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Abstract: In this paper, we consider a geometric classifier which is applicable to multiclass classification for high-
dimensional data. We show the consistency property and the asymptotic normality of the geometric classifier under
certain mild conditions. We discuss sample size determination so that the geometric classifier can ensure its misclassi-
fication rates are less than prespecified thresholds. We give a two-stage procedure to estimate the sample sizes required
in such the geometric classifier and proposeisclassification rate adjusted classifier (MRA®sed on the geomet-

ric classifier. We evaluate the performance of the MRAC theoretically and numerically. Finally, we demonstrate the
MRAC in actual data analyses by using a microarray data set.
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1. INTRODUCTION

High-dimensional data situations occur in many areas of modern science such as genetic microarrays, med-

ical imaging, text recognition, finance, chemometrics, and so on. A common feature of high-dimensional

data is that the data dimension is high, however, the sample size is relatively low. This is the so-called

“HDLSS” or “large p, smalln” situation wherep/n — oo; herep is the data dimension andis the sample

size. Aoshima and Yata (2011a,b) provided a variety of statistical inference for high-dimensional data such

as given-bandwidth confidence region, two-sample test, classification, variable selection, regression, path-

way analysis and so on. They considered sample size determination to ensure prespecified high accuracy

for high-dimensional, non-Gaussian inference and developed the theory of Stein (1945, 1949)’s two-stage

procedure which was originally given for inference on the univariate Gaussian mean. Aoshima and Yata

(2015) verified the asymptotic normality of statistics appearing in inference on high-dimensional mean vec-

tors under certain mild conditions. In this paper, we focus on high-dimensional classification and make an

attempt to give a multiclass classifier to hold misclassification rates less than prespecified thresholds.
Suppose we have independent arndariate populationss;, i = 1, ..., k, having un unknown mean vec-

tor p; and unknown covariance matr®;(> O) for eachi. We assume thatm sup,, ., ||i; — p;]1*/p <

oo forall i # j, where||-|| denotes the Euclidean norm. Also, we assume th&E;}y/p € (0, 00) asp — oo

fori = 1,...,k. Here, for a functionf(-), “f(p) € (0,00) asp — oo” implies liminf, .. f(p) > 0

andlimsup,_,, f(p) < oo. We do not assume thal; = .- = ;. The eigen-decomposition of

3, is given by3; = HZ-AiHiT, whereA; is a diagonal matrix of eigenvalues;; > --- > \;, > 0,

and H; is an orthogonal matrix of the corresponding eigenvectors. We have independent and identically

distributed (i.i.d.) observationsg;, ..., x;,,, from eachr;. Letx;; = HiAZ.l/QzZ-j + p;, Wherez;; is
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considered as a sphered data vector from a distribution with the zero mean vector and the identity covari-
ance matrix. We assume; > 2, i = 1,...,k. We estimateu; andX; by z;,, = Z?;l x;j/n; and
Sing = Y11 (@ij — Tin, ) (@45 — Tin,)" /(ni — 1),

As for populationr;, i = 1, ..., k, we make the following assumption:

(A-)) Lety,;, j =1,...,n; bei.id. randomy;-vectors havingt(y,;) = 0 and Va(y,;) = I, for each
i(=1,...k), whereg; > p. Lety,; = (yi1j, .-, Yig;;)" inwhichlimsup,, E(y?rj) < oo forall r,

E(Yi i) = EWinj) E(yis) =1 and E(YirjyisjYirjYiug) = 0
for all » # s, t,u. Then, the observations,;s, from eachr; (i = 1, ..., k) are given by
xij =Ly + g, =1, (1.1)

wherelT; is ap x ¢; matrix such thal’;T'} = X;.

Here, I, denotes the identity matrix of dimensign Note that (1.1) includes the case that= HiAZV2

andy,;; = z;;. Also, note that (A-i) is met whem;s haveN,(u;, ;) for i = 1,...,k. In addition, we
assume the following assumptions fBfs as necessary:
r(xs} (=

(A1) tr(%2)2 r(=2?)

€ (0,00) asp — oo fori, j,l =1,..., k.

Note that “t(X})/tr(2?)? — 0 asp — oo” is equivalent to the condition that\j; /tr(22)'/2 — 0 as
p — o”. Also, the sphericity condition such as (&7)/tr(X;)?> — 0 asp — oo fori = 1,...,k” holds
under (A-ii).

Remark 1.1. If all \;;s are bounded such as; € (0,00) asp — oo, (A-ii) trivially holds. For a spiked
model such as;; = a;;p* (j = 1,....t;) and\;; = ¢;; (j = t; + 1, ..., p) with positive constantsy;;s,

¢;jS anda;;s, and positive integettss, (A-ii) holds under the condition that;; < 1/2for j = 1,...,¢;(<

o0); i =1,..., k.

