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Abstract 

In this study, we performed coupled circuit numerical simulation of eddy currents in magnetic 

resonance imaging (MRI) systems by implementing novel approaches in subdomain modeling, 

inductive coupling calculations and in solving the system of coupled differential equations. 

Simulations were conducted for both open (0.3 T) MRI and closed-bore (9.4 T) superconducting 

MRI systems. In MRI systems, complex spatio-temporal eddy currents are induced in the 

surrounding conducting structures because of the switching of pulses in the gradient coils which 

is proportional to the inductive couplings among the gradient coils and different conducting 

structures and, decays with some characteristic time constants. In this study, following the dc 

resistive-inductive circuit concepts and the concepts of diffusion of eddy currents inside the 

materials with some characteristic skin depths, we divide the eddy current conducting structures 

into thin (much thinner than the skin depth) subdomains both along the length (or width) and 

thickness, and by implementing inductive coupling relations (of this network of coupled 

resistive-inductive circuits) we simulated the transient responses of eddy currents for subdomains 

at different locations of the conducting structures. We implemented the Eigen matrix method to 

solve the network of first-order coupled differential equations. To compute the coupling relations 

between the gradient coil and subdomains located at any position of the conducting structure, we 

implemented solid angle form of Ampere’s law. The corresponding solid angles in three 

dimensions were calculated for both planar and cylindrical type of transverse (X- or Y-gradient) 

and longitudinal (Z-gradient) gradient coils. The secondary magnetic fields generated by the 

eddy currents were also calculated. Free induction decay (FID) experiments of eddy fields were 

conducted by using a nuclear magnetic resonance (NMR) probe to verify our simulation results 

for 0.3 T system and gradient echo shift technique was implemented for 9.4 T MRI system. We 

have found good agreements between simulation and experimental results. 
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Chapter 1  

Introduction 

1.1 MRI System: Basic in Brief 

MRI is a non-invasive technique of imaging the internal physical and chemical 

characteristics of an object by employing radio frequency (RF) radiation in the presence of 

carefully controlled inhomogeneous static magnetic fields. Over the last 35 years, because of its 

excellent soft-tissue contrast and spatial resolution, MRI has progressed to a primary imaging 

technique in many sectors of clinical investigations that encompasses from neurological, 

cardiovascular examination to musculoskeletal examination. Because of its sensitivity to 

different physiological and biological parameters of the imaging object, like, flow, chemical 

composition and molecular configuration, it is well suited for functional and metabolic 

investigations. Recently it has become a clinical tool in conjunction with other modality of 

imaging techniques, like positron emission tomography (PET)/MRI, MRI-guided linear 

accelerator (LINAC) radiotherapy. The simultaneous PET/MRI has made it possible to 

investigate the functional and anatomical information of the object under examination and 

maximize the diagnostic certainty.   

To generate images with high spatial resolution and excellent contrast without radiation-

related hazard, MR imaging involves three kinds of non-ionizing fields, namely, a strong static 

magnetic field (Bo), a radio frequency (RF) field (B1) and three magnetic field gradients along 

three Cartesian coordinate axes (namely, X-gradient coil (Gx), Y-gradient coil (Gy) and Z-

gradient coil (Gz)). The imaging object is placed inside a strong homogeneous (i.e., 0.5 parts per 

million (ppm)) static magnetic field (Bo) that causes the magnetic moment vectors of nuclei of 
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different atoms, including hydrogen atom, to align with the direction (along Z-axis) of this 

external magnetic field - the nuclei of hydrogen atom are of particular interest in MR imaging [1]. 

The spin of hydrogen atom is called a spin-1/2 system in which the magnetic moment vectors 

possess one of two following orientations: (a) vectors pointing to the direction of Bo field (also 

called parallel), and (b) pointing to the opposite direction of the Bo field (antiparallel). At thermal 

equilibrium without external field these spins have random orientations that results in net zero 

magnetic moment in the macroscopic sense. But within an external field the population 

distribution in the parallel and antiparallel spin systems (ensemble of spins) show a very small of 

excess spin distribution in the lower energy states (parallel to the Bo field) as the spin is more 

likely to stay in the lower-energy state. In a bulk of atoms (called voxel in MR terminology – a 

three dimensional small volume (i.e., 1 mm × 1 mm × 1mm) of the object under investigation) 

these excess spin population distribution shows an observable macroscopic magnetization vector 

pointing along the direction of the Bo field which is called as bulk magnetization. If the external 

field is perfectly homogeneous the bulk magnetization vector rotates about the Z-axis with single 

precession/resonance frequency – an angular rotation that resembles the rotation of a top [2]. 

This rotational frequency is well known as Larmor frequency which is proportional to the 

externally applied Bo field. The proportionality constant is known as gyromagnetic ratio, γ – for 

the nuclei of hydrogen in an object the Larmor frequency is 42.58 MHz if applied Bo field is 1 T. 

An RF field (B1) with the frequency equal to the Larmor frequency is applied (by an RF 

transmit coil) perpendicular or transverse to the direction of the static field (Bo). B1 is a circularly 

polarized transverse (X-Y plane) magnetic field that is applied to resonate with the precession 

frequency of the spin system in a voxel of the object under investigation. RF field is very short 

lived – few microseconds to milliseconds. After the resonance with the B1 field, the spin systems 
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in the voxels absorb energy from the B1 field and radiate the absorbed energy with the same 

Larmor frequency (which is received by the same or different RF coil). This signal is the primary 

interest for the MR imaging examination which is called the nuclear magnetic resonance (NMR) 

signal. But under large volume (i.e., a 5 mm thick transverse slice in a 40 cm diameter spherical 

volume) of homogeneous static magnetic field (Bo), these NMR signals from many small voxels 

of the object under investigation generate the similar NMR signals with characteristic Larmor 

frequency. To spatially encode these NMR signals of all voxels a third kind of low frequency 

switching magnetic field gradient is applied along the three Cartesian coordinate axes. These 

fields are known as gradient fields the Z-component of which generate a linear variation 

(controlled inhomogeneity) in the static magnetic field (Bo) along the three coordinate axes in the 

region of interest (ROI). The NMR signal in each voxel is now slightly different from the others. 

The received NMR signal in the RF receiver coil is the superposition of all these NMR signals 

from all of the voxels that contains in it the spatial information of the scanned region (this is also 

called as spatial encoding of the NMR signals). This spatial information from the complex NMR 

signal are decoded through Fourier transform and, by using image processing algorithms images 

are reconstructed, thereby calling it the magnetic resonance (MR) image.    

1.2 Generation of Eddy Currents in MRI System 

In MRI system time dependent gradient pulse with fast switching is required to apply in 

the gradient coils that generates targeted spatial variation of the static magnetic fields within the 

imaging volume and spatially encode the nuclear magnetic resonance (NMR) signals in three 

dimensions (3D) to generate images within reasonable time and accuracy. The combination of 

different gradient pulses and RF pulses needed to generate MR images is called MR sequence. A 

simple one dimensional imaging sequence is shown in Fig. 1.1 (a), and the projected imaging 
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area selected by this sequence is shown in Fig 1.1 (b) [1]. From this simple sequence we see that 

many gradient pulses are needed in MR imaging which are generated by using three different 

gradient coils. In general these gradient pulses are of trapezoidal shape with short rising (ramp-

up) and falling (ramp-down) durations and a constant amplitude flat-top portion as is illustrated 

in Fig. 1.2. During the rising and falling portions of the gradient pulses in the gradient coils time-

dependent magnetic fields are generated in the surrounding space. According to Faraday’s law of 

electric induction [3] these changing magnetic fields induce electric field in space and if there is 

closed conducting structure within this electric field eddy currents are generated with complex 

temporal and spatial response characteristics. According to Lenz’s law [3] the induced eddy 

currents opposes the changes in the switching current in the gradient coil and generates different 

adverse effects in the MRI system and images.  
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1.3 Effects of Eddy Currents on MRI System and Images 

