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ABSTRACT 

Composition dependence of the crystal structure between stibnite and antimonselite is investigated 

by using the single-crystal x-ray diffraction and the ab-initio calculation methods to clarify the Se 

substitution effect on the crystal structure, especially focusing on the stereochemical behavior of Sb 

5s2 lone pair electrons. The single-crystal x-ray diffraction measurements indicate no phase change 

throughout the solid solution range. The lattice parameters of a, b, c and unit cell volume are linearly 

increased as Se content increases. The lattice parameter variations normalized show an anisotropic 

expansion that the largest expansion is observed along the a-axis, followed by the c and b-axes. The 

large Se atom exhibits a strong site preference for the X(1) and X(3) sites, while the small S atom 

prefers to occupy the X(2) site. The intra-ribbon Sb(1)-X and Sb(2)-X distances (X = S, Se) are 

continuously increased with the Se content. The three Sb(1)-X bond distances in the trigonal pyramids 

are changed within the similar range between 2.52 and 2.68 Å, while the five Sb(2)-X distances in the 

tetragonal pyramids vary from 2.45 to 2.59 Å, from 2.68 to 2.80 Å, and from 2.86 to 3.00 Å, 

respectively. With increasing Se content in the solid solution, the inter-ribbon distances where the Sb 

5s2 LPEs are located monotonously increase as well. However, the variations between the ribbons are 

considerably smaller than those of intra-ribbon distances. The polyhedral volumes of the Sb(1)X7 and 

Sb(2)X7 in which the Sb 5s2 LPEs are accommodated constantly increase from 35.9 to 40.0 Å3 and 

from 34.1 to 38.8 Å3, respectively, and these eccentricity parameters decrease from 0.66 to 0.62 and 
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from 0.57 to 0.55. As a result of ab-initio calculation, the Sb 5s orbitals on the Sb(1) atoms remain 

almost unchanged throughout the solid solution. On the other hand, the those on the Sb(2) atoms 

become smaller with the incorporation of Se. The result gives a more reasonable interpretation that 

the stereochemistry of Sb 5s2 LPEs and the stereochemisry of the coordination polyhedra around the 

Sb atoms are affected by the Se substitution in the structure.   

 

Key words: stibnite, antimonselite, stereochemical activity, single-crystal x-ray diffraction, ab-initio 

calculation 
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INTRODUCTION 

Stibnite (Sb2S3) is an antimony sulfide mineral which occurs most commonly in hydrothermal 

vein and replacement deposits of low-temperature origin (e.g., Wood et al. 1987; Krupp 1988; Gaines 

et al. 1997). It is found in association with minerals such as realgar, orpiment, cinnabar, galena, pyrite, 

arsenopyrite, calcite, and quartz (Anthony et al. 1990). The crystal structure consists of parallel 

(Sb4S6)n ribbon-like chains held together with the weaker intermolecular forces (Hofmann 1933; 

Scavnicar 1960; Bayliss and Nowacki 1972). In the crystal structure, Sb atoms in a trivalent state are 

distributed over two different crystallographic sites. The two crystallographically independent Sb 

atoms exhibit a characteristic one-sided coordination because of the stereochemical activity of inert 

5s2 lone-pair electrons (LEPs) of the Sb atoms (Kyono et al. 2002; Kyono and Kimata 2004). One 

shows a trigonal SbS3 pyramid with the Sb atom at the vertex, and another forms an SbS5 square 

pyramid with the Sb atom at the centre. An isomorphic mineral of the stibnite, antimonselite Sb2Se3, 

has also been known (Chen et al. 1993; Jambor and Grew 1994; Min et al. 1998). Liu et al. (2008) 

indicated that there is a continuous solid solution between stibnite and antimonselite. The Se/S ratios 

can be used as a typical geochemical indicator of deposition in a volcanic environment because the 

Se/S ratio is useful for determining not only the sources of S but also geothermometry and the redox 

gradients (Anderson 1969; Huston et al. 1995). A variety of stereochemical activities induced by the 

LPEs drastically affect configuration of stibnite because the Sb 5s2 LPEs are interposed between the 
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ribbon-like chains running along the b-axis (Kyono and Kimata 2004). Thus, the stereochemically 

active LPEs play an important role in determining the structural stability. It has been known that a 

phase transition in a stibiocolumbite-bismutocolumbite solid solution is caused by varying degree of 

stereochemical activity (Kazantsev et al. 2002). However, little is known about the detailed influence 

of substitution of S with Se on the stereochemical activities of Sb 5s2 LPEs and crystal structure. 

Recently, the Sb2S3 and Sb2Se3 have been enthusiastically studied as one of the most promising 

materials for low cost and high efficiency thin film solar cells (Fernández and Merino 2000; Rajpure 

and Bhosale 2000, 2002; Zheng et al. 2002; Messina et al. 2009; Patrick and Giustino 2011; Choi et 

al 2014). The thin films with the composition of Sb2SxSe3−x have an optical band gap of 1.3–1.7 eV 

along the thickness (Messina et al. 2007), which would be an attractive feature for solar cells. In order 

to comprehend the electronic structure of the materials, it is necessary to fully understand the behavior 

of crystal structure, stereochemical activity of Sb 5s2 LEPs, and distribution of the anions within the 

range from Sb2S3 to Sb2Se3.    

Here we present the results of the single-crystal x-ray diffraction study of the compositions 

between stibnite and antimonselite and the ab-initio theoretical study of the electronic structures. The 

experimental and theoretical results obtained in the present study clearly show the Se substitution 

effect on the crystal structure, especially focusing on the stereochemical behavior of Sb 5s2 LPEs in 

the solid solution. 
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EXPERIMENTAL METHODS 

Commercially available Sb (Wako Pure Chemical, purity > 99.5%), S (Wako Pure Chemical, 

purity > 98.0%), and Se metal (Wako Pure Chemical, purity > 99.0%) were used as starting materials. 

Compositions of the starting mixtures were as follows: Sb:S:Se ratio of (1) 2 : 3 : 0, (2) 2 : 2.25 : 0.75, 

(3) 2 : 1.5 : 1.5, (4) 2 : 0.75 : 2.25, and (5) 2 : 0 : 3. The mixed powders were sealed under vacuum in 

a quartz vessel. It was subsequently placed into a furnace and heated at 500 C for 96 h. Finally, 

elongated prismatic single crystals with a length of 100-300 μm were obtained.  