Let ¢ be an observation vector of an individual belonging to one oftpepulations. Whek = 2, a
typical classification rule is that one classifies the individual intdf

det(52n2 )

—_— _ 7 Tg-1 _—
det(Slnl)} < (:L'O w2n2) 52n2 (:1:0 m2n2)7

(@0 = F1ny)" S5, (@0 — Ty ) — log
and intor, otherwise. However, the inverse matrix.8f,, does not exist in the HDLSS context & n;).
Dudoit et al. (2002) considered substituting the inverse matrix defined by only diagonal elemsits. of
Chan and Hall (2009) and Aoshima and Yata (2014a) considered distance-based classifiers. Particularly,
Aoshima and Yata (2014a) gave a distance-based classifier for multiclass, non-Gaussian high dimensional
data and considered sample size determination to hold misclassification rates less than prespecified thresh-
olds. Whenk = 2, the distance-based classifier is simplified as follows: One classifies the individual into
T if

tr(Slnl) n tr(SgnQ)

0 1.2
2nq 2n9 < (3.2)

flnl + f277,2 T — —
zg - DTN (g, — T, -

and intory otherwise. Here—tr(S1,,)/(2n1) + tr(S2n,)/(2n2) is a bias-correction term. Aoshima and

Yata (2014a) showed that the classifier holds a consistency property in which misclassification rates go to
zero asp — oo even when (A-i) is not met. In that sense, the classifier is quite robust and applicable
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to actual high-dimensional data. On the other hand, Aoshima and Yata (2011a) considered substituting
{tr(Sin,)/p}I, for S;,, in order to use a geometric representation of HDLSS data fromaahd gave a
two-class quadratic classifier called tp@ometric classifieas follows: One classifies the individual intg

if

PPy (1.3)

ni na

pllwo —Zin|[*  plleo —Tons|* {tr(ng)}
tr(Sin,) tr(San,) tr(Sin,)

and intorr, otherwise. Heres-p/n; + p/ns is a bias-correction term. Aoshima and Yata (2014a,b) showed
that the classifier holds the consistency property even whes p,. Recently, Aoshima and Yata (2014b)
provided a general theory of quadratic classifiers for high-dimensional data in non-sparse settings.

In this paper, we develop the geometric classifier by (1.3) to multiclass classificationiwheg). In
Section 2, we show the consistency property and the asymptotic normality of the geometric classifier for
multiclass high-dimensional data. In Section 3, we discuss sample size determination so that the geometric
classifier can ensure its misclassification rates are less than prespecified thresholds. We give a two-stage pro-
cedure to estimate the sample sizes required in such the geometric classifier and projsotesaification
rate adjusted classifier (MRA®pased on the geometric classifier. In Section 4, we evaluate the performance
of the MRAC numerically as well. Finally, in Section 5, we demonstrate the MRAC in actual data analyses
by using a microarray data set.

2. ASYMPTOTIC PROPERTIES OF THE GEOMETRIC CLASSIFIER
Let

pllTo — Tin, ||

Wil@olns) = ==rrge

- g + plog{tr(Sin,)} 2.1)

fori =1, ..., k. We consider the geometric classifier whe(> 2) as follows: One classifies the individual
into 7r; if

max { argmin W; (:L'o\nj)} =i. (2.2)
7=1,...k
When argmin_, . Wj(zo|n;) = {i1,...,4} with integers! € [2,k] andi; < --- < 4, we have

max{argmin_, ,Wj(zo|n;)} = i;. Note that the differencell/i(xzo|n1) — Wa(xo|ns2), is equivalent
to (1.3).

2.1. Consistency Property

Let Awu = |lp; — )l |> and A0y = tr(X;) — tr(X;) + tr(X;) log{tr(X;)/tr(X;)} for all i # j. Note
thatA;;2) > 0 (i # j) with equality if and only if t(3;) = tr(3;). Let

D
Ajj = @(Azj(l) + Ajj2)

for all i # j. We assume the followings as— oo either whem; is fixed orn; — oo fori =1, ..., k:

tr(Ef)tr(Z, — 2]')2
tr(El)QAfj

(1 — 1) Sy — 1)

(A-ii)
AZ

=o(1) and

=o(1) foralli # j;

max{tr(X?), tr(2§)}

min{n;, nj}A?j

(A-iv) =o(1) foralli# j.



We denote the error rate of misclassifying an individual fropginto another class) by(i). Then, we have
the following result.

Theorem 2.1. Under (A-i), (A-iii) and (A-iv), it holds that ap — oo

Wi(zo|ni) — Wi(zo|ny)
e(i) — 0 fori=1,..., k.

=14 o0p(1) whenzg € m; forall i # j;

Remark 2.1. Whenk = 2, Aoshima and Yata (2014a) gave partial results of Theorem 2.1 under different
conditions.

Remark 2.2. If maxizzl,._.jk{tr(E?,)}/A?j — 0 asp — oo forall i # j, (A-iii) and (A-iv) naturally hold.
Then, one can claim Theorem 2.1 even whgiis fixed fori = 1, ..., k.

2.2. Asymptotic Normality

Let

W (o, ny) = pllwo = Zin,|*  pllzo — Zjn, 1> oo JEED _ ptr(Sin,) | P(Sjn,)
0T, Tl tr(zz) tr(Ej) tr(El) tl’(22>nl tr(zj)ni

for all i # j. Note thatW;(xo|n;) — W;(xo|n;) is equivalent toW(wo\ni,nj) with 3; = S;,, and
3 = 8, foralli # j. We have thals{W (zo|n;, n;)} = —A;; whenzg € m; for all i # j. Under (A-i),
it holds that

tr(3;)?
4p?

