
Pacific Graphics 2015
N. J. Mitra, J. Stam, and K. Xu
(Guest Editors)

Volume 34 (2015), Number 7

An Efficient Boundary Handling with a Modified Density

Calculation for SPH

Makoto Fujisawa1 and Kenjiro T. Miura2

1University of Tsukuba, Japan
2Shizuoka University, Japan

Abstract

We propose a new boundary handling method for smoothed particle hydrodynamics (SPH). Previous approaches

required the use of boundary particles to prevent particles from sticking to the boundary. We address this issue by

correcting the fundamental equations of SPH with the integration of a kernel function. Our approach is able to

directly handle triangle mesh boundaries without the need for boundary particles. We also show how our approach

can be integrated into a position-based fluid framework.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Particle-based fluid simulation is widely used to model com-
plex fluid phenomena for computer graphics animation be-
cause it offers attractive features such as mass conserva-
tion, ease of extending the simulation space, and simplic-
ity. One popular particle-based fluid simulation technique
is smoothed particle hydrodynamics (SPH). SPH simula-
tion has two main problems. The first is how to enforce in-
compressibility. SPH was originally designed to model com-
pressible flows, and thus allows the density to change easily.
Many methods, such as WCSPH [BT07], PCISPH [SP09],
position-based fluids [MM13], and IISPH [ICS∗14] have
been developed in order to solve this problem.

The second problem is how to handle solid boundaries.
Almost all fluid scenes in computer graphics include both
solids and fluids. Although we can simulate the interaction
between the fluid particles and boundary by assigning some
force or pressure to the particles near the boundary, the prob-
lem of particle stacking remains. The techniques for incom-
pressibility mentioned above tend to stabilize the density
of the particles, in other word, the distribution of particles
within the effective sphere. This can cause particles to clus-
ter along the boundary shape due to the absence of particles
inside the boundary. Many methods use boundary particles,
which are placed inside the boundary. Boundary particles are
treated somewhat like fluid particles except that they have a
static position. The particle representation restricts the de-

tails of the boundary since the shape of the boundary needs
to be approximated by finite-sized particles even though the
solid boundary is represented by a flat plane, a collection
of triangles, or other such shapes. This also dramatically in-
creases the number of particles in the simulation space. As
a result, the computational cost for a neighborhood particle
search is high.

In this paper, we present the theoretical problem of SPH
for the case where the scene has a solid boundary and show
how to solve this problem. We propose a fast calculation
method of integration of kernel functions, which are used to
correct the problems for a triangle mesh. We treat the mesh
as a collection of flat planes. Our method is based on the
basic formulation of SPH, meaning that it can be applied to
various different SPH algorithms, even algorithms that do
not use pressure or force. As an example, we show that our
method can be applied to PBF [MM13].

2. Related Work

SPH was independently introduced by Gingold and Mon-
aghan [GM77] and Lucy [Luc77], and has been extensively
used for physics research. Müller et al. [MCG03] intro-
duced SPH for interactive viscosity fluid animation. Ex-
plicit calculation of pressure using an equation of state al-
lows for very fast computation, but also causes the incom-
pressibility problem. To solve this problem, various algo-
rithms have been developed [CBP05, BT07, SP09]. These

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

fujis
タイプライターテキスト

fujis
タイプライターテキスト
The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/ .

Makoto Fujisawa & Kenjiro T. Miura / paper1121

algorithms require very small time-step sizes for stable sim-
ulation. PBF [MM13] relaxes the time-step size with some
iterations. PBF achieves a constant density fluid by solving
a set of positional constraints using an iterative solver in-
tegrated into a position-based dynamics [MHHR07] frame-
work. IISPH [ICS∗14] also relaxes the time-step size by
solving a linear system. We refer to [IOS∗14] for more com-
plete survey on SPH for computer graphics.