For single-crystal x-ray diffraction measurements, suitable single crystals were fixed on a 0.1 mm 

diameter glass fiber, and then mounted on a RAXIS-RAPID imaging plate diffractometer (Rigaku 

Corp.) operating with MoKα radiation (λ = 0.71069 Å) monochromatized using a flat graphite crystal. 

A data set of 44 images was collected using an ω-oscillation method with 5.0° oscillation step between 

130 and 190° (χ = 45°, φ = 0°) and between 0 and 160° (χ = 45°, φ = 180°). The exposure rate was of 

180 s per degree of the oscillation. Intensities were corrected for Lorentz and polarization effects. An 

absorption correction was applied from the symmetry-equivalent reflections using the ABSCOR 

program (Higashi 1995). The structure was solved using direct methods with the SIR97 program 

package (Altomare et al. 1999). Only reflections with Io > 4σ(Io) were used for structure refinements 

performed using full-matrix least squares on F2 with the CRYSTALS program (Carruthers et al. 1999).  
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After the all x-ray diffraction measurements, each single crystal was removed and mounted in 

epoxy. Then it was polished using a 1 μm diamond suspension for the electron microprobe analysis. 

Quantitative chemical analysis was performed with the JXA-8530F electron probe micro-analyzer 

(JEOL Ltd.) equipped with a wavelength-dispersive x-ray spectrometer. The samples were probed 

with an acceleration voltage of 15 kV, an irradiation current of 10 nA, and a beam diameter of 1 μm. 

The chemical composition of each crystal was determined from the averages of several points analyzed. 

Raw data were corrected using a conventional ZAF program. Synthetic Sb2S3 (SbLα and SKα) and 

synthetic Sb2Se3 (SeLα) were used as standards. Empirical formulae were normalized on the basis of 

five atoms per formula unit. Site occupancies were refined within the constraint that three X sites (X 

= S, Se) are occupied fully by the S and Se atoms. Based on the assumption that the S and Se atoms 

are disordered at three X sites, the ratio between S and Se was refined under the constraint that total 

S/Se ratio is equal to the chemical composition determined with the electron microprobe analyses. 

Data collection and refinement details are reported in Table 1. The final atomic positions and their 

chemical compositions are presented in Table 2. All bond lengths and bond angles are given in Table 

3. 

Ab-initio calculations of the electronic structure were performed at DFT/B3LYP/3-21+G basis set 

using the quantum chemical calculation software package Gaussian-09 (Frisch et al. 2009). Initial 

structure models were built based on the atomic coordinates experimentally determined by the x-ray 
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diffraction measurement in the present study. The dimension of the simulation region includes four 

characteristic ribbon-like chains. To terminate an infinite crystal structure, hydrogen atoms were added 

as a positive charge on the S and Se atoms at the terminal positions. The orbital surfaces were rendered 

with the GaussView molecular visualization package (Dennington et al. 2009). The orbitals were 

drawn at an interface value of 0.02. 

 

RESULTS AND DISCUSSION 

The single-crystal x-ray diffraction measurements indicate no phase change occurs throughout the 

solid solution range. The Sb2S3-xSex (0  x  3) can form a complete solid solution between Sb2S3 and 

Sb2Se3. The variations in lattice parameters are summarized in Figure 1. Data were fitted by a least-

squares regression to the second degree polynomial curve. With increasing Se content, the lattice 

parameters of a, b, and c are linearly increased from 11.33 to 11.80 Å, from 3.84 to 3.99 Å, and from 

11.25 to 11.65 Å, respectively. As a result of expansion of the lattice parameters, the unit cell volume 

undergoes a monotonous increase from 489 to 548 Å3 as a function of the Se content (Table 1). The 

lattice parameter variations normalized to the minimum values show an anisotropic expansion of the 

lattice parameters against the Se content (Fig. 1d). The largest expansion is observed along the a-axis, 

followed by the c and b-axes (Fig. 1d). The anisotropic behavior with the Se content is exactly identical 

to those induced by compression (Lundegaard et al. 2003). At a temperature range from 128 to 298 K, 
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the largest thermal expansion occurs along the c-axis, followed by the a, and b-axes (Kyono et al. 

2002). The anisotropic behavior of the orthorhombic lattice is reflected by the structural characteristic 

feature. As can be seen in Figure 2a, there are a lying trigonal pyramid at the Sb(1) position and a 

standing tetragonal pyramid at Sb(2) position along the b-axis. The b-axis direction is most rigid due 

to the strong bonded ribbon structure, which reflects the smallest expansion behavior of b-axis. On the 

other hand, the space between the ribbons running parallel to b-axis accommodates the Sb 5s2 LPEs. 

Because the electron density is concentrated within the ribbons, Sb-X (X = S, Se) bonds between 

ribbons become much weaker than those within the ribbons. That is, the a- and c-axes directions are 

most variable due to the weak interactions between the ribbons. The site-occupancy parameters of Se 

over the three X sites are plotted in Figure 3. The large Se atom exhibits a strong site preference for 

the X(1) and X(3) sites, while the small S atom prefers to occupy the X(2) site. This is because the 

atomic positions of X(1) and X(3) can maintain the longer distance from Sb atoms than the X(2) 

position. 

The variations of the intra-ribbon Sb-X distances are shown in Figures 4 and 5. The intra-ribbon 

Sb(1)-X and Sb(2)-X distances are continuously increased with the Se content. The three Sb(1)-X 

bond distances in the trigonal pyramids are changed within the similar range of 2.52 to 2.68 Å, while 

the five Sb(2)-X distances in the tetragonal pyramids vary from 2.45 to 2.59 Å, from 2.68 to 2.80 Å, 

and from 2.86 to 3.00 Å, respectively (Figs 4, 5). Although the ranges are considerably different from 
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one another, the variations of the Sb(1)-X distances exhibit similar elongation behavior to the Sb(2)-

X. That is, since the short bondings possess a strong electrostatic interaction between Sb and S/Se 

atoms, the short bond distances are more changeable than the long bond distances by the substitution 

of S with Se (Figs 4d, 5d). The Sb(1)-X(2) distance located within the ribbon-like structure changes 

from 3.12 to 3.22 Å with the Se content (Fig 4c). The slight variation of the Sb(1)-X(2) distance is due 

to the rather long distance over 3.10 Å (Fig. 4d). 