The switching of pulses in the gradient coil induces eddy currents in different metallic 

structures of the MRI systems. These eddy currents create adverse effects in the MRI systems in 

the form of Ohmic heating that changes the temperature of the magnetic circuits from the desired  

 

state and changes the operating temperature of the magnet which in turn can boil-up the cryostat 

materials – in extreme case magnet quenching might happen [4-5]; or, in the form of Lorentz 

force between conductors that in turn creates vibrations of the gradient assembly and other parts 

of the MRI system, radiates acoustic noise that hampers patient comfort and image quality [6,7], 

and sometimes creates oscillatory eddy currents in the system [2,8]; or, in the form of delays in 

the gradient-pulse switching (Lenz’s law) that distorts the pulse shape and limits the application 

of faster imaging MR sequences [2,7]. Also eddy current generated time-varying secondary 

magnetic fields have adverse effects in the imaging region that causes spatial and temporal 

degradation of the applied linear primary gradient fields along the 3-dimensions (3-D) and distort 

the targeted spatial encoding of the NMR signals that resulted in misregistration of the NMR 

signals in the final image [8-11]. Different kinds of geometric distortions are generated in the 

images, like, shearing induced by read direction eddy current gradient, stretching induced by a 

phase direction eddy current gradient or shift of the images induced by a Bo(t) eddy current field 

[5,11-13]. Geometric distortions become severe for diffusion imaging or echo planar imaging 



6 

 

(EPI) [13]. It also generates intensity-phase variation in both images and spectra [9]. On the 

other hand, with the advent of hybrid systems, like PET/MRI or MRI-guided radiotherapy, the 

accurate control of more complex eddy currents has become a critical topic in the research area 

[14]. To reduce these adverse effects both in the magnetic circuits and in the images, proper 

characterizations of both the eddy current responses and its secondary unwanted effects are a 

prime need in MRI research and development sectors.  

1.4 Characterization of Eddy Currents in MRI Systems: Literature Review 

 Different measurement [12-21], and numerical calculation [4,6,9-10,22-37] approaches 

have been done in numerous literatures to characterize the eddy current responses in MRI 

systems considering the system structures, imaging objects and imaging methods.  

1.4.1 Eddy Current Characterization by Measurement 

Eddy current measurement methods can be mainly classified into two categories: free 

induction decay (FID) measurement of the NMR signals and phase/field mapping methods by 

implementing different MR sequences.  

1.4.1.1 Free induction decay (FID) measurement method 

In case of FID measurement, there have two techniques that are used according to the 

convenience or choice of the operators: single-phantom technique and multiple-phantom 

technique. In both cases a very small (i.e., few millimeter diameter spherical) phantom – 

sometimes called point-like phantom – within a small RF coil is placed at a precise position 

within the imaging region to measure the FID of the NMR signal of the phantom. To measure the 

effect of phase changes in the FID signal, a long duration gradient pulse is applied in the gradient 

system to generate eddy currents in the system. In case of single-phantom technique, a point-like 

phantom is placed at several positions within the imaging region and time evolution of FIDs of 
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NMR signals are measured after 90
o
 non-selective RF pulse and this process is repeated several 

times to acquire accurate data at multiple positions and delay times [2,8,12,16-17]. As a result, a 

full set of data acquisition with high accuracy becomes tedious for single phantom experiments. 

In the multiple-point-like-phantom technique there is no requirement of repositioning of the 

phantom and high temporal resolution is possible [12]. In [20-21] the point-like phantom 

technique is implemented by employing pure phase encode FIDs to monitor the arbitrary 

gradient waveform performances. This pure phase encode method is sensitive to low amplitude 

gradients (0.001) – 1 G/cm) and also can be possible to perform measurement of high amplitude 

gradients (10 – 300G/cm). 

1.4.1.2 Phase Mapping Method 

On the other hand, the phase mapping method does not necessarily require point-like 

phantom – large phantom can be used and eddy current phases are measured by using MR 

sequences of various kinds in accordance to the operator’s requirements and/or MR application 

areas – like, echo planar imaging or radial imaging and so on. The data found from these 

experiments are exponentially fitted to multiple amplitudes and time constants as eddy currents 

responses are mostly assumed and proved to show multiexponential decaying characteristics 

[2,8,16-17]. Eddy current phase mapping by using stimulated echo (STEAM) imaging sequence 

is used in [18] to measure the phase along the 1-D projection of a large phantom. By using this 

process, results for both gradient eddy field and Bo (t) eddy field can be calculated with one set of 

measurement. On the other hand, a rather easier gradient echo sequence is implemented in [19] – 

which can be called as gradient echo shift measurement method. Because of eddy current 

generated phase accumulation in the imaging region, the gradient echo is shifted from its 

intended position which can be measured and calculated to find the eddy current field responses. 
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In all of these cases, a reference scan is taken with no gradient signal to subtract the phases 

generated by other sources in the system.       

1.4.2 Eddy Current Characterization: Analytical Calculation Approach 

In the case of calculation, analytic expressions with simple geometries as flat plates, 

loops or sphere, and harmonic time-variations [38-39] are possible with Fourier integrals of 

modified Bessel functions by assuming the infinite length of the conducting structures. For finite 

length and complex geometries of the gradient coils and MR magnet structures, numerical 

analysis is required.  

1.4.3 Eddy Current Characterization: Numerical Calculation Approach 

Large-scale computational frameworks for the analysis of eddy current transient and 

spatial characteristics considering realistic cryostat conductors of intricate geometries in three 

dimensions has been developed extensively [24-37] by using finite element method (FEM) and 

finite-difference time-domain (FDTD) method at the expense of time consuming large 

computational loads and difficulties in defining the finite boundaries of the unbounded fields. 

Few important research works are summarized in this section.  

The finite-element method is a numerical technique for finding approximate solutions to 

partial differential equations generated from problem under analysis which can be considered as 

boundary value problems. According to the FEM method, the region under investigation is 

divided into small subregions called finite-elements and, the problem equations are formed and 

solved for each small element considering the properties (material or electromagnetic properties, 

for example) of that particular element. The FEM method has proven to be an effective method 

for the analysis of field problems in electromagnetic engineering [40-45]. There are numerous 

research works that has also been done for numerical solution of eddy currents in MRI system by 
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using FEM method. M. Schinnerl et al implemented an FEM approach [24] for coupled 

magnetomechanical systems and developed an efficient calculation scheme that allows the 

analysis of three-dimensional (3-D) dynamic rigid motion as well as deformations of 

nonmagnetic and ferromagnetic materials in magnetic field. They modeled the 3-D mechanical 

problem related to eddy current generated vibrations in between the conducting structures of the 

superconducting magnet as discrete nodal elements, whereas the 3-D magnetic problem was 

modeled independently with edge elements. An FEM based magnetomechanical calculation 

scheme is also presented in [25] which was used to analyze the dynamical behavior of a clinical 

MRI system that include the optimization of the superconducting magnet considering eddy 

currents and vibrations in its cryostat. A finite element based multigrid algorithm with edge 

elements is explained in [26] for the calculation of transient 3-D eddy currents. To solve the 

large scale 3-D problems with reduced computational time a multiplicative Schwarz algorithm 

and a special Gauss Seidal iteration algorithm are compared in this study. Also, to find the 

repeated solution of eddy currents with different values of parameters, like frequency, 

permeability and conductivity, an efficient modeling and computational scheme is suggested in 

[27]. To avoid repeated solution of the entire FE model (thereby reducing the computational 

time) this algorithm updates the solution for different values of parameters by using a rather 

smaller sparse linear system. In this study [27], the transient responses of eddy current are 

computed as a superposition of responses of a number of harmonics. On the other hand, the high 

order frequency sensitivity of the time harmonic finite element formulation is implemented along 

with Fourier transform technique [28] in which the Fourier integral of continuous frequency is 

taken as Fourier series of discrete frequencies. The conversion of input waveform into discrete 

sinusoids and superposing their individual responses to generate the total response of the system 
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was made possible for a broad band of input waveform by implementing the high-order 

frequency sensitivity FEM method. In large scale scenario like eddy currents complex 

magnetomechanical problems in MRI magnets, these FEM calculations generate very large 

computational burden in generating and/or solving the system equations.  