A distance-based penalty method is commonly used to
solve the boundary handling problem for particle methods
[MKA∗04, Mon05, DTM∗12]. An impulse-based force is
also used to achieve two-way coupling between SPH fluid
and rigid bodies [CBP05, OKR09, HEW15]. These methods
only focus on the forces acting on the particle, so that the
particles near the boundary tend to stack to enforce uniform
density. Harada et al. [HKK07] solved this problem by using
a wall weight function for planar boundaries. Boundary par-
ticles are commonly used to produce a more smooth density
distribution on the boundary [BYM05, BIT09, BTT09]. The
boundaries are sampled from the frozen fluid particles, with
the boundary particles treated the same as the fluid particles.
Ihmsen et al. [IABT11] corrected the distribution of parti-
cles on the boundary by using the pressure force. Schechter
and Bridson [SB12] used ghost particles instead of frozen
particles. Ghost particles are placed during the simulation
depending on the position of the fluid particles on the bound-
ary. These methods required multiple layers of boundary
particles for smooth density or pressure distribution. Akinci
et al. [AIA∗12] only used one layer of particles by taking
into account a virtual volume calculated from the neighbor-
ing boundary particles. They extended their work to realize
two-way coupling with thin, deformable objects [ACAT13].

In order to correct density fluctuation on interface,
many kernel correction techniques are proposed. Li and
Liu [LL96] and Liu et al. [LLB97] proposed to use a mov-
ing least-square kernel to reproduce any order polynomial
with the irregular particle distribution. Colagrossi and Lan-
drini [CL03] also used the MLS kernel to re-initialize the
distribution of the density. Panizzo [Pan04] introduced a
Shepard filter to correct the kernel. These correction tech-
niques are only considering a distribution of neighboring
particles. Kulasegaram et al. [KBLP04] proposed an im-
provement to the equation for the density in SPH calcula-
tions, and was able to prevent particle stacking without us-
ing boundary particles. Their method introduced a correc-
tion term to avoid density underestimation at the boundary
by considering the area occupied by the solid boundary in
the effective radius. The correction term was calculated ap-
proximately by spline curve fitting and only planar bound-
aries were assumed. Feldman and Bonet [FB07] calculated
the correction term by integrating the density function in the
sphere with a boundary represented by several line segments
in two-dimensional space. Ferrand et al. [FLR∗13] proposed
a calculation method of the gradient of the correction term
using the Gauss theorem and Mayrhofer et al. [MFK∗15]

extended their work for a boundary represented by trian-
gles in three-dimensional space. They only considered the
gradient of the correction term while SPH approximation
of the equation of continuity and the momentum equation
only includes the gradient term. However the position-based
approach uses the density itself to evaluate an incompress-
ibility. He et al. [HWZ∗14] proposed a similar approach for
avoiding the ghost particles to calculate a surface tension
force acting on a free surface. They used two kernels to avoid
density underestimation while the method depends on user-
specified parameter and they did not address solid boundary
conditions.

In this paper, we present a theoretical solution for the cor-
rection term itself for the case of a planar boundary. We
also propose an approximate calculation method for triangle
mesh boundaries. Since this method improves the fundamen-
tal equation of SPH, it can be adapted for use with a variety
of algorithms. We integrate our method with PBF that does
not use force or pressure to correct density fluctuations.

3. Method

3.1. SPH algorithm

In SPH method, a general quantity A at x is approximated by
a weighted sum of neighbor particles.

A(x) = ∑
j∈N

m j

A j

ρ j
W (|x j − x|,h), (1)

where N is the number of neighbor particles, m j is the mass
of a particle j, ρ j is the density and the W (r,h) is a smooth-
ing kernel with effective radius h. For example, the density
of the fluid can be calculated by

ρ(x) = ∑
j∈N

m jW (|x− x j|,h). (2)

The derivative of the quantity ∇A is easily evaluated from
the derivative of the kernel function. Equation (1) is also
used to approximate other quantities in the governing equa-
tions.

3.2. Modified Density Calculation

The density calculation using equation (2) can also be de-
rived from a discrete density approximation. If we define the
density as a sum of masses around the position x, the discrete
density can be defined as follows.

ρ̂(x) = ∑
j∈N

m jδ(|x− x j|), (3)

where δ is the Dirac delta function. This definition creates
a discontinuity in the density field and is not suitable for
numerical calculations. In order to get a continuous field, a
Gaussian-like smoothing function W (r,h) is used.

ρ(x) =

∫
ρ̂(x′)W (|x− x′|,h)dx′∫

W (|x− x′|,h)dx′
(4)

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Makoto Fujisawa & Kenjiro T. Miura / paper1121

(a) Result without γ

(b) Result with γ

Figure 1: Examples of particle stacking.

