleted photographs.

hours of upload. The number of deleted photographs then
grew at a constant rate, and more than 9% of photographs
had been deleted after 7,000 hours. We also use these re-
sults in our evaluations.

Finally, we discuss the strengths and weaknesses of our
prediction method. As we shall see in Sect. 6, our method is
more accurate than the method only with the latest number
of accesses. In addition, because our prediction method is
given as a matrix, the overhead of calculating the likelihood
of future access is negligible. Moreover, the overhead for
obtaining a new prediction function is also small, because
this process can be conducted offline. On the other hand,
there are several limitations. First, our method cannot treat
files for which the elapsed time after upload exceeds the pe-
riod of the statistical data being used for prediction. (For
example, a prediction function based on access traces over
a period of 4,000 hours cannot be applied to files uploaded
more than 4,000 hours ago.) Second, to maintain predic-
tion accuracy in an environment where the access pattern
varies often, it is necessary to rebuild the prediction func-
tion. These issues will be investigated in future work.
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4. System Design

Our proposed storage system is composed of several thou-
sand (possibly heterogeneous) disks with unique IDs, edge
servers, an index manager, and I/O servers. Figure 8 il-
lustrates the overall architecture, where the I/O servers are
omitted for readability. Each disk is physically connected
to an I/O server and is logically classified into one of three
groups: Group A, Group B, and the empty disk pool. As
we shall see below, each disk travels among these groups
(depicted by the thick arrows in the figure) depending on its
state. Initially, some are placed in Group A and the rest in
the empty disk pool. The edge servers handle the I/O re-
quests from the clients, and the index manager provides a
lookup service for data accesses.

Files uploaded by the clients are always written to
the disks in Group A via the corresponding edge and I/O
servers. At that time, the index manager assigns a unique
ID to the file and records it and the ID of the disk on which
the file is stored. After the upload, the total number of
read/write accesses to each file is recorded by the storing
I/O server. If a disk in Group A becomes full, it moves to
Group B and a new empty disk is supplied to Group A from
the disk pool. Thus, the number of disks in Group B contin-
uously increases with the number of data uploads, whereas
the number of disks in Group A is constant.

The disks in Group B are logically allocated in a rect-
angular grid consisting of m rows and n columns. The in-
tersection point of the i-th row (from the top) and the j-th
column (from the left) is denoted by (i, j). Additionally, the
disk at (i, j) is denoted by D(i, j). The numbers of rows and
columns may vary over time, but are uniquely determined
by a predefined rule related to the total number of disks in
Group B.

The disks in Group B behave in the following way.
When a disk moves from Group A to B, it is placed at po-
sition (1,1) and then moves to the right (i.e., from (1, j) to
(1, j + 1) for j = 1, 2, . . .) every time a new disk is added
to Group B. At regular intervals (e.g., once a day), the rear-
rangement algorithm presented in Algorithm 1 is executed

Fig. 8 System architecture.

Algorithm 1 Rearrangement algorithm for the i-th row (for
i = 1, . . . ,m)
1: if ri > n then
2: while the total amount of unused disk space from D(i, 1) to D(i, ri −

1) is larger than the used disk space of D(i, ri). do
3: while D(i, ri) holds a file. do
4: Move f ilemax(D(i, ri)) to the leftmost disk in the array

D(i, 1), . . . ,D(i, ri − 1) that has enough space to receive the
file.

5: end while
6: Move D(i, ri) to the empty disk pool.
7: ri = ri − 1
8: end while
9: j = 1

10: while j < ri − n do
11: while min{pfa( f ) | f ∈ D(i, j)}

< max{pfa( f ) | f ∈ D(i, n + j)} do
12: Exchange f ilemin(D(i, j)) and f ilemax(D(i, n + j)).
13: end while
14: j = j + 1
15: end while
16: Move disks D(i, n+1), . . . ,D(i, ri) to the positions (i+1, 1), . . . , (i+

1, ri − n).
17: Reassign the unique IDs to all disks in the (i + 1)-th row.
18: end if

for each row. Here, for readability, we use the following
expressions. ri is the current number of disks in the i-th
row; pfa( f ) is the potential future accesses of file f (shown
as Fig. 5 in Sect. 3); f ilemax(D) is argmax f∈D pfa( f ) and
f ilemin(D) is argmin f∈D pfa( f ).