The variations of the inter-ribbon Sb-X (X = S, Se) distances are given in Figure 6. As the Se 

content increases in the solid solution, the inter-ribbon distances where the Sb 5s2 LPEs are located 

monotonously increase as well. With the substitution of S with Se, the Sb(1)-X(1) and Sb(2)-X(3) 

distances are extended from 3.64 to 3.74 Å, and from 3.38 to 3.48 Å, respectively (Figs 6b, 6c). 

However, the variations between the ribbons are considerably smaller than those of intra-ribbon 

distances. The electron density of Sb 5s2 lone pair electrons is fairly smaller than those of antimony 

atoms. Only the Sb 5s2 lone pair electrons can’t be observed within the electron density distribution 

of antimony atoms. In order to assess the Se substitution effect on the stereochemical activity of Sb 

5s2 LEPs, therefore, the polyhedral volumes and eccentric parameters of two sevenfold coordinations 

including the LPEs (Fig. 2b) are calculated by the IVTON program (Balić-Žunić and Vickovic 1996). 

The polyhedral volumes of the Sb(1)X7 and Sb(2)X7 constantly increase from 35.9 to 40.0 Å3 and 

from 34.1 to 38.8 Å3, respectively (Fig. 7a, 7b). The eccentric parameter is defined as the deviation of 
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central atom position from the ideal metric centre of the coordination. That is, the larger the 

eccentricity suggests the larger stereochemical activity. As it can be seen from Figures 7c and 7d, the 

stereochemical deformation seems to decrease from 0.66 to 0.62 at Sb(1)X7 and from 0.57 to 0.55 at 

Sb(2)X7 with increase of the Se concentration. The stereochemical activity in the Sb(1)X7 polyhedron 

is larger than that in the Sb(2)X7 polyhedron. In the solid solution between Sb2S3 and Bi2S3 (Kyono 

and Kimata, 2005), however, the eccentric parameter drastically decreases with the Bi concentration 

from 0.66 to 0.42 at the M(1)X7 coordination (M = Sb, Bi) and from 0.57 to 0.48 at the M(2)X7 

coordination. A more reasonable interpretation is therefore presented that the stereochemistry of Sb 

5s2 LPEs is only slightly affected by the Se substitution in the crystal structure.   

During the past decade, several first principle studies have been carried out on the structural and 

electronic properties of Sb2S3 and Sb2Se3 (Caracas and Gonze 2005; Patrick and Giustino, 2011; Koc 

et al. 2012; Filip et al. 2013). The valence electron density, the electron band structure, and the 

corresponding electronic density-of-states were examined using the density functional theory (Koc et 

al. 2012). The authors determined the valence-band energy levels in the structures. As the results, the 

highest occupied valence bands are essentially dominated by S 3p, Se 4p, and Sb 5p states. The Sb 5s 

states dominate the second energy group with small electronic density-of-states of the S 3s, 3p and the 

Se 4s, 4p. Figure 8 shows the molecular orbitals associated with the stereochemical activity of Sb 5s2 

LPEs. In the energy level of Sb2S3 (Fig. 8a), the Sb 5s orbitals occupy the overlying spaces of the Sb 
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atoms, resulting in a formation of the characteristic one-sided coordination of the Sb atom. A few Sb 

atoms without the characteristic LPEs are also observed. In the study, the dimension of the simulation 

region includes four ribbon-like chains. As it can be seen in the Fig. 8a, the electronic orbitals are 

almost equally spread over a whole ribbon. On the other hand, the electronic orbitals in the structure 

introducing a small amount of Se atoms are shown in Fig.8b. Since the Se atom exhibits a strong site 

preference for the X(1) (Fig. 3), the Se atoms are distributed on the X(1) sites in the structure. The 

most noteworthy finding is that the electronic orbitals are highly delocalized with substitution of Se 

for S atoms (Fig. 8b). Compared with the pure Sb2S3, most electronic orbitals are reduced in the two 

ribbons lying on the upper and lower ribbons. The Sb 5s orbitals on the Sb(1) atoms remain almost 

unchanged, whereas those on the Sb(2) atoms in the upper and lower side become smaller with the 

incorporation of Se into the structure (Fig. 8b). The electronic orbitals in the Sb2Se3 are displayed in 

Fig. 8c. It exhibits an essentially similar feature to that of the Sb2(S2Se)3 (Fig. 8b). The highly 

delocalized electronic orbitals in each ribbon are observed as well. In Sb2Se3, however, the electronic 

orbitals distributed in the two ribbons lying on the upper and lower ribbons are much reduced 

compared with those of the Sb2(S2Se)3. Accordingly, the electronic orbitals in stibnite are significantly 

influenced by the Se substitution for S atoms. The results of the ab-initio theoretical study are 

approximately consistent with those of the x-ray diffraction measurement given in Figures 7c and 7d. 

In the structure, stereochemical arrangement is caused by the repulsive electrostatic interaction 
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between the LPEs of the stereochemically active central Sb atom and coordinated ligands. That is, the 

stereochemistry in the structure would be affected not only by the Sb 5s orbitals but the highest 

occupied valence bands dominated by S 3p, Se 4p, and Sb 5p. The electronic orbitals of the S 3p, Se 

4p, and Sb 5p are not considered in the study, but the ab-initio calculation reveals that the electronic 

orbitals, especially Sb 5s orbitals, are drastically affected by the incorporation of Se into the stibnite 

structure. As mentioned before, the change in stereochemical configuration induced by the Se 

substitution is smaller than that caused by the Bi substitution (Kyono and Kimata, 2005), although 

variations of the a and c lattice parameters between Sb2S3 and Sb2Se3 are significantly larger than 

those between Sb2S3 and Bi2S3. In conclusion, the stereochemical feature of Sb 5s2 LEPs and the 

stereochemisry of the coordination polyhedra around the Sb atoms can be reduced with the Se 

substitution for S in stibnite.       
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Captions for Figures and Tables 

Figure 1 The compositional dependence lattice parameters of (a) a, (b) b, and (c) c. (d) The 

variations of normalized lattice parameters divided by minimum values for each lattice 

parameter. Solid circles, open diamonds, and solid triangles stand for the a/a0, b/b0, and 

c/c0, respectively. Data were fitted by a least-squares regression to the second degree 

polynomial curve. The error bars are smaller than the data points. 