Figure 2: Density calculation in two-dimensional space us-

ing the kernel function W.

By substituting equation (3) into (4), we can obtain a contin-
uous density for particle i [KBLP04].

ρi =
1

γi
∑
j∈N

m jW (|xi − x j|,h) (5)

where

γi =
∫

V
W (|xi − x|,h)dx (6)

The kernel function is designed to be γi = 1 when a spherical
region with effective radius h and center position xi is filled
with neighboring particles. This assumption is not true if the
particle i is on the boundary as shown in Figure 2. The gray
area represents a rigid boundary. In this case, integration of
the kernel function would give γi < 1. As a result, equation
(2) under the assumption of γi = 1 underestimates the den-
sity. This is why particle stacking occurs. Figure 1(a) shows
the effect that particle stacking has on simulations. The fluid
particles form a layer that causes a void region because of
the high density of the particles. In order to relax this, most

Figure 3: Coordinates for γ calculation.

methods sample the boundary particles in the boundary re-
gion to fill the neighbor particles in the spherical region.

In this paper, we use equation (5) instead of equation
(2). We are able to prevent particle stacking by using γ as
shown in Figure 1(b) without placing boundary particles.
In [KBLP04], γ is approximated by a spline function that
varies depending on the distance to the planar boundary. We
show that γ can be analytically calculated if we can assume
that the boundary is a plane.

3.3. γ for Planar Boundary

We assume the coordinate system as shown in Figure 3. The
origin is at the center position xi of the particle i and the z

points in the direction of nb which is the normal of the clos-
est boundary plane. Equation (6) can be rewritten in polar
coordinates (r,θ,φ) centered at xi as follows.

γi =
∫ 2π

0

∫ π

0

∫ g(θ)

0
W (r,h)r2 sinθdrdθdφ (7)

where g(θ) ∈ [0,h] is a distance function from the center xi

to the boundary. g(θ) is a constant with respect to φ under the
assumption that the z axis is equal to the normal nb. Thus, if
the boundary is represented by a plane z = c, then g(θ) can
be calculated by

g(θ) =

{ c

cosθ
θ > θ1

h θ ≦ θ1

(8)

where θ1 = π− cos−1(c/h) is the angle between the z axis
and a vector from the center to the boundary circle (see Fig-
ure 3). We define c as the signed distance from the center to
the boundary in these coordinates (c < 0 in case of Figure
3).

By assuming a linear polynomial for the boundary, the
distance function g can be defined in a simpler form. There
are many definitions of the kernel function W (r,h), but we
can calculate γ by substituting any kernel function into equa-
tion (7). In this paper, we use a Poly6 kernel [MCG03] for
the density calculation (see Appendix A) and Mathematica
(Wolfram Research) was used to solve equation (7).

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Makoto Fujisawa & Kenjiro T. Miura / paper1121

(a) (b) (c)

Figure 4: Combination of planar boundaries for γ calcula-

tion.

3.4. γ for Triangle Mesh

Triangle meshes are composed of several flat planes. We ex-
tend the γ calculation method for planar boundaries to mesh
boundaries. If there are n triangles in the effective sphere
whose radius equals h, we can calculate the γi (i = 0, ...,n)
for each triangle as a plane. For the case where W (r,h) is
constant, the γ value for the mesh boundary is easily cal-
culated by multiplying all γi because γ equals 1 when there
are no boundaries in the computational region. However, we
have to consider another strategy since W (r,h) is commonly
a Gaussian-like function. The simple solution is to use a nu-
merical integration method like Monte Carlo. However, this
would take a huge amount of computational time. We thus
only use the numerical integration method for vertices and
edges. These γ values are precomputed and stored in each
element.

Figure 4 shows three patterns for the case where two poly-
gons exist within the effective sphere. In the case shown
in Figure 4(a), γ can be calculated by simple addition and
subtraction since the two polygons (planes) do not intersect
within the sphere.

γ = 1−∑
i

(1− γi) (9)

where 1 − γi is the integrated value of W (r,h) in the gray
region in Figure 4(a).