The finite-difference time-domain (FDTD) method is also another popular numerical 

electromagnetic calculation scheme for eddy current simulation in MRI system that discretizes 

the volume of space into small grids and solves the Maxwell’s curl equations for an instant of 

time. The results of this instant is stored in the system and used to find results for the next step of 

time-instant and in this way the total time-space response is calculated step-wise for the system 

under consideration. But this method also suffers from large scale computational burden and 

boundary problems [32-37]. An efficient 3-D cylindrical FDTD method has been proposed by A. 

Trakic et al for the characterization of eddy current transient responses [32]. In this study the 

weakly coupled Maxwell’s equations are modified for low-frequency region (as the eddy 

currents are induced by the low frequency switching of the gradient pulses) by downscaling the 

speed of the light constant by increasing either the permittivity or permeability of free space, but 

not both at the same time. This downscaling allows the use of larger FDTD time-steps and hence 

can reduce the computational loads. Still on a dual 3-GHz/4-Gb RAM workstation, it took 26 

hours to compute the transient eddy current problem in 1cm thick/0.65-m-long conducting 

stainless steel cylindrical cryostat (300 K) and aluminum radiation shield (80 K) for both 

symmetric and asymmetric studies. To analyze the exponential decay of the eddy currents, 

exponential coefficients for the FDTD time-stepping are implemented in this study rather than 

using linear coefficients. To simulate the infinite unbounded computational domain an artificial 

boundary is introduced in the analysis that can result in errors which is resolved in this study by 



11 

 

introducing a perfectly matched layer (PML) in 3-D cylindrical coordinates as absorbing 

boundary conditions (ABC). This proposed method has been extended to optimize longitudinal 

gradient coil [9] in the presence of transient eddy currents by including the total-field scattered-

field (TFSF) boundaries [33-34] that mimic the gradient coil and act as near field source. The 

temporal behavior of the gradient coil induced fields (i.e., pre-emphasized gradient excitation) 

are introduced by the TFSF technique. The advantages of implementing TFSF boundaries in the 

FDTD method is that the conductor and the small region of air neighboring the conductor are 

needed to be considered for the discretization into FDTD grids that reduces the computational 

time to several factors. A graphics process unit (GPU) based FDTD parallel-computing 

framework has been explained in [35] to overcome the limited computing performances of 

conventional CPU-based FDTD methods. This calculation approach also has the potential to 

calculate both detailed forward modeling and inverse design of MRI coils, which were 

previously impractical with FDTD method.   

These conventional methods, such as the FDTD method or FEM method, have a time-

consuming large-scale computational burden that requires very large memory and a high-

performance computer—sometimes with parallel processing environments [32,36–37]. In 

addition, because of the large-scale computational complexity that combines the differential and 

integral techniques, there is a possibility of having numerical artifacts in the final results, like the 

artifacts because of interpolation in the transformation from lower dimensional grids to higher 

dimensional grids or field leakage across the boundary because of the slower propagation in the 

FDTD grid which differs from the propagation speed in the continuous world and so on [34].     

Coupled circuit eddy current analysis method for MRI system [4,7,10,22-23,46-48] is an 

efficient and simple numerical calculation approach with the advantages of simple numerical 
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modeling features, less computational complexity and generating solutions comparable to the 

analytic eddy current calculations. The coupled circuit approach implements the advantages of 

differential equation and, matrix techniques to solve this system of first order differential 

equations that make it mathematically less complex and faster numerical simulation scheme. 

Following the coupled circuit method [22], eddy current conducting structures are modeled as 

inductively coupled subdomains and simple coupled differential equations are solved to find the 

transient responses of eddy currents in different subdomains.  

Studies [7,22–23] using the coupled circuit approach were done on closed-bore 

(superconducting magnet) MRI systems and the coupled subdomains assumed for the cylindrical 

cryogenic walls were of circular ring-shaped. Simple inductive coupling formulas for computing 

the coupling relations between the subdomain and the gradient coils could be implemented in 

those studies. Also those studies concentrated on the model designing considering the Z-gradient 

induced eddy currents only. In references [4,47], a coupled circuit (named as network method) 

simulation - coupled in Fourier space - has been proposed for gradient coils of arbitrary 

geometry in cylindrical coordinates and validated by simulating the eddy current response in a 

finite length cylindrical cryostat induced by an actively shielded cylindrical X-gradient coil. This 

approach computes the eddy current responses for the discrete time steps of the applied gradient 

pulses that suffer from the possible oscillations of the Crank Nicholson method [49]. Also the X-

gradient coil (of 18 turn per quarter) was discretized into 8000 wire segments and the whole 

simulation considering eddy current induced in the inner three bores took 25 minutes – though 

the author did not mention the computer resources they used for this simulation. A Multilayer 

Integral Method (MIM) [10] has been suggested in which the gradient coil conductors and eddy 

current conducting surfaces are approximated to a connected set of discrete mesh of plane 
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triangles – the number of triangles considered in this study for the eddy currents induced by one 

circular loop of Z-gradient coil in a 2.5 mm thick cylindrical conductor (with inner radius of 175 

mm and length of 387 mm) was 27000. For 34 turn of Z-gradient coil it took almost 15 minutes 

to simulate the eddy current responses in one cylindrical bore. In all these studies there were no 

clear suggestions on how much thin should the sublayers be compared to the skin depth of the 

corresponding signal frequency – though it is suggested that sublayers thickness should be much 

smaller than the skin depth. Ideally, it should be infinitely thin. It has been suggested in [47] that 

the thickness should be less than one-fifth of the skin depth, whereas in reference [48] the 

thickness considered was less than one-third of the skin depth. 

1.5 Purpose of this Study 

The purpose of this study is to perform coupled circuit simulation of eddy currents for 

both open MRI (planar type gradient coil) and closed bore MRI (cylindrical type gradient coil) 

systems by implementing simple modeling and calculation approaches that would be easy to 

understand, would reduce the computational time and complexity, and easier to implement for 

any types of gradient coil configurations and any geometry of eddy current conducting structures. 

In this study we performed simulation for a 0.3 T open MRI system dedicated for child growth 

rate measurement [51] and a 9.4 T closed narrow-bore (54 mm dia.) MRI system dedicated for 

MR microscopic study. Simulations were conducted considering both the longitudinal (Z-) 

gradient and transverse (X- or Y-) gradient coil’s induced eddy currents in linear conductors for 

both MRI systems. For verification two different experiments were conducted considering the 

system convenience.  

In this study the eddy current conducting structures are divided into subdomains of 

unique dimensions of which the thickness is considered to be much smaller than the 
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corresponding skin depth and also much smaller than the other two dimensions. Subdomains are 

represented by their corresponding dc resistances and self-inductances assuming constant eddy 

current in each subdomain and, the inductive coupling relations between the subdomains and the 

gradient coils are solved to find subdomain-wise (position dependent) transient eddy current 

responses.  

1.5.1 Coupled Circuit Analysis: 0.3 T Open MRI System 

In open MRI systems, the gradient coils are of the planar type, consisting of an upper and 

a lower planar coil [51]. Also, the eddy current conducting structures have different geometrical 

shapes—for example, the local radio frequency (RF) shielding box has a cubic structure [51-52].  

There is no direct traditional formula to compute inductive couplings between a planar gradient 

coil and different subdomains. As the formulation of a solid angle expression for three 

dimensions (3D) subtended by a two-dimensional (2D) current-carrying coil of arbitrary shape 

can be easily performed by simple mathematical manipulations in the Cartesian coordinates [53-

57], we have implemented the solid angle form of Ampere’s law [58] to compute the inductive 

coupling between planar gradient coil and any subdomain. In this study we have calculated the 

3D solid angle formula for both Z-gradient (Gz coil) and X-gradient (Gx coil) coil patterns with 

the aim of computing coupling relations to subdomains in any position. We have also provided 

details of the solid angle calculation for both Z-gradient and X- or Y-gradient coils. For the 

calculation of solid angle for Z-gradient coil pattern (circular loop) we have followed the 

mathematical approaches explained in [53,55-56].  

