外科,整形外科的疾患に関する臨床医学的研究,リハビリテーションに関する臨床医学的研究

Characteristics of muscular strength of various athletes in isokinetic contraction

〇栅木聖也、宮永豊、下條仁士、小柳好生、水澤克子 (筑波大学) 白木仁(名城大学)

BIODEX 等速性運動 リハビリテーション

OSEIYA MASEGI, YUTAKA MIYANAGA, HITOSHI SHIMOJO, YOSHIO KOYANAGI, KATSUKO MIZUSAWA(The University of Tsukuba)
HITOSHI SHIRAKI(Meijyo University)

1,目的

Cybex machineなどを用いた等速性運動の筋力測定 や、リハビリテーションにおける筋力の回復過程の 評価に関する報告は数多く行われてきた。しかし、 これらの大部分は測定スピードの上限が300deg./s ec.であり、これを上回るスピードで測定したものは 少ない。実際の運動局面では、関節の運動速度は30 Odeg./ sec.を上回ることが多いと考えられるため、 運動選手の筋力評価および競技復帰のためのリハビ リテーションを行う際には、より高速度での運動時 の筋力測定を行うことが、運動時に発揮される筋力 の再現および訓練という面で重要であると考えられ る。また、リハビリテーションを行う上では、筋力 回復のための目標値は競技種目によって異なるもの に設定するべきであると考えられるが、この問題に 関する研究は少ない。今回我々は、450deg./sec.ま での測定が可能な器械を用いて、各種の運動競技選 手の膝・足関節の等速性運動時の筋力測定を行い、 高速度の運動時の各競技における筋力特性を明らか にすると共に、傷害発生後のリハビリテーションの、 異なる競技における筋力面での目標設定のための基 礎的資料を得ることを目的とした.

2,方法

被験者は筑波大学の18-22才の男子学生90名であり、その内訳は陸上競技部短距離選手20名、中・長距離選手16名、バスケットボール選手11名、水泳部競泳選手17名、サッカー選手16名、一般学生10名である。被験者は、運動選手については専門種目のトレーニングを十分に積んだ者であり、一般学生については過去三年間に専門的な運動トレーニングの経験の無いものとした。測定はBIODEX CO. (米国)製の測定器械BIODEXを用いて行われた。測定速度は30deg./sec.、180deg./sec.、450deg./sec.の3種類とし、被験者に左右の膝関節および足関節の伸展・屈曲を最大努力で3回行わせた。得られたトルク曲線をコンピュータ処理し、伸展・屈曲時のPeak Torque、Angle of Peak Torque を得、これらの値を統計処理した。

3、結果と考察

膝関節のPeak Torque(表 1 参照)においては、 バスケットボール、サッカー選手が屈曲時に他の運 動群よりも大きい傾向を示した。屈曲/伸展比では、 運動速度の上昇にともない、その値が100%に接近し た。また、膝関節におけるAngle of Peak Torqueに は、競技間の差はみられず、運動速度が上昇するの にともない、屈曲時と伸展時の角度が接近するとい う共通の傾向がみられた。足関節のPeak Torqueにお いては、競泳選手が背屈時に他の運動群よりも小さ い値を示した。しかし、背屈ノ底屈比には、一定の 傾向はみられなかった。足関節の Angle of Peak Torqueにおいては、短距離・中長距離選手が一般学 生と同じ傾向を示した。膝関節・足関節共に、屈曲 /伸展比・背屈/底屈比には競技間の差は認められ なかった。また、明確な左右差も認められなかった。 これらの結果は、各競技間の運動形態、およびトレ ーニング負荷などの違いに起因するものであると考 えられる。

以上の結果より、運動選手のリハビリテーション のプログラムを作成する際には、一般人よりも高度 で、専門としている運動種目を十分考慮した目標を 設定する必要のあることが示唆された。また、健側 の筋力値を回復の目標値、および評価の基準とする ことが妥当であると考えられる。

表1 腠関節における伸展・屈曲のビークトルクと屈/伸比、左/右比(30deg./sec.)

ITEI	Extension (fl-1bs)		Flexion (ft-Ibs)		F1./Ex. (%)		Ex. L/R (%)		FI. L/R (%)	
EVENT	$\frac{\overline{x}}{x}$	S.O.	\overline{x}	S.O.	\overline{x}	S.D.	x	s.D.	x	5.0.
Sprinter (n=20) Basketbatt(n=11) Soccer (n=16) Svimming (n=17) Long Dist.(n=16) Control (n=10)	183.2 214.1 215.2 175.4 139.4 126.3	28.43 28.52 31.67 36.50 28.02 28.61	106.7 124.4 111.6 96.5 81.1 73.3	16.69 16.63 16.04 13.72 13.96 19.65	58.9 58.6 52.4 56.2 58.9 58.3	8.91 7.83 7.28 8.60 6.86 9.24		11.72 8.22 11.18 10.24 12.26 20.71	92.3 98.7 92.5 98.9 99.4 98.5	12.45 10.73 7.18 8.98 10.83 6.42