At an execution of the algorithm, if the disks overflow a
row (as described in Line 1 of Algorithm 1), each I/O server
calculates the potential future accesses for all its stored files
and the algorithm then executes the following steps.

Step 1 (Described from Lines 2 to 8): All data in disk
D(i, ri) (i.e., the rightmost disk in the i-th row) are
packed to the disk array D(i, 1), . . . ,D(i, ri − 1) from
left to right, if the array has enough disk space. D(i, ri)
then becomes empty and moves to the empty disk pool.

Step 2: The potential future accesses for all files in the row
is gathered on the I/O server for D(i, ri).

Step 3 (Described from Lines 9 to 15): If the maximum
access frequency of all files in the overflowed disk
D(i, n+ j) (for j = 1, . . . , ri− (n+1)) is greater than the
minimum access frequency of all files in disk D(i, j),
the files f ilemax(D(i, n + j)) and f ilemin(D(i, j)) are ex-
changed. This process is repeated until no such pair of
files remains.

Step 4 (Described at Lines 16 and 17): The overflowed
disks D(i, n+ 1), . . . ,D(i, ri) are moved to the positions
(i + 1, 1), . . . , (i + 1, ri − n) and the unique IDs are then
reassigned to the disks in the (i + 1)-th row. The algo-
rithm then repeats the same process from Step 1 for the
next row.

Here, we remark on the effect of the value of n on the
performance. In our previous work [19], we evaluated the
impact on performance of changes in the value of n. Theo-
retically, a small value of n insists on a strict sorting, thereby



HASEBE et al.: POWER-SAVING IN STORAGE SYSTEMS FOR CLOUD DATA SHARING SERVICES WITH DATA ACCESS PREDICTION
1749

reducing the power consumption while increasing network
traffic, and vice versa. However, in this evaluation, we ob-
served little noticeable effect on the performance, unless n
were to be set to an extremely large or small value. In the
experiments of this study, we set n so that the grid forms
a square, but according to our previous observation, the re-
sults are unlikely to be changed by a different value of n.

Apart from the measure to estimate future access fre-
quency, our method has several advantages over the PDC.
First, our method is based on the PDC but incorporates a
mechanism to effectively pack the continuously uploaded
data into the disk array. Second, our method is designed
to reduce the number of migrations. Generally, as an up-
loaded file gets older, it will become unpopular. As previ-
ously explained, in our method, disks in Group B gradually
move downwards in the grid. Therefore, the data are sponta-
neously allocated by the order of elapsed time, which facili-
tates the reordering by access frequency. Third, our method
also provides a mechanism to improve the space efficiency
of disks degraded by file deletion, which is realized by Step
1 of the algorithm. As Fig. 7 in Sect. 3 suggests, the total
number of deleted files cannot be ignored. In this sense,
our proposed method contributes to further reduce the total
running time and required computing resources.

Conversely, there are still several parts of our method
that must be improved. In particular, to achieve a higher
level of scalability, it is worthwhile realizing a lookup ser-
vice in the system without introducing any kind of central
controller like index manager.

5. Modeling Power Consumption

In this section, we briefly describe a power consumption
model for disk drives based on the studies [5], [17] (see also
the paper [2] for a survey of modeling techniques), and fix
the model parameters that we used in our evaluations.

