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Chapter 1: General introduction 

1. Domestication of durum wheat 

There are two species of wheat: hexaploid bread wheat: Triticum aestivum (2n = 6X = 42, 

AABBDD), and tetraploid, hard or durum-type wheat, T. durum (2n = 4X = 28, AABB). 

Wheat domestication took place 12,000 years ago in the Near East, with the wild ancestor (T. 

turgidum ssp. dicoccoides) giving rise to the first domesticated form emmer wheat (T. 

turgidum ssp. Dicoccum (Zohary and Hopf, 2000).  

Durum wheat (turgidum durum) is particularly grown around the Mediterranean Sea and 

it is the only tetraploid species of wheat that is widely cultivated today. Recently, more than 

half of the durum wheat is still grown in the Mediterranean basin, mainly in Italy, Spain, 

France, Greece, West Asian, and North African countries (Maccaferri et al., 2003). Durum 

wheat continued to spread throughout Europe at the end of the 15th century. Thanks to the 

Columbian Exchange (artificial re-establishment of connections through the commingling of 

Old and New World plants, animals, and bacteria) durum wheat was spreading throughout 

America allowed this crop from the old world to the new world (Ren et al., 2013). About 

2000 years after this event, the spread of agriculture from this region led to the most recent 

history of durum wheat has been marked by modern genetic improvement, including the 

substitution of landraces by inbred varieties and the subsequent breeding process for certain 

desirable characteristics, such as high and stable yields. These historical events are likely to 

have altered the original genetic structure and genetic diversity pattern of wheat (Ren et al., 

2013).  In addition, such artificial selection activities may result in significant differentiation 

at some loci during domestication and the subsequent breeding process, since traits such as 

grain yield, seed size, plant height, etc., are quantitatively inherited (Peng et al., 2011). These 

events may also induce the apparition of resistant genotypes to biotic and abiotic stresses 

especially in those areas where durum wheat was growing. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449565/#bib42
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2. Durum wheat production 

World durum production for the 2010/11 marketing year is estimated at 3.0 million 

metric tons (Fig.1.1), 12 percent lower than 2009/10, largely because of a decline in Canada. 

A lower price forecast and difficult planting conditions reduced planting areas (USDA, 

2010). The decrease in production for 2010-2011 is mainly due to the environmental effects. 

For instance, durum production in Canada is estimated at 3.0 million tons in 2010/11 

compared with 5.4 million tons in 2009/2010. Durum seeded area dropped by 42 percent 

because of lower anticipated Canadian Wheat Board pool prices during planting and 

excessive rains at planting time. Flooding and waterlogged conditions in the major durum 

producing areas affected sowing activities (USDA, 2010). The European Union‟s (EU) 

2010/11 durum wheat production is estimated at 7.9 million tons from 2.7 million hectares. 

This compares to 8.1 million tons from 2.7 million hectares in 2009/2010 and 8.0 million 

tons from 2.9 million hectares for the five-year average. The 2010/11 durum crop represents 

about 6 percent of the total 136.3 million ton EU wheat crop and about 10 percent of its 25.9 

million hectares (USDA, 2010). Durum wheat production in Northwest Africa for 2010/11 is 

estimated at 4.4 million tons from 2.8 million hectares (USDA, 2010). This represents a 25% 

of reduction in production from 2009/2010 which due basically to unfavorable weather. The 

biggest reduction in durum wheat in Northwest Africa was in Tunisia, which typically 

produces about 80% of its wheat as durum wheat. Tunisia‟s durum wheat production 

decreased with 50% ranging from 1.4 to 0.7 million tons in 2009/2010 (USDA, 2010). The 

severe drought in Tunisia significantly reduced its grain production. Morocco‟s rainfall was 

excessive from December through March, drastically reducing their grain production.  
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3. Constraints 

In the world, wheat (durum or bread) production and productivity were highly affected by 

several constraints, among the most important we can cite:  

- Drought/heat tolerance 

Durum wheat as well as bread wheat, in many regions of the world has been facing water 

shortages and drought conditions for the last several years due to low rainfall and high 

temperatures. These conditions affected wheat production both in irrigated and rain-fed 

areas. To solve this problem it is necessary to breed tolerant varieties through selection and 

breeding techniques in addition to the relevant use of available irrigation water. 

- Diseases 

Cereals including wheat are at risk from numerous diseases, especially rusts which 

induces heavy losses when in epidemic form. For this reason, many efforts were undertaken 

by breeders in order to develop disease resistant and high yielding varieties. 

- Salinity 

Salinity is a big constraint to crop production and quality. In the major wheat growing 

regions of the world, wheat growth, yield and quality are affected by salinity. 

 

4. Salinity problem in the world 

4.1 Causes 

Primary salinity 

Primary salinity is a natural process that affects soils and waters and occurs generally in 

areas with low rainfall. In these regions, due to high evaporation or transpiration, salinity 

concentration in the soil will increase (McDowell, 2008). The majority of the globe
‟
s saline 

affected land is influenced by primary salinity caused by natural soil evolution (Hülsebusch 

et al., 2007). Arid tropical areas, in particular, are subjected to potential evaporation that is 

higher than rainfall, which leads to the rising of water to the topsoil where solutes accumulate 
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and salinity can occur naturally (Hülsebusch et al., 2007). The amount of salinity stored in 

the soil varies with the soil type, being low for sandy soils and high for soils contain a high 

percentage of clay minerals. It is also depending on the average of annual rainfall.  

Secondary salinity 

Secondary salinization results from human activities which affected the hydrological 

cycle either through the replacement of native vegetation with shallow-rooted vegetation or 

through the excessive use or inefficient distribution of water in irrigation for agriculture 

(Beresford et al., 2001; Rose, 2004). 

 

4.2 Consequences  

Salinity affects many parameters especially the soil structure and plant growth. For 

instance, when crops are too strongly affected by salinity, surface cover will be affected 

which will increase the vulnerability of soils to erosion. Further, the suppression of plant 

growth is caused by different factors such as osmotic potential effect, ion toxicity, which 

induce nutrient imbalances (Abari et al., 2011).  

 

4.3 Solutions 

Due to low water quality and the poor drainage systems salinity stress is considered as 

the greatest problem in many sectors including agriculture. In the world, many areas were 

affected by salinity (Table1.1) and this constraint is more acute with higher evaporation 

especially in arid and semi-arid areas where saline soils are widespread and productivity is 

very low. To minimize these effects many efforts should be provided in order to develop 

genomic approaches which will be particularly useful in effective engineering of plants for 

greater salinity tolerance (Cushman and Bohnert, 2000). Enhancing farming and irrigations 

systems are also important in order to maintain soil quality and avoid its erosion.  
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5. Mechanisms of growth reduction under salinity stress 

Plant growth under salinity stress conditions is regulated by a complex mechanism and the 

way in which it is affected by the stress is not fully understood. Soil salinity is a big 

constraint to physiological and metabolic processes in plant life, ultimately reducing growth 

and yield (Ashraf and Harris, 2004). Halophytes are tolerant to salinity stress compared to 

glycophytes including wheat. In these plants, salinity induces a significant reduction in their 

productivity due to specific ion toxicities (e.g. Na
+
 and Cl

-
) and ionic imbalances acting on 

biophysical and/or metabolic components of plant growth occurs (Grattan and Grieves, 

1999). Increased NaCl concentration has been reported to induce increases in Na and Cl as 

well as decreases in N, P, Ca, K and Mg level in fennel leading to changes in physiological 

and metabolic components of plant growth processes (Abd El-Wahab, 2006). 

Several mechanisms are responsible for reduction in plant growth under salinity stress 

such as: 

 Osmotic stress 

 Ion toxicity  

 Nutritional imbalance  

 Oxidative stress 

 

5.1 Osmotic stress 

According to some researchers, the presence of excessive salt in soil solution reduced the 

ability of plants to take up water leading to the reduction of plant growth (Munns et al., 

2006). The primary cause of growth reduction due to the excess of salinity the energy 

required for growth which is utilized by plants to acquire water from the soil and to make 

metabolic adjustments. Additionally, water potentials of saline soils are more negative and 
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water is thus less available for plant uptake due to osmotic forces, even if volumetric soil 

water contents are as high as field capacity (Oron et al., 1999). 

 

5.2 Specific ion toxicity 

According to Chinnusamy et al. (2005), growth reduction under salinity stress is mainly 

due to the uptake of certain ions (Na
+
 and Cl

-
) at supra-optimal level is termed as ion toxicity. 

Na
+ 

and Cl
-
 accumulated in leaves up to toxic levels negatively affect the metabolic processes 

and delay the growth and development of wheat plants. 

Further, salinity alters uptake and absorption rates of all mineral nutrients resulting in 

deficiency symptoms. Bonilla et al. (2004) reported that most toxic effects of NaCl are 

mainly due to the Na
+ 

toxicity. 

 

5.3 Nutritional imbalance 

Plant growth and development is highly affected by nutritional imbalances. For instance, 

when the concentration or activity of the essential nutrient element exceeds the optimal 

range, growth may be inhibited due to either toxicity or to nutrient-induced deficiency. 

Decreased nitrogen uptake under saline conditions was attributed to interaction between Na
+
 

and NH4
+
 and/or between Cl

-
 and NO3

-
 (Leidi et al., 1991). This reduction of these nutrients 

leads to decrease the growth and yield of the crop.  Many researchers attributed this reduction 

to Cl
- 
antagonism of NO3

-
 uptake (Bar et al., 1997; Feigin, 1990) while others attributed the 

response to salinity
‟
s effect on reduced water uptake (Lea-Cox and Syvertsen, 1993).  

Grattan and Grieve (1999) reported that one plant may not exhibit the same response 

function under saline conditions as it does under non-saline conditions. Indeed, the optimal 

range may be widened, narrowed, or it may shift in one direction or the other depending on 

the plant species, the particular nutrient, the salinity level, or environmental conditions. The 

interaction between salinity and phosphorus (P) is also highly dependent upon many factors 
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such as plant species, salinity and P concentrations (Grattan and Grieve, 1999). The 

maintenance of suitable potassic nutrition to support growth of different organs requires a 

good selectivity, in the aerial organs of K
+
 absorption, accumulation and transport compared 

to Na
+
. According to many researchers (Gorham et al., 1990; Schactman et al., 1991; Yeo et 

al., 1991), a high foliar K
+
/Na

+
 ratio is a salinity tolerance criterion in halophytes and in 

some tolerant glycophytes plants.   

Moreover, the selectivity of the root system for K
+
 over Na

+
 must be sufficient to meet 

the levels of K
+
 required for metabolic processes, for the regulation of ion transport, and for 

osmotic adjustment (Grattan and Grieve, 1999). Cramer et al. (1985) reported that the 

selectivity of K
+
/Na

+
 is improved by the presence of Ca

2+
.  

 

5.4 Oxidative Stress     

Salinity can induce oxidative stress due to the reduction of CO2 assimilation. This lead to 

the accumulation of reactive oxygen species (ROS) which is harmful to plant cells at high 

concentrations. They cause oxidative damage to membrane lipids, proteins, and nucleic acids 

(Gómez et al., 1999; Hernández et al., 2001). Further, the excessive production of ROS 

under salinity stress caused by impaired electron transport processes in chloroplast and 

mitochondria as well as pathways such as photorespiration (Fig.1.2). ROS is responsible for 

the chlorophyll degradation and also for the development of leaf chlorosis and necrosis (Choi 

et al., 2002). 

 

6. Mechanism of tolerance to salinity 

Despite the negative effects of salinity on plant functions and metabolisms, many crops 

could survive in saline conditions.  To cope with salinity stress, plants have adapted to 

several mechanisms (Munns and Tester, 2008): 

-  The tolerance to osmotic stress  
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-  The Na
+
 exclusion from leaf blades 

-  Tissue tolerance 

The tolerance to osmotic stress 

The osmotic effect of salinity stress has a strong effect on plant growth and development. 

In fact, osmotic tolerance involves the plant‟s ability to tolerate the drought aspect of salinity 

stress and to maintain leaf expansion and stomatal conductance (Rajendran et al., 2009). 

According to Munns and Tester (2008), increasing osmotic tolerance in plants is highly 

related to their ability to continue production and growth of new and greater leaves, and 

higher stomatal conductance.  

The Na
+ 

exclusion from leaf blades 

 Salinity can be excluded from entering the plant through its root system, or within the 

plant, salinity can be restricted from reaching sensitive organs. In the majority of plant 

species grown under salinity stress, Na
+
 appears to reach a toxic concentration before Cl

− 

does. Therefore, most of researches have concentrated on Na
+
 exclusion and the control of 

Na
+
 transport within the plant (Munns and Tester, 2008). Na

+
 exclusion by roots ensures that 

Na
+
 does not accumulate to toxic concentrations within leaf blades; however a failure in Na

+
 

exclusion induces its toxic effect after short or long period, depending on the species, and 

causes premature death of older leaves (Munns and Tester, 2008). 