Figure 2 A ball-and-stick view of the crystal structure of Sb2X3 (X=S, Se) viewed in the direction 

of b-axis. 

Figure 3 Site occupancy parameters for Se on the three X sites in the Sb2S3-xSex solid solution. 

Solid circles, solid triangles, and open diamonds indicate the X(1), X(2), and X(3) site, 

respectively. 

Figure 4 Variations of Sb-X (X= S, Se) bond lengths around the Sb1 site. The error bars are smaller 

than the data points. 

Figure 5 Variations of Sb-X (X= S, Se) bond lengths around the Sb2 site.  

Figure 6 Variations of interatomic distances between the ribbons along the b-axis direction.  

Figure 7 Variations of polyhedral volumes of Sb1X7 and Sb2X7 and their polyhedral eccentric 

parameters calculated by the IVTON program (Balić-Žunić and Vickovic 1996).  

Figure 8 Molecular orbitals associated with the stereochemical activity of Sb 5s2 LPEs in (a) Sb2S3, 
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(b) Sb2(S2Se)3, and (c) Sb2Se3. Sb atoms are shown as purple spheres, S atoms are yellow, 

and Se atoms are orange. The red and green colours orbitals represent positive and 

negative wavefunction, respectively. The orbitals are drawn at an isosurface value of 0.02. 

Contours of the electron density isosurface are plotted on the ac plane. 
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Figure 1. The compositional dependence lattice parameters of (a) a, (b) b, and (c) c. (d) The 

variations of normalized lattice parameters divided by minimum values for each lattice 

parameter. Solid circles, open diamonds, and solid triangles stand for the a/a0, b/b0, and c/c0, 

respectively. Data were fitted by a least-squares regression to the second degree polynomial 

curve. The error bars are within the symbol size. 
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Figure 2. A ball-and-stick view of the crystal structure of Sb2X3 (X=S, Se) viewed in the 

direction of b-axis. 
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Figure 3. Site occupancy parameters of Se for the three X sites (X=S, Se) in the Sb2S3-xSex

solid solution. Solid circles, solid triangles, and open diamonds indicate the X(1), X(2), and 

X(3) site, respectively. 
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Figure 4. Variations of intra-ribbon Sb(1)-X (X= S, Se) distances. (d) The variations of 

normalized Sb(1)-X distance. Solid circles, open diamonds, and solid triangles stand for the 

Sb(1)-X(1), Sb(1)-X(2), and Sb(1)-X(3), respectively. The error bars are smaller than the 

symbol size. 
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Figure 5. Variations of intra-ribbon Sb(2)-X (X= S, Se) distances. (d) The variations of 

normalized Sb(2)-X distance. Solid circles, open diamonds, and solid triangles display the 

Sb(2)-X(1), Sb(2)-X(2)’, and Sb(2)-X(2), respectively. 
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Figure 6. Variations of the inter-ribbon distances of Sb-X (X=S, Se). (d) The variations of 

normalized inter-ribbon distance. Solid circles, open diamonds, and solid triangles show the 

Sb(1)-X(3), Sb(2)-X(3), and Sb(1)-X(1), respectively. 
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Figure 7. Variations of polyhedral volumes of Sb(1)X7 and Sb(2)X7 (X=S, Se) and their 

polyhedral eccentric parameters calculated by the IVTON program (Balić-Žunić and Vickovic

1996). 

S
b

(1
)X

7
p

o
ly

h
e
d

ra
l 
v
o
lu

m
e
 (

Å
3
)

S
b

(2
)X

7
p

o
ly

h
e
d

ra
l 
v
o
lu

m
e
 (

Å
3
)

S
b

(1
)X

7
e
c
c
e
n

tr
ic

it
y
 (

Å
)

S
b

(2
)X

7
e
c
c
e
n

tr
ic

it
y
 (

Å
)

Se/(S+Se) Se/(S+Se)

Se/(S+Se) Se/(S+Se)

35

36

37

38

39

40

0.0 0.2 0.4 0.6 0.8 1.0

34

35

36

37

38

39

0.0 0.2 0.4 0.6 0.8 1.0

0.61

0.62

0.63

0.64

0.65

0.66

0.0 0.2 0.4 0.6 0.8 1.0

0.535

0.545

0.555

0.565

0.575

0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

(c) (d)



(c)

(b)

Figure 8. Molecular orbitals associated with the stereochemical activity of Sb 5s2 LPEs in (a) Sb2S3, 

(b) Sb2(S2Se)3, and (c) Sb2Se3. Sb atoms are shown as purple spheres, S atoms are yellow, and Se 

atoms are orange. The red and green colours orbitals represent positive and negative wavefunction, 

respectively. The orbitals are drawn at an isosurface value of 0.02. Contours of the electron density 

isosurface are plotted on the ac plane.
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Table 1. Summarized crystal data and details of the refinement parameters for all crystals in the Sb2S3-xSex solid solution

Sample# S300Se0-1 S300Se0-2 S225Se075-1 S225Se075-5 S225Se075-6

Chemical composition Sb2S3 Sb2S3 Sb2S2.29Se0.71 Sb2S2.24Se0.76 Sb2S2.26Se0.74

Crystal size (μm) 300  100  100 300  150  150 300  150  150 200  100  100 300  100  100 

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma Pnma

Z 4 4 4 4 4

a  (Å) 11.3276(17) 11.3252(18) 11.4834(11) 11.5070(10) 11.5011(9) 

b  (Å) 3.8423(6) 3.8437(4) 3.8773(3) 3.8787(3) 3.8792(2) 

c  (Å) 11.2484(18) 11.2498(17) 11.3589(8) 11.3543(9) 11.3475(9) 

V  (Å3) 489.57(13) 489.71(12) 505.75(7) 506.77(7) 506.27(6) 

Dcalc (g/cm3) 4.608 4.607 4.898 4.919 4.911

μ (cm-1) 121.055 121.021 165.363 168.419 167.227

Total reflections, R int 4469, 0.059 4463, 0.056 4616, 0.087 4668, 0.073 4637, 0.058