5.1 Dynamic Power Management

A modern disk drive enables dynamic power management,
which means there are transitions among three states called
the active, idle, and standby modes. Figure 9 illustrates the
state transitions. Data transfers occur in the active mode.
When a disk is waiting for I/O requests, it is transitioned
to idle mode, in which the disk continues rotating. A disk
in idle mode is transitioned to standby mode after a fixed
threshold time (called the idleness threshold) has elapsed
since the last access. In standby mode, the spindle is at rest
and the heads are parked, which results in power savings.

Fig. 9 Power-state machine for three-state disk drive.

5.2 Power Consumption Model and Parameter Settings

Table 1 summarizes the model parameters and the values
that we used in our evaluations. These settings are based on
the specifications of the Seagate Barracuda ST500DM002
disk drive. In the table, the values for Tq and Tt f are not
specified because they depend on the finishing time of the
previous I/O request and the size of the data transferred, re-
spectively. In our model, the power consumption of a disk
drive executing an I/O request is estimated as the sum of the
power required for transferring data and the power required
for state transition. For example, the total power consumed
by a disk in standby mode spinning up and performing I/O
requests is Tup ·Pup +Tacs ·Pac [mJ], where Tacs denotes the
access time explained below.

5.3 Model of the Response Time

Generally, response time Trp is highly variable and depends
on the current disk state, as given by

Trp =


Tacs (if the disk is in idle mode.)
Tup + Tacs (if the disk is in standby mode.)
Tq + Tacs (if the disk is in active mode.)

Here, Tacs denotes the access time (i.e., the processing time
for I/O requests), which can be decomposed into seek time
Tsk, rotational latency Trt, and transfer time Tt f , i.e.

Tacs = Tsk + Trt + Tt f .

5.4 Setting the Idleness Threshold

It is important to set the idleness threshold to a suitable value
if we wish to reduce the power consumption using dynamic
power management. A threshold that is too small may result
in a frequent spin up, which requires considerable power
(denoted by Pup). Conversely, a threshold that is too long
may prohibit state transitions from idle to standby mode,
which may further reduce the power consumption. To set
a suitable idleness threshold, we use the well-known break-
even time technique, i.e. we determine the amount of time a

Table 1 Summary of model parameters and their values.

Symbol Description Value
Pid Disk power in idle mode 5 W
Psb Disk power in standby mode 0.79 W
Pac Disk power in active mode 6.57 W
Psk Disk power to seek 6.57 W
Pup Disk power to spin up 24 W
Tsk Seek time 8.6 ms
Tup Spin up time 8,500 ms
Trt Rotational latency 4.16 ms
Tq Time for processing of other I/O requests -
Tt f I/O data transfer time -
Dra Average data rate 125 MB/s
Dsi Formatted capacity 500 GB
Tth Idleness threshold 47 s
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disk must be in standby mode to conserve the same energy
consumed by transitioning the disk down and back to active
mode.

More precisely, the break-even time (denoted by Tbe)
can be calculated as follows. First, Tbe can be decomposed
into

Tbe = Tup + T min
sb .

Here, T min
sb is the minimum length of the standby mode after

completing the previous I/O request satisfying the following
equation.

Psb · T min
sb + Pup · Tup = Pid(T min

sb + Tup).

This equation means that the total power required to be in
standby mode and spin up (described as the left hand side)
is equal to the total power required to remain in idle mode
(described as the right hand side). From the above results,
we obtain

Tbe =
Pup · Tup − Psb · Tup

Pid − Psb
.

In our model, Tbe = 47 s, which we used as the idleness
threshold in our evaluations.

6. Simulation Results

We developed a simulator of a storage system based on our
proposed method. The simulator mimics the implemen-
tation of a storage system consisting of several thousands
of disks. In addition, on the basis of the power consump-
tion model introduced in the previous section, the simulator
faithfully models the power and time required by the disks.
Using the simulator, we evaluated the power consumption
and the access frequency of disks in standby mode.