Tissue tolerance 

 The third mechanism, tissue tolerance induces an increase of survival of old leaves. It 

requires compartmentalization of Na
+
 and Cl

−
 at the cellular and intracellular level to avoid 

toxic concentrations within the cytoplasm, especially in mesophyll cells in the leaf (Munns 

and Tester, 2008) and synthesis and accumulation of compatible solutes within the 

cytoplasm. These compatible solutes have a great role in plant osmotic tolerance through 

different pathways such as protecting enzymes from denaturation, stabilising membrane, 

macromolecules or maintaining osmotic adjustment (Ashraf and Foolad, 2007). 



9 
 

7. Durum wheat and salinity tolerance 

 Wheat (Triticum aestivum) is a moderately salinity-tolerant crop (Maas and Hoffman, 

1977). In the field, where the salinity rises to 100 mM NaCl (about 10 dS m
-1

), rice (Oryza 

sativa) will die before maturity, while wheat will produce a reduced yield. Even barley 

(Hordeum vulgare), the most-tolerant cereal, dies after extended periods at salinity 

concentrations higher than 250 mM NaCl (equivalent to 50% seawater). Durum wheat 

(Triticum turgidum ssp. durum) is less salinity tolerant than bread wheat, same as maize (Zea 

mays) and sorghum (Sorghum bicolor) (Maas and Hoffman, 1977; USDA-ARS, 2005).  

 Tolerance to salinity depends on the ability of plants to cope with ion toxicity. For 

instance, when salinity enters into a plant, the plant responds in two phases. The first phase is 

a plant response to osmotic stress caused by salinity. In this phase all plants similarly respond 

to the initial effect of salinity. The second phase is a plant response to ionic stress and the 

effect is more acute among susceptible species compared to tolerant ones. When ions are 

accumulated in plant for longer period of time then true difference in salinity tolerance 

emerges (Munns, 1993). Salinity susceptible genotypes build up ions more rapidly than 

salinity tolerant genotypes which cause leaf death and eventually plant death (Munns et al., 

2002). 

 The response of crops to different phases depends on plant species. For instance, within 

durum wheat varieties, the osmotic effects of salinity cause rapid and persistent growth 

inhibition and depression of grain yield and show little genotypic variation (James et al., 

2002; Munns and James, 2003). In contrast, the ion-specific effects of Na
+ 

accumulation on 

growth and leaf senescence start to appear only after several weeks of salinity treatment and 

show substantial genotypic variation. Therefore, differences in salinity tolerance between 

durum wheat varieties are generally correlated with Na
+
 exclusion from leaves (Husain et al., 

2003; Munns and James, 2003). Munns (2002) screened 64 modern cultivars and ancient 

landraces of durum wheat and found that several landraces had leaf blade Na
+
 levels 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065380/#bib21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065380/#bib21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065380/#bib11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065380/#bib6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065380/#bib6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065380/#bib11
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comparable to those of bread wheat, indicating the presence of Na
+
 exclusion traits within the 

A or B genomes. Generally, several efforts have been undertaken in order to improve the 

salinity tolerance in durum wheat using traditional plant breeding as well as by 

biotechnological approaches.  

 

8. Breeding for salinity tolerance in durum wheat 

 Cultivated durum wheat (Triticum turgidum ssp. durum) is more sensitive to salinity than 

bread wheat (Triticum aestivum) (Munns and James, 2003), a feature that restricts the 

production of durum wheat on farms with sodic or saline soils. To increase the salinity 

tolerance of durum wheat, many researches (Gorham et al., 1990; Dvorak et al., 1994) have 

been taken into consideration to improve its sodium exclusion. In durum wheat as well as 

bread wheat, salinity tolerance is associated with low rates of transport of Na
+
 to shoots with 

high selectivity for K
+ 

over Na
+
 (Gorham et al., 1990; Husain et al., 2004).  

 Numerous techniques have been utilized to improve the salinity tolerance of durum 

wheat. These included screening of international germplasm, field evaluation of selected 

material, conventional breeding, and wide crosses. The major aim was to study genetic 

variations for salinity tolerance within wheat and its ancestors and also to develop salinity 

tolerant wheat cultivars. Hollington (1998) suggested the use of relative yield which allows 

the comparisons between genotypes. This finding was confirmed by Jafari-Shabestari et al. 

(1995), who screened 400 Iranian wheat on one site in California over two seasons, irrigated 

with water at three salinity levels (0, 1.5 and 8 dS m
-1

). They measured final biomass and 

yield, and calculated a „stress susceptibility index‟ that relates to grain yield in saline versus 

non-saline soils. They found weak correlation between grain yield at high salinity with 

biomass, harvest index, or stress susceptibility index, and noted that some susceptible 

varieties had low yield potential. Other researchers such as Kingsbury and Epstein (1984) 

and Meneguzzo et al. (2000) suggested that dry matter can be utilized as selection criteria for 
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evaluating crop salinity tolerance in controlled conditions. In the same concept, Richards et 

al. (1987) and Kelman and Qualset (1991) suggested that to assess the effectiveness of 

screening criteria reassessment should be done in saline field conditions for improving crop 

salinity tolerance. However, Houshmand et al. (2005) suggested that in vitro screening 

method compared to the field screening was comparably successful in recognizing salinity-

tolerant genotypes in durum wheat. Further, Munns and James (2003) reported that salinity 

tolerance in durum wheat is highly depending on Na
+
 exclusion process.  

 Genetic analysis in durum wheat showed that the low leaf blade Na
+
 phenotype was 

associated with two dominant alleles of major effect and that these alleles were interactive 

(epistatic) rather than additive (Munns et al., 2003). These are Nax1 and Nax2 (Na
+ 

exclusion 

loci). Recently, a molecular marker linked to Nax1 was identified and proven to facilitate the 

rapid transfer of this trait into commercial varieties of durum wheat (Lindsay et al., 2004).  

 

9. QTL mapping and genetic basis for salinity tolerance 

 QTL mapping has been a key tool to study the genetic inheritance of complex traits in 

plants (Kearsey, 1998). Most agronomically important traits such as yield, grain quality and 

resistance/tolerance to biotic and/or abiotic stresses are complex traits. QTL mapping of traits 

is the best method to understand the genetic basis between important traits. This has potential 

to facilitate a more efficient improvement of target traits. 

 In salinity tolerance, many studies were undertaken using segregating population. This 

traditional method which derived from two homozygous parental genotypes has been the 

common approach for genetic analysis of salinity tolerance in rice (Koyama et al., 2001; Lin 

et al., 2004; Lee et al., 2006), wheat (Dubcovsky et al., 1996; Genc et al., 2010) and barley 

(Mano and Takeda 1997; Ellis et al., 2002; Xue et al., 2009; Witzel et al., 2010).  

Several loci were found to encode members of the HKT-family of ion transporters which 

have a key role in enhancing salinity tolerance such as the Salinityol locus (Bonilla et al., 
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2002) and SKC1 locus (Ren et al., 2005) in rice; Kna1 locus in bread wheat (Dubcovsky et 

al., 1996), and Nax1 and Nax2 in durum wheat (Byrt et al., 2007; Munns et al., 2012). 

 Additional studies were undertaken on bread wheat using physiological and agronomic 

traits. For instance, QTLs for chlorophyll content were mapped on homeologous groups 3 

and 7 using solution culture (Ma et al., 2007). Similarly, QTLs for dry matter were mapped 

on homeologous groups 1 and 3 after assessment of salinity for 25 days at 25 dS m
-1

(Ma et 

al., 2007). Quarrie et al. (2005) assessed salinity tolerance in the field (8.2 and 16.4 dS m
-1

) 

and detected QTLs for grain yield on homologous groups 1, 2, 3, 4, 5, 6 and 7. 

 Since QTL analysis need a large sample size and can only map those differences that are 

captured between the initial parental lines, these methods had some limitation. Because these 

lines are unlikely to contain segregating alleles of large effect at every locus contributing to 

variation in natural populations, some loci will remain undetected (Miles and Wayne, 2008). 

Furthermore, biparental QTL mapping detects genomic regions associated with traits with an 

accuracy ranging on average from 10-30 centimorgans (cM) (Salvi and Tuberosa, 2005; 

Bernardo, 2008) such chromosomal regions could contain a few hundred up to several 

thousand genes (Ingvarsson et al., 2010). Thus, additional fine-mapping or other methods to 

improve the mapping accuracy are needed to efficiently exploit the genetic variation for 

salinity tolerance in durum wheat. 

 

10. Association mapping 

 Association analysis of germplasm collections was recently performed to discover new 

useful allelic variation through genome-wide scans and/or to validate the effect of previously 

discovered QTLs by mapping populations (Flint-Garcia et al., 2005; Gupta et al., 2005). 

Compared to the traditional method, association mapping allows for a wider range of 

variation than analysis using segregating population (Gaut and Long 2003; Remington et al., 

2001; Skøt et al., 2007; Tommasini et al., 2007; Genc et al., 2010). Genome-wide 
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association studies are becoming increasingly popular in genetic research, and they are an 

excellent complement to QTL mapping. This method target to identify markers associated 

with the phenotypes of interest found in a set of unrelated individuals (Pritchard et al., 

2000b). Association mapping or linkage disequilibrium approach has recently been 

introduced in plant genetic research as well (Flint-Garcia et al., 2003; Kraakman et al., 2006; 

Cockram et al., 2010; Zhao et al., 2007; Atwell et al., 2010; Kloth et al., 2012) and they have 

been demonstrated to be promising to exploit the full potential of novel molecular marker 

and sequencing technologies (Zhu et al., 2008). 

 In association mapping, linkage disequilibrium (LD) plays a central role. LD is a 

population statistic for non-random association between alleles of different polymorphic loci. 

The decay in LD among neighbouring markers determines the marker density and 

experimental design needed to perform association mapping successfully. Linkage, selection, 

mutation and admixture all affect the level of LD. LD also depends on the mating system and 

therefore varies from species to species as well as between populations within species (Flint-

Garcia et al., 2003; Rostoks et al., 2006). In durum wheat, association mapping has also 

recently been described for different traits related to biotic and abiotic stress such as the 

resistance to leaf rust (Maccaferri et al., 2010), tolerance to drought (Maccaferri et al., 2011), 

resistance to Fusarium (Ghavami et al., 2011). However, no comprehensive study for 

tolerance to salinity was carried out using association analysis. Using QTL mapping, two 

Na+ exclusion genes were detected in durum wheat as follows: Nax1 on chromosome 2AL 

(Lindsay et al., 2004) and Nax2 on chromosome 5AL (James et al., 2006; Byrt et al., 2007; 

Munns et al., 2012). 

 Complementary to biparental QTL mapping, association mapping studies for salinity 

tolerance in durum wheat would greatly help to simplify the genetic architecture of various 

traits and help to optimally exploit the genetic variation for crop salinity tolerance 

improvement.  
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11. The objectives of this thesis 

 The research presented in this thesis aims to identify traits and QTLs that underlie salinity 

tolerance in durum wheat. The objectives are: 

1. To determine key traits associated with salinity tolerance and parameters for the 

assessment of salinity tolerance; 

2. To evaluate variation of salinity tolerance in a worldwide durum wheat collections. 

 3. To identify QTLs associated with salinity tolerance at the seedling and maturity stages. 

In Chapter 2 the response of 119 varieties of durum wheat to salinity stress was evaluated 

at seedling and maturity stages. At seedling stage, ten agronomic traits were recorded and 

four traits at maturity stage were measured. The wide variation of several traits under salinity 

stress showed the importance of these traits in salinity tolerance. Genetic correlation was 

calculated in term to understand the relationship between each trait. This study allowed the 

choice of key trait as a parameter for the assessment of salinity tolerance in durum wheat. 

Chapter 3 describes the evaluation of the variation in salinity tolerance in worldwide 

durum varieties. An association mapping approach is utilized to identify promising alleles 

contributing to salinity tolerance to facilitate future breeding for salinity tolerance.  

In Chapter 4, genetic analysis of the variation observed in salinity tolerance using 

Saragolla×Razzak (F2:3) mapping population is described. Saragolla and Razzek were chosen 

as parents based on the differences in salinity tolerance between these cultivars. 

 The General Discussion in Chapter 5 discusses the findings presented in this thesis in 

relation to the current status and the prospects of breeding for salinity tolerance in durum 

wheat. The impact of our results on major issues related to trait discovery strategies for 

salinity tolerance and salinity tolerance mechanisms in durum wheat and other related crops 

are addressed.  
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Fig. 1.1 Global durum wheat production (USDA, 2010). 
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Fig. 1.2 Main intracellular sites of ROS generation under salinity stress (Abogadallah, 2010). 
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Table 1.1 Salinised areas in the world. 