Unique reflections 640 639 657 659 658

Observed ref. with F 0 > 4s(F o) 570 568 592 620 621

Paraeters 32 32 44 44 44

R 1 0.0314 0.0341 0.0511 0.0406 0.0349

wR 2 0.0355 0.0413 0.0606 0.0472 0.0462

GooF 1.047 1.046 1.061 1.038 1.038

Sample# S225Se075-7 S150Se150-4 S150Se150-5 S150Se150-6 S150Se150-7

Chemical composition Sb2S2.27Se0.73 Sb2S1.52Se1.48 Sb2S1.54Se1.46 Sb2S1.50Se1.50 Sb2S1.53Se1.47

Crystal size (μm) 300  100  100 200  50  50 200  100  100 200  100  100 200  50  50 

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma Pnma

Z 4 4 4 4 4

a  (Å) 11.4862(10) 11.6237(18) 11.6182(10) 11.6195(13) 11.626(3) 

b  (Å) 3.8779(3) 3.9153(4) 3.9148(2) 3.9161(3) 3.9171(7) 

c  (Å) 11.3567(7) 11.4756(15) 11.4687(8) 11.4696(10) 11.475(2) 

V  (Å3) 505.85(7) 522.25(12) 521.62(6) 521.90(8) 522.59(19) 

Dcalc (g/cm3) 4.909 5.203 5.197 5.218 5.193

μ (cm-1) 166.687 210.739 209.678 212.199 209.945

Total reflections, R int 4666, 0.065 4764, 0.093 4796, 0.057 4759, 0.050 4350, 0.083

Unique reflections 657 678 679 679 673

Observed ref. with F 0 > 4s(F o) 601 609 586 595 601

Parameters 44 44 44 44 44

R 1 0.0389 0.0316 0.0297 0.0292 0.0505

wR 2 0.0470 0.0309 0.0342 0.0404 0.0537

GooF 1.051 1.004 1.065 1.001 1.001



Table 1. Continued

Sample# S150Se150-8 S075Se225-1 S075Se225-2 S075Se225-3 S075Se225-9

Chemical composition Sb2S1.51Se1.49 Sb2S0.70Se2.30 Sb2S0.66Se2.34 Sb2S0.69Se2.31 Sb2S0.66Se2.34

Crystal size (μm) 300  100  100 100  50  50 200  100  100 200  50  50 200  50  50 

Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma Pnma

Z 4 4 4 4 4

a  (Å) 11.622(2) 11.7354(17) 11.743(3) 11.7222(9) 11.7191(9)

b  (Å) 3.9108(6) 3.9554(4) 3.9576(11) 3.9524(2) 3.9467(4)

c  (Å) 11.4712(14) 11.5794(13) 11.601(4) 11.5714(6) 11.5716(8) 

V  (Å3) 521.40(14) 537.50(11) 539.1(3) 536.12(6) 535.21(8) 

Dcalc (g/cm3) 5.217 5.530 5.537 5.550 5.577

μ (cm-1) 211.744 257.121 258.901 258.424 260.785

Total reflections, R int 4744, 0.079 4778, 0.074 4587, 0.118 4955, 0.078 4949, 0.083

Unique reflections 677 699 702 700 699

Observed ref. with F 0 > 4s(F o) 618 578 544 575 597

Parameters 44 44 44 44 44

R 1 0.0445 0.0353 0.0526 0.0314 0.0398

wR 2 0.0529 0.0423 0.0647 0.0341 0.0462

GooF 1.062 1.025 1.002 1.022 1.048

Sample# S075Se225-10 S0Se300-1 S0Se300-3

Chemical composition Sb2S0.69Se2.31 Sb2Se3 Sb2Se3 

Crystal size (μm) 200  50  50 200  100  100 300  150  150 

Crystal system Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma

Z 4 4 4

a  (Å) 11.731(5) 11.805(2) 11.8026(7) 

b  (Å) 3.9516(13) 3.9877(6) 3.9843(3) 

c  (Å) 11.584(4) 11.6623(16) 11.6425(11) 

V  (Å3) 537.0(3) 549.03(15) 547.49(7)

Dcalc (g/cm3) 5.541 5.811 5.828

μ (cm-1) 258.010 295.480 296.310

Total reflections, R int 4817, 0.190 5069, 0.128 5062, 0.113

Unique reflections 701 714 711

Observed ref. with F 0 > 4s(F o) 558 578 645

Parameters 44 32 32

R 1 0.0554 0.0575 0.0566

wR 2 0.0477 0.0676 0.0617

GooF 1.023 1.001 1.063



Table 2. Atomic coordinates, site occupancy parameters, equivalent isotropic, and anisotropic temperature factors (Å 2)

x y z B eq Site occupancy (S/Se) U 11 U 22 U 33 U 12 U 13 U 23

S300Se0-1

Sb2S3

Sb(1)  0.47075(3) 0.25  0.32604(3)  1.151(6) 0.01506(16) 0.01162(16) 0.01704(18) 0  0.00156(13) 0
Sb(2)  0.35052(3) 0.75  0.03605(3)  1.472(6) 0.01396(16) 0.01793(18) 0.02405(19) 0 -0.00447(14) 0
X(1)   0.29216(10) 0.25  0.19204(11)  1.14(2) 1.000/0.000 0.0141(5) 0.0144(5) 0.0146(5) 0 -0.0004(4) 0
X(2)   0.54976(10) 0.75  0.12296(11)  1.11(2) 1.000/0.000 0.0127(4) 0.0129(5) 0.0166(5) 0 -0.0019(4) 0
X(3)   0.37500(10) 0.75  0.43881(11)  1.15(2) 1.000/0.000 0.0169(5) 0.0125(5) 0.0144(5) 0  0.0024(4) 0
S300Se0-2

Sb2S3

Sb(1)  0.47075(3) 0.25  0.32603(3)  1.523(7) 0.02117(19) 0.01914(19) 0.01756(19) 0  0.00167(12) 0
Sb(2)  0.35053(3) 0.75  0.03601(3)  1.827(7) 0.01954(19) 0.0255(2) 0.0244(2) 0 -0.00477(14) 0
X(1)   0.29205(11) 0.25  0.19184(10)  1.51(2) 1.000/0.000 0.0188(5) 0.0227(6) 0.0159(5) 0 -0.0012(4) 0
X(2)   0.54964(10) 0.75  0.12295(11)  1.48(2) 1.000/0.000 0.0201(5) 0.0196(6) 0.0165(6) 0 -0.0010(4) 0
X(3)   0.37508(11) 0.75  0.43861(11)  1.51(2) 1.000/0.000 0.0241(6) 0.0202(6) 0.0132(5) 0  0.0021(4) 0
S225Se075-1