6.1 Parameters and Settings

We considered the following system in the evaluation.
Group A consisted of a single disk, while Group B consisted
of unlimited disks supplied from the empty disk pool. The
number of disks in Group B was initially zero and increased
depending on the upload. Disks in Group B were allocated
in a square grid, where the number of disks in each row and
column were adjusted by the rearrangement algorithm pre-
sented in Sect. 4, which is executed once a day. For each
disk drive, the required power and time were determined
from the values given in Table 1. The data transfer rate of
the network was set to 60 MB/s.

The workload in the simulation was based on the ac-
cess traces obtained in the observation of Flickr described in
Sect. 3. The trace of each photograph was randomly selected
from a set of 50,000 real traces for uploaded photographs by
our workload generator. Along with the observed traces, we
also considered the deletion of photographs. The file size of
each photograph was set to 2.65 MB according to measure-
ments in our statistical analysis presented in Sect. 3. Ac-
cording to Flickr’s reports [7], [8], we assumed that 3,000

photographs were uploaded every minute.
To evaluate the effectiveness of our method, we com-

pared the power consumption and the ratio of the accesses to
disks in standby mode in the following three configurations.

• “Proposed method”: configuration based on our pro-
posed data rearrangement algorithm (introduced in
Sect. 4) and the function to estimate potential future ac-
cesses (introduced in Sect. 3).
• “200 hours”: configuration based on our proposed data

rearrangement algorithm, in which the data were sorted
according to the total number of accesses during the
latest 200 hours.
• “No data exchange”: configuration without any dy-

namic reallocation.

In each configuration, the disks in idle mode can be tran-
sitioned to standby mode after the idleness threshold has
elapsed since the last access.

6.2 Power Consumption

Figure 10 shows the change in power consumption for the
three configurations. Here, the horizontal and vertical axes
indicate the elapsed time and the change in the reduced
power consumption (compared with the configuration in
which all disks in the system are always active).

The figure reveals that the power consumption after
4,000 hours was respectively reduced by 12.2%, 6.6%,
and −0.68%, when employing the configurations “Proposed
method”, “200 hours”, and “No data exchange”. This re-
sult shows that both our access prediction function and rear-
rangement algorithm were effective in reducing power con-
sumption.

We also observed that “Proposed method” and “200
hours” increased the power consumption immediately af-
ter the simulation. This was thought to be an aftereffect of
the increase in the duration of the active mode caused by
data migration. However, as the figure indicates, this phe-
nomenon was temporary and the situation improved after
approximately 300 hours.

Fig. 10 Power consumption.
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As shown in Fig. 10, our method reduces energy con-
sumption by 12.2% compared with a static configuration.
According to the study of [15], data storage alone is respon-
sible for about 25–35% of datacenter power consumption.
By a simple calculation, our method can reduce the total
energy consumption of a datacenter by 3.1–4.2%. Accord-
ing to a report of [6], a 5,000 square ft datacenter consumes
1,127 kW of power. Thus, if our method is applied to a
datacenter of equal size (consisting of around 2,000 physi-
cal machines), the total power reduction using our method
is 34.94–47.33 kW when compared with the static config-
uration (i.e., without any dynamic data migration). The
cost of electricity is assumed to be $0.063/kWh (cf. [14]).
Therefore, applying our method to a targeted storage sys-
tem can reduce energy costs by around $19,000–26,000 per
year. The economic and environmental benefits will depend
on the scale of the datacenter, but as this result indicates,
they are of no small significance for our target environment,
which consists of several thousands of disks.

6.3 Accesses to Disks in Standby Mode

Figure 11 shows the change in the ratio of the accesses of
disks in standby mode. Here, the horizontal and vertical
axes indicate the elapsed time and the ratio of the num-
ber of accesses to disks in standby mode to all accesses,
respectively. We observed that 0.23%, 0.29%, and 0.05%
of accesses were of disks in standby mode in “Proposed
method”, “200 hours”, and “No data exchange” after 4,000
hours, respectively. This result shows that our access predic-
tion function reduces the accesses to disks in standby mode
and improves the trade-off between power consumption and
response time.