 

 Region  Total area (M ha) 

Africa 39 

Asia, the Pacific and Australia 195 

Europe 7 

Latin America 61 

Near East 92 

North America 5 

Total 397 

  Source: FAO (2008)  
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Chapter 2: Assessment of salinity tolerance 

1. Introduction 

 Wheat is the most widely grown cereal crop, providing 20% of humanity‟s dietary energy 

supply and serving as the main source of protein in developing nations (Braun et al., 2010).  

Salinity stress appears to be one of the constraints for wheat production: more than 800 

million hectares of land worldwide, or more than 6% of the world‟s total land area (FAO, 

2008), is salinity affected, severely impairing the agricultural production of many countries. 

Durum wheat was more sensitive to salinity stress than bread wheat (Munns and James, 

2003). Screening wheat for salinity tolerance at the seedling and maturity stages has been 

performed by a number of different researchers (Akram et al., 2002; Khayatnezhad and 

Gholamine, 2011); however, achieving genetic increases in yield under salinity stress has 

consistently proven a difficult challenge for plant breeders (Khayatnezhad et al., 2010). 

Moreover, selecting salinity tolerant genotypes is a relatively difficult task, due to the 

quantitative nature of salinity stress tolerance and the problems associated with developing 

appropriate and replicable testing environments (Arzani, 2008).  

 Salinity is defined as a soil condition characterized by a high concentration of soluble 

salts. Soils are classified as saline when the electrical conductivity (ECe) is 4 dS m
-1

 or more, 

which is equivalent to approximately 40 mM NaCl and generates an osmotic pressure of 

approximately 0.2 MPa. This definition of salinity is based on an ECe value which 

significantly reduces the yield of most crops (USDA-ARS, 2008). Indeed, ionic stress results 

in premature senescence of older leaves and in toxicity symptoms in mature leaves due to 

high Na
+
 which affects plants by disrupting protein synthesis and interfering with enzyme 

activity (Munns, 2002). The first response to salinity stress is reduction in the rate of leaf 

surface expansion, increasing with increased salinity concentration, and leading finally to 

cessation of expansion (Wang and Nil, 2000). Salinity stress also results in a considerable 
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decrease in the fresh and dry weights of leaves and stems, and the detrimental effects are 

observed at the whole-plant level as a decrease in productivity, or finally plant death. The 

suppression of growth occurs in all plants; however, the tolerance level and rate of growth 

reduction at lethal salinity concentrations varies widely among different plant species (Parida 

and Das, 2005). 

 The present study was conducted with the objective to determine key traits as a parameter 

for the assessment of salinity tolerance in durum wheat. 

 

2. Materials and methods 

2.1 Plant materials 

In order to study the effects of salinity stress at the seedling and maturity stages in durum 

wheat genotypes, two types of experiment were conducted using a randomized complete 

block design with two replications. In these experiments, a total of 119 varieties of durum 

wheat (Triticum durum L.) from throughout the world were used. These varieties were 

chosen from 10 different geographic areas (Table 2.1): East Asia, South Asia, the Middle 

East, North America, South America, Western Europe, Eastern Europe, South Africa, East 

Africa and North Africa.  

 

2.2 Seedling stage experiment 

The seedling stage experiment was conducted using a hydroponic setup. The seeds were 

sterilized by soaking in a solution of 5% hypochlorite sodium for 5 min. After the treatment, 

the seeds were washed several times with distilled water, and 10 seeds were placed in each 

petri dish (9 cm diameter), on moistened filter paper. The petri dishes were placed in a 

growth chamber at 22°C and 65% relative humidity for 8 days. After this period, selected 

homogenous seedlings were transplanted to a nutrient solution (a mixture of two solutions). 

The hydroponic experiment was conducted in a glass house under natural conditions. The 
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composition of the nutrient solution is shown in Table 2.2. This solution was renewed each 

week and the pH of the solution was maintained between 6.5 and 7. Ten days after 

transplantation, NaCl was added to the solution at a concentration of 25 mM, twice a day, 

until the final salinity concentration reached 100 mM (approximately 10 dS m
-1

). After thirty 

days, all plants were harvested and ten parameters were measured as follows: (1) chlorophyll 

content of the youngest fully expanded leaf blade was measured using a SPAD meter (six 

measurements per leaf), (2) the number of tillers per plant, (3) the number of leaves per tiller,  

(4) the proportion of dead leaves was determined by calculating the number of dead leaves 

divided by the total number of leaves, (5) leaf length, (6) total fresh weight, (7) shoot length, 

(8) root length, (9) shoot dry weight and (10) root dry weight .The number of tillers, number 

of total leaves and dead leaves, shoot length and leaf length were measured 25 days after 

treatment. Other parameters such as root length, shoot fresh weight, shoot dry weight and 

root dry weight were recorded after harvest. Shoots and roots were weighed after drying in an 

oven at 70°C for 72 hours. The salinity tolerance index (STI) was calculated for each trait 

recorded at seedling stage (excepting %DL) using the following formula (1) (Goudarzi and 

Pakniyat, 2008; Bauci et al., 2003; Ahmad et al., 2013):  

STI = (Value of trait under salinity stress / Value of trait under control) *100           (1)              

 

2.3 Maturity stage experiment  

The experiment at the maturity stage was conducted in a vinyl house under natural day-

length conditions (13/11h) in 2012 (the average of temperature ranged from 20 to 25°C) at 

University of Tsukuba in Japan. Six seeds per accession were sown in plastic pots (20 cm 

diameter * 25 cm tall) and at two-leaf stage; seedlings were thinned to a density of four per 

pot. Plants were subjected to salinity stress (100 mM NaCl) during boot stage of 

development (Z41). At maturity stage when grains were ripe (Z92), all plants were harvested. 

Four parameters were recorded during these experiments as follows: (1) number of fertile 
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spikes, (2) plant height, (3) biomass production and (4) number of seeds per spike. STI for 

these traits were calculated using the same formula above. Both experiments used a 

randomized complete block design with two replicates. 

 

2.4 Statistical analysis 

The data for the control and salinity stress was analyzed separately using ANOVA (JMP 

software). Correlation analyses were conducted using Spearman correlation coefficient (r) to 

determine the relationship between all traits. 

 

3. Results  

3.1 Effect of salinity at seedling stage 

 Salinity stress induced significant variation in plant growth during the experimental 

period. After the stress for 30 days, considerable reductions in various agronomic traits were 

observed in plants grown under 100 mM NaCl conditions.  

 Salinity stress resulted in significant (p < 0.05) decreases in chlorophyll content (SPAD 

value) (Table 2.3), with the STI for this trait ranging from 17.7% (Durum 852 from Egypt) to 

97.4% (Algeria 113-2 from Algeria). The number of tillers per plant was also significantly (p 

< 0.05) affected by 100 mM NaCl (Table 2.3) , with the STI for tiller number ranging from 

16.7% (Aktiubinskaja 74 from Kazakhstan) to 100 % (Durum 1P2 from Egypt; Veneny 39/2 

from Hungary; Durum 30 from Iraq; Malta 2 from Malta; Saratovskaja 53 from the Russian 

Federation; Durum 65 from Ukraine; Cuzco from Peru; Durum 6685 from Uzbekistan; 

Kubanka Karakolskaya from Kyrgystan; Ethiopia 199 from Ethiopia; Ethiopia 258 from 

Ethiopia; and 87-9-28-2-5D from Pakistan. In addition, increased proportion of dead leaves 

was observed in all the tested genotypes. The symptoms of leaf necrosis and wilting began to 

appear in basal leaves after only 4 to 5 days of exposure to salinity. The proportion of dead  
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leaves ranged from 0 to 100% with an average of 43% (Fig. 2.1). Significant variation in the 

proportion of dead leaves was observed among different genotypes at 100 mM NaCl. Based 

on the salinity tolerance/susceptibility scale, the variety 87-10-8-3-5D from Ethiopia was 

highly susceptible to salinity stress, exhibiting severe symptoms of stress compared to the 

variety IWA8608450 from Iran, which exhibited extreme tolerance to salinity stress. The 

number of leaves per tiller was significantly (p < 0.05) diminished by salinity stress (Table 

2.3), but this trait was comparatively less affected than other agronomic traits. The STI for 

the number of leaves ranged from 61.5% (IWA8608908 from Iran) to 166.6% (87-10-8-3-5D 

from Ethiopia). In addition, statistical analysis showed that leaf elongation was significantly 

(p < 0.05) affected by 100 mM NaCl (Table 2.3); the STI for leaf length ranged from 37.5% 

(for genotype 23: Roumania from Japan) to 88% (for genotype durum 36-6 from Ethiopia). 

Total fresh weight was highly affected by salinity (Table 2.3), with the STI for total fresh 

weight ranging from 7.3% (Durum 852 from Egypt) to 99.5% (IWA8608450 from Iran). 

Shoot length for all genotypes significantly (p < 0.05) diminished at 100 mM NaCl (Table 

2.3), with the STI for shoot length ranging from 33.5% (87-10-8-3-5D from Ethiopia) to 

98.8% (ELS6404-126-3 from Eritrea). At the same time, we noticed a significant reduction in 

root length within different landraces and improved varieties of durum wheat (Table 2.3), 

with the STI for root length ranging from 23.1% for the variety 87-10-8-3-5D from Ethiopia, 

to 100% for the variety Durum 9935 from Lebanon. Both shoot and root dry weight 

significantly diminished under salinity stress (Table 2.3), and the STI for these traits varied 

within different genotypes. The STI for the shoot dry weight ranged from 7.2% (87-10-8-3-

5D from Ethiopia) to 100% (durum 36-6 from Ethiopia). The STI for the root dry weight 

ranged from 5.3% (Morocco 204 from Morocco) to 100% (IWA8609455 from Iran). 

Significantly positive correlations (p<0.01) were observed between the shoot dry weight and 

chlorophyll content, between the shoot dry weight and the number of tillers, between the 

shoot dry weight and the total fresh weight, between the shoot dry weight and the shoot 



23 
 

length and between finally the shoot dry weight and the root dry weight (Table 2.4). The 

proportion of dead leaves exhibited a negative correlation with most of the traits, such as 

chlorophyll content, the number of tillers, total fresh weight, shoot length, root length, shoot 

dry weight and root dry weight (Table 2.4).  

 

3.2 Effect of salinity on matured plants 

 At the maturity stage, biomass production, plant height, number of fertile spikes, and 

number of seeds per spike were significantly (P < 0.05) affected by both genotype and 

salinity treatment (Table 2.3). The STI for biomass exhibited a wide range of variation 

among genotypes, from 11% (IWA8606401 from Iran) to 99% (Saragolla from Italy). There 

was a reduction in the number of fertile spikes due to salinity in all genotypes, but the effect 

was highly pronounced in a large number of genotypes, where we observed 100% of sterility 

of spikes. The STI for fertile spikes ranged from 0% (Hordeiforme 27 from Kyrgyzstan; 

Muriciense from Poland; Akmamenka from Hungary; FAO 29917 from Cyprus; Durum 75 

from Ukraine; Wakooma from Canada; Durum 9935 from Lebanon; Beloturka from 

Kyrgyzstan; IWA8608450 from Iran; IWA8606401 from Iran; durum 9848 from Iraq; 

IWA8610979 from Iran; durum 2725 from India; Razzek from Tunisia; Sculptur from Italy;  

Karim from Mexico; Nasr from Tunisia; Turkey 32 from Turkey; Morocco 204 from 

Morocco; Algeria 88 from Algeria;  Algeria 113-2 from Algeria; and 87-10-8-3-5D from 

Ethiopia, to 100% (Ramsey from United States; Saratovskaja 53 from the Russian 

Federation; MG17978 from Algeria;  Malta 2 from Malta;  Durum 6905 from Uzbekistan;  

Cocorit from Mexico; D68-5-18A-1A from Tunisia; D8016 from the US; Criollo from 

Bolivia; MG17970 from Algeria; Arandani from Bulgaria;  ND574 from the US; Durum 

2797 from Egypt; MG18260 from Algeria; Durum 36-6 from Ethiopia; Karaki Hamra from 

Jordan; Giza 56 from Egypt; Palestinka 7 from Ukraine; Morocco 130 from Morocco; 

Morocco 201 from Morocco; and Ethiopia 258 from Ethiopia. A reduction in the number of 
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seeds per spike under stress was observed in all the genotypes (Fig. 2.4), with the STI for the 

number of seeds per spike ranging from 0% (Hordeiforme 27 from Kyrgyzstan; Muriciense 

from Poland; Akmamenka from Hungary; FAO 29917 from Cyprus; Durum 75 from 

Ukraine; Wakooma from Canada; Durum 9935 from Lebanon; Beloturka from Kyrgyzstan; 

IWA8608450 from Iran; IWA8606401 from Iran; durum 9848 from Iraq; IWA8610979 from 

Iran; durum 2725 from India; Razzek from Tunisia; Sculptur from Italy; Karim from Mexico; 

Nasr from Tunisia; Turkey 32 from Turkey; Morocco 204 from Morocco; Algeria 88 from 

Algeria. Algeria 113-2 from Algeria and 87-10-8-3-5D from Ethiopia to 90.6% (Morocco 

C10895 from Morocco). 