In case of X-gradient coil, because of asymmetric coil position compare to the magnet 

center, we have followed an efficient segmentation solid angle calculation approach by following 

the method explained by H. Gotoh, et al [57] in their calculation of solid angle at any field point 
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subtended by a rectangular slit. In our study we have found this approach mathematically less 

complex, faster in computer simulation, and easier to implement. We have also conducted free 

induction decay (FID) measurements of eddy currents by using an NMR probe designed at our 

laboratory to verify our simulation results. We have found a good agreement between the 

simulation and the experiment.  Simulation of secondary magnetic field responses of X-gradient 

coil has also been performed and results are given for both transient and spatial responses of 

eddy current fields. 

1.5.2 Coupled Circuit Analysis: 9.4 T Closed-Bore MRI System 

We extended this solid angle coupled circuit analysis approach for the eddy current 

analysis of a 9.4 T narrow bore (54 mm inner diameter) superconducting magnet MRI system 

dedicated for MR microscopic study. In the superconducting magnet structure, the cylindrical 

bore and cryostat layers around the gradient coils have finite thickness and resistivity. For this 

reason, gradient magnetic fields can penetrate them and induce eddy currents with multiple 

decaying components that diffuse among different portions of the metal components with time 

constants that can be as long as 1s [16]. Specifically, long lasting eddy currents relative to the 

image acquisition period can be produced in the cold, highly conductive radiation shields of the 

magnet [9].  

As coupled circuit method is based on the inductive coupling relations of the gradient 

coils and eddy current conducting structures, following the simulation on a 0.3 T open MRI 

system we implemented solid angle form of Ampere’s law [58] for calculating the magnetic flux 

linkages between cylindrical gradient coils and subdomains considered in different conducting 

bores of the superconducting magnet. Similar circular solid angle calculation approach that was 

implemented for planar Gz coil was implemented for the calculation of inductive coupling 
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between cylindrical Gz coil and different subdomains. In case of cylindrical X-gradient coil, the 

coil loops in one quarter are in asymmetric position. Also the coil loop patterns have irregular 

geometrical shapes with 3-D curvatures [4,50] from the view point of spherical geometry. For 

this reason, in this study we divided the area of the loop of Gx coil into small rectangular 

sections on the cylindrical surface and calculated the solid angle of the rectangular sections 

considering the geometry and position of the coil loop in 3-D.  In this study, the cylindrical Gz 

coil was represented as discrete circular loops and the cylindrical conducting structures are 

modeled into thin [7,22-23,46,48] circular ring-shaped subdomains. To simulate the eddy current 

induced by Gx coil we considered semicircular subdomains along the length of the bore as the 

net magnetic flux (hence, the inductive coupling) enclosed by a complete circular ring is zero for 

transverse (Gx or Gy) gradient coils. For experimental verification we followed the gradient 

eddy current measurement approach explained in [19] by V. J. Schmithorst et al in their 

calculation of automatic gradient preemphasis adjustment by measuring the magnitudes of eddy 

currents at various delay times (to measure the shift of gradient echo due to eddy current 

generated phase) after a test gradient pulse. We have found a good agreement between our 

simulation and measurement results.   

 

 

 

 

 

 

 



17 

 

Chapter 2 

Methods and Materials 

2.1 The Coupled Circuit Method – Basic Theory 

In MRI systems, according to Faraday’s law of electric induction [3], because of 

switching in the gradient signals eddy currents are induced in the surrounding conducting 

structures of the magnet with multiple decay time constants and amplitudes [8,16-17] depending 

on their electric, magnetic and structural properties, and positioning in MR magnetic circuits [9]. 

Mathematically it is convenient and more appropriate to express this kind of decaying responses 

of eddy currents as the sum of exponentials that is sometimes called as multiexponential 

characteristics of eddy currents [16,22]. Because of its multiexponential nature and dependency 

on the inductive coupling relations among the conducting structures, the eddy current responses 

can be numerically analyzed by representing the overall MR magnetic circuits as a stack of 

resistive-inductive (R-L) circuits [7,22-23] by dividing the conducting structures into inductively 

coupled small subdomains of unique dimensions of which at least one dimension is considered 

much smaller than the other two dimensions and thickness is much smaller than the skin depth of 

the corresponding signal frequency [4,7,22] so that the eddy current can be assumed to have 

constant amplitude in each subdomain. It is also assumed that the overall system response is 

linear [4]. System of first order differential equations is formulated from these networks of 

resistive-inductive series circuits. Eddy current transient responses in different subdomains at 

different locations can be easily found by solving this system of first order differential equations. 

In 1984, M. J. Sablik et al. first formulated this concept into a coupled circuit numerical analysis 

method. Further works [10,46-48] have proven this approach as an efficient, fast, and 
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computationally less complex numerical analysis method than the conventional methods for 

analyzing the eddy current characteristics in MRI systems.  

To illustrate the coupled circuit approach, let us consider a small network of R-L circuits 

combining gradient coil and three subdomains as is shown in Fig. 2.1. The gradient coil and each 

of the subdomains are represented by their corresponding resistances (R) and inductances (L). 

The inductive couplings between gradient coil and subdomains and, between the subdomains are 

represented respectively by Mis and Mii, where i is the subdomain number. In Fig. 2.1, M11, M22, 

M33 are represented by L1, L2, L3 respectively.  

 

Following the basic R-L circuit characteristic response [23], eddy current in subdomain 

#1 can be calculated by the following coupling differential equation:    
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Similarly eddy currents in subdomains #2 and #3 can be calculated respectively by the 

following equations: 
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As the above three equations have linear dependency among them, we can solve them as 

a system of equations which can be represented in matrix form as: 
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For N number of subdomains the above equation becomes [4,7,10,22-23]: 
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) ; in which, 

              are the self-inductances of the subdomains (which have been replaced for       

            in the     matrix);                   are the mutual inductances between 

the subdomains;                  are the mutual couplings between the gradient coil and the 

subdomains; and               are the resistances of the subdomains;   ( ) is the gradient 

coil current which is represented in our work as trapezoidal signal in the time-domain with equal  

ramp-up and ramp-down time and constant flat-top current of duration much higher so that the 

eddy current signal can decay within this period. The signal representation can be expressed as 
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where, io is the maximum current and parameter   ,    define the start and end point of the 

trapezoidal signal and,   ,    locate the shoulders of the signal (as is illustrated in Fig. 2.2). I(t) is 

the eddy current vector with dimensions equal to the number of subdomains considered. In this 

study, we have applied the Eigen matrix concepts of solving differential equations to simplify 

and speed up the entire calculation process. The details of the Eigen method approach is 

explained below considering both the homogeneous and nonhomogeneous form of differential 

equations. 

 

2.2 Simplification by the Eigen Method 

The coupled first order differential equation is expressed here again for clarity: 
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With some simple mathematical manipulations, we can express the above system of 

ordinary differential equations as 
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where,       
     and       

     . For the constant flattop portion of the gradient 

signal the second term (
   ( )

  
) of the right hand side of above equation is zero and it becomes a 

homogeneous system of differential equations: 

  ( )

  
   ( ) 

On the other hand, for the ramp-up or ramp-down duration of the gradient signal (Fig 2.2), 

   ( )

  
 is not zero and the system of differential equations becomes a nonhomogeneous differential 

equation problem. In this study, we treat the homogeneous case by implementing decoupling 

solution method and nonhomogeneous case by fundamental matrix method as is explained below. 

Case 1: Homogeneous: To solve a homogeneous linear system of differential equations with 

constant coefficients and initial values like, 

  ( )

  
   ( )           (  )      

the solution method becomes: 

(i) Perform the change of variables:  

 ( )    ( ), 

where,  ( ) is the new variable and   is invertible matrix. 

(ii) The differential equation will become as: 

  ( )

  
   ( ) 

where,  

                        

(iii) Compute the eigenvalues and eigenvectors of the coefficient matrix,  . 
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(iv) Use the eigenvalues and eigenvectors of   to respectively construct the diagonal matrix   

and the change of basis matrix,  .  