— )2 2 2 3 2
Var{W (xo|n;,nj)} :i:(éziz (tr(Ez) tr(El)l)) tr(2;3;) tr(3)

n; 2’02(’02 - ny 2nj (nj - 1)

2 )2
(5 ) (DB

whenx, € w; forall i # j. Let

2p  (tr(Z;)? tr(Z?) tr(X?) tr(=;%)) tr(X3) 12
& { ( 1)>+ 1)}

i~ tr(Ej) tr(EZ—)Q n; 2711(711 — n; an(nj —

for all 7 # j. We assume extra assumptiongas oo andn; — oo, i = 1,..., k:

tr(EHtr(Z; — ;)2
X 2
tr(%)20;;

(1; — p’j)Tzi(IJ’i - Nj)
52
ij

(A-v) =o(1) and

=o(1) foralli # j.

Note that under (A-ii) it holds;; = O{tr(X2)/2} for all i # j, so that t(X;) /tr(X;) — 1 asp — oo for
all + # j under (A-ii) and (A-v). Then, we have the following results.

Theorem 2.2. Assume that\;;;)/tr(3;) — 0 asp — oo for all i # j. Under (A-i), (A-ii) and (A-v), it
holds thatap — coandn; — o0, i =1, ..., k
Wi(@o|ni) — Wj(aoln;) + Aij
i

=Y, whenxy e x; foralli# j,

where “=" denotes the convergence in distribution akf} denotes a random variable distributed as the
standard normal distribution.



Remark 2.3. Whenk = 2, Aoshima and Yata (2011a) gave the asymptotic normality under some stronger
conditions.

Corollary 2.1. Assume that\;;;)/tr(X;) — 0 asp — oo for all i # j. Under (A-i), (A-ii) and (A-v), the
classification rule by (2.2) has that @as— co andn; — o0, i =1, ..., k

k
e(i) < Y ®(=Ai/di) +o(1) fori=1,..k,
J(FD=-1

where®(-) denotes the cumulative distribution function of the standard normal distribution.
Remark 2.4. Whenk = 2, the above result is given as

6(1) = (I)(—Alg/(slg) + 0(1) and 6(2) = (I)(—Agl/(SQl) + 0(1).

3. SAMPLE SIZE DETERMINATION TO CONTROL MISCLASSIFICATION RATES

Let Aij* = {tr(Ej)/p}AU = Aij(l) + Aij(2) forall i # 4. Let A = minj(#)zl ..... k min{Aij*, AJZ*} for
1 =1,...,k. We are interested in determining the sample size for (2.2) to ensure the requirement:

e(i) < a; wheneverA;, > A fori=1,.. k,

wherea; € (0,1/2) andA.r(> 0)i = 1, ..., k, are prespecified constants. We assdmg, = o{tr(X?)'/?},
i=1,..k.

3.1. Sample Size Determination
Let z,, be the uppet point of the standard normal distribution. We considgs satisfying
24 (i)

< (3.1)
Zoy/(k—1) T Zay /(k—1)

for alli # j, whereA ;) = pmax{Aj.r, Aj.r}/ max{tr(3;),tr(3X;)} (i # j). Note thatA ;) = A
andA;;y < min{A;;, Aj;} foralli # j. Under (3.1), we have that

Ji)

Aij + Agy)

Zai/(k=1) ~ Fay/(k=1) o\ (1+ Zas/(k=1) —Zaj/w—l)) _ 2ay0-1Ba)
Zai(k-1) T Za;/(k-1) ) Zai/(k—1) T 2oy /(k-1) Zai)(k=1) T Za;/(k-1)
> Za,/(k—1)0ij3
2oy ) (k=1) — Za; /(k—1 220 1(—1) A (ij
J(h=1) T Zay/(k=1) /h=DBG) a0

Aji— A > >
’ ) Zaa 1) 20y /5o1)  Zagfb-1) + Zay /(1)

i5)
so that from Theorem 2.2 it follows that foe= 1, ..., k

k
P<Wi(wo\ni) — Wi(zo|n;) > Ay
i(#5)=1

Zai/(k—1) ~ Za;/(k-1)
Za;/(k—1) 1 Zay/(k—1)

) <a;+o0(l) whenzy € m;

under (3.1) and the assumptions of Theorem 2.2. First, we consider the caséwhep . [tr(3;)/tr(3;)
—1| > 0fori # j. In the case, it holdEm inf), .o A;j/p > 0. Under (A-i) and (A-ii), from Theorem 2.1



we have that

Zey [ (k—1) — Zaus /(-1
P(Wi(ﬁcomi) — Wj(zoln;) > A(ij)z jik 1; +z ];Ek 1;>
o [ (k— Qg/AR=

Aij) Zai/(k=1) ~ Zay/(k-1)
Aij Zay/(k-1) F Zay (k1)

:P(—1+OP(1) > )20(1) whenzg € m;

even ifn;s are fixed for # j. Next, we consider the case whe(Si) = - -- = tr(%;,). Leto; = tr(X?)1/2
fori =1, ..., k. From the fact that i, 3;) < {tr(37)tr($%)}!/2 (i # ), it holds that fori 5 j

%ij < tr(=

maxo

tr(X;) i=ij

2p ¢ (tr(zf) n tr(Z?)l/z maxj—; j tr(E%)1/2>1/2 < 2p 1/2( o; I 0j >1/2
J

n;—1 n; —1 ni—1 mn;—1

Let us writeo(;) = max(xy—1, . k0 andag) = minjy—1  ro; fori = 1,.., k. From the above
arguments, we can fingd;, ¢ = 1, ..., k, to satisfy (3.1) by

(Zai/(k—1) + Zagy /(k—1))° MAXIZ1, k01 19 179
> A2 s o;'" (o
1k

n;

+U(1£2)+1 (hereafter called;).  (3.2)

Note thatn; — oo, i = 1,...,k, asp — oo from the fact thatA,,;, = o{tr(Z3)'/?}, i = 1,...,k. For
example, wherk = 2, tr(X;) = tr(39) andA;.;, = As.z, the smallest integegn, ne) satisfying (3.2)
holds the following optimality:

2p 1/2( o, 02 )1/2< 24 i)
2

2
min E n; subjectto max o <
n—1 ng—1 Zo; t Za,

i=1

(s, ) fori # j.