As shown in Fig. 11, under our method, 0.23% of ac-
cesses are of disks in standby mode. According to the results
of our experiments, the average response times for disks in
active and spin-down modes are 40.6 ms and 8,544.5 ms,
respectively. Thus, the total average response time can be
estimated as 60.16 ms (= 40.6 ∗ 0.9977 + 8544.5 ∗ 0.0023).
This indicates that our method increases the response time

Fig. 11 Ratio of accesses of spin-down disks.

by, at most, tens of milliseconds. Here, we note that our
study targets network servers, and servers of this kind typi-
cally interact with people, so even substantial degradations
(for example, from 10–100 ms) may not be noticeable.

6.4 Comparison with the Previous Method

We also evaluated the effect of the improvements of our pre-
vious study [18] by comparing the power consumption and
the ratio of the accesses to disks in standby mode between
the method of this study and the previous study of [18]. As
described in Sect. 1, this study is an extension of [18] by
improving the data rearrangement algorithm and the access
prediction. Thus, we here considered the configuration de-
noted by “200 hours” (i.e., data were sorted according to
the total number of accesses during the past 200 hours) with
the data rearrangement algorithm presented in our previous
study [18]. In the simulation, the power consumption after
4,000 hours was reduced by 8.9%, with 0.39% of accesses
made to disks in standby mode. Comparing this result with
those in Sects. 6.2 and 6.3, we can see that the method pro-
posed in this study improves both the reduction in power
and the number of accesses to disks in standby mode.

7. Experiments on Implementation

We conducted an experiment on the current prototype im-
plementation of our proposed system to evaluate the appli-
cability of our method to real systems.

The objective of the experiments presented in Sect. 7
is to demonstrate that our method maintains a preferred re-
sponse time in a real system, even though our method skews
the workload with data migration, which may cause a reduc-
tion in network bandwidth. In particular, our experiments
aimed to clarify the following points:

• The impact of both data migration and the concentra-
tion of workload on the response time in the most pop-
ular disk group,
• The impact of the transition to standby mode on the

response time in the least popular disk group.

7.1 Parameters and Settings

We measured the response time in an environment where
the system workload was the same as that in the simulation.
Our prototype consisted of 10 PC servers, each of which
was equipped with a Intel Dual-core Xeon 3.60 GHz CPUs,
2 GB RAM, and a single 36 GB hard disk drive.

Owing to the limitation of our experimental environ-
ment, we emulated our target system by the following way.
First, due to the bandwidths of different servers, we evalu-
ated the response time of data access by measuring the time
from sending a request until the data were loaded into the
memory of the servers. Second, although the real capacity
of a disk drive was 36 GB, we assumed that the capacity was
500 GB. To emulate this, the response time for each access
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Fig. 12 Response time in the first row after 100 hours.

was measured by repeatedly accessing the same set of files.
(More precisely, to avoid the effect of the cache, we prepared
a set of files and randomly generated I/O requests to them.)
Third, because it was difficult to spin up or spin down disks
in the current system configuration (as each server consisted
of a single disk, on which was installed the operating sys-
tem), we mimic the required periods for state transitions by
letting the server wait before accessing the disk. As in our
simulations, we respectively set the spin up time and the
idleness threshold to 8,500 ms and 47 s, respectively. Fur-
thermore, no underlying lookup service to access data was
implemented in our prototype. Thus, in the experiments, the
data were accessed by their storing server.

To demonstrate that our method maintains a preferred
performance, even though the workload is highly skewed,
we measured the response time for the 10 disks with the
highest and lowest access frequencies in Group B at lapses
of 100 and 4,000 hours, respectively. Moreover, to evaluate
the impact of our data rearrangement on the system perfor-
mance, we also measured the change in response time dur-
ing and after the data rearrangement process.