 (v) Write down the general solution of the decoupled system,  

  ( )

  
   ( )             ( )  [

   
   

 
   

   
] 

  ………,    are the integration coefficients which are solved by using initial values, and   ,   , 

……,    are the Eigen values of A. 

(v) Initial value can be calculated as: (  )      (  ) ;   (from equation  ( )    ( )), where 

  (  ) is the initial value (at     ) of eddy current in the n-th subdomain. 

(vi) The integration coefficient for n-th subdomain will become as, 

     (  ) 
      

(vii)  ( ) is solved: 

 ( )  [
   

   

 
   

   
] 

(vii) The solution of the original (coupled) system will be, 

 ( )    ( ). 

Case 2: Nonhomogeneous: To find the solution to the initial value problem of the 

nonhomogeneous equations 

  ( )

  
   ( )   ( )         (  )      

where  ( )      
   ( )

  
, we implement the fundamental matrix method: 

 

 



23 

 

(i) The fundamental matrix can be expressed as 

 ( )  [
    

       
         

   

   
    

       
         

   
], 

where   (   ,           ),    (   ,           )         (   ,           ) are the associated 

eigenvectors, and   ,   , ….,    are the eigenvalues of the corresponding homogeneous equation. 

(ii) The solutions of the nonhomogeneous equations can be given by 

 ( )   ( ) (  )
   (  )  ∫  ( ) ( )  

 

  

 ( )   

2.3 Coupled Circuit Modeling: 0.3 T Open MRI System 

In this study, at first we implemented the coupled circuit method to simulate the eddy 

current responses in an open compact 0.3 T MRI system (as shown in Fig. 2.3) that was 

developed for skeletal age assessment in children [51]. In open MRI system, the gradient coils 

are of the planar type consisting of an upper and a lower coil positioned in the gap between the 

magnet poles (as is shown schematically in Fig. 2.4). Let us consider the eddy current responses 

in the cubic RF shielding box. We can consider the upper and lower coils as a single eddy 

current generating source. Following the coupled circuit approach we subdivide the brass plates 

in the RF box into several subdomains along the thickness and length of each plate [7,22–23]. 

To consider the skin effect of eddy current, at first, each conducting structure is 

subdivided into a number of ideally infinitely thin sublayers so that enough sublayers are 

considered to represent the skin depth more accurately [4]. For practical numerical calculation 

purposes, a sufficient number of sublayer is considered, so that the eddy currents in each layer 

can be assumed as constant. But considering a finite number of sublayers would necessarily 
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introduce some errors in the simulation results that decrease with decreasing sublayer thickness 

[47]. Following the approach in references [4,22,47], we have considered the thickness to be less  
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than one-tenth of the skin depth,  . For high frequency and/or high conductivity, the formula we 

took for   can be expressed [59] as 

  √
 

   
 

where,   is the permeability,   is the angular frequency, and   is the conductivity. Each sublayer 

is again divided into several subdomains along the length or width. Fig. 2.5 illustrates the 

division of a conducting plate (e.g., upper plate) into subdomains. The conducting structure is 

divided into sublayers and subdomains along thickness (along Z-axis) and length or width (along 

Y- or X-axis), respectively, so that the thickness d is much smaller than the skin depth of the 

corresponding signal frequency. For Gx coil, subdomains in each sublayer are taken along the 

width or along the X-axis. Division along the Y-axis (considering Gx coil) would result in zero 

net flux induced by the coil to a subdomain as the magnetic flux have similar but opposite values 

on both sides of X-axis from the center. In case of Gy coil subdomain division should be done 

along the Y-axis. Because the current in each subdomain is considered to be constant, we have 

assumed dc resistance for each subdomain. The resistance of each subdomain is then calculated 

by [48], 

   
 

  
 

where,   is the resistivity and  ,  , and   are the length, width, and thickness of each subdomain, 

respectively. The self- and mutual inductances among the subdomains are computed by applying 

the simple formulas taken from the reference [60]. 
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The self-inductance of a subdomain was computed by the following formula [60], 

  

  
 [   (

  

      (   )
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      (   )

 
] 

where,    is the magnetic permeability,   is the length,   is the width, and   is the thickness of 

each subdomain. And the mutual inductance between the subdomains was computed by the 

following expression [60]: 
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Here,   is the geometric mean distance between subdomains, which is equal to the 

distance between the centers. 

The Z-gradient coil has a combination of circular current loops wound onto a surface of 

fiber-reinforced plastic (FRP) plate with the diameter optimized using a genetic algorithm [51]. 

To calculate the inductive coupling between the planar coils (upper and lower coils) and any 

subdomain, we implemented the solid angle form of Ampere’s law, according to which the 

magnetic flux density (B) is proportional to the gradient of the solid angle ( ) subtended by an 

arbitrary loop carrying a current,       [58]: 

  
          

  
 

Here,   is the gradient operator. In order to calculate the flux linkage of the gradient coil 

to subdomains at any position we need to formulate the solid angle expression considering any 

location in the three dimensional space. In our analysis, we have formulated the solid angle 

expression in Cartesian coordinate considering all three axes, X, Y, and Z for both Gz and Gx 

type coil loops by following the works done in References [53,55-57]. Because of cylindrical 

symmetry we have followed a simple analytical solid angle calculation approach for Gz coil 
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(circular current loop) by following the methods given in references [53,55-56]. But in case of 

Gx coil the current loops are in asymmetric position with respect to the magnet center. To 

consider this fact, we have applied a simple rectangular segmentation approach to calculate the 

solid angle of Gx coil at any position in the region of interest (ROI) by following the method 

given in reference [57]. Details of the calculation methods are explained in the following 

sections. Fig. 2.6 (a) and (b) show the schematic diagram of the solid angle approach in coupled 

circuit method for loops in upper coil and subdomains of the upper conducting plate of the RF 

shield box considering Gz coil and Gx coil, respectively. If      is the average magnetic flux 

density in each subdomain generated by all the current loops in the gradient set carrying an equal 

current      , then the total flux across each subdomain of area      and, hence, the inductive 

coupling between the gradient coil and each subdomain (   ) [3] can be calculated by 

    
        

     
⁄  

As for the planar Z-gradient coil, it has two sets of similar coils near the magnet poles (as 

shown in Fig. 2.4). Since current circulations in these two layers of coils are opposite in direction 

[14] the solid angle in the region of interest (ROI) will be of opposite sign – for anti-clockwise 

current circulation the solid angle is positive and for clockwise circulation it is negative [58]. If 

Mir is the flux linkage between the r-th coil loop and i-th subdomain, then the total flux linkage 

to that subdomain from n number of loops will be 

∑    

   

   
 

At any subdomain in between the magnet gap, these opposite flux linkages - induced 

from all of the coil loops both from the upper and the lower coil sets - are added to get total flux  
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linkage of Gz coil to that subdomain. In this way, inductive coupling between Z-gradient coil 

and all of the subdomains are calculated.  

In case of X-gradient coil, it also has upper and lower layer coils near the magnet poles. 

In addition, in each layer there have two sets of the similar coil patterns with clockwise and anti-

clockwise current circulations [50]. Flux linkages of Gx coil to any subdomain in the magnet gap 

should consider contribution of flux linkages from these four sets of coil loops. The sign of the 

solid angles are considered according to the current circulation directions mentioned above. 

Once we have calculated all the matrices of inductances and resistances (Mii, Mis, and Rii) for a 

network of coupled eddy current conducting subdomains, we can implement them in the coupled 

differential equations to get the transient response of eddy current in different subdomains at 

different locations. 