According to (3.2), we take samples from eaghand calculatéV;(xo|n;), i = 1,...,k, in (2.1). We
consider the following classification procedure based onntiselassification rate adjusted classifiey
Aoshima and Yata (2014a):

Misclassification rate adjusted classifier (MRAC)
Step1: Seti =0.
Step2: Puti =i+ 1. If i = k, go to Step 4; otherwise go to Step 3.
Step 3:  Ifit holds that

max{Aur, Ajur}  Zai/(k—1) ~ Za;/(k—1)

Wi(xo|ni) — Wj(xo|n;) < pmax{tr(Smi),tr(Sjnj)} P

forall j =i+ 1,..., &k, go to Step 4; otherwise go to Step 2.
Step 4. Classifyxg into ;.
We have the following result.

Theorem 3.1. Under (A-i) to (A-iii), for the MRAC with (3.2), it holds that as— oo

limsupe(i) < a; whenevel\,, > A, fori=1,... k. (3.3)



3.2. Designing a Lower Bound A1,

First, we consider a lower bound of;; ;). Let 3@(1) = |Tin, — Tjn;||* — tr1(Sin;)/ni — tr(Sjn;)/nj. By
using the two sample test by Aoshima and Yata (2015), under certain regularity conditions, it holds that as
p—ooandn; — oo, i=1,...,k

Aij) = A

=Y;; foralli# j,
/{ij

whereY;; denotes a random variable distributed as the standard normal distribution and

Y ni(n; — 1) nj(n; —1) nin;

having;,,,s defined by (9) in Yata and Aoshima (2013). Héig,,, is an unbiased estimator of &) and
var{W;,, /tr(£?)} — 0 asp — oo andn; — oo under (A-i). See Aoshima and Yata (2014a) for the details.
It follows thatP(ﬁij(l) —FKijzar < Ayj1y) — 1—a’ for givena’ € (0,1/2). Thus, one may design a lower
bound ofA;;(;) by

~

Aij(l)L = Aij(l) — Rijza/ (3.4)
for sufficiently smallo’. Next, we consider a lower bound 8f;;2). Fori # j it holds that

tr(E; — 3;)?
~ 2max{tr(%;),tr(3;)}

Aij(2)
with equality if and only if t(33;) = tr(X;). We note that ap — oo andn; — oo, i =1,....k

tl’(Smi)
tr(Ei)

tr(33)"/2
ny/?tr(3;)

:1+OP{ }:1+0p(1)

under (A-i). Thus, one may design a lower bound\gf ) by

Ay 2)L = (
3( 2max{tr(Sin, ), tr(S;n;)}

fori # j. Let Ayjur = Ajjayr + Aoy forall i # j. Note thatA;j., = Aj.r for @ # j. Finally, we
choose a lower boundy;,,, by A.p, = M1,k DijsL for sufficiently smallo’.

3.3. Two-Stage Procedure

In order to estimaté€’;s in (3.2), we proceed with the following two steps:
1. Choosen;(> 4) satisfying

i i tr(3]
%—>0 andg i ;)
m2 m; tr(3;)?2

)

-
J<1’

o = — 0 as p — oo under (A-ii) (3.5)

fori = 1,...,k. Note that (3.5) holds whem;/C; € (0,1) asp — oo. Take pilot samplesg;;, j =
1,...,m;, of sizem, from eachr;. Then, calculatéV;,,, for eachr; according to (9) in Yata and Aoshima



(2013). Lets; = Wff andé ;) = max;(y—1,..x 05 fori = 1,..., k. Define the total sample size for each
m; by

(Zai/(kq) + Za(i)/(kfl))2 maxj—1,.. k0l _ 1/2
o.

A? '

N; = max {mi, {
ix L

(6, + o))+ 1] } (3.6)
where[z] denotes the smallest integerz.

2. For each, if N; = m;, do not take any additional samples framand otherwise, that is iV; > m;,
take additional samples;;, j = m; + 1, ..., IV;, of sizeN; — m; from ;. By combining the initial samples
and the additional samples, calculatg;, andS;y;, i = 1,..., k. Then, follow MRAC by usingV;(x|N;)
and t(.S; ;) instead ofil¥/; (xo|n;) and t(.S;y, ).

Theorem 3.2. Under (A-i) to (A-iii), (3.3) holds for the MRAC with (3.5) and (3.6).

Remark 3.1. Whenk = 2, Aoshima and Yata (2011a) gave a two-stage classification rule based on the
geometric classifier. See Theorem 4.3 in Aoshima and Yata (2011a) for the details. We emphasize that the
MRAC can claim (3.3) fork > 2 even under milder conditions than the original one by Aoshima and Yata
(2011a).

Remark 3.2. Under (A-i), (A-ii) and (3.5), it holdsV; /C; = 1+ op(1) asp — oo, which is in the HDLSS
situation in the sense thaf; /p = op(1) under the condition tha:*uaxj:17.,,7k{tr(2§)}/AZ*L = o(p).