In the case of Figure 4(b), the two planes intersect and
form a convex shape. We have to subtract the overlapping
region from the second term of equation (9).

γ = 1−

(

∑
i

(1− γi)−∑
i

∑
j>i

γ′i j

)

(10)

where γ′i j is the integral of W (r,h) in the overlapping region
represented by the dark gray in Figure 4(b). When the center
of the particle is located at the vertex (intersection point)
shared by the two planes in a two dimensional space, γ′i j

can be approximated by a function of γ′v and W̃ (r,h) ∈ [0,1],
which is a normalized W (r,h). This follows because W (r,h)
is a point-spread function. γ′i j will change depending on

W̃ (d,h) in 0 < d < h while d is the signed distance between
the vertex and the center of the particle (d < 0 means the

particle is inside the boundary).

γ′i j =











γ′v d ≤ 0

fd(W̃)γ′v 0 < d < h

0 d ≥ h

(11)

where fd(W̃) ∈ [0,1] is a function that approximates the
change in γ′i j . In this paper, we use fd(W̃) = W̃ 3, which is an

empirically derived function. γ′v is precomputed and stored
in each vertex.

In the case of three dimensions, we precompute γ′i j not

only for the vertices but also for the edges. γ′v in equation
(11) is replaced by the gamma of the edge γ′e. If one of the
vertices of the edge is also included in the sphere, we sub-
tract fd(W̃)γ′v from γ′e. Finally, fd(W̃)γ′v for all vertices in
the sphere are subtracted from γ. When the edge or the ver-
tex is convex such as in Figure 4(c), we can calculate using
γ = 1− γ′i j .

In order to treat more complex shapes, we have to con-
sider cases in which many more planes are located in the
sphere and form a bumpy surface. Our calculation proce-
dure considering these situations is outlined in Algorithm 1.
The edge and vertex in the sphere are called the shared edge
and the shared vertex respectively in Algorithm 1. Each edge
is processed sequentially and marked as processed to avoid
double addition or subtraction. If the calculated γ is less than
γmin, we use γ = γmin to avoid zero division.

3.5. Integration into PBF

PBF [MM13] is a position-based method for particle-based
fluid simulation. PBF can enforce the incompressibility of
the fluid by imposing a density constraint ci(x1, ...xN) =
ρi/ρ0 − 1 = 0 on all particles, where ρ0 is the rest density.
After particles have been moved to the predicted positions by
forces such as gravity, the position of particle xi is corrected
to satisfy the constraint (i.e. c(x+∆x) = 0) by the following
equation.

∆xi =
1

ρ0
∑
j∈N

(λi +λ j)∇W (xi − x j,h). (12)

where ∆x is the particle displacement and λ is a scaling fac-
tor expressed by

λ =−
ci(x1, ...xN)

∑k |∇xk ci|2 + ε
. (13)

The numerator ci can be computed from equation (5). The
denominator includes ∇ρi term because ∇xk ci is defined as
1
ρ0
∇xk ρi. We assume that γi is a function of the distance e =

d/h, which is the distance normalized by the effective radius
h. From this assumption, ∇ρi is given by equation (5).

∇ρi =
1

γi
∑
j∈N

m j∇W (xi − x j,h)−
ρi

γih

∂γi

∂e
nb. (14)

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Makoto Fujisawa & Kenjiro T. Miura / paper1121

Algorithm 1 γ calculation.

γ′ = 0
for each plane i without shared edge do

γ′+= 1− γi

end for

for each shared edge e formed by planes i and j do

if edge is concave then

γ′−= γ′i j

for p ∈ i, j do

if plane p includes another shared edge then

if another shared edge is convex
or unprocessed concave edge then

γ′+= 1− γp

end if

else

γ′+= 1− γp

end if

end for

if edge includes shared vertex v then

γ′−= fd(W̃)γ′v
end if

else

γ′+= γ′i j

for p ∈ i, j do

if plane p includes another shared edge then

if another shared edge is concave
or unprocessed convex edge then

γ′−= 1− γp

end if

end if

end for

end if

mark e as processed
end for

for each shared vertex v do

γ′+= fd(W̃)γ′v
end for

return 1− γ′

where nb is the normal to the boundary. We have to consider
the two cases k = i and k 6= i, which then gives the final
equation:

∇xk ci =
1

ρ0γi







∑
j∈N

m j∇W (xi − x j,h)−
ρi

h
Nb k = i,

−mi∇W (xi − xk,h) k 6= i,
(15)

where Nb =
∂γi

∂e
nb and ∂γ/∂e are the derivatives of γ along

the normal direction. We use the central difference to calcu-
late ∂γ/∂e.