2.3.1 Solid Angle Calculation for Z-gradient coil pattern 

Following the work of F. Paxton [53] and E. Galiano et al. [55], we calculated the solid 

angle formula for the circular-type coil for three dimensions. The basic equation of solid angle 

formulation can be expressed as [53] 

  ∫
    

  
 

where ds is the infinitesimal area of the coil and      is the area of the projection of ds onto the 

plane perpendicular to  , as shown in Fig. 2.7(b). As a starting point, we took an expression 

derived from the equation given in [58]. The expression that describes the solid angle subtended 

by a circular coil of radius   at the center of a sphere is: 

    (      ) 

where   represents the apex angle and      can be expressed from Fig. 2.7(b) as 
 

√     
. We can 

also express the above equation as 
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    (  
 

√     
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To obtain an expression for the solid angle along the X-axis, two factors must be taken 

into account: first, the point at x is now at a distance of √      from the center of the coil, and 

second, from this viewpoint the coil appears to be skewed at an angle of    with respect to the 

normal (see the black dashed lines in Fig. 2.7(c)). If we take the projection (     ) of the 

skewed coil at the original position of the coil, we need to multiply 
 

√     
 with the above 

equation. The equation along the X-axis then becomes 

    (  
√     

√        
)  

 

√     
 

Now, if we skew the X-skewed coil along the Y-axis again (as shown by the red circle in Fig. 

2.7(d)),   will become √         and we have to multiply the projection (     ) of the Y-

skewed coil, 
√     

√        
, with the above equation. Therefore, the final equation can be expressed 

as 
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2.3.2 Solid Angle Calculation for planar X- or Y-gradient coil pattern 

The solid angle of Gx coil is calculated by following the research work done by H. Gotoh, et al 

[57] for a rectangular slit. At first we will explain in brief on the solid angle of a rectangle at a 

point on Z-axis. Fig. 2.8(a), illustrates the schematic of solid angle subtended at P (0, 0, h) by a 

rectangle OERC with side lengths a and b. The solid angle subtended by this rectangle at the 

point P can be represented by [57], 
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The solution of this double integral has been given as [57], 
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Now if we consider the field point P at (x2, y2, h) as is shown in Fig 2.8(b), the solid angle of the 

rectangle OERC (constructed by the red solid lines) can be written as, 
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To consider solid angle of a rectangle at any point, let us consider solid angle subtended at an 

arbitrary observation point P (xp, yp, zp) by the rectangle OERC (see Fig. 2.8(c)). The solid angle 

formula will become as 
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The solid angle of a rectangular section (CRE'D) of one coil loop (illustration given in Fig. 2.9) 

can be calculated by the following approach: 

                    

The formula will become as: 
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The solid angle subtended by the section of coil in first quadrant, CB'F'N will become as the sum 

of three rectangular solid angles (approximately) subtended by CB'E'D, DE'F'G and GF'H'I, 

respectively: 

        (            )  (            )  (            ) 

Total solid angle of the Gy coil (arc MNB') will be double of the above equation 

                

In this fashion we can divide the arc of any gradient coil into enough rectangular sections and 

calculate the solid angle with some approximations. 
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2.4 Coupled Circuit Modeling: 9.4 T Closed-Bore MRI System 

In this study, we also simulated the eddy current responses in the inner four cylindrical 

conducting bores of a 9.4 T narrow-bore (54 mm diameter) superconducting magnet MRI system. 

The superconducting magnet and a schematic of its internal four cylindrical conducting bores are 

shown in Fig. 2.10 (a) and (b), respectively. Throughout this thesis, these four cylindrical bores 

will be mentioned as the innermost bore (warm bore or room temperature bore), second bore (77 

K bore (liquid nitrogen)), third bore (4.2 K (liquid helium)) and fourth bore (4.2 K (liquid 

helium)) with their increasing diameters. The material properties and structural dimensions are 

listed in Table 1. 
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To model the cylindrical bores into subdomains we first divide each bore into thin 

cylindrical sublayers along the thickness and, each sublayer is again divided into ring-shaped 

subdomains along the length (along the Z-axis). Fig. 2.11 illustrates the coupled circuit modeling 

approach of a conducting bore for eddy current simulation induced by Z-gradient coil. To 

calculate the resistance of each ring-shaped subdomain the following formula was followed: 

   
   

  
 

where,   is the resistivity and  ,  , and   are the radius, width, and thickness of each subdomain, 

respectively. The self-inductance (             ) was computed by the following formula 

given by Rayleigh [60]: 
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where, a is the radius of the circular ring, w is the width of the ring. To compute inductive 

couplings between any two subdomains (                  ), we implemented the 

following formula [59]: 
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where, a1 and a2 are the radii of two different circular rings and z1, z2 are their respective 

positions along the Z-axis. 

 

On the other hand, to compute the inductive coupling between cylindrical Z-gradient coil 

and any subdomain we implemented solid angle inductance calculation approach that we have 

followed for planar Z-gradient coil. As the coil loops for cylindrical Z-gradient coil is circular, 

we implemented the same circular solid angle formula as was mentioned in the previous section 

for the planar Z gradient coil. The total magnetic flux enclosed by a circular ring is the inductive 

coupling between gradient coil and that subdomain. The calculation approach is similar to the 

approaches explained for planar Gz coil. 
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For the modeling of cylindrical Gx coil induced eddy current analysis, we considered 

rectangular segmentation solid angle calculation approach similar to the analysis of eddy currents 

induced by planar Gx coil. As the cylindrical Gx coil has 3-D curvatures considering the 

spherical geometry, we divide each coil loop into rectangular segments on the cylindrical surface 

(as is illustrated in Fig. 2.12) and calculate the inductive coupling between coil and subdomains 

considered in the conducting bore.   

 

The actual coil loop is shown in Fig. 2.13(a) and (b) – the coil has 12 loops in one quarter. Fig. 

2.13(c) shows the rectangular segmentation of one coil loop (Loop#08) for solid angle 

calculation.  On the other hand, since the current circulates in the upper and lower half of the 

gradient coil with opposite direction (as shown in Fig. 2.14(a) by a simple ideal Gx coil loop), 

and as the net magnetic flux enclosed by a complete circular ring-shaped subdomains (that was 

considered for cylindrical Gz coil analysis) is zero in case of Gx coil (Gx coil field distribution is 

shown in Fig. 2.14(b) by blue arrows), we considered semicircular subdomains (as is shown in 

Fig. 2.14(c)) for Gx coil induced eddy current simulation. 
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2.5 Experimental Setup 

2.5.1 0.3 T Open MRI System 

We compared our simulation results for planar Z-gradient coil by implementing the 

single-point-like phantom experiment [2,12] to measure the time evolution of free induction 

decay (FID) signal for the induced eddy current phase variations [29]. We designed an NMR 

probe consisting of a solenoid RF coil wound around a 6 mm-diameter glass sphere filled with 

baby oil, tuning and matching capacitors, and a rectangular shield box made of brass plates. The 

internal structure of the NMR probe and the experimental setup are shown in Fig. 2.15(a). 
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The NMR probe was located at a given position in the region of interest (ROI) by a three-

axis stepper motor stage with accuracy of 0.1 mm, and paired FID signals with opposite gradient 

polarity were measured followed by a 40 s nonselective (hard) RF pulse to calculate the 

temporal evolution of the eddy current fields. Experimental details with the applied gradient 

configuration are presented in Fig. 2.15(b). 
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2.5.2 9.4 T Closed-Bore MRI System 

In case of eddy current measurement for 9.4 T superconducting magnet MRI system we 

implemented a gradient echo shift measurement technique [19] in which the gradient eddy 

currents are represented by  

   
 

     
 

where, m is the slope of the phase,   magnetogyric ratio and TE is the time between midpoints of 

the RF transmit pulse and the acquisition window (Fig. 2.16(a) [19]). This technique does not 

require precise positioning of the phantom (we used water phantom) at different positions and 

eddy current phase from a comparatively large phantom can be calculated by using a simple 

gradient echo sequence (as is shown in Fig. 2.16(a)). The gradient eddy currents, hence the shift 

of gradient echos due to eddy current generated phase accumulation are measured at various 

delay times (TE ). In Fig. 2.16(b) the red marked area corresponds to the shift of echo (Δ) from 

its intended time-position (marked by dotted red line in Fig. 2.16(b)) because of eddy current 

generated phase accumulation. 
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Chapter 3 

Results 

3.1 0.3 T Open MRI System 

3.1.1 Simulation Parameters 

We considered the distribution of eddy currents in the local RF shielding box induced by 

both Z-gradient and X-gradient coils. The shielding box was positioned within the 122 mm 

magnet gap, symmetrical to the center of the gradient coil. The box is made of 0.3 mm-thick 

brass plates of resistivity   ,           , and with boundary dimensions of 220 mm×180 

mm×100 mm . Both the upper and lower Z-gradient coils have similar circular loops of 

maximum diameter 315.42 mm consisting of 30 circular turns. On the other hand, the X-gradient 

coil were designed as a combination of circular arc and second-order Bezier curve with the 

position and center angle optimized using Genetic algorithm [51]. In each part there have 16 

turns of coil and the coil pattern was restricted to a circular region of 320 mm in diameter. For 

both type of coils, each gradient coil element was made by winding polyethylene-coated copper 

wire of 0.6 mm diameter on a surface of fiber-reinforced plastic (FRP) plate. The applied 

gradient signal was of the trapezoidal type with a ramp-up and ramp-down time of 170 µs and 

flattop duration of 1.06 ms. The corresponding skin depth was 1.60739 mm. 