Sb2S2.29Se0.71

Sb(1)  0.47001(4) 0.25  0.32571(3)  1.630(10) 0.0231(2) 0.0157(2) 0.0231(2) 0  0.00205(16) 0
Sb(2)  0.35222(4) 0.75  0.03521(4)  1.886(11) 0.0222(2) 0.0207(3) 0.0288(2) 0 -0.00453(17) 0
X(1)   0.28808(10) 0.25  0.19290(8)  1.58(2) 0.682(2)/0.318(2) 0.0233(6) 0.0165(6) 0.0202(5) 0 -0.0034(4) 0
X(2)   0.55006(13) 0.75  0.12460(11)  1.55(3) 0.894(2)/0.106(2) 0.0223(8) 0.0151(8) 0.0214(7) 0  0.0017(5) 0
X(3)   0.37321(11) 0.75  0.44055(10)  1.71(2) 0.712(2)/0.288(2) 0.0266(7) 0.0183(7) 0.0200(6) 0  0.0027(4) 0
S225Se075-5

Sb2S2.24Se0.76

Sb(1)  0.47008(2) 0.25  0.32573(2)  1.385(6) 0.01584(16) 0.01752(17) 0.01925(18) 0  0.00212(10) 0
Sb(2)  0.35225(2) 0.75  0.03511(3)  1.648(7) 0.01467(17) 0.02261(19) 0.02535(19) 0 -0.00493(11) 0
X(1)   0.28796(6) 0.25  0.19272(6)  1.425(15) 0.656(1)/0.344(1) 0.0183(3) 0.0196(4) 0.0163(3) 0 -0.0026(2) 0
X(2)   0.55004(7) 0.75  0.12441(9)  1.473(19) 0.877(1)/0.123(1) 0.0171(4) 0.0190(5) 0.0199(5) 0  0.0012(3) 0
X(3)   0.37296(6) 0.75  0.44070(7)  1.343(15) 0.708(1)/0.292(1) 0.0175(3) 0.0180(4) 0.0155(4) 0  0.0021(2) 0
S225Se075-6

Sb2S2.26Se0.74

Sb(1)  0.47001(2) 0.25  0.32572(2)  1.419(5) 0.01758(14) 0.01546(15) 0.02087(16) 0  0.00198(8) 0
Sb(2)  0.35219(2) 0.75  0.03515(2)  1.687(6) 0.01655(14) 0.02052(16) 0.02701(16) 0 -0.00509(8) 0
X(1)   0.28798(5) 0.25  0.19273(5)  1.444(11) 0.664(1)/0.336(1) 0.0190(2) 0.0178(3) 0.0181(2) 0 -0.0030(2) 0
X(2)   0.55002(6) 0.75  0.12457(7)  1.465(14) 0.881(1)/0.119(1) 0.0180(3) 0.0162(4) 0.0215(3) 0  0.0009(2) 0
X(3)   0.37298(5) 0.75  0.44062(5)  1.396(11) 0.716(1)/0.284(1) 0.0194(2) 0.0162(3) 0.0175(3) 0  0.0021(2) 0



Table 2. Continued

x y z B eq Site occupancy (S/Se) U 11 U 22 U 33 U 12 U 13 U 23

S225Se075-7
Sb2S2.27Se0.73

Sb(1)  0.47009(3) 0.25  0.32568(3)  1.489(7) 0.02071(19) 0.01294(17) 0.02291(19) 0  0.00194(12) 0
Sb(2)  0.35224(3) 0.75  0.03516(3)  1.753(7) 0.01990(19) 0.01779(19) 0.02890(19) 0 -0.00488(13) 0
X(1)   0.28793(7) 0.25  0.19272(6)  1.483(17)  0.669(1)/0.331(1) 0.0226(4) 0.0142(4) 0.0196(4) 0 -0.0029(2) 0
X(2)   0.54996(9) 0.75  0.12440(9)  1.51(2)  0.884(2)/0.116(1) 0.0214(5) 0.0129(5) 0.0232(5) 0  0.0015(3) 0
X(3)   0.37309(8) 0.75  0.44076(7)  1.478(18)  0.717(1)/0.283(1) 0.0224(4) 0.0139(4) 0.0199(4) 0  0.0020(2) 0
S150Se150-4

Sb2S1.52Se1.48

Sb(1)  0.46970(5) 0.25  0.32629(6)  1.588(11) 0.0207(2) 0.0178(2) 0.0218(3) 0  0.0020(2) 0
Sb(2)  0.35290(5) 0.75  0.03625(5)  1.857(12) 0.0200(2) 0.0225(3) 0.0281(3) 0 -0.0055(2) 0
X(1)   0.28700(9) 0.25  0.19325(10)  1.43(2)  0.436(2)/0.564(2) 0.0201(6) 0.0171(6) 0.0171(6) 0 -0.0013(4) 0
X(2)   0.55245(11) 0.75  0.12691(11)  1.51(2)  0.632(2)/0.368(2) 0.0206(7) 0.0158(6) 0.0208(8) 0  0.0017(5) 0
X(3)   0.37184(9) 0.75  0.44224(10)  1.44(2)  0.456(2)/0.544(2) 0.0213(6) 0.0172(5) 0.0160(6) 0  0.0016(4) 0
S150Se150-5

Sb2S1.54Se1.46

Sb(1)  0.46960(3) 0.25  0.32614(3)  1.534(6) 0.01950(18) 0.01653(17) 0.02227(17) 0  0.00213(13) 0
Sb(2)  0.35294(3) 0.75  0.03622(3)  1.807(7) 0.01863(19) 0.0214(2) 0.02861(19) 0 -0.00564(14) 0
X(1)   0.28695(6) 0.25  0.19323(6)  1.384(14)  0.443(1)/0.557(1) 0.0186(3) 0.0170(3) 0.0170(3) 0 -0.0019(2) 0
X(2)   0.55237(7) 0.75  0.12698(7)  1.484(17)  0.631(1)/0.369(1) 0.0207(4) 0.0150(4) 0.0207(4) 0  0.0018(2) 0
X(3)   0.37188(6) 0.75  0.44223(6)  1.322(15)  0.467(1)/0.533(1) 0.0185(3) 0.0148(3) 0.0169(3) 0  0.0020(2) 0
S150Se150-6