1

Remark 3.3. Even whenmn,;/C; > 1 for somei, the assertion in Theorem 3.2 is still claimed. However, it
may cause oversampling in the sense fkigtC; > 1 w.p.1.

4. SIMULATION

In order to examine the performance of the MRAC with (3.5) and (3.6), we used computer simulations.
First, we considere@ classes having Gaussian distributions. Independent pseudo random observations
were generated from; : N,(u;,X;), i = 1,2. We considered®; = B{(—1)li=0.3i~I"*} B and

¥y = f(=1)li7l0.41i-3"*} whereB = diag{0.5 + 1/(p + 1)}'/2,....,{0.5 + p/(p + 1)}'/?]. Note

that t{3;) = p and t(Zs) = cp. We setu; = (1,...,1,0,...,0)” whose the firsB0 elements aré and

po = (0,...,0)7, so thatA;;1) = ||p; — po||* = 30. We prespecified\ 1., = Ag,r = Ajyqy = 30. We
set(a, ) = (0.05,0.15) andm; = [0.5 x (C; — 1)| + 1,7 = 1,2, whereC; is defined by (3.2). We
considered four cases: (@)} 500 whenc = 1, (b)p = 1000 whenc = 1, (c) p = 500 whenc = 1.2, and (d)

p = 1000 whenc = 1.2. By averaging the outcomes from 2008 R, say) replications, the findings were
summarized in Table 1. Under a fixed scenario, suppose thatthiheplication ends withV; = n;,. (i =

1,2) observations for = 1,..,R. Letw; = R ny andV(n;) = (R — 1) '8 (ny — 7).

In the end of therth replication, we checked whether the classifier does (or does not) clagsifpm

7; correctly and defined;, = 0 (or 1) accordingly for eacti. We calculatedt(i) = R~} Zle P, for

eachi as un estimate of(:). Their estimated standard errors were givenskg(i)} for eachi, where
s?{e(i)} = R~'e(i){1 —e(i)}. As observed in Table 1, the two-class MRAC with (3.5) and (3.6) gave
adequate performances for all the cases when considered those standard errors. Especiallgwhgn tr
tr(32) such as in (c) and (d), the MRAC gave good performances becsayse A;.p,i = 1,2.

Next, we considered classes having non-Gaussian distributions generateg;by- (8/10)1/2wiﬂ,
wherew;;;, j = 1,...,p (I = 1,2,...) are independently distributed aslistribution with 10 degrees of
freedom for eachr; (: = 1,2,3). Note thatE(y;;;) = 0, E(yfjl) =1, andy;;, j = 1,..,p (1 =
1,2,3; I = 1,2,...) are independent. Let; = HiAg/Q(ym,...,yipl)T +p; (0=1,2,3, 1 =1,2,...),
whereA; = H?ZiHi. Then, the distribution ofc;; satisfies (A-i) for eachr;. We considere®; =
B{(-1)li=ilo.3li=i"* B, 55, = B{(~1)li=710.4li~I"*} B and 33 = 1.2{(—1)li=7l0.4li=31"*}. we set



Table 1. Accuracy of the two-class MRAC with (3.5) and (3.6)

When t(X;) = tr(Xs) (¢ = 1)
p = 500: (ml,mg) = (10, 11)

m 18.55 19.15 0.6 16.16 0.047 0.00471
m 2037 21.19 0.81 27.85 0.151 0.00801
p = 1000: (m1, ma) = (19,21)

m 36.29 36.87 0.58 141 0.038 0.00428
m 40.01 40.74 0.73 26.86 0.17 0.00839
When t(X,) # tr(Xs3) (c = 1.2)

p = 500: (m1,ma) = (13,15)

m 23.11 2328 0.17 13.86 0.027 0.00362
my 2774 27.95 021 30.8 0.072 0.00576
p = 1000: (m1, ma) = (24, 28)

m 4547 4591 044 16.38 0.013 0.00253
m 54.85 55.46  0.61 36.86 0.048 0.00476

= (1,...,1,0,...,0)T whose the firsti0 elements aré, p, = (0,...,0,1,...,1,0, ...,0)” whose the21st

to the60th elements aré, andp; = (0, ...,O)T. Then, we had\,, > 40 for i = 1,2, 3. We prespecified

A, =40,i=1,2,3. We setn; = [0.5x (C;—1)]+1 for eachr;. We considered four cases: (a) 500
when(aq, a2, a3) = (0.1,0.1,0.1), (b) p = 1000 when (a1, ag, ) = (0.1,0.1,0.1), (c) p = 500 when

(a1, a2, a3) = (0.05,0.1,0.15), and (d)p = 1000 when(aq, a2, 3) = (0.05,0.1,0.15). By averaging the
outcomes from 2000= R, say) replications, the findings were summarized in Table 2. Throughout, the
three-class MRAC with (3.5) and (3.6) gave adequate performances for all the cases when considered those
standard errors.