7.2 Response Time in the First and Last Rows after 100
Hours

Figure 12 shows the change in the maximum and the av-
erage response time of 10 disks in the first row (i.e., disks
with the highest access frequencies) after 100 hours, where
the rightmost disk in the row began data exchange with other
disks after 1 hour (as indicated by the vertical dash-dot line).
The figure shows that the average response times were 83.1
ms in the interval from 0 to 3,600 s, 110.1 ms in the inter-
val from 3,601 to 7,200 s, and 96.7 ms in the entire period.
These results indicate that, although the response time suf-
fered slightly from the data exchange conducted at 3,600 s,
the overall average response time was appropriate and not
worsened by accesses to disks in standby mode.

Figure 13 shows the change in the maximum and av-
erage response times of 10 disks in the last row (i.e., disks
with the lowest access frequencies) after 100 hours, where

Fig. 13 Response time in the last row after 100 hours.

Fig. 14 Response time in the first row after 4,000 hours.

the setting was the same as that in Fig. 12. This result indi-
cates that, in contrast to the case of the disks in the first row,
owing to the spinning-up of disks in standby mode, some
accesses took longer than 8,500 ms and the overall response
time was longer than that for the first row. The result also
shows that there seems to be very few data exchanges among
these disks, because the response time remained unchanged
after the rearrangement.

7.3 Response Time in the First and Last Rows after 4,000
Hours

Figure 14 shows the changes in the maximum and average
response times of 10 disks in the first row after 4,000 hours.
The result was almost the same as that in the case after
100 hours. This result indicates that the frequently accessed
disks can maintain the preferred response time regardless of
the time elapsed since uploading.

Figure 15 shows the changes in the maximum and av-
erage response times of 10 disks in the last row after 4,000
hours. The figure reveals that, the disks were rarely accessed
and most of the accesses were of disks to standby mode.

This section showed that the overall average response
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Fig. 15 Response time in the last row after 4,000 hours.

time suggests the applicability of the method to real environ-
ments. Although there are accesses to disks in standby mode
in the last row, as the previous simulation results showed,
these accesses are few (0.23%) on the whole and thus our
method maintains a preferred responsiveness.

7.4 Concluding Remark on the Experiments

From the results of our simulations and experiments, the
overall response time can be estimated as 60.16 ms. On
the other hand, with the disks used in our experiments, we
observed that the fastest response for non-overloaded disks
in active mode was about 37 ms, which is similar to the
best performance under the architecture of our implemen-
tation. These results indicate that our method increases the
response time by (at most) only tens of milliseconds in com-
parison with any configuration. This amount of latency is
acceptable, because our study targets network servers, that
usually interact with people and a degradation up to 100 mil-
liseconds may not be noticeable.

8. Conclusions and Future Work

We presented a power-saving method for large-scale dis-
tributed storage systems whose prime target is platforms for
cloud data sharing services. Our proposed method is an ap-
plication of the technique of PDC to a constant massive in-
flux of data. To improve on our previous work [18], and es-
pecially to reduce the number of accesses to disks in standby
mode, our method periodically rearranges data in the order
of potential future accesses presumed to be associated with
the elapsed time after upload and accesses in the past, in-
stead of simply sorting by the latest number of accesses.
This technique for data access prediction is based on sta-
tistical analysis of real traces of 50,000 public photographs
on Flickr for 7,000 hours.

We evaluated the performance of our system both in
simulations and prototype implementation using real traces
obtained from Flickr. In the simulation, we observed that
our method used 12.2% less energy than the static config-

uration, in which all disks are always in active mode. At
the same time, our method maintained a preferred response
time, with 0.23% of the total accesses involving disks in
standby mode.

In this paper, we have only considered the access traces
of public photos on Flickr, so the applicability of our method
to services that have different access patterns remains un-
known. Although there is room for further research into
this remaining issue, some previous studies report that some
other popular data sharing services have a quite similar ac-
cess feature to the case of Flickr. For example, according
to the study [3], popular YouTube videos have a tendency
to become more popular and unpopular videos to become
less popular as time passes. In addition, the popularity of
most of the videos grows more slowly as time passes. These
characteristics conform to our observations regarding Flickr.
Similar reports can be found in the study of [1] regarding
photos on Facebook. These results indicate that our method
can expect to be widely applicable to other data sharing ser-
vices.