 There was a positive correlation at the maturity stage between the number of fertile 

spikes and the number of seeds per spike; and we observed a significant (p < 0.01) 

correlation between biomass production and all the yield parameters: plant height, number of 

fertile spikes, and number of seeds per spike (Table 2.4). The level of variation in salinity 

tolerance is reflected by the shifts in distributions for the highly affected traits at seedling and 

maturity stages (Fig. 2.1).  

 

3.3 Choice of key trait to assess salinity tolerance in durum wheat 

 A wide variation was observed among traits recorded at seedling and maturity stages, the 

selection of one trait as a parameter is a good way to simplify the assessment. Two criteria 

should be provided in this trait as follows: the broader range of variation among varieties 

under treated conditions and a narrower range of variation within the same variety. The 

proportion of dead leaves exhibited the narrowest range of variation within the same variety 

because of the lowest CV recorded between replications (Table 2.5) and the broadest range 

of variation among varieties under treated conditions (Fig. 2.1, Fig. 2.2). Thus, the proportion 
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of dead leaves (%DL) is a suitable parameter for assessment of salinity tolerance in durum 

wheat. 

 

4. Discussion 

The current study evaluated 119 varieties of durum wheat under salinity stress. Many 

traits were used in this study in order to select the suitable parameter for the assessment of 

salinity tolerance in durum wheat. We also notified a wide variation in salinity tolerance 

among all varieties. For instance, tolerant varieties have the ability to cope with salinity stress 

through several mechanisms. In this concept, Munns (2002) reported that different plant 

species have developed different mechanisms to cope with the effects of salinity. 

Furthermore, Chen et al. (2007) showed in his study on beans that different cultivars showed 

differential response to salinity stress. In the present study, based on the STI, we observed a 

wide variation among traits recorded at seedling and maturity stages (Fig. 2.3, Fig. 2.4, and 

Table 2.6). Moreover, a significant reduction was recorded among all genotypes however; 

the decrease is more severe within susceptible genotypes compared to tolerant ones. For 

instance, the chlorophyll content of leaves typically decreased under salinity stress. High 

accumulation of sodium in plant tissues has been reported as an influential factor in the 

reduction of photosynthetic pigments and the rate of photosynthesis (Sairam et al., 2002; 

Ashraf, 2004). In addition, the oldest leaves develop chlorosis, and finally fall, as a result of a 

prolonged period of salinity stress (Hernandez et al., 1995; Gadallah, 1999; Agastian et al., 

2000), which has the effect of decreasing chlorophyll content in leaves. Salinity stress also 

affected leaf elongation. It has been reported that a common cause of reduction in leaf 

expansion is a decrease in cell turgor, rather than any salinity-specific effects. However, Ball 

(1988) indicated that such reduction is not related to a loss in turgor pressure, but is due to 

the change in hormonal signaling from roots to leaves. In the salinity-sensitive genotypes, 

where salinity is not effectively excluded from the transpiration stream, salt may accumulate 



26 
 

to toxic levels in the leaves, resulting in the death of old leaves, and injury to new leaves that 

may become succulent in order to dilute the salts (Munns and James, 2003). Thus, an 

increase in the proportion of dead leaves was observed among different varieties under 

salinity stress.  

The number of tillers per plant was significantly affected by salinity stress; however, we 

observed a lesser decrease in the number of tillers in tolerant genotypes than in susceptible 

genotypes. Our results were in agreement with Goudarzia and Pakniyat (2008), who reported 

significant reduction in the tillers per plant, of various wheat cultivars, due to salinity. In this 

regard, El-Hendawy et al. (2005) conducted a hydroponic experiment, evaluating 13 wheat 

genotypes, and found significant reduction in the number of tillers under salinity stress. In 

addition, salinity stress was found, in the present study, to significantly affect both shoot and 

root length, and this was in agreement with Jamal et al. (2011), who showed that salinity 

application had an overall substantially negative effect on shoot length and root length. This 

decrease in root and shoot length might be due to a decrease in the water potential of the 

rooting medium due to higher ion concentration (Munns et al., 1995). Total fresh weigh was 

significantly affected by salinity; however, we observed that a higher STI for fresh weight 

was maintained by genotypes IWA8608450 and IWA8609455, in comparison with the 

salinity-sensitive genotype Durum852. The sizeable inter-genotype variation in this trait 

showed that total fresh weight may offer a useful criterion for evaluating salinity tolerance at 

the seedling stage. Such fresh weight reduction has been attributed to the effect of salinity 

stress in reducing leaf area and durability, which in turn reduces both photosynthesis and dry 

matter accumulation (Singh et al., 1994).  

In the present study, salinity stress also resulted in a considerable reduction in both the 

fresh and dry weights of stems and roots, and these findings were in agreement with 

numerous studies (Hernandez et al., 1995; Ali-Dinar et al., 1999; Chartzoulakis and Klapaki, 

2000). The STI for shoot dry weight of genotypes Durum 36-6, ELS 6404-124-3 and Karaki 
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Hamra indicated maximum biomass production at the seedling stage, so these may be 

considered for cultivation as tolerant landraces in saline areas. Genotypes Durum 18, Durum 

852, and 87-10-8-3-5D were clearly salinity-sensitive, because they produced minimum 

biomass at the seedling stage; and these results were in accordance with Khan et al. (1995), 

who showed that tolerant accessions produced more biomass than sensitive ones, because the 

former have a lower uptake of Na
+
 than the latter (Ashraf et al., 2008). Roots, the first organ 

to develop, are sensitive to increased levels of salinity (Akram et al., 2007) and the lesser 

availability of O2 under saline conditions deprives plants of their primary energy source, 

while the accumulation of high levels of ethylene inhibits root growth (Akram et al., 2007). 

The STI for root dry weight suggested that root growth was reduced by salinity stress. 

 Numerous studies have evaluated salinity tolerance at the maturity stage only in 

genotypes that showed tolerance at the seedling stage; however, this method is not always 

reliable, because some genotypes that are susceptible at the seedling stage can be recovered 

at maturity and produce spikes, and some genotypes that show tolerance at the seedling stage 

may yet reveal weakness in producing yield at maturity.  For this reason, evaluation of 

salinity tolerance at different stages is important for selecting genotypes that can produce a 

significant yield in saline areas, since improving the grain yield of wheat is consistently the 

main target in plant breeding. Therefore, the evaluation of final grain yield and of growth 

parameters determining grain yield is critical to breeding programs. The final yield of wheat 

is determined by the number of spikes per plant and various yield components, such as the 

fertile spikelet number, grain number, and grain weight. In this regard, the STI for various 

yield-related traits under salinity stress were studied, and a significant reduction in plant 

height for different varieties exposed to salinity was observed, which is in agreement with 

Khan et al. (1995). The STI for biomass production at the maturity stage was higher in 

tolerant than in susceptible genotypes. This trait showed a positive correlation with plant 

height, the number of fertile spikes, and the number of seeds per spike, which indicated its 
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significant role in salinity tolerance at the maturity stage. Salinity stress tended to shorten the 

duration of spikelet differentiation, resulting in fewer spikelets per spike, and these results 

are supported by the findings of several studies (Maas and Grieve, 1990; Grieve et al., 1993; 

Francois et al., 1994), which concluded that salinity significantly reduced the number of 

spikelet primordia on the main spike. In addition, the florets in the basal spikelets appear to 

be significantly less viable than those in the apical spikelets under saline conditions (Grieve 

et al., 1992). A reduction in floret viability seriously affects the total number of kernels per 

spike (Francois et al., 1994). Our results are in conformity with the above finding, that the 

number of seeds per spikelet decreases under salinity stress, and this effect was more 

pronounced in sensitive than in tolerant genotypes.  

In terms of the relation between traits at the seedling and maturity stages, a negative 

correlation was found between the proportion of dead leaves at the seedling stage, and yield 

parameters at maturity stage showed that tolerance at the early stage could induce tolerance 

at the maturity stage for some genotypes; and this hypothesis was in accordance with several 

studies done on rice, which suggested that screening for salinity tolerance in rice at the 

seedling stage could well correlate with yield and yield components under saline conditions 

(Aslam et al., 1993; Gregorio et al., 1997; Ali et al., 2004). This correlation between early 

and late stage suggest that the choice of one parameter for salinity tolerance is a good way to 

simplify this study and understand the genetic variation of this character. In this study, the 

proportion of dead leaves was suggested to be a selective parameter for salinity tolerance 

because of the broader range of variation among varieties under treated condition and the 

narrower range of variation within the same variety. This parameter will be used in 

association analysis (Chapter 3) to identify QTLs for salinity tolerance. STI will be used as 

additional traits in this study.   
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Fig. 2.1 Frequency distribution of traits highly affected by salinity under control and treated  

              conditions. 
                   

TFW (treated) %DL (treated) 

%DL (control) 
TFW (control) 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

%DL (%) TFW (g) 

%DL (%) TFW (g) 



30 
 

 

 

 

 

 

 

              

 

 

 

 

 

                                                                                                          

 

 

 

 

 

 

 

 

 

Fig. 2.1 Continued. 

 

SDW (treated) 

SDW (control) RDW (control) 

RDW (treated) 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

N
u

m
b

er
 o

f 
v
a

ri
et

ie
s 

SDW (g) RDW (g) 

SDW (g) RDW (g) 



31 
 

 

 

 

 

 

 

 

                                                                                                                                                   

 

                        

 

 

                                                                                                          

                 

 

Fig. 2.1 Continued. 
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Fig. 2.2 Evaluation of variation under treated and control conditions using equal variance test. 
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       Fig. 2.3 Variation of STI for traits highly affected by salinity at seedling stage. 
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Fig. 2.4 Variation of STI for traits highly affected by salinity at maturity stage. 
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Table 2.1 Origin and geographical regions of different varieties of durum wheat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varieties code Country Geographical region of origin Identifier 

V1 Greece West Europe Chryssodur 

A28 Morocco North Africa Morocco 201 

V2 Italy West Europe Saragolla 

A29 Morocco North Africa Morocco 204 

V7 Tunisia North Africa Razzek 

V9 Italy West Europe Dakter 

V10 Italy West Europe Sculptur 

A40 Algeria North Africa Algeria88 

A41 Algeria North Africa Algeria113-1 

V11 Mexico North America Karim 

A42 Algeria North Africa Algeria 113-2 

V13 Tunisia North Africa Nasr 

A20 Italy West Europe Produra 

A22 Turkey Middle East Turkey 32 

A24 Turkey Middle East Morocco 130 

A46 Ethiopia Middle East Ethiopia 199 

A47 Ethiopia East Africa Ethiopia 200 

A52 Ethiopia East Africa Ethiopia 228 

A60 Ethiopia East Africa Ethiopia 226 

A25 Morocco North Africa Morocco 130 

A62 Pakistan South Asia 87-9-28-2-5D 

A63 Ethiopia East Africa 87-10-8-3-5D 

A26 Morocco North Africa Morocco 131 

44 Morocco North Africa durum Marrocos 

28 Egypt North Africa durum 1P2 

32 Turkey Middle East durum Sensat 

63 Hungang East Asia durum Veneny 39/2 

91 Bosnia and Herzegovina East Europe durum 52 

69 Chile South America durum Candealfen 4 

112 Egypt North Africa durum 852 

131 Iran Middle East durum IWA8609089 

50 Russian federation East Europe durum Hordeiforme 27 

26 China East Asia durum 2912 

129 Iran South Asia durum IWA8607861 

62 Hungary, pest East Europe durum Akmamenka 

64 Hungary, pest East Europe durum Arnaut de Studina 
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Varieties code 

 

Country Geographical region of origin Identifier 

94 Algeria North Africa durum MG 17970 

 

20 Uzbekistan Central Asia durum 6685 

 

55 Hungary, pest East Europe durum I-1-2440 

 

65 Bulgaria East Europe durum Arandani 

 

59 Malta West Europe durum Malta Yellow 

 

120 Bolivia South  America durum Criollo 

 

100 US North America durum D8016 

 

111 US North America durum ND 574 

 

103 Chile South America durum Chorlito 'S' 

 

114 Egypt North Africa durum 2797 

 

53 Italy West Europe durum Duro SG3 

 

46 Cyprus Middle East durum Akathiotico Naurotheri 

 

74 Serbia East Europe durum T-840 

 

52 Greece West Europe durum 374 

 