Because the upper and lower plates of the local shielding box are in the X–Y plane, 

perpendicular to the Z-gradient (Gz) field direction, and the Z component (axial component) of 

the Gz field has a much higher value than the negligible X and Y components, the eddy currents 

can be assumed to exist mostly in the upper and lower plates of the shielding box. Following the 

coupled circuit method, we took two 0.15 mm-thick sublayers of each plate, which was 

considered to be sufficiently thin (less than one-tenth of the skin depth (1.60739 mm at 5.882 
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KHz)) to assume a constant eddy currents along the thickness (along the Z-axis). To consider the 

eddy current distribution along X- and Y- axis, we have again divided each sublayer into thin 

subdomains along each direction. In this simulation we have considered subdomains of equal 

width of 2 mm. In this way, subdomains taken in each layer along X-axis were 110 and along Y-

axis were 90. The number of Eigen values was twice of these values for each direction as we 

have divided each plate into two thin sublayers. The dimension of each subdomain divided along 

the length of each brass plate was 180 mm×2 mm×0.15mm and along the width was 220 mm×2 

mm×0.15 mm. 

3.1.2 Results and discussion 

The coupled network calculation was conducted using the Mathematica
®
 programming 

platform in a desktop computer (Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93 GHz 2.93 

GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB). In the calculation, at first we 

performed the computation of the resistance matrix,   , and the inductive coupling matrices,    , 

and    . Then, we used these data in the network equation to compute eddy current responses. 

Once we had constructed these matrices for a given configuration of the MRI system, we could 

implement them in the calculation of eddy currents for any time-dependent current applied to the 

gradient coil. 

3.1.2.1 Z-Gradient Eddy Current Response 

In our analysis, we found that the amplitudes of eddy currents along the X- or Y-axis 

were symmetric to the center of the plate, which is expected from the positioning of the gradient 

coil and the upper or lower plate of the local shielding box as illustrated in Fig. 3.1(a). Fig. 3.1(b) 

depicts the nature of the eddy current distribution along the Y-axis of the upper plate for the 
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outermost sublayer. Results are given for different time instants of the decaying currents. In 

addition, the central subdomain was found to have the largest amplitudes. 

 

In Fig. 3.2, eddy current responses are given as a function of time for few subdomains 

located at different positions in the Y-axis. Fig. 3.2(b) presents the eddy current transients for 

several domains located on the negative Y-axis and Fig. 3.2(c) is for similar domains on the 

positive Y-axis. Here, we see that transient responses have similar characteristics on both sides 
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from the center of the plate. We also see that the eddy current responses during both ramp-up and 

ramp-down have rapid transient characteristics, whereas they show a slower exponential decay 

when there is no change in the input gradient signal. These characteristics are found to be in 

agreement with the physics of a network of inductively coupled circuits. In accordance with 

Lenz’s law, the responses of eddy currents during the rising or falling portion of the input 

gradient signal clearly depict the opposing nature of eddy currents in an MRI system. 
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The secondary magnetic fields generated by these eddy currents can be determined by the 

Biot–Savart law. To verify the simulation results, we conducted FID measurements of the eddy 

current fields. In the measurements, the NMR probe was positioned at different points in the 

region of interest (ROI – around the center of the magnet gap), and the same procedure was 

repeated. We took FID signals for two cases: a) keeping the brass box inside the magnet, and b) 

without the brass box. The latter case was used to measure the secondary field due to other 

components of the MRI system. These results were then subtracted to get the secondary field 

generated by eddy currents in the shielding box only. 

The simulation and experimental results of transient eddy current magnetic fields are 

combined in Fig. 3.3 (a) and (b), respectively. Results are given for several points along the Z-

axis for both the positive and negative sides from the center of the region of interest (ROI). We 

found that similar points on either side from the axis origin (center of the magnet) have nearly 

the same responses with opposite polarity of field amplitudes. The time constants of the decaying 

transient secondary fields are listed in Fig. 3.3(c) for several points along the Z-axis. As for the 

experiments, each FID signal was exponentially fitted to calculate the time constants. The 

decaying field showed a time constant of around 170 s. Fig. 3.4 depicts the results of the 

secondary field along the Z-axis for different instances of the gradient signal. The responses are 

nearly linear along the Z-axis. We found good agreement between the simulation and 

experimental results. 
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3.1.2.2 X-Gradient Eddy Current Response  

Simulation for X-gradient induced eddy currents was conducted in the similar fashion as 

that for the Z-gradient coil. But the solid angle for a coil in the X-gradient set is asymmetric 

considering the center of the magnet and also considering the center of the spherical space 

bounding the coil and the ROI. For this reason we have followed a segmentation solid angle 

calculation approach following the calculation method given in reference [57]. Also Gx coil has 

four sets (two sets in the upper layer and two sets in the lower layer near the magnet poles) of 

coils compared to the two sets of coils for planar Z-gradient coil. For both of these reasons, more 

calculation resources were needed for the simulation of X-gradient coil generated eddy currents. 

The computational time become two times longer (approximately six minutes) than the time 

required for Z-gradient eddy current simulation. In Fig. 3.5(b) we have illustrated eddy current 

distribution along the X-axis. In accordance with the Gx coil response the eddy current response 

was found nearly zero at the center of the plate whereas subdomains considered at either side 

from the center show increasing values. Fig. 3.6(a) illustrates the transient secondary magnetic 

fields for few points in the ROI. Compare to the Z-gradient transient eddy field (illustration 

given in Fig. 3.3), X-gradient eddy field was found to decay faster with an approximate decay 

time constant of 70 µs. The linear eddy current field response is given in Fig. 3.6(b). Here also 

we see that the secondary X-gradient fields have smaller responses than the secondary Z-gradient 

fields (illustration given in Fig. 3.4). Since the current circulates in the opposite directions in the 

two sets of coil in each layer of planar X-gradient coil, they also have opposing secondary 

magnetic field response in the region of interest (ROI).    
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3.2 9.4 T Closed-Bore MRI System 

3.2.1 Simulation Parameters 

The superconducting magnet is of vertical type and consisted of several cylindrical conducting 

bores in its cryostat structure (shown in Fig 2.10) of which the innermost layer is the warm bore 

(298 K) and the other three cold shields are the second bore (77 K), third bore (4.2 K) and fourth 

bore (4.2 K). Details of the properties are again given in Table 2. In this study, the gradient test 

pulse we considered is a trapezoidal pulse with ramp-up and ramp-down time of approximately 

200 µs and large flattop duration of 50 ms to avoid the superposition of eddy currents generated 

during the ramp-up portion of the signal. The corresponding calculated skin depth was 1.01399 

mm. As the thickness of subdomains ideally should be infinitely thin [37], to consider the fast 

switching effect of the gradient pulse we divided the cylindrical bore into thin cylindrical 

sublayers of thickness 1/10th of the skin depth as it was taken for the simulation of eddy currents 

in case of 0.3 T open MRI system. The 1.63 mm thick copper innermost bore (resistivity 