4. Results

This section describes the results of applying the proposed
method to several test cases. All results were generated on a
computer equipped with a 3.7 GHz Intel Core i7 CPU and
an NVIDIA GeForce GTX TITAN GPU. The algorithm was
predominantly implemented on a GPU by using NVIDIA
CUDA. We also used a SOR solver [MMCK14] to process
the PBF in parallel.

Figure 1 shows a breaking dam scene with approximately
15,000 particles and 6 planar boundaries. Our method could
prevent particle stacking. Figure 5 shows a breaking dam
scene with bunny meshes. The number of particles is approx-
imately 105,000 and the bunnies are composed of around
15,000 triangles. Our approach can handle not only the
planner boundary surrounding the scene but also the mesh
boundary. Figure 6 shows a water drop scene with a bowl
shaped boundary. The number of particles is approximately
70,000 and the bowl is composed of around 4,000 triangles.
Figure 7 shows a cross-section of the Figure 6. Only the fluid
particles are shown. We do not observe particle stacking in
the case of the mesh boundary. Figure 8 shows the results
for a water flow scene on a bumpy downslope. If we want to
accurately represent this kind of boundary, a large number
of very small sized boundary particles is required. The max-
imum number of particles is around 35,000 and there are
2,000 triangles in the boundary. All the meshes used to the
experiments are large enough compared to the kernel size.
We have to carefully set the kernel size because Algorithm 1
might cause a problem in case of the mesh is very fine.

Table 1 sumarizes the performance of our method and ex-
isting boundary handling approach for particle-based bound-
ary [AIA∗12] for all results. The boundary particles are
placed on not only the polygon objects but also the bound-
ary of simulation space. The timestep is 0.005s for all scenes.
The computational time of our method depends on the num-
ber of the polygons used to represent the boundary and it is
not good results compared to previous method due to the
complex algorithm. On the other hand, our method has a
benefit in terms of a memory consumption. Therefore, the
method is well suited for scenes with many fluid particles
and simple boundary shapes, such as a flood in buildings or
terrains.

5. Conclusions and Future Work

We proposed a new boundary handling method for SPH that
does not sample particles inside the boundary. Fast calcu-
lation by integration of a kernel function allows for direct
interactions between the fluid particles and mesh boundary
without particle stacking. Our approach can easily be ex-
tended to various SPH algorithms and we showed the results
of this for the PBF framework.

As future work, we plan to extend our approach to two-
way interactions using impulse-based techniques, since cur-

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Makoto Fujisawa & Kenjiro T. Miura / paper1121

Table 1: Perfomance results for all examples

Our method [AIA∗12]
Scene particles polygons time/step[s] memory time/step[s] memory boudary particles

Dam Break 15k 6 0.032 51MB 0.03 62MB 20k
Drop into Bowl 70k 4k 0.56 108MB 0.06 148MB 170k

Dam Break with Bunnies 105k 15k 2.49 159MB 0.3 202MB 98k
Flow on Bumpy Slope 35k 2k 0.25 100MB 0.12 196MB 156k

Figure 5: Dam breaking scene with bunnies (105k particles

and 15k polygon mesh).

rent methods only support one-way interactions from the
solid boundary to the fluid particles. Also the method would
easily extend for the moving rigid obstacles because the
cached γ value is independent to a rotation and a transla-
tion. Our algorithm for the polygon boundary needs to be
improved to handle boundaries in which the planes intersect
in a more complex fashion in the effective sphere. We are
also interested in extending to other kinds of surface rep-
resentations, such as quadratic polynomials and spline sur-
faces. Moreover, we have to improve the performance of the
method using more precomputation like a precomputated ra-
dial transfer [SKS02] or a combination with particle-based
boundary handling approach for only complex boundary.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Num-
ber 25730069 and 25289021. We also thank to anonymous
reviewers for their constructive comments. The images in
this paper were rendered using Mitsuba renderer†.