2 Peru South America durum Cuzco 

 

11 Tunisia North Africa durum Ajili 

 

13 Pakistan south asia durum Type No. 2 

 

8 Eritrea East africa durum ELS 6404-126-3 

 

116 Algeria North Africa durum MG 18260 

 

138 Iran Middle East durum IWA8607524 

 

54 Turkey Middle East durum 073/44 

 

105 Mexico North America durum D 27676-10M-4Y-1M-OY 

 

86 Mexico North America durum Chapala 67 

38 Iraq Middle East durum 9848 

87 Egypt North Africa durum Giza 56 

88 Montenegro East Europe durum 43 

41 Bosnia and Herzegovina       East Europe              durum Brkulja 

80 Ethiopia East Africa durum 36-6 

48 Jordan Middle East durum Karaki Hamra 

123 

 

 

 

 

 

 

 

 

Ukraine East Europe 

 

 

 

 

 

 

 

 

durum Palestinka 7 

    

    

    

Table 2.1 Continued. 
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144 Iran Middle East durum IWA860845 

 

92 China East Asia durum Bian Sui 

125 

              

Kazakhstan East Asia durum Aktiubinskaja 74 

57 Poland East Europe durum Provinciale 

127      Iran    Middle East durum IWA8606236 

 

 

  45 Portugal West Europe durum Candeal de Grao Escuro 

 

 

121 Bolivia South America durum 111 

 

 

  56 Poland East Europe durum Muriciense 

 

 

  40 Saudi Arabia Middle East durum 2 

 

 

  109 Tunisia North Africa durum RL 7075 

 

 

4 US North America durum Ramsey 

 

 

14 India South Asia durum 18 

 

 

95 Algeria North Africa durum MG 17978 

 

 

97 Peru South America durum Trigo 

 

 

25 Iraq Middle East durum 30 

 

 

58 Malta West Europe durum Malta 2 

 

 

84 Mexico North America durum Cocorit 

 

 

78 Cyprus Middle East durum FAO 29917 

 

 

67 France West Europe durum D 172 

 

 

17 Ukraine East Europe durum 75 

 

 

23 Japan East Asia durum Roumania 

 

 

12 Canada North America durum Wakooma 

 

 

16 Ukraine East Europe durum 65 

 

 

3 US North America durum Kubanka 75-3-15 

 

 

27 Georgia North America durum Cltr 10108 

    

 

 

 

 

 

                      

  

                               

Table 2.1 Continued. 

Varieties code   Country         Geographical region of origin         Identifier 
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Varieties code 
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Country           

 

 

 

 

Lebanon 

  

 
Geographical region of origin 

 

 

                                

                               

                               Middle East 

                                         

                                   

                                      Identifier 

   

 

                                       

                                         

                                        durum 9935 

 

99 

 

Ethiopia 

 

                               East Africa 

     

           durum MG 31497 

  

115 Oman                                Middle East            durum Musane 

 

110 Tunisia North Africa durum D 68-5-18A-1A 

 

66 Bulgaria East Europe durum Katschulka 

 

75 Spain West Europe durum Lucana 45 

 

6 Canada North America durum Hercules 

 

29 Yemen Middle East durum Aden 

 

34 Turkey Middle East durum Sert 

 

42 Spain West Europe durum Blancal de Nules 

 

22 Japan East Asia durum Medea 

 

122 Russian federation East Europe durum Saratovskaja 53 

 

  7 Eritrea East Africa durum ELS 6404-124-2 

 

83 Macedonia East Europe durum II/1 

 

36 Turkey Middle East durum 3987 

 

19 Kygystan East Asia durum Beloturka 

 

51 

 

Kyrgystan 

 

Central Asia 

 

durum Kubanka Karakolskaya 

 

148 Iran Middle East durum IWA8610979 

 

96 Algeria North Africa durum MG 18026 

     70 

 

India 

 

South Asia 

 

Unknown 

 

132 

 

Iran 
 

Middle East 
 

durum IWA8609455 
 

128 

 

Iran 

 

Middle East 

 

durum IWA8606401 

 

 37 India South Asia durum 9725a 

Table 2.1 Continued. 
[Type a quote from the document or 

the summary of an interesting point. 
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Table 2.2 Chemical composition of nutrient solution. 

 

 

TN: Total nitrogen, AN: Ammonia nitrogen, NN: Nitrate nitrogen. 

 

 

 

 

               

 

 

 

 

 

 

 TN(AN/NN)  P2O5  K2O  MgO  MnO  B2O3  CaO  

(Ca)  

Fe  Cu  Zn  Mo  

Otsuka 1      10.0 8.0  27.0  4.0  0.10  0.10  -  0.18  0.002  0.006  0.002  

Otsuka 2  11.0 

  （NN） 

-  -  -  -  -  23.0  

(16.4)  

-  -  -  -  
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Table 2.3 Analysis of variance (single factor) for different traits recorded at seedling and 

maturity stages. 

 

 

 

 

Source of Variation SS          df MS P-value 

CHL 4576.05 1 4576.05 8.2E-45 

NT   188.84 1  188.84 2.3E-17 

NL      2.84 1 2.84 0.01376 

LL 4534.49 1 4534.49 2.8E-50 

TFW 3310.33 1 3310.34 2.2E-17 

SL 7976.18 1 7976.19 3.8E-29 

RL 6385.69 1 6385.70 4.4E-15 

SDW    34.37 1    34.37  6.5E-17 

RDW      2.11 1       2.11 4.2E-15 

%DL    89659.10 1 89659.10 5.1E-46 

NFS  206.14 1   206.14 1.9E-18 

PH    20470.38 1  20470.40 1.1E-12 

Bio  2672.61 1 2672.62 6.7E-39 

NS     16198.87 1 16198.90 5.1E-37 
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 Table 2.4  Phenotypic correlation coefficients (r) between each pair of parameters. 

 
  STI (CHL) %DL STI (NL) STI (LL) STI (TFW) STI (SL) STI (RL) STI (SDW) STI (RDW) STI (NFS) STI (PH) STI (BIO) STI (NS) 

%DL -0.184*                         

STI (NL) -0.172  0.170                       

STI (LL)  0.252** -0.197* -0.267**                     

STI (TFW)         0.243** -0.437** -0.162 0.441**                   

STI (SL)  0.356** -0.318** -0.339** 0.618**  0.493**                 

STI (RL)  0.262** -0.166 -0.245** 0.200*  0.149  0.132               

STI (SDW)  0.288** -0.566** -0.216* 0.425**  0.847**  0.491**  0.212*             

STI (RDW)  0.298** -0.547** -0.179 0.378**  0.755**  0.321**  0.161  0.826**           

STI (NFS)  0.164 -0.196* -0.048 0.027  0.197*  0.135  0.057  0.257**  0.186*         

STI (PH) -0.104  0.227* -0.054  -0.113 -0.283** -0.141  0.075 -0.218* -0.208*  0.164       

STI (BIO)  0.055 -0.062 -0.085  -0.068 -0.090  0.051  0.094 -0.039 -0.011  0.291** 0.285**     

STI (NS)  0.112 -0.187* -0.007 0.010  0.074  0.143 -0.032  0.187*  0.117  0.706** 0.075    0.290**           

STI (TN)  0.165 -0.340**  0.277** 0.460**  0.329**  0.269**  0.615**  0.555**  0.225* -0.074 0.16    0.219*     -0.375** 

 

 

** Correlation is significant at the 0.01 level. 

* Correlation is significant at the 0.05 level. 
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Table 2.5 Coefficient of variation (CV) within variety and level of significance on F test for 

highly affected traits under control (C) and treated conditions (T). 

. 

 

 
      Parameter name   CV (%) F test (2 sides)  

    
Proportion of dead leaves (%DL) C 1.7 0 ** 

T 2.4  

Total fresh weight (TFW) C 7.1 0** 

T 8.6  

Shoot dry weight (SDW) C 5.4 0** 

T 8.2  

Root dry weight (RDW) C 12.06 0** 

T 8.8  

Number of fertile spikes (NFS) C           10.5 0.73 NS 

C  9.5  

Number of seeds/spike (NS) C 12.5 0.02 * 

T 10.2  

** Significant at the 0.01 level. 

* Significant at the 0.05 level. 
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Table 2.6 Maximum (Max), minimum (min), mean, standard deviation (SD) and coefficient of 

variation (CV) within variety for each parameter under control (C) and treated conditions (T). 

 

*: The increased proportion of dead leaves: calculated based on the difference between treated 

and control condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Parameter name  Max      Min     Mean         SD CV (%)   STI (%) 

Proportion of dead leaves (%) C 30.0 0.0 15.0 11.0 1.7     43.0* 

T 100.0 0.0 58.0 19.5 2.4       

Number of tillers C 11.0 3.0 5.6 1.7 6.6 69.6 

T 8.0 1.0 3.9 1.0 6.1  

Number of leaves/tiller C 7.0 3.0 4.3 0.6 3.5 95.3 

T 6.5 3.0 4.1 0.7 3.8  

Leaf length (cm) C 35.5 15.5 26.0 3.0 4.5 66.6 

T 24.0 6.5 17.3   8.2 5.6  

Total fresh weight (g) C 45.1 3.0 13.5 3.3 7.1 45.1 

T 14.4 0.5 6.1 1.0 8.6  

Shoot length (g) C 69.0 28.2 41.0 5.9 8.1 74.2 

T 57.5 11.7 30.4 4.9 8.9  

Root length (cm) C 88.5 22.0 48.2 9.4 4.1 82.7 

T 59.5 8.8 39.8 7.5 3.1  

Shoot dry weight (g) C 5.2 0.3 1.6 0.8 5.4 50.0 

T 1.7 0.0 0.8 0.3 8.2  

Root dry weight (g) C 1.0 0.1 0.4 0.2 12.06 58.7 

T 0.6 0.0 0.2 0.1 8.8  

Number of fertile spikes C 11.0 2.0 4.1 1.4       10.5 55.9 

T 8.0 0.0 2.3 1.5  9.5  

Plant height (cm) C 140.0 50.0 90.4 12.9 3.9 79.4 

T 103.0 43.5 71.8 10.7 3.1  

Biomass production (g) C    31.2 5.9 13.1 3.2 13.5 64.1 

T    13.6 3.4 8.4 1.1 11.7  

Number of seeds/spike C 51.0 11.0 29.3 7.4 12.5 43.7 

T   38.0 0.0 12.8 9.1 10.2  

Chlorophyll content (%) C 35.9 19.1 26.5 3.5 6.5 66.9 

 T 27.8 4.5 17.7 3.1 9.5  
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Chapter 3: Variation in salinity tolerance and association analysis 

1. Introduction 

Durum wheat (Triticum durum L.) is one of the main cultivated species of wheat, and 

approximately 75% of the durum wheat produced worldwide is consumed in the 

Mediterranean region (Morancho, 1995; Belaid, 2000). Durum wheat is used to produce 

several end products such as pasta, couscous (local) and noodles. However, the production 

of durum wheat is limited by biotic and abiotic stresses such as water scarcity, high 

temperature, flooding and salinity. Climate changes associated with increased exposure to 

these abiotic stresses have major effects on crop yields. Salinity is considered to be one of 

the severe constraints among abiotic stresses (Tuteja, 2007). Approximately 7% of the 

world‟s total land area is affected by salinity (Flowers et al., 1997). This problem is most 

severe in arid and semi-arid areas where the evaporation rate is high and this exerts a 

significant effect on durum wheat production. Increases in soil salinity may have three 

effects: reducing water potential, causing an ion imbalance and disturbing ion 

homeostasis, and inducing toxicity (Munns, 1993). This altered water status leads to an 

initial growth reduction and limits plant productivity (Hagemann and Erdmann, 1997; 

Hayashi and Murata, 1998). While the growth of all plants is suppressed, the tolerance 

levels and rates of growth reduction at lethal salinity concentration varied widely among 

different plant species (Parida and Das, 2005). Bread wheat is more tolerant to salinity 

than durum wheat (Noori and McNeilly, 2000; Munns and James, 2003), creating a major 

challenge for breeders to incorporate tolerance genes into high yielding varieties of durum 

wheat.  

Further genomic approaches should be taken into consideration for designing durum 

wheat ready for climate change with a focus on salinity tolerance. These approaches have 

http://www.sciencedirect.com/science/article/pii/S1161030104000267#BIB6
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been also undertaken to identify QTL for the tolerance to salinity and incorporate it into 

the elite varieties. QTLs for tolerance to salinity stress have been detected using 

segregating population and related methods. Association analysis for germplasm 

collection was recently performed to discover new useful allelic variation through 

genome-wide scans and/or to validate the effect of previously discovered QTLs by 

mapping populations (Flint-Garcia et al., 2005; Gupta et al., 2005). Compared to the 

traditional method, association mapping allows for a wider range of variation than analysis 

using segregating population (Gaut and Long 2003; Remington et al., 2001; Skøt et al., 

2007; Tommasini et al., 2007; Genc et al., 2010).  