In future work, one of the most interesting and worth-
while directions of investigation is to extend the present
study to a fully distributed mechanism for power-aware
datacenter-scale storage systems. A possible approach is
to integrate a technique of a distributed hash table, such as
Chord [23], into our method. This would allow our system
to be highly scalable. We are also interested in the appli-
cability of our method to other services that have different
access patterns from Flickr. There have been a number of
studies on data access prediction in data sharing services,
such as the studies of [9] and [16]. We consider the refine-
ment of our prediction function using these results to be a
useful approach to address this issue.
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“Quantitative comparison of power management algorithms,” Proc.
Conference of Design, Automation and Test in Europe, pp.20–26,
2000.

[18] J. Okoshi, K. Hasebe, and K. Kato, “Power-Aware Autonomous Dis-
tributed Storage Systems for Internet Hosting Service Platforms,”
Proc. 3rd International Conference on Cloud Computing, pp.52–61,
Springer LNICST vol.112, 2012.

[19] J. Okoshi, K. Hasebe, and K. Kato, “Power-Saving in Storage Sys-
tems for Internet Hosting Services with Data Access Prediction,”
Proc. 4th International Green Computing Conference, 10 pages,
2013.

[20] E. Pinheiro and R. Bianchini, “Energy conservation techniques for
disk array-based servers,” Proc. International Conference on Super-
computing, pp.68–78, 2004.

[21] E. Pinheiro, R. Bianchini, and C. Dubnicki, “Exploiting redundancy
to conserve energy in storage systems,” Proc. ACM SIGMETRICS
Conference on Measurement and modeling of computer systems,
pp.15–26, 2006.

[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proc. IEEE 26th Symposium on Mass
Storage Systems and Technologies, pp.1–10, 2010.

[23] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” Proc. ACM SIGCOMM, pp.149–160, 2001.

[24] M. Storer, K. Greenan, E. Miller, and K. Voruganti, “Pergamum: Re-
placing tape with energy efficient reliable, disk-based archival stor-
age,” Proc. USENIX Conference on File and Storage Technologies,
pp.1–16, 2008.

[25] USA Today, YouTube serves up 100 million videos a day online,
July 16, 2006.

[26] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “SRCMap:
Energy proportional storage using dynamic consolidation,” Proc. 8th

USENIX Conference on File and Storage Technologies, pp.154–
168, 2010.

[27] S.V. Vrbsky, M. Lei, K. Smith, and J. Byrd, “Data Replication and
Power Consumption in Data Grids,” Proc. IEEE Second Interna-
tional Conference on Cloud Computing Technology and Science,
pp.288–295, 2010.

[28] C. Weddle, M. Oldham, J. Qian, A. Wang, P. Reiher, and G.
Kuenning, “PARAID: A gear-shifting power-aware RAID,” Proc.
USENIX Conference on File and Storage Technologies, pp.245–
260, 2007.

[29] X. Yao and J. Wang, “RIMAC: a novel redundancy-based hierarchi-
cal cache architecture for energy efficient, high performance stor-
age systems,” Proc. ACM SIGOPS/EuroSys European Conference
on Computer Systems, pp.249–262, 2006.

[30] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes, “Hi-
bernator: helping disk arrays sleep through the winter,” Proc. ACM
symposium on Operating systems principles, pp.177–190, 2005.

Koji Hasebe received his Bachelor’s, Mas-
ter’s, and Ph.D. degrees in Philosophy from
Keio University in Japan in 1998, 2000, and
2006, respectively. He is an assistant professor
at the Department of Computer Science of the
University of Tsukuba. His research interests
include formal verification, distributed systems,
game theory, and computer security.