Sb2S1.50Se1.50

Sb(1)  0.46963(4) 0.25  0.32624(4)  1.622(8) 0.0222(2) 0.01807(19) 0.0214(2) 0  0.00187(16) 0
Sb(2)  0.35290(4) 0.75  0.03645(4)  1.909(8) 0.0214(2) 0.0227(2) 0.0285(2) 0 -0.00547(18) 0
X(1)   0.28698(7) 0.25  0.19323(7)  1.525(17)  0.432(2)/0.568(2) 0.0225(4) 0.0188(4) 0.0167(4) 0 -0.0019(3) 0
X(2)   0.55248(8) 0.75  0.12708(8)  1.61(2)  0.616(2)/0.384(2) 0.0237(5) 0.0171(4) 0.0205(5) 0  0.0028(3) 0
X(3)   0.37187(7) 0.75  0.44226(7)  1.465(17)  0.456(2)/0.544(2) 0.0220(4) 0.0176(4) 0.0160(4) 0  0.0019(3) 0
S150Se150-7

Sb2S1.53Se1.47

Sb(1)  0.46959(3) 0.25  0.32612(4)  1.484(9) 0.0191(2) 0.0170(2) 0.0203(2) 0  0.00195(15) 0
Sb(2)  0.35293(4) 0.75  0.03625(5)  1.761(9) 0.0188(2) 0.0216(2) 0.0265(2) 0 -0.00546(17) 0
X(1)   0.28698(7) 0.25  0.19318(8)  1.390(18)  0.438(2)/0.562(2) 0.0185(4) 0.0186(4) 0.0157(4) 0 -0.0021(2) 0
X(2)   0.55237(8) 0.75  0.12697(9)  1.45(2)  0.628(2)/0.372(2) 0.0190(5) 0.0163(5) 0.0199(6) 0  0.0015(3) 0
X(3)   0.37185(7) 0.75  0.44217(9)  1.311(18)  0.466(2)/0.534(2) 0.0191(4) 0.0164(4) 0.0143(5) 0  0.0021(2) 0



Table 2. Continued

x y z B eq Site occupancy (S/Se) U 11 U 22 U 33 U 12 U 13 U 23

S150Se150-8

Sb2S1.51Se1.49

Sb(1)  0.46956(4) 0.25  0.32611(4)  1.357(9) 0.0188(2) 0.0140(2) 0.0187(2) 0  0.00188(15) 0
Sb(2)  0.35293(4) 0.75  0.03633(4)  1.629(10) 0.0186(2) 0.0185(2) 0.0248(2) 0 -0.00526(17) 0
X(1)   0.28683(7) 0.25  0.19325(7)  1.254(18)  0.426(2)/0.574(2) 0.0184(4) 0.0141(4) 0.0152(4) 0 -0.0027(2) 0
X(2)   0.55231(9) 0.75  0.12688(8)  1.30(2)  0.630(2)/0.370(2) 0.0198(6) 0.0116(5) 0.0178(6) 0  0.0014(3) 0
X(3)   0.37180(7) 0.75  0.44217(8)  1.164(19)  0.450(2)/0.550(2) 0.0182(5) 0.0129(4) 0.0132(4) 0  0.0014(2) 0
S075Se225-1

Sb2S0.70Se2.30

Sb(1)  0.46948(4) 0.25  0.32711(4)  1.570(9) 0.0231(2) 0.0164(2) 0.0201(2) 0  0.00228(19) 0
Sb(2)  0.35299(4) 0.75  0.03802(5)  1.821(10) 0.0215(2) 0.0215(2) 0.0262(2) 0 -0.00481(19) 0
X(1)   0.28633(7) 0.25  0.19405(7)  1.447(17)  0.202(2)/0.798(2) 0.0215(4) 0.0179(4) 0.0155(4) 0 -0.0015(3) 0
X(2)   0.55355(7) 0.75  0.12834(7)  1.549(18)  0.294(2)/0.706(2) 0.0231(5) 0.0163(4) 0.0194(4) 0  0.0008(3) 0
X(3)   0.37129(6) 0.75  0.44363(7)  1.479(17)  0.204(2)/0.796(2) 0.0234(5) 0.0170(4) 0.0158(4) 0  0.0021(2) 0
S075Se225-2

Sb2S0.66Se2.34

Sb(1)  0.46953(9) 0.25  0.32699(10)  1.82(2) 0.0239(5) 0.0209(5) 0.0243(5) 0  0.0025(4) 0
Sb(2)  0.35287(9) 0.75  0.03792(10)  2.08(2) 0.0236(6) 0.0251(5) 0.0303(6) 0 -0.0054(4) 0
X(1)   0.28639(15) 0.25  0.19425(14)  1.66(4)  0.194(4)/0.806(4) 0.0222(11) 0.0220(10) 0.0188(9) 0 -0.0010(6) 0
X(2)   0.55354(15) 0.75  0.12837(15)  1.76(4)  0.284(4)/0.716(4) 0.0241(12) 0.0202(9) 0.0224(10) 0  0.0015(7) 0
X(3)   0.37111(14) 0.75  0.44379(15)  1.80(4)  0.186(4)/0.814(4) 0.0258(12) 0.0226(8) 0.0200(10) 0  0.0030(6) 0
S075Se225-3

Sb2S0.69Se2.31

Sb(1)  0.46949(4) 0.25  0.32704(4)  1.392(8) 0.0165(2) 0.0161(2) 0.0203(2) 0  0.00235(18) 0
Sb(2)  0.35283(4) 0.75  0.03796(4)  1.664(9) 0.0155(2) 0.0212(2) 0.0266(2) 0 -0.00468(19) 0
X(1)   0.28632(6) 0.25  0.19400(6)  1.313(16)  0.192(2)/0.808(2) 0.0156(3) 0.0180(4) 0.0162(4) 0 -0.0015(2) 0
X(2)   0.55361(6) 0.75  0.12840(7)  1.369(17)  0.294(2)/0.706(2) 0.0169(4) 0.0157(4) 0.0194(4) 0  0.0008(3) 0
X(3)   0.37135(6) 0.75  0.44361(7)  1.283(16)  0.206(2)/0.794(2) 0.0167(4) 0.0161(3) 0.0159(4) 0  0.0017(2) 0
S075Se225-9