References

[ACAT13] AKINCI N., CORNELIS J., AKINCI G., TESCHNER

M.: Coupling elastic solids with smoothed particle hydrody-
namics fluids. Computer Animation and Virtual Worlds 24, 3-4
(2013), 195–203. 2

[AIA∗12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER

B., TESCHNER M.: Versatile rigid-fluid coupling for incom-
pressible sph. ACM Trans. Graph. 31, 4 (July 2012), 62:1–62:8.
2, 5, 6

[BIT09] BECKER M., IHMSEN M., TESCHNER M.: Corotated
sph for deformable solids. In Proc. Eurographics Workshop on

Natural Phenomena (2009). 2

[BT07] BECKER M., TESCHNER M.: Weakly compressible sph
for free surface flows. In SCA ’07: Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(2007), pp. 209–217. 1

[BTT09] BECKER M., TESSENDORF H., TESCHNER M.: Direct
forcing for lagrangian rigid-fluid coupling. IEEE Transactions

on Visualization and Computer Graphics 15 (2009), 493–503. 2

[BYM05] BELL N., YU Y., MUCHA P. J.: Particle-based sim-
ulation of granular materials. In SCA ’05: Proceedings of the

2005 ACM SIGGRAPH/Eurographics symposium on Computer

animation (New York, NY, USA, 2005), ACM, pp. 77–86. 2

† http://www.mitsuba-renderer.org

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Makoto Fujisawa & Kenjiro T. Miura / paper1121

Figure 6: Water dropping into a bowl-shaped mesh boundary (70k particles and 4k polygon mesh).

Figure 7: Underlying simulation particles of the water drop

scene.

[CBP05] CLAVET S., BEAUDOIN P., POULIN P.: Particle-based
viscoelastic fluid simulation. In ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (July 2005), pp. 219–228. 1,
2

[CL03] COLAGROSSI A., LANDRINI M.: Numerical simulation
of interfacial flows by smoothed particle hydrodynamics. Journal

of Computational Physics 191, 2 (2003), 448–475. 2

[DTM∗12] DU P., TANG M., MENG C., TONG R., LIN L.: A
fluid/cloth coupling method for high velocity collision simula-
tion. In Proceedings of the 11th ACM SIGGRAPH International

Conference on Virtual-Reality Continuum and Its Applications

in Industry (New York, NY, USA, 2012), VRCAI ’12, ACM,
pp. 309–314. 2

[FB07] FELDMAN J., BONET J.: Dynamic refinement and bound-
ary contact forces in sph with applications in fluid flow problems.
International Journal for Numerical Methods in Engineering 72

(2007), 295–324. 2

[FLR∗13] FERRAND M., LAURENCE D., ROGERS B., VIOLEAU

D., KASSIOTIS C.: Unified semi-analytical wall boundary con-
ditions for inviscid, laminar or turbulent flows in the meshless sph
method. International Journal for Numerical Methods in Fluids

71 (2013), 446–472. 2

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed particle
hydrodynamics - theory and application to non-spherical stars.
Monthly Notices of the Royal Astronomical Society 181 (1977),
375–389. 1

[HEW15] HUBER M., EBERHARDT B., WEISKOPF D.: Bound-
ary handling at cloth-fluid contact. Computer Graphics Forum

34, 1 (2015), 14–25. 2

[HKK07] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics in complex shapes. In Proc.

Spring Conference on Computer Graphics (2007), pp. 235–241.
2

[HWZ∗14] HE X., WANG H., ZHANG F., WANG H., WANG G.,
ZHOU K.: Robust simulation of sparsely sampled thin features
in sph-based free surface flows. ACM Trans. Graph. 34, 1 (Dec.
2014), 7:1–7:9. 2

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER

M.: A parallel sph implementation on multi-core cpus. Com-

puter Graphics Forum 30, 1 (March 2011), 99–112. 2

[ICS∗14] IHMSEN M., CORNELIS J., SOLENTHALER B., HOR-
VATH C., TESCHNER M.: Implicit incompressible sph. IEEE

Transactions on Visualization and Computer Graphics 20, 3
(Mar. 2014), 426–435. 1, 2