Jumpei Okoshi received his Bachelor’s
and Master’s degrees from the University of
Tsukuba, Japan, in 2012 and 2014, respectively.
He is currently a researcher at the Central Re-
search Laboratory of Hitachi, Ltd. His research
interests include data processing platforms, dis-
tributed systems, and storage systems. He con-
tributed to this study in his Master’s course.

Kazuhiko Kato received his Bachelor’s and
Master’s degrees in Engineering from the Uni-
versity of Tsukuba, Japan, in 1985 and 1987.
He received his Ph.D. from The University of
Tokyo, Japan, in 1992. He is currently a profes-
sor at the Department of Computer Science of
the University of Tsukuba. His research inter-
ests include operating systems, distributed sys-
tems, and secure computing. He received distin-
guished paper awards from JSSST and IPSJ in
2004 and 2005, respectively.

http://dx.doi.org/10.1109/infcom.2011.5934965
http://dx.doi.org/10.1109/infcom.2011.5934965
http://dx.doi.org/10.1109/infcom.2011.5934965
http://dx.doi.org/10.1145/871656.859638
http://dx.doi.org/10.1145/871656.859638
http://dx.doi.org/10.1145/871656.859638
http://dx.doi.org/10.1145/871656.859638
http://dx.doi.org/10.1109/ipdps.2009.5161231
http://dx.doi.org/10.1109/ipdps.2009.5161231
http://dx.doi.org/10.1109/ipdps.2009.5161231
http://dx.doi.org/10.1109/cloudcom.2010.105
http://dx.doi.org/10.1109/cloudcom.2010.105
http://dx.doi.org/10.1109/cloudcom.2010.105
http://dx.doi.org/10.1109/cloudcom.2010.105
http://dx.doi.org/10.1109/ic2e.2014.70
http://dx.doi.org/10.1109/ic2e.2014.70
http://dx.doi.org/10.1109/ic2e.2014.70
http://dx.doi.org/10.1109/ic2e.2014.70
http://dx.doi.org/10.1145/1951365.1951378
http://dx.doi.org/10.1145/1951365.1951378
http://dx.doi.org/10.1145/1951365.1951378
http://dx.doi.org/10.1145/2505515.2505523
http://dx.doi.org/10.1145/2505515.2505523
http://dx.doi.org/10.1145/2505515.2505523
http://dx.doi.org/10.1145/2505515.2505523
http://dx.doi.org/10.1109/date.2000.840010
http://dx.doi.org/10.1109/date.2000.840010
http://dx.doi.org/10.1109/date.2000.840010
http://dx.doi.org/10.1109/date.2000.840010
http://dx.doi.org/10.1007/978-3-319-03874-2_6
http://dx.doi.org/10.1007/978-3-319-03874-2_6
http://dx.doi.org/10.1007/978-3-319-03874-2_6
http://dx.doi.org/10.1007/978-3-319-03874-2_6
http://dx.doi.org/10.1109/igcc.2013.6604522
http://dx.doi.org/10.1109/igcc.2013.6604522
http://dx.doi.org/10.1109/igcc.2013.6604522
http://dx.doi.org/10.1109/igcc.2013.6604522
http://dx.doi.org/10.1145/1006209.1006220
http://dx.doi.org/10.1145/1006209.1006220
http://dx.doi.org/10.1145/1006209.1006220
http://dx.doi.org/10.1145/1140103.1140281
http://dx.doi.org/10.1145/1140103.1140281
http://dx.doi.org/10.1145/1140103.1140281
http://dx.doi.org/10.1145/1140103.1140281
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1109/cloudcom.2010.35
http://dx.doi.org/10.1109/cloudcom.2010.35
http://dx.doi.org/10.1109/cloudcom.2010.35
http://dx.doi.org/10.1109/cloudcom.2010.35
http://dx.doi.org/10.1145/1095810.1095828
http://dx.doi.org/10.1145/1095810.1095828
http://dx.doi.org/10.1145/1095810.1095828