2.0284×10
-8

 Ω.m) were divided along the thickness (along the radial direction) into 16 

cylindrical sublayers of thickness 0.101399 mm each. Each sublayer is again divided into 2 mm 

width 200 circular ring subdomains along the length (Z-axis) of the cylinder – we considered the 

central 400 mm region (2 mm × 200 subdomains) to analyze the eddy current response. In our 

study we found the eddy current amplitude beyond this region is negligible.  
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In case of X-gradient coil coupled circuit modeling, we considered semicircular 

subdomains instead of complete circular subdomains since the net flux enclosed by a circular 

ring subdomain is zero for Gx cylindrical coil (as we explained in the Methods and Material 

chapter (section 2.4, Fig. 2.14)). At first we divide the vertical cylindrical bore vertically into two 

half cylinders as is illustrated in Fig. 2.14(c). Similar to previous modeling approaches we 

considered the thickness cylindrical sublayers to be 1/10th of the skin depth and width of each 

semicircular subdomain was 2 mm. The total number of sublayers considered in each half-

cylindrical bore was 16 for the innermost bore and subdomains in each sublayer were 200 

considering the central 400 mm region that we also considered for cylindrical Gz coil. The 

simulation parameters for the inner four conducting bores considering both the Z- and X-gradient 

coils are listed in Table 3. 

 

3.2.2 Results and discussion 

Simulations were conducted for eddy currents in the inner four bores generated by Gz 

and Gx coils. Table 4 summarizes the amplitudes and time constants of eddy field separately 

generated by the eddy currents in each bore considering both the Z- and X-gradient coils. Results 

for the simulated gradient eddy current field generated by the induced eddy currents in the inner 

four bores of the superconducting magnet are given in Fig. 3.7 (a) and (b) respectively for Z- and 

X-gradient coils.  We have performed gradient echo shift measurement of gradient eddy field in 
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the imaging region of 5 mm diameter sphere at the center of the magnet. Table 5 summarizes and 

compares the simulation and experimental results of the eddy current parameters for both Z-

gradient coil and X-gradient coils. In the measurement results we got two time constants (1 ms 

and 10 ms (approximately)) with considerable amplitudes of the gradient eddy fields. The 

simulation results considering eddy currents in the inner four bores matches with the faster 

component. For the slower component a complete simulation considering the superconducting 

wire, conducting bores and all of the gradient coils would be needed. 
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Chapter 4  

Conclusion 

In this study we conducted coupled circuit simulation of eddy currents in both open MRI 

(induced by planar type gradient coils) and closed-bore MRI (induced by cylindrical type 

gradient coils) systems by implementing novel approaches. For coupled circuit modeling of the 

eddy current conducting structures we considered bar-shaped subdomains considering eddy 

currents induced by both longitudinal (Gz) and transverse (Gx or Gy) planar gradient coils, 

circular ring-shaped subdomains for cylindrical longitudinal (Gz) gradient coil, and semicircular 

subdomains for cylindrical transverse (Gx or Gy) gradient coils. In all of these cases the 

thickness and width of each subdomain were considered as 1/10th of the skin depth and 2 mm, 

respectively. To compute the inductive coupling between gradient coil and subdomain at any 

position solid angle form of Ampere’s law was implemented. For both planar and cylindrical 

type longitudinal (Gz) gradient coils circular loop solid angle formula for 3-D was calculated 

considering the coil loops as separate circles. In case of transverse (Gx or Gy) gradient coils of 

both planar and cylindrical types, as the coil loops have irregular geometrical shapes and 

asymmetry considering the center of the coil, we suggested a rectangular segmentation solid 

angle calculation approach in which the coil loop area is divided into several rectangular sections 

and simple rectangular solid angle formula was implemented to calculate the total solid angle. 

The system of first-order differential equations formulated from the network of resistive-

inductive circuits (that represents all of the subdomains and gradient coils) was solved by 

implementing Eigen method solution approaches. As the system of equations possesses both 

homogeneous and nonhomogeneous differential equation formats we solved the homogeneous 

problem by implementing decoupling solution method and nonhomogeneous problem by using 
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fundamental matrix method. The whole simulation was conducted in a general purpose desktop 

PC with 4 GB memory (RAM). To verify our simulation results we conducted single point-like 

phantom FID experiment for open MRI system and gradient echo-shift measurement experiment 

for closed-bore MRI system. In case of open MRI system we have found very good agreement 

between simulation and experiment. On the other hand, the measurement results for closed-bore 

superconducting magnet MRI system shows multiple (at least 2) amplitudes and time constants 

of the gradient eddy current fields. As the superconducting magnet has multiple cold shield (77 

K and 4.2 K) cylindrical bores in its cryostat structure and as the superconductor wire contain 

thick copper coverings, eddy currents with large time constants can generate in the 

superconducting magnet MRI systems. We conducted simulation for the inner four cylindrical 

bores (warm bore (298K), 77 K. 4.2 K, 4.2 K) for the eddy current field induced by Gz coil and 

Gx coil separately. The simulation results match to the fast (approximately 1 ms) decaying 

gradient eddy current fields. A complete calculation of eddy currents considering the 

superconducting coils and inductive couplings among the conducting structures might provide 

the slower decaying components (approximately 10 ms) of the gradient eddy current fields. 
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Appendix A 

Publications 

Journal Paper 

1. Md Shahadat Hossain Akram, Yasuhiko Terada, Keiichiro Ishi, Katsumi Kose, Coupled 

Circuit Numerical Analysis of Eddy Current in an Open MRI System, Journal of Magnetic 

Resonance, Vol. 245, , Pages 1 – 11,  August 2014. 

 

Conference Abstracts 

1. Md Shahadat Hossain Akram, Koki Matsuzawa, Yasuhiko Terada, Katsumi Kose, Novel 

Approaches in the Coupled Circuit Analysis of Eddy Current Induced by Cylindrical 

Gradient Coils, The International Society for Magnetic Resonance in Medicine (ISMRM) 

23rd Annual Meeting and Exhibition, Ontario, Canada, 30 May – 05 June, 2015.  

2. Md Shahadat Hossain Akram, Yasuhiko Terada, Katsumi Kose, Coupled Circuit 

Simulation of Z- and X-Gradient Eddy Currents in a 9.4T Narrow-Bore MRI System, The 

42nd Japanese Society for Magnetic Resonance in Medicine (JSMRM), Kyoto, Japan (To be 

held), 18 – 20 September, 2014.  

3. Md Shahadat Hossain Akram, Yasuhiko Terada, Katsumi Kose, Temporal-Spatial 

Responses of Planar X-Gradient Eddy Currents by Solid Angle Coupled Circuit Method, The 

42nd Japanese Society for Magnetic Resonance in Medicine (JSMRM), Kyoto, Japan (To be 

held), 18 – 20 September, 2014.  

4. Md Shahadat Hossain Akram, Yasuhiko Terada, Keiichiro Ishi, Katsumi Kose, Eigen 

Matrix Approach in Coupled-Circuit Numerical Simulation of Eddy Currents in MRI 
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Systems, Joint Annual Meeting of The International Society for Magnetic Resonance in 

Medicine - European Society for Magnetic Resonance in Medicine and Biology (ISMRM-

ESMRMB), Milan, Italy, 10 – 16 May, 2014.  

5. Md Shahadat Hossain Akram, Yasuhiko Terada, Keiichiro Ishi, Katsumi Kose, Eddy 

Current Analysis of 0.3 T Permanent Magnet MRI Systems with Planar Z-Gradient Coil, The 

41st Japanese Society for Magnetic Resonance in Medicine (JSMRM), Tokushima, Japan, 19 

– 21 September, 2013. 

6. Md Shahadat Hossain Akram, Katsumi Kose, A Novel Approach in the Network Analysis 

of Eddy Current Induced by Planar Z-Gradient Coil, The International Society for Magnetic 

Resonance in Medicine (ISMRM) 21st Annual Meeting and Exhibition, Salt Lake, USA, 20 

– 26 April, 2013.  
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