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KOLB A., TESCHNER M.: Sph fluids in computer graphics. In
Eurographics 2014 - State of the Art Reports (2014), pp. 21–42.
2

[KBLP04] KULASEGARAM S., BONET J., LEWIS R. W.,
PROFIT M.: A variational formulation based contact algorithm
for rigid boundaries in two-dimensional sph applications. Com-

putational Mechanics 33, 4 (2004), 316–325. 2, 3

[LL96] LI S., LIU W. K.: Moving least-square reproducing ker-
nel method part ii: Fourier analysis. Computer Methods in Ap-

plied Mechanics and Engineering 139, 1-4 (1996), 159 – 193.
2

[LLB97] LIU W.-K., LI S., BELYTSCHKO T.: Moving least-
square reproducing kernel methods (i) methodology and conver-
gence. Computer Methods in Applied Mechanics and Engineer-

ing 143, 1-2 (1997), 113 – 154. 2

[Luc77] LUCY L. B.: A numerical approach to the testing of
the fission hypothesis. The Astronomical Journal 82, 12 (1977),
1013–1024. 1

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proc.

ACM/Eurographics Symposium on Computer Animation 2003

(2003), pp. 154–159. 1, 3

[MFK∗15] MAYRHOFER A., FERRAND M., KASSIOTIS C., VI-
OLEAU D., MOREL F.-X.: Unified semi-analytical wall bound-
ary conditions in sph: analytical extension to 3-d. Numerical Al-

gorithms 68 (2015), 15–34. 2

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. J. Vis. Comun. Image

Represent. 18, 2 (2007), 109–118. 2

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Makoto Fujisawa & Kenjiro T. Miura / paper1121

Figure 8: Water flow on a bumpy downslope (maximum 35k particles and 2k polygon mesh).

[MKA∗04] MÜLLER M., KEISER R., A.NEALEN, PAULY M.,
GROSS M., ALEXA M.: Point based animation of elastic, plastic
and melting objects. In SCA2004 (2004). 2

[MM13] MACKLIN M., MÜLLER M.: Position based fluids.
ACM Trans. Graph. 32, 4 (2013), 104:1–104:12. 1, 2, 4

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM

T.-Y.: Unified particle physics for real-time applications. ACM

Trans. Graph. 33, 4 (July 2014), 153:1–153:12. 5

[Mon05] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Reports on Progress in Physics 68, 8 (2005), 1703. 2

[OKR09] OH S., KIM Y., ROH B.-S.: Impulse-based rigid body
interaction in sph. Computer Animation and Virtual Worlds 20,
2-3 (2009), 215–224. 2

[Pan04] PANIZZO A.: Physical and numerical modelling of sub-

aerial landslide generated waves. PhD thesis, Universita degli
studi di L ’Aquila, 2004. 2

[SB12] SCHECHTER H., BRIDSON R.: Ghost sph for animating
water. ACM Trans. Graph. 31, 4 (July 2012), 61:1–61:8. 2

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In Proceedings of the 29th

annual conference on Computer graphics and interactive tech-

niques (New York, NY, USA, 2002), SIGGRAPH ’02, ACM,
pp. 527–536. 6

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible sph. In SIGGRAPH ’09: ACM SIGGRAPH 2009

papers (New York, NY, USA, 2009), ACM, pp. 1–6. 1

Appendix A: Equation of γ with Poly6 kernel

The Poly6 kernel for the density calculation in three-
dimensional space is

W (r,h) =
315

64πh9

(

h
2 − r

2
)3

.

Also, equation (7) can be rewritten as

γi = 2π

(∫ θ1

0
sinθ

∫ h

0
W (r,h)r2

drdθ

+
∫ π

θ1

sinθ

∫ c
cos θ

0
W (r,h)r2

drdθ

)

.

By substituting the Poly6 kernel function and equation (8)
into above equation, we can obtain the following equation.

γi =
cosθ1 +1

2

+
315

32h9

(

c3h6

6

(

1− sec2 θ1

)

−
3c5h4

20

(

1− sec4 θ1

)

+
c7h2

14

(

1− sec6 θ1

)

−
c9

72

(

1− sec8 θ1

))

.

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