A number of QTLs/genes associated with salinity tolerance have already been 

identified in wheat. Some genes related to Na
+
 and K

+
 homeostasis were detected in 

various genomic regions. The Kna1, gene for sodium exclusion, was detected on 

chromosome 4D in bread wheat (Dubcovsky et al., 1996). Two genes for sodium 

exclusion were mapped on chromosomes 2AL (Lindsay et al., 2004) and 5AL (James et 

al., 2006; Byrt et al., 2007; Munns et al., 2012) in durum wheat. Most of QTLs for salinity 

tolerance in wheat were investigated at either the seedling or maturity growth stage. As 

salinity tolerance is highly dependent on the plant growth stage, it is important to evaluate 

tolerance at both stages. Few studies on salinity tolerance have been conducted in durum 

wheat, and the mapped QTLs/genes are not sufficient to enhance salinity tolerance in this 

crop. Additional studies are still needed at both growth stages (seedling and maturity) to 

control the stability of salinity tolerance over the whole life of the plant and then to 

improve the salinity tolerance among various durum wheat varieties.  

This study aimed at evaluating the variation in salinity tolerance among durum 

varieties and to identify QTLs for salinity tolerance. 
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2. Materials and methods 

2.1 Plant materials and growth conditions 

A total of 119 varieties of durum wheat (Triticum durum L.) were used in this study 

(Table 2.1). These varieties were subjected to two different experiments as described in 

the previous chapters. For instance, seedling stage experiment was conducted in a 

glasshouse under natural condition using a hydroponic setup.  

Seeds were sterilized in a 5% solution of sodium hypochlorite for 5 min. After the 

treatment, the seeds were washed several times with distilled water. Ten seeds were sown 

on filter paper moistened in Petri dish (with a 9-cm diameter). The Petri dishes were 

placed in a growth chamber for 8 days at 22 °C and 65% relative humidity. Four selected 

homogenous seedlings per treatment were transplanted to a nutrient solution (a mixture of 

two solutions) with one plant per hole. The nutrient solution was renewed every week, and 

the pH of the solution was adjusted between 6.5 and 7. Ten days after transplantation, salt 

was added to the solution at 25 mM twice per day until the final salinity concentration 

reached to 100 mM (approximately 10 dS m
-1

). After thirty days, all plants were harvested 

and ten parameters were measured.The experiment at the maturity stage was conducted in 

a vinyl house under natural day-length conditions (13/11h) in 2012 (the average of 

temperature ranged from 20 to 25°C) at Agricultural and Forestry Research Center of the 

University of Tsukuba in Japan. The soil used in this experiment contains 200 mg/l of N, 

1000 mg/l of P and 200 mg/l of K. Six seeds per accession were sown in plastic pots (20 

cm diameter * 25 cm tall) and at two-leaf stage; seedlings were thinned to a density of 

four per pot. Plants were subjected to salinity stress (100 mM NaCl) during boot stage of 

development (Z41). At maturity stage when grains were ripe (Z92), all plants were 

harvested. Four parameters were recorded during these experiments. Both experiments 

used a randomized complete block design with two replicates. 
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2.2 Evaluation of phenotypes 

Phenotypic data described in the previous chapter will be used for association analysis. 

These involve the proportion of dead leaves (%DL) as a main parameter and additional 

traits such as chlorophyll content (CHL), the number of tillers per plant (NT), the number 

of leaves per tiller (NL), leaf length (LL), total fresh weight of shoot and root (TFW), 

shoot length (SL), root length (RL), shoot dry weight (SDW) and root dry weight (RDW), 

number of fertile spikes (NFS), plant height (PH), biomass production (BIO) and the 

number of seeds per spike (NS). The salinity tolerance index (STI) was calculated for all 

parameters, except for the proportion of dead leaves using the same formula (1) described 

in chapter 2. 

 

2.3 Genotyping  

 Out of 196 SSR markers that were screened for 119 varieties, 94 were polymorphic. 

The following markers were selected from the whole genome and chosen from previous 

studies: barc (Song et al., 2002; 2005), cfa (Sourdille et al., 2003), cfd (Guyomarc‟h et al., 

2002), gdm (Pestsova et al., 2000), gwm (Röder et al., 1998) and wmc (Gupta, 2002). 

 Modified CTAB was used to extract DNA from leaf samples. The 10 μl polymerase 

chain reaction (PCR) solutions contained 25 ng of template DNA. The PCR profile was 

maintained by an initial denaturation at 94°C for 2 min, and then the reaction was 

subjected to 40 cycles of 94°C for 30 seconds, 1, 3 min at the annealing temperature, and 

72°C for 30 seconds, with a final elongation step of 7 min at 72°C. The annealing 

temperature changed depending on the marker. The amplification products were separated 

on an 8% acrylamide gel with ethidium bromide in TBE buffer, and visualized under UV 

illumination. 
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 2.4 Data analyses 

 The data were subjected to analysis of variance (ANOVA) and other statistical tests 

performed in JMP software, including the Spearman correlation (r) and the frequency 

distribution. As an alternative to graphical clustering methods, a model-based Bayesian 

approach implemented in the software package Structure 2.3.4 (Pritchard et al., 2000a) 

was used to analyze the population structure of 119 durum wheat varieties. The optimal 

number of populations (K) was inferred by running an admixture ancestry model with 

correlated allele frequencies starting from two populations K = 1 to K = 10, with three 

runs at each K. For each run, 10000 burn-ins were performed followed by 100000 Markov 

chain Monte Carlo (MCMC) simulations. The number of subpopulations (K) was 

identified based on the maximum likelihood and delta K (△K) values detected based on 

the rate of change in the log probability of data between successive K values (Evanno et 

al., 2005). Thus, we chose a K value (in this case K=7) and estimated the proportion of the 

genome in accession i that originated from the j population: qij. The Q matrix with (i, j) 

elements was incorporated into different models of association mapping for QTL 

detection. The kinship matrix K was calculated using SSR markers and was also used in 

association mapping. 

 Genetic diversity was calculated at each locus based on allelic polymorphism 

information content (PIC), and the PIC values for each SSR marker were estimated by 

determining the frequency of alleles per locus according to the following formula (2) 

(Anderson et al., 1993): where n is the number of marker alleles for marker i and Pij is the 

frequency of the j
th

 allele for marker i. 

 

                           PIC= ∑ p
2
ij                                                              (2) 

J=1 

n 
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 The LD among mapped SSR loci was estimated by D and r, where D is the 

standardized disequilibrium coefficient and r represents the correlation between alleles at 

two loci. The significance (p values) of the LD for SSR pairs was determined by 1000 

permutation tests performed for each pair (Weir 1996). The map position for most of the 

SSR loci was inferred from Somers et al. (2004). Association analysis among the SSR 

marker alleles was carried out, and the least squares means of 14 agronomic parameters in 

different stages were determined using the general linear model (GLM) option provided in 

TASSEL v.4.3.5 software (Bradbury et al., 2007). Information about the population 

structure (i.e., the Q matrix) of the selected wheat collection was used to control false 

positive associations. The P value of an SSR marker was used to declare whether it was 

associated with any agronomic parameter, and R
2
 expressed the fraction of the total 

variance explained by the marker term. Additionally, the mixed linear model (MLM) was 

run using K and Q+K models. Regression was used to evaluate which model had the 

lowest error based on expected and observed P values. 

 

3. Results 

3.1 Assessment of salinity tolerance and its variation among durum wheat varieties 

 Salinity stress induced significant differences in plant growth during the experimental 

period. After a continuous period of stress, considerable decreases were observed in 

various agronomic parameters. The proportion of dead leaves was significantly increased 

under salinity compared to control conditions. The mean of the increase proportion of 

dead leaves (%DL) ranged from 0 to 100%, with an average of 43%. The wide variation in 

performance under stress conditions among wheat varieties was also revealed by the 

phenotypic distribution (Fig. 2.1), confirming the importance of this parameter for the 
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assessment of salinity tolerance. Based on this parameter, all the varieties were divided 

into three groups: tolerant, moderately tolerant and susceptible (Table 3.1). 

STI for additional traits varied within different genotypes (Table 2.6). The mean 

ranged from 44.9% for TFW to 95.3% for NL. A wide range of variation in the STI was 

observed within durum wheat varieties at both stages, especially among parameters highly 

affected by salinity stress. At the seedling stage, the shoot length (SL), root length (RL) 

and the total number of leaves per tiller (NL) were less affected by salinity stress 

compared to the other parameters, such as TFW, SDW, RDW, LL, CHL and NT. At the 

maturity stage, the plant height (PH) showed the lowest reduction under salinity stress by 

20.5%, followed by the biomass production (BIO), by 35.8%. The STI of number of fertile 

spikes varied significantly among durum wheat varieties, ranging from 0 to 100%, with an 

average of 55.9%. This parameter was also important to evaluate salinity/susceptibility 

among varieties, as it reflects the ability of the plant to persist after a continuous period of 

stress. STI (NS) varied widely, ranging from 0 to 90.6% under salinity stress with an 

average of 43.7%. Only 94 varieties produced seeds, and the other varieties were sterile. 

The phenotypic correlation coefficient (r) was estimated separately for all parameters.  

 

3.2 Structural analysis and genetic diversity 

STRUCTURE gave a maximum population (Pop) number (k) of seven (Fig. 3.1). The 

assignment of varieties into populations was consistent among the different runs. In this 

study, the first subpopulation included 23 varieties involving seven improved varieties and 

16 landraces originating from Africa and west Europe. The second subpopulation included 

21 durum wheat varieties, mostly from Eastern Europe and the Middle East. The third 

subpopulation comprised 14 varieties from North America and Eastern Europe. The fourth 

subpopulation included 12 varieties, mostly from the Middle East and Asia. The fifth 
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subpopulation was composed of 12 varieties, mostly from the Middle East and Europe. 

The sixth subpopulation included 15 durum wheat varieties, mostly from America and 

Western Europe. The last subpopulation comprised 22 varieties, mostly from North Africa 

and the Middle East. 

A total of 489 bands (alleles) were detected using 94 SSR markers covering all 14 

chromosomes of tetraploid wheat and the genetic diversity of the 119 varieties was 

characterized. The number of alleles ranged from 2 to 20 and the primer “wmc633” 

detected the highest number of alleles, with an average of 5.14 alleles per locus. The PIC 

value of each SSR marker can be evaluated based on the number of alleles amplified. This 

value varied greatly for all the SSR loci tested, ranging from 0.07 for the marker 

“wmc118” to 0.93 for the marker “wmc633”, with an average of 0.5. Most of the PIC 

values recorded for the 94 SSR markers were above 0.5, indicating that these markers 

were informative and useful in this study (Table 3.2). 

 

3.3 Analysis of LD among SSR markers 

 A total of 4372 pairs generated from 94 polymorphic markers were tested to evaluate 

their LD (Fig. 3.2). In total, 16.65%, 5.4% and 1% of the intra-chromosomal marker pairs 

exhibited LD at p<0.01, p<0.001, and p<0.0001, respectively. R
2
 ranged from 0 to 0.68

 
for 

all pairs, with an average value of 0.0267.  

 

3.4 Association analyses of quantitative parameters 

Marker-parameter association was tested using GLM (General Linear Model) and 

MLM (Mixed Linear Model) models. Based on the -Log10 (P) value, 2.1 was set as a 

threshold for significance for all studied models.  
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3.5 Detection of QTLs by the GLM model 

Two GLM models were used: the Naive model and the Q model. For instance, the 

Naïve model identified 35 SSR loci associated with 12 parameters, with –Log10 (P) values 

ranging from 2.1 to 3.6 and explaining from 11-20% of the phenotypic variation. The 

second model (Q model) was useful in reducing type I error due to the population 

structure. This Q model identified 14 SSR loci associated with 8 parameters with –Log10 

(P) values ranging from 2.1 to 3.5 and explained from 10-18% of the phenotypic variation. 

More than one QTL was detected for most of the parameters. Indeed, six SSR loci were 

associated with the STI of root length, and the strongest association was recorded by the 

marker gwm403 on the chromosome 3A. This marker was also associated with the STI of 

two more parameters: the number of leaves with a –Log10 (P) of 3.04 and the root dry 

weight, with a –Log10 (P) of 2.51. 

 

3.6 Detection of QTLs by the MLM model 

The MLM model comprised two different models: the K model, which reduces Type II 

errors by considering familial relatedness, and the Q+K model, which considers both 

population structure and relatedness. We found that the K model detected almost the same 

loci detected by the Q+K model. Based on these results, these two models were used here 

to predict QTLs. 