5. EXAMPLE

We analyzed gene expression data by Armstrong et al. (2002) in which the data set congiziéd 6 p)

genes. We had 3 classes of leukemia subtypes, that:igcute lymphoblastic leukemi@4 samples)srs:
mixed-lineage leukemia2() samples), anas: acute myeloid leukemia2g samples). We used the MRAC

and compared the geometric classifier by (3.5) and (3.6) with the distance-based classifier by Aoshima and
Yata (2014a). The total sample size of the distance-based classifier is defined by

(Zow J(k—1) T Zag /(k—1)) MAX—1,.. ) 67
/(k—1) (iy/ (k—1) 6‘1/2(&'1/2+5-(1i/)2)+1—‘}

AQ 7 7

N;x = max {mi, {
i(1)L

for eachm;, whereA; (1) = minj(y—1,. x Aijr) fori =1,..., k, andA;(y, is a lower bound of\, ) such
asf;1) = Ajyr- SinceA;. > Ayq), Nixs are larger thav;s in (3.6) w.p.1 whem\ ., > Ay

We prespecifiedas, az, az) = (0.05,0.15,0.1), so thato ) = 0.1, a(z) = 0.05 andasy = 0.05. We
setm; = mg = m3 = 10. According to Section 3.2, by setting = 0.05 andn; = m;(= 10), i = 1,2, 3,
we hadAjs,;, = 6.11 x 10%, Az, = 2.45 x 10" and Ags,;, = 8.09 x 10°. Thus, we prespecified
Ay = min(AuL*, A13L*) = 6.11 x 109, Aory = miH(AlgL*, A23L*> = 6.11 x 10° andAgL* =
min(A13n., Agsry) = 8.09 x 10%. Also, we hadAyq);, = 5.96 x 10%, Ayzqy, = 2.37 x 10'° and



Table 2. Accuracy of the three-class MRAC with (3.5) and (3.6)

When(al, o9, Ozg) = (01, 0.1, 01)
p = 500: (mq,mg,m3) = (11,13,13)
m  19.72 20.63 0.91 1496 0.05 0.00485
my 23.28 24.15 0.88 28.75 0.075 0.00587
w3 24.93 26.03 1.09 38.36 0.106 0.00688
p = 1000: (mq,ma, ms) = (20,24, 26)
w1 38.66 39.24 0.59 15.42 0.038 0.00428

m, 459 46.56  0.66 26.17 0.067 0.00559
w3 49.23 50.0 0.77 39.49 0.107 0.0069

When(al, 9, 043) = (0.05, 0.1, 0.15)

p = 500: (ml,mg, mg) = (13, 15, 14)
m  23.48 24.47 0.99 20.58 0.02 0.00313
my 27.75 28.65 0.9 34.94 0.074 0.00585
w3 26.56 27.65 11 43.55 0.105 0.00685

p = 1000: (mq1,ma, mg) = (24,28,27)
m 46.21 46.86  0.65 19.26 0.016 0.00281
my 5492 5554  0.62 31.61 0.057 0.00516
w3 52.5 53.29 0.79 39.49 0.126 0.00742

Agy(1)r, = 7.81 x 10° according to (3.4). Thus, we prespecifig;), = 5.96 x 109, Ay(yy;, = 5.96 x 10°
andAgpy, = 7.81 x 10°.

By using pilot samples of sizev; = my = mg = 10, we calculatedVy,,, = 2.59 x 1019, Wom, =
2.16 x 10! andWs,,, = 2.51 x 10'°. From (3.6), the total sample size for was calculated by

Zay /2 + Zayy, /2)° MAX|—1 2.3 0
it Al o) +1] =10
1L

Similarly, we hadN,; = 16 and N3 = 12. We considered constructing the geometric classifi&(xo|N;),

i = 1,2,3, by (N1, N, N3) = (19,16, 12) samples and checking the accuracy of the MRAC by using
remaining(24 — N1,20 — N2,28 — N3) = (5,4, 16) samples. We randomly split the data set from each

m; into training sets of size@V;, Na, N3) = (19, 16,12) and test sets of siz€$, 4,16). We constructed
Wi(xo|N;), i = 1,2, 3, by the training sets and checked the accuracy of the MRAC by using the test sets.
We repeated this procedure 100 times. Then, we had the average of misclassificationa@tes-as044,

e(2) = 0.09 ande(3) = 0.064. Also, for the distance-based classifier by Aoshima and Yata (2014a), we
calculated the total sample sizes(@§ .., Na., N3.) = (20,17,12) and had the average of misclassification

rates ag(1) = 0.023,¢(2) = 0.08 ande(3) = 0.066. Similarly, for various settings af;s, we investigated

the performances of the geometric classifier and the distance-based classifier in the MRAC. Throughout, we
used the same settingsiag = may = m3 = 10 and(A .z, Aowr, As.r) = (6.11 x 10%,6.11 x 10°, 8.09 x

10%) or (A1), Aoy, Asayz) = (5.96 x 10%,5.96 x 107,7.81 x 10%). We summarized the results in

Table 3. Both the classifiers seem to give adequate performances in such a HDLSS situation. The geometric
classifier would save more observations compared to the distance-based classifier specially in small sample
size settings. On the other hand, the distance-based classifier is very versatile and it holds (3.3) under milder
conditions than the geometric classifier. See Sections 3 and 4 in Aoshima and Yata (2014a) for the details.