The MLM model identified 12 SSR loci associated with eight parameters with –Log10 

(P) values ranging from 2.1 to 3.00 and explained from 11-20% of the phenotypic 

variation. These QTLs were as follows: a single QTL for %DL was mapped on 

chromosome 4B and explained 13% of the phenotypic variation. A single QTL for STI 

(CHL) was mapped on chromosome 3A and explained 12% of the phenotypic variation. 

Three QTLs for STI (NL) was mapped on chromosome 3A, 5A and 5B and explained 
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17%, 15% and 13% of the phenotypic variation respectively. A single QTL for STI (LL) 

was mapped on chromosome 5A and explained 19% of the phenotypic variation. 

Moreover, a single QTL for STI (NT) was mapped on chromosome 7A and explained 

16% of the phenotypic variation. Three QTLs for STI (RL) were detected as the follows: 

one major QTL (-Log10 (P) =3.0) was detected on chromosome 3A and explained 20% of 

the phenotypic variation. The second was mapped on chromosome 6A and explained 17% 

of the phenotypic variation, while the third locus (gwm540) was detected on chromosome 

5B and explained 15% of the phenotypic variation. A single QTL for STI (SL) was 

mapped on chromosome 7A and explained 15% of the phenotypic variation. A single QTL 

for STI (PH) was identified on chromosome 7A and explained 18% of the phenotypic 

variation (Table 3.3, Fig. 3.3). 

 

3.7 Comparison between GLM and MLM 

To evaluate each model regarding the control over statistical errors, we plotted the 

observed P values (x) against the expected P values (y), as described by Stich et al. 

(2008). The Naïve model showed the highest deviation from y=x, follow by Q model (Fig. 

3.4). The results showed that K and Q+K model were more consistent in their predictions 

for all traits. In comparison with the Naïve and Q models of association analysis, the K 

and Q+K models detected the same loci, showing that these models had strong control 

over statistical errors. Because of this result, these two models were used in this study to 

predict QTLs. 

 

4. Discussion 

The effects of salinity on other cereals have been studied at different developmental 

stages. For example, rice was treated with salinity at the early tillering, late tillering and 



54 
 

heading stages (Pearson and Bernstein, 1959), and sorghum was treated during the 

vegetative, reproduction and maturation periods (Maas et al., 1986; Azhar and  McNeilly, 

1989) to determine the inheritance of salinity tolerance. In wheat, numerous studies have 

evaluated salinity tolerance in either the seedling or maturity stages, but this method is not 

always reliable because some genotypes that exhibit tolerance at the early stage may be 

unable to grow under continuous stress and produce yield. It is important to evaluate 

salinity tolerance at different stages to select genotypes that can produce significant yield 

in saline areas, as improving the grain yield of wheat is the main goal of breeding. 

Therefore, this study demonstrated the variation of different parameters recorded at the 

seedling and maturity stages among durum wheat varieties under salinity stress.  

At seedling stage, salinity had a strong effect on the reduction of fresh and dry weights. 

However, tolerant varieties produced more biomass than susceptible varieties. Our results 

for these parameters were supported by Singh et al. (1994), who reported that a reduction 

in biomass weight has been attributed to the effects of salinity stress in reducing leaf area, 

durability and then photosynthesis and dry matter accumulation, which in turn reduces 

grain yield.  

At maturity stage, we observed more than 56% decreases in NFS and NS under salinity 

stress in comparison with the control conditions. This decrease in yield-related parameters 

demonstrated the sensitivity of durum wheat to this abiotic stress. In bread wheat, grain 

yield is reduced to 50% of its potential when the electrical conductivity of the soil 

saturation extract (EC) reaches to 13 dS/m (Ayers and Westcot, 1985). These results are 

comparable to our findings because bread wheat has a higher resistance to salinity than 

durum wheat (Munns and James, 2003). Thus, breeding for abiotic stress has become even 

more important to improve salinity tolerance among durum wheat varieties. 
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Historically, low Na
+
 concentration has been a surrogate for salinity tolerance 

(Schachtman et al., 1992; Ashraf and O‟Leary 1996; Rashid et al., 1999; Munns and 

James, 2003; Poustini and Siosemardeh, 2004). However, previous studies reported a 

correlation between Na
+
 concentration and many others agronomic parameters (Ashraf 

and O‟Leary, 1996; Genc et al., 2010). In this study, the variation of the %DL within 

durum wheat varieties is highly related with their ability to prevent salinity toxicity in the 

leaves. For instance, the cause of the injury is probably due to the accumulation of salts 

(Na
+
 and Cl

-
) which overcomes the toxic concentrations. Thus, the old leaves die (usually 

old expanded leaves) and the young leaves, no more supported by the export of 

photosynthates, undergo a reduction of growth and new leaves production (Munns and 

Tester, 2008). Therefore, tolerant plants could cope with salinity stress and prevent 

salinity from reaching toxic levels in the transpiring leaves by producing 

photosynthetically active leaves. 

Similarly, the wide range of STI (CHL) recorded in this study showed the importance 

of this parameter in salinity tolerance. Indeed, tolerant varieties exhibited lower reduction 

of chlorophyll content compared to susceptible ones which confirm their ability to cope 

with sodium toxicity. This finding was reported by several researchers (Davenport et al., 

2005) who noted that Na
+
 accumulation in photosynthetic tissues affects photosynthetic 

components such as enzymes, chlorophylls, and carotenoids. In the same concept, Tester 

and Davenport (2003) reported that salinity stress is associated with a reduction in 

chlorophyll content and inhibits photosynthesis, inducing leaf senescence and premature 

leaf death. 

Additionally, the contribution of several others parameters to salinity tolerance reflect 

their importance as useful selection criteria at either seedling or maturity stages. While 

different parameters were used to assess salinity tolerance at the seedling and maturity 
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growth stages, some parameters recorded at the seedling stage were correlated with yield-

related parameters. The proportion of dead leaves was suggested to be one of these 

parameters because of its correlation with many related parameters including yield 

parameters. This parameter exhibited a broader range of variation among varieties and 

narrower range of variation within variety compared to other traits (Table 2.5, Fig.2.1 and 

Fig.2.2). Therefore, this parameter is important to assess salinity/susceptibility tolerance 

and could be selected as a single selection criterion for breeding for salinity tolerance 

among durum wheat varieties. 

LD-based genetic association studies are one approach to map genes with modest 

effects (Hirschhorn and Daly 2005). Durum wheat is a self-pollinating crop and is 

expected to have high levels of LD and homozygosity, both of which facilitate LD 

mapping (Nordborg et al., 2002). Variations in LD levels were observed across 

chromosomes or genomes. The distribution of the LD across these chromosomes may 

significantly affect the power of association mapping and the effectiveness of marker-

assisted breeding. According to Yu et al. (2013), a high level of LD in many chromosomal 

regions of the population suggests that association mapping can be an effective method for 

QTL identification and validation in these regions. In this study, variations in LD levels 

were observed across chromosomes and genomes. Somers et al. (2007) reported similar 

results indicating the variation of LD across chromosomes, and suggested that the changes 

in LD along chromosomes indicate genome areas under selective pressure.  

 The results indicated that LD extended up to 41 cM. Previous studies of wheat 

suggested different LD levels, with Crossa et al. (2007) reporting an LD block extending 

even up to 87. Further, we noted that 16.65% of pairs showed LD at p<0.01. Remington et 

al. (2001) calculated the LD among 47 SSR loci distributed across the maize genome and 

found considerably lower levels of LD (9.7% of SSR pairs showed LD at p<0.01 in a 
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collection of 102 lines).The mean R
2
 of all interchromosomal pairs in our study is 0.026. 

This result was comparable to that of Breseghello and Sorrells (2006) who used 149 

cultivars of wheat and found pairwise estimates of R
2 
varying from 0.000 to 0.133, with a 

median of 0.022.  Stich et al. (2006) reported that LD generated by selection, population 

structure, relatedness, and genetic drift might be theoretically useful for association 

mapping in specific situations and population groups as it reduces the number of markers 

needed for association mapping, but careful attention is required to control factors that 

affect LD (e.g., population structure and relatedness) to enable unbiased population-based 

association mapping in plants (Liu and Muse, 2005; Pritchard et al., 2000b). Therefore, 

the MLM model was suitable for these analyses, as it controls most of the factors that can 

affect the LD and performed well in detecting QTLs with minor errors. Several QTLs 

associated with salinity tolerance were detected on chromosomes 3A, 4B, 5A, 5B, 6A and 

7A. Four QTLs for STI (NL) (2 QTLs), STI (LL) and STI (RL) were detected on 

chromosomes 5A and 5B. This finding was also in accordance with the report by Koebner 

et al. (1996), who found that the homologous chromosome 5 carries loci involved in the 

response to salinity stress in hydroponic conditions according to the analysis of wheat 

cytogenetic stocks. Moreover, QTLs for salinity tolerance were detected for various 

parameters. A single locus for %DL was detected on chromosome 4B and explained 13% 

of the phenotypic variation as Genc et al. (2010) detected two QTLs for tiller number and 

seedling biomass on the same chromosome. Three QTLs for STI (NL) were detected on 

chromosome 3A, 5A and 5B explaining 17%, 15% and 13% of the phenotypic variation 

respectively. A QTL for STI (NL) was overlapped with the STI (CHL) on the same 

chromosome (3A) which reflects the contribution of these parameters to the osmotic 

tolerance by producing new leaves photosynthetically active. The osmotic effect resulting 

from salinity may cause disturbances in the water balance of the plant and inhibiting 
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growth as well as provoking stomatal closure and reducing photosynthesis (Hernandez and 

Almansa, 2002). For this reason increased osmotic tolerance involves an increased ability 

to continue production and growth of new and greater leaves. Three QTLs for STI (RL) 

was detected on chromosomes 3A, 5B and 6A explaining 20%, 15% and 17% of the 

phenotypic variation respectively. Xu et al. (2013) reported 2 QTLs for RL in bread wheat 

on chromosomes 2A and 6A.  A single QTL for STI (LL) was detected on chromosome 

5A explained 19% of the phenotypic variation. Garcia-Suarez et al. (2010) detected a 

single QTL for leaf length on chromosome 1A. The QTL for STI (LL) detected in this 

study was overlapped with one QTL for the STI of the number of leaves. Lauchli and 

Grattan (2007) reported that growth inhibition of leaves is a consequence of inhibition by 

Na
+
 of symplastic xylem loading of Ca

2+
 in the root and the final leaf size depends on both 

cell division and cell elongation.  

 The accumulation of the QTLs on chromosome 5A reflected the importance of these 

genomic regions for salinity tolerance. This chromosome was previously known to be 

associated with Na
+
 exclusion gene Nax2 (5AL) identified in durum wheat (James et al., 

2006). Nax2 confers a reduced rate of transport of Na
+
 from root to shoot and has a higher 

rate of K
+
 transport, thus resulting in enhanced K

+ 
versus Na+ discrimination (known as 

K
+
/Na

+
 ratio) in the leaf (James et al., 2006). The presence of QTLs for several parameters 

such as NL and LL near the gene for Na
+ 

exclusion may reflects the contribution of these 

parameters to salinity tolerance through sodium exclusion process. Sodium exclusion is 

one of the essential mechanisms of tolerance involves the ability to reduce the ionic stress 

on the plant by minimizing the amount of Na
+
 that accumulates in the cytosol of cells, 

particularly those in the transpiring leaves (Munns and Tester, 2008). Na
+
 exclusion by 

roots ensures that Na
+
 does not accumulate to toxic concentrations within leaf blades. 

Thus plants could assimilate calcium to maintain leaf length and production.  
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 In our study, a single QTL for STI (CHL) was detected on chromosome 3A and 

explained 12% of the phenotypic variation. This agrees with the report by Ma et al. 

(2007), who also found a QTL for chlorophyll content on chromosome 3A. A single locus 

for STI (NT) was detected on chromosome 7A and contributed with 16% of total the 

phenotypic variation. Dıaz et al. (2011) reported 2 QTLs for NT on chromosomes 2A and 

5A. Furthermore, a single QTL for STI (SL) was mapped on chromosome 7A and 

explained 15% of the phenotypic variation. QTLs for this parameter was reported by 

different studies such as Xu et al. (2013) who mapped one QTL on chromosomes 6A 

which explained 13% of total the phenotypic variation. The QTL for STI (SL) mapped in 

this study was overlapped with the QTL for STI (NT) on chromosome 7A. 