Ny = max{lO, [(
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Table 3. Average misclassification rates of the MRAC by the geometric classifier with (3.5) and (3.6)
and by the distance-based classifier by Aoshima and Yata (2014a). \We setmo = ms = 10 and
(Arir, Agur, Aser) = (6.11 x 107,6.11 x 10,8.09 x 10%) or (Ay(1yz, Aoy, Azyr) = (5.96 x
102,5.96 x 10%,7.81 x 10?). Whena; < 0.05 at least for twor;s, the result was not available within
the data sets

Geometric classifier Distance-based classifier
(al,ag,ag) E(l) 5(2) 5(3) (Nl,NQ,Ng) é(l) §(2) 5(3) (Nl*,NQ*,Ng*)
(0.15,0.15,0.15) | 0.097 0.135 0.071 (13,12,10) | 0.058 0.113 0.069 (14,13,10)
(0.1,0.15,0.15) | 0.081 0.1 0.071 (15,14,10) | 0.047 0.095 0.071 (15,14, 10)
(0.1,0.1,0.15) 0.08 0.08 0.088 (16,16,10) | 0.054 0.055 0.084 (17,16, 10)
(0.1,0.1,0.1) 0.074 0.085 0.084 (16,16,10) | 0.04 0.088 0.071 (17,16, 11)
(0.05,0.15,0.1) | 0.044 0.09 0.064 (19,16,12) | 0.023 0.08 0.066 (20,17,12)
(0.05,0.1,0.1) | 0.064 0.065 0.071 (19,18,12) | 0.035 0.08 0.067 (20,19,12)
(0.1,0.05,0.1) | 0.104 0.06 0.086 (19,18,12) | 0.07 0.05 0.086 (20,19,12)
(0.1,0.1,0.05) | 0.066 0.075 0.06 (19,18,12) | 0.038 0.07 0.062 (20,19,12)

A. APPENDIX

Proof of Theorem 2.1Under (A-iv), it holds that Vaf||Z:,, — p;||> — tr(Sin,)/n:i} = O{tr(X2)/n?} =
o(A%) and Vaf (Zjn, — p;)" (@0 — p;)lzo € m} = O{tr(2;%))/n;} = O{tr(Z)2tr(3)"/2 /n;} =
o(A?)) for alli, j. Note that(ps; — p2;)"%; (p; — ;) /[y < |l — w51 P A1 /my < [y — | [Pr(Z5) 12/,
= o(A;) forall i # j, under (A-iv). Then, it holds that Vi(zo — ;) — (®jn; — 1)} (11, — 1) |0 €
mi] = (1 — )T (i + Zj/n5) (s — py) = o(A?j) for all : # j, under (A-iii) and (A-iv). Thus by using
Chebyshev’s inequality, under (A-iii) and (A-iv) we obtain that

o — i = @in, — ) |* = r(Sin,) /mi = |0 — il * + 0P (As);

o — s — (Fjn; — 1) + 1y — p|I* = t0(Sn;) /ny = [0 — il * + Agjay + op(Ayj)
whenxg € ; for all i # j. Under (A-i) and (A-iv) we have that Vtr(S;,,)} = O{tr(Z2)/n;} = o(Afj)
and Vaf||zo — p,|}|zo € m) = O{tr(X?)} for all i # j, so that t(S,,,) = tr(X;) + op(A;;) and

|20 — p;||? = tr(2;) + Op{tr(X2)'/2} whenz € =; for all i # j. Note that ttX;) /p € (0, 00) asp — oo
fori =1, ..., k. Then, under (A-i), (A-iii) and (A-iv), we have that

W;(xo|n;) — Wi(zo|n:) :prO — i — (Tjn; — 1) + oy — ][> —tr(Sjn;) /0

A tr(Sn, ) Aij
o — p; — (Tin, — p)||* — tr(Sin,) /100 tr(Sjn,) -
p tr(sz)Aw —i—plog tl’(San) /A”
llmo — wil* + Aijy  [lmo — pl? tr(%;)
TE)A, “PuEA, plog { tr(3;) } /&g +or(l)
_ A{llzo — P — tr(tr(2) Htr () — ()}
i tr(Ei)tr(Ej)Azj +1+ OP(l)
=1+ op(1) (A.1)
whenx, € 7, for all i # j. Hence, we conclude the results. O

Proof of Theorem 2.2We note thatnax{tr(X7) /n?, tr(X3)/n3} = o(63;) for all i # j under (A-ii). Also,
note tha‘(ﬂi—Hj)T(Ei—‘rzj/nj)(Hi—[J;j) = o(éfj) forall i # j under (A-ii) and (A-v) sinc@;;/(n;0;;) =
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o(1) for all 7 # j under (A-ii). Letw(xo|ni, nj) = 2{p/tr(3;)}(xo — ul)T{(@nJ — i) — ( j
m;)/tr(%;)} for i # j. Then, similar to (A.1), under (A-i), (A-ii), (A-v) and\;;( /tr( i) = o
i # j, we have that

)(mmz -
1) for all

Wj(xoln;) — Wi(xoln;)
o = mllP A+ Ay — 2(0 — 1) (Fjn; — 1) o = il P = 2(x0 — )" @in, — 1)
=P tr(Sjn,) b tr(Sin,)
+ plog {irr((z:])) } + op(di5)
Ao = pl|? = r(Z) Htr(Sin, — Sin,)} (%) (%) tr(Sin,)
P tr(Sin )t (S;n,) = { - )} ~plog {tr(sjnj)}

Pt (S;,) (S,
—w(xo|ng, n; 201 dij A2
0n27n])+ptr(2)+op( Z]) ( . )
j

whenzx € m; for alli # j since t(S;,,)/tr(X;) — 1 = Op(d;;/p) = op(1). Here, we note thattE?)/p =
o{tr(X2)Y/2}, i = 1,.... k, under (A-ii) from the fact that {&?)'/2 /tr(3;) = o(1) under (A-ii). It holds
that||zo — p;||> = tr(3;) + Op{tr(X2)'/2} whenzxy € m; and t(S;,,,) = tr(X;) + Op[{tr(X?)/n;} /2],
i =1,..., k. Then, under (A-ii) and (A-v), we have that

{llo — ;][> — tr(Z) Htr(Sin, — Sjn;)} max;—; ; tr(27)  tr(ZHV2r(Z; - 3,)|
p tr(Sin, )tr(Sjn,) : =0 {min{ni,jnj}l/gp T » ’ }
= op(dij) (A.3)

whenx, € 7; for all i # j. On the other hand, under (A-i) and (A-ii), it holds that

plog{ = ¢ —plog = plog —plog — plog
tr(Sjnj) tr(Ej) tr(Sjnj) tr(Sml) tr(Ej)
tr(3;) tr(3;) tr(3;)

_ — A4
w(S;) L (S, TuEy) " or (%) (A4)
for all i # j. Then, by combining (A.2) with (A.3) and (A.4), under the assumptions of Theorem 2.2 we
have that

=p

Wi(xoln;) — Wilzolni) = w(ol|ni, n;) + Aij + op(di)
whenz, € ;. Note that Va{w(woyni,nj)}/éfj = 1+ o(1) for all i # j under (A-ii). Then, in a way
similar to the proof of Theorem 3 in Aoshima and Yata (2014a), under (A-i) and (A-ii) we can claim that
w(xo|ni, nj)/0i; = Yi; forall i # j. Thus it concludes the result. O

Proof of Corollary 2.1.By using Theorem 2.2 and Bonferroni’s inequality, we have thate(i) > 1 —
Z (i1 ®{=24;/0i;} + o(1) whenz, € ;. This concludes the proof. O

Proof of Theorem 3.1From (3.2), it holds thabt;; < 2A;{1 + o(1)}/(2a,/(k-1) + Za;/(k—1)) When
tr(3;)/tr(X;) =1+ o(1) for all i # j. We denote the error of misclassifying an individual frafrinto
by e(j|i) for i # j. Then, under (3.2) and the assumptions of Theorem 2.2, we have that

i i) — j j Az* tr Sn 7A'* tr Szn o; [(k—1) T *a;/(k—
e(jli) :p{Wz(wo!m)éuWJ(wo\nﬂ > pmax{A;./tr( i;f) L /U(Sin )} Za/(k=1) = Za;/(k 1>}
i ij Zai/(k=1) T Za;/(k-1)
A 22ay/k-1) Qi
< PlY;; > Y : +0(1) < P(Yi; > 2o, j5—1)) +0(1) = +o(1
{2 G o) S PO 2 2ayen) +o0l1) = g Fol)
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whenzx € 7; fori # j, whereY;; denotes a random variable distributed as the standard normal distribution.
We note that (A-v) holds under (A-iii) whehm inf 6;;/A;; > 0 for all ¢ # j. On the other hand, when
dij/Aij = o(1) for i # j, from Theorem 2.1 it holds that fary € ;

e(jli) = p{ Wi(zo|n:) — Wj(@o|n;) > pmax{Ai./tr(Sjn;); Djur /U(Sin,)} 2o/ (k1) — %/(H)}
AYY Ajj Zoy/(k—1) T Za /(k—1)
Auin{l+op(D)} 20, /(k=1) — Za; /(k—
{1+ 0p(1) > (J){A” p( )}Z /(k=1) ~ Zay/(k DY o)
ij ai/(k=1) T Za;/ (k1)

under (A-i) to (A-iii) without (A-v). We note thab;;/A;; = o(1) for i # j under (A-ii) when it holds
thatlim inf, oo A1) /tr(X;) > 0 or liminf, . [tr(3;)/tr(X;) — 1] > 0. Thus one can claim(jli) <
a;/(k—1)+o(1) forall i # j under (3.2) and (A-i) to (A-iii). Then, from Bonferroni’s inequality, we have
thatl —e(i) > 1 — Zf(#):l e(jli) > 1 — i + o(1) whenxy € 7;. This concludes the proof. O

Proof of Theorem 3.2Let C;;, = |C; — (wOi)1/2j, i =1,...,k, wherew (> 0) is a variable such that

w — 0asp — oo. Then, from the proof of Theorem 5 in Aoshima and Yata (2014a), it holds that
max{m;, Cir} < N; < C; + (wCy)'/? asp — oo w.p.1. Then, in a way similar to the proofs of Theorems
2.4 and 2.5 in Aoshima and Yata (2011a), under (A-i) to (A-iii) we have that far=llj

tr(Sin,) = tr(%) + Op[{tr(X})/CiL}'/?;

1Zin, — pal? = tr(Sin,)/Ni = 0p(Asj);

(@jn; — ;)" (i — ;) = op(Ay); and

w(xo|Ni, Nj) = w(xo|Cir, Cjr) + op(Asj) whenzg € m;,

wherew(xq|N;, N;) is given in the proof of Theorem 2.2. Similar to the proof of Theorem 2.2, under (A-i)
to (A-iii) we have that

Wi(xo|N;) — Wi(zo|N;) = w(xo|Cir, Cj1) + Aij + op(Aij)

whenzxy € m; for all i # j. Then, in a way similar to the proof of Theorem 3.1, we can conclude the
results. O
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