 In this study, no QTLs were detected for STI (TFW), STI (SDW), STI (RDW), STI 

(NFS), STI (BIO) and STI (NS) above the threshold value of –Log10 (P), and decreasing 

this value to 2 only resulted in one QTL for STI (NFS). The remaining parameters (STI 

(TFW), STI (SDW), STI (RDW), STI (BIO) and STI (NS)) were critical for the evaluation 

of salinity tolerance because of their strong relationship with yield. The absence of these 

QTLs may be due to the low density of markers and presence of high environmental 

variation of these parameters. Among maturity stage related-parameters, only a single 

QTL for STI (PH) were detected. This QTL was located on chromosomes 7A and explain 

18% of the phenotypic variation. QTLs for plant height was reported by Diaz et al. (2011) 

on chromosome 5A and 7A, explaining 9% and 12% of the phenotypic variation 

respectively.  

 This study demonstrated the importance of several parameters for salinity tolerance 

through different processes. For instance, some QTLs mapped on chromosome 5A may be 

associated with sodium exclusion process. Indeed, QTLs for STI (NL) and STI (LL) 

detected on chromosome 5A were distant from those mapped for VRN-1A (Kato et al., 
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2000). Thus, increasing the number of leaves and leaf length under salinity stress may not 

be associated with VRN-1A locus. In the same concept, Genc et al. (2010) mapped 5 QTLs 

for tiller number, seedling biomass, chlorophyll content, maturity and K
+
 concentration on 

the same position of VRN-1A locus.  Similarly, QTLs for STI (RL) and STI (NL) were 

mapped on chromosome 5B, these latter were also distant from the locus VRN-1B (Fu et 

al., 2005). Therefore, increasing the number of leaves and the root length under salinity 

stress may not be associated with VRN-1B locus. 

 The location of a novel QTL for %DL on chromosome 4B was matching those 

reported previously (Genc et al., 2010) for other parameters under salinity stress. These 

regions could also be considered in future studies to improve salinity tolerance in durum 

wheat. The SSR locus gwm403 (on chromosome 3A, 49 cM) associated with STI (CHC), 

STI (RL) and STI (NL) may have direct effects on maintaining growth under salinity 

stress. Further, the SSR loci gwm4 and cfd6 (on chromosome 7A) associated with STI 

(SL), STI (NT) and STI (PH) may also contribute to salinity tolerance by enhancing plant 

vigor. Thus, these markers could be targeted for a marker assisted approach to breeding 

for improved salinity tolerance in durum wheat. 

 Finally, this study indicated a novel QTL associated with salinity tolerance in 

chromosome 4B. It also indicated novel QTLs associated with STI of additional traits on 

different chromosomes. 

 

 

 

 

 

 



61 
 

 

 

 

 

 

 

 

 

 

                                  

 

Fig. 3.1 Changes in the natural log probability of the data (LnP (D)) against the number of lines 

              showed error bars. 
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Fig. 3.2 LD measurements (R
2
, above the diagonal line) and probability value (P, below the 

              diagonal line) for 94 SSR markers located on 14 chromosomes using 119 varieties.  

              The picture represents all pair-wise comparisons of polymorphic sites. 
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Fig. 3.3 Chromosomal locations of QTLs associated with different parameters related to  

                salinity tolerance. 
 

 

 

  

 



64 
 

wmc59729.0
gwm19134.0
gwm19336.0

wmc7945.0
wmc15249.0

6B

cfd24237.0

cfa202848.0

cfd667.0
wmc18272.0
gwm477.0

gwm332100.0

wmc633106.0

7A

wmc6060.0

gwm40047.0

wmc47161.0

cfa2040143.0

7B

qNT7
qSL7

qPH7

 

 

 

Fig. 3.3 Continued. 
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(b) MLM model (K model) followed by Q+K model 

 

 

Fig. 3.4 Variation of observed P-value (x) against the expected P-values (y) among all traits 

             using GLM and MLM models. 

 

 

 

 

(a)  GLM model (Naive model) followed by Q model 
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Table 3.1 Salinity tolerance categories of durum wheat varieties. 

 

 

 

                                            

           

 

Salinity tolerance 

category 

Range of the 

proportion of dead 

leaves (%DL) 

No. of varieties Varieties (Country) 

Tolerant 0-29.9% 33 144 (Iran),48 (Jordan),  V2 (Italy),131 (Iran),  21 

(Uzbekistan), 41 (Bosnia and Herzegovina),113 

(Egypt),   14 (India), 45 (Portugal), 4 (US), 121 

(Bolivia),39 (Lebanon), 42 (Spain), 13 

(Pakistan), 20 (Uzbekistan), 114 (Egypt), 46 

(Ukraine), 54 (Turkey), 51 (Kyrgystan), 132 

(Iran), 138 (Iran),  A22 (Turkey),  A40 (Algeria),  

A42 (Algeria),  A60 (Ethiopia), 88 

(Montenegro), 6 (Canada), 84 (Mexico), 96 

(Algeria), 105 (Mexico),  A24 (Turkey), A25 

(Morocco), 34 (Turkey). 

Moderately tolerant 30-59.9% 42 40 (Saudi Arabia),58(Malta),  110 (Tunisia), 127 

(Iran),  22 (Japan), 7 (Eritrea), 130 (Iran),  A46 

(Ethiopia),  A47 (Ethiopia), ), 83 (Macedonia), 

19 (Kyrgystan), 78 (Cyprus), 87 (Egypt), 57 

(Poland),  A62 (Pakistan), 63 (Hungang), 32 

(Turkey), 97 (Peru), 26 (China), 27 (Georgia), 

11 (Tunisia), 25 (Iraq), 60 (Morocco), V1 

(Greece), , 28 (Egypt), 38 (Iraq), 53 (Italy), 94 

(Algeria), 86 (Mexico), 109 (Tunisia), 99 

(Ethiopia),  A20 (Italy), 112 (Egypt), 12 

(Canada), 69 (Chile), 123 (Ukraine), 23 (Japan), 

29 (Yemen), A26 (Morocco), 44 (Morocco), 56 

(Poland), 100 (US). 

Susceptible 60-100% 44 95 (Algeria), 3 (US), 67 (France), 16 

(Ukraine),75 (Spain), 65 (Bulgaria), 8 (Eritrea), 

80 (Ethiopia), 128 (Iran),  V9 (Italy),  A41 

(Algeria),  A52 (Ethiopia),  92 (China), 62 

(Hungary, pest), 17 (Ukraine), 2 (Peru), 55 

(Hungary, pest), 122 (Russian federation), A28 

(Morocco), 129 (Iran), 64 (Hungary), 31 (Italy), , 

37 (India), 66 (Bulgaria), 52 (Greece), 103 

(Chile), 91 (Bosnia and Herzegovina), 120 

(Bolivia),111 (US), V11 (Mexico), 70 (India), 

148 (Iran), A29 (Morocco), 50 (Russian 

federation), 115 (Oman), 59 (Malta), 116 

(Algeria), V13 (Tunisia), V10 (Italy), 74 

(Serbia), 125 (Kazakhstan), V7 (Tunisia), 36 

(Turkey), A63 (Ethiopia). 
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Table 3.2 Chromosome locations, position in each chromosome (in CM), number of 

polymorphic alleles and polymorphism information content (PIC) of 94 SSR markers. 

    Markers Chromosome 

locations 

Position(CM) in each 

chromosome 

Number of polymorphic alleles   PIC 

Gwm614 2B 12 4 0.60 

Wmc382 2B 8 3 0.57 

Gwm403 3A 49 4 0.24 

Wmc728 1B 110 10 0.85 

Barc81 1B 62 4 0.56 

Barc188 1B 63 3 0.59 

Cfd30 1A 58 2 0.40 

Wmc312 1A 69 8 0.82 

Cfd6 7A 67 3 0.54 

Wmc24 1A 48 7 0.68 

Gwm135 1A 61 3 0.10 

Gwm11 1B 34 4 0.47 

Wmc522 2A 45 10 0.80 

Gwm95 2A 53 4 0.51 

Gdm101 1B 42 6 0.75 

Barc145 1A 116 3 0.46 

Gwm264 1B 21 5 0.66 

Barc128 2B 67 5 0.78 

Barc60 4B 17 7 0.71 

Wmc597 6B 29 5 0.73 

Gwm148 2B 47 4 0.69 

Gwm210 2B 6 2 0.78 

Wmc173 3A 81 4 0.48 

Wmc215 3A 89 5 0.31 

Wmc430 3B 3 4 0.32 

Wmc623 3B 36 10 0.87 

Wmc559 3A 83 5 0.65 

Wmc428 3A 56 4 0.65 

Wmc326 3B 107 4 0.69 

Wmc182 7A 72 3 0.53 
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Markers 

 

Chromosome locations 

 

Position(CM) in each 

chromosome 

  

Number of polymorphic 

alleles 

 

PIC 

 

Wmc471 

 

7B 

 

61 

 

3 

 

0.65 

 

Gwm630 

 

2B 

 

58 

 

3 

 

0.45 

 

Gwm285 

 

3B 

 

61 

 

6 

 

0.67 

     

Gwm4 7A 77 6 0.38 

 

Wmc291 

 

3B 

 

90 

 

5 

 

0.58 

 

Gwm547 3B 138 2 0.55 

 

Gwm312 2A 74 5 0.71 

Wmc630 5A 83 5 0.62 

Wmc475 5A 84 4 0.15 

Gwm159 5B 57 4 0.64 

Wmc238 

 

4B 34 3 0.51 

Gwm595 5A 149 7 0.80 

Gwm371 5B 73 6 0.74 

Wmc152 6B 49 2 0.31 

Wmc59 6A 156 5 0.69 

Wmc150 6A 40 5 0.59 

Barc206 6A 13 6 0.62 

Barc3 6A 44 6 0.33 

Wmc206 6A 115 6 0.22 

Wmc99 5B 128 5 0.69 

Barc48 6A 37 3 0.59 

Wmc79 6B 45 3 0.66 

Wmc468 4A 38 4 0.50 

Gwm304 5A 59 5 0.84 

Gwm234 5B 38 8 0.74 

Wmc161 4A 46 6 0.74 

Wmc349 4B 19 4 0.66 

Gwm251 4B 25 7 0.70 

Gwm6 4B 16 9 0.90 

Gwm154 5A 34 5 0.60 

Gwm273 

 

 

 

 

1B 

 

 

 

 

34   

 

  

 

 

                        3 

 

 

 

 

0.50 

 

    

 

 

              Table 3.2 Continued. 
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Markers 

 

 

Chromosome locations                   Position(CM) in  each    

chromosomes 

     Number of 

polymorphic alleles 

 PIC 

Wmc606 7B 0 7 0.80 

Wmc633 7A 106 20 0.93 

Gwm107 4B 35 4 0.50 

Gwm191 6B 34 5 0.70 

Gwm193 6B 36 6 0.50 

Wmc727 5A 154 5 0.60 

Barc170 4A 27 12 0.85 

Gwm639 5A 75 6 0.64 

Cfa2040 7B 143 7 0.70 

Wmc110 5A 128 4 0.32 

Gwm68 5B 64 4 0.52 

wmc546 4B 43 4 0.40 

Gwm427 6A 93 8 0.77 

Wmc254 6A 148 8 0.70 

Cfd242 7A 37 3 0.32 

Cfa2028 7A 48 4 0.57 

Wmc118 5B 140 4 0.07 

Gwm400 7B 47 8 0.74 

Gwm332 7A 100 8 0.76 

Gwm271 5B 65 3 0.61 

Wmc258 5B 173 3 0.51 

Wmc47 4B 10 2 0.33 

Wmc420 4A 7 3 0.59 

Wmc96 3A 72 4 0.67 

Gwm66 4B 32 3 0.25 

Wmc413 4B 17 3 0.50 

Gwm293 5A 52 4 0.62 

Gwm126 5A 138 8 0.79 

Barc10 5A 0 4 0.48 

Barc70 4A 71 9 0.82 

Table 3.2 Continued. 
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Table 3.3 Location and phenotypic contribution of QTLs associated with different parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QTLs associated with 

parameters 

chromosomes  Marker QTL position (cM) -Log10(P) R
2
% 

%DL 

 

STI (CHL) 

4B 

 

3A 

Wmc238 

 

Gwm403 

34 

 

49 

2.40 

 

2.15 

13 

 

12 

STI (NL) 

 

 

 

 

STI (LL) 

 

 

3A 

5A 

5B 

 

 

5A 

Gwm403 

Wmc110 

Gwm540 

 

 

Wmc110 

49 

             128 

59 

 

 

             128  

2.53 

2.36 

2.25 

 

 

2.61 

17 

15 

13 

 

 

19 

STI (NT) 

 

7A Gwm4 78 2.50 16 

STI (RL) 

 

 

 

STI (SL) 

 

 

STI(PH) 

3A 

6A 

5B 

 

7A 

 

 

7A 

Gwm403 

Gwm427 

Gwm540 

 

Gwm4 

 

 

Cfd6          

49 

93 

               59 

 

               78 

 

 

               67 

 

3.00 

2.61 

2.30 

 

2.42 

 

 

2.60 

20 

17 

15 

 

15 

 

 

18 
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