Sb2S0.66Se2.34

Sb(1)  0.46947(4) 0.25  0.32717(4)  1.338(10) 0.0174(2) 0.0135(2) 0.0200(2) 0  0.0022(2) 0
Sb(2)  0.35297(4) 0.75  0.03802(5)  1.584(10) 0.0164(2) 0.0183(2) 0.0255(2) 0 -0.0047(2) 0
X(1)   0.28627(7) 0.25  0.19406(7)  1.301(18)  0.180(2)/0.820(2) 0.0167(4) 0.0164(5) 0.0163(4) 0 -0.0012(3) 0
X(2)   0.55352(7) 0.75  0.12822(7)  1.321(19)  0.282(2)/0.712(2) 0.0172(5) 0.0140(4) 0.0190(4) 0  0.0007(3) 0
X(3)   0.37121(7) 0.75  0.44362(8)  1.241(18)  0.200(2)/0.800(2) 0.0170(4) 0.0145(4) 0.0157(4) 0  0.0021(3) 0



Table 2. Continued

x y z B eq Site occupancy (S/Se) U 11 U 22 U 33 U 12 U 13 U 23

S075Se225-10

Sb2S0.69Se2.31

Sb(1)  0.4696(2) 0.25  0.32673(15)  2.28(4) 0.0384(15) 0.0224(9) 0.0260(9) 0  0.0037(10) 0
Sb(2)  0.3529(2) 0.75  0.03776(15)  2.36(4) 0.0326(15) 0.0266(10) 0.0305(11) 0 -0.0054(10) 0
X(1)   0.2856(3) 0.25  0.1941(2)  2.34(9)  0.196(8)/0.804(8) 0.039(2) 0.028(2) 0.0227(18) 0 -0.0017(15) 0
X(2)   0.5542(3) 0.75  0.1281(2)  2.33(9)  0.296(7)/0.704(7) 0.038(3) 0.0234(19) 0.027(2) 0 -0.0023(17) 0
X(3)   0.3714(3) 0.75  0.4436(2)  2.21(8)  0.194(7)/0.806(7) 0.036(2) 0.0213(18) 0.0263(19) 0  0.0022(19) 0
S0Se300-1

Sb2Se3

Sb(1)  0.46976(9) 0.25  0.32795(8)  1.72(2) 0.0264(6) 0.0150(5) 0.0238(5) 0  0.0020(4) 0
Sb(2)  0.35265(10) 0.75  0.03946(9)  1.89(2) 0.0243(6) 0.0183(5) 0.0291(6) 0 -0.0027(4) 0
X(1)   0.28627(13) 0.25  0.19480(12)  1.58(3) 0.000/1.000 0.0237(9) 0.0161(8) 0.0203(8) 0 -0.0010(6) 0
X(2)   0.55363(14) 0.75  0.12881(12)  1.58(3) 0.000/1.000 0.0248(9) 0.0136(7) 0.0218(8) 0  0.0004(6) 0
X(3)   0.37100(13) 0.75  0.44472(13)  1.56(3) 0.000/1.000 0.0267(9) 0.0146(7) 0.0177(8) 0  0.0015(6) 0
S0Se300-3

Sb2Se3

Sb(1)  0.46987(4) 0.25  0.32798(6)  1.415(13) 0.0200(3) 0.0107(3) 0.0231(4) 0  0.00187(19) 0
Sb(2)  0.35256(4) 0.75  0.03955(6)  1.657(14) 0.0179(3) 0.0154(3) 0.0297(4) 0 -0.0037(2) 0
X(1)   0.28600(6) 0.25  0.19467(8)  1.239(18) 0.000/1.000 0.0171(4) 0.0120(4) 0.0180(5) 0 -0.0006(2) 0
X(2)   0.55386(6) 0.75  0.12871(8)  1.255(17) 0.000/1.000 0.0174(3) 0.0110(4) 0.0193(5) 0 -0.0005(2) 0
X(3)   0.37109(6) 0.75  0.44467(9)  1.273(18) 0.000/1.000 0.0183(4) 0.0113(4) 0.0187(5) 0  0.0021(2) 0



Table 3. Intra-ribbon and inter-ribbon distances (Å) in the Sb2S3-xSex solid solution

Sb(1)- Sb(2)- Sb(2)- Sb2-

S300Se0-1 Sb2S3 2.523 (1) 2.5448 (8) 3.1161 (9) 2.6845 (8) 2.460 (1) 2.8576 (9) 3.170 (1) 3.647 (1) 3.3783 (9)

S300Se0-2 Sb2S3 2.525 (1) 2.5439 (8) 3.1163 (9) 2.6843 (8) 2.458 (1) 2.8583 (9) 3.172 (1) 3.644 (1) 3.380 (1)

S225Se075-1 Sb2S2.29Se0.71 2.577 (1) 2.5876 (8) 3.134 (1) 2.7403 (7) 2.488 (1) 2.883 (1) 3.208 (1) 3.659 (1) 3.408 (1)

S225Se075-5 Sb2S2.24Se0.76 2.5831 (7) 2.5912 (5) 3.1357 (8) 2.7406 (5) 2.4916 (8) 2.8820 (7) 3.2086 (7) 3.6638 (7) 3.4097 (6)

S225Se075-6 Sb2S2.26Se0.74 2.5808 (6) 2.5899 (4) 3.1335 (6) 2.7395 (4) 2.4913 (7) 2.8831 (5) 3.2080 (6) 3.6630 (6) 3.4087 (5)

S225Se075-7 Sb2S2.27Se0.73 2.5803 (8) 2.5902 (6) 3.1347 (8) 2.7399 (5) 2.487 (1) 2.8818 (8) 3.2063 (9) 3.6567 (8) 3.4070 (7)

S150Se150-4 Sb2S1.52Se1.48 2.616 (1) 2.6262 (8) 3.161 (1) 2.7686 (8) 2.542 (1) 2.924 (1) 3.232 (1) 3.695 (1) 3.4381 (9)

S150Se150-5 Sb2S1.54Se1.46 2.6128 (7) 2.6255 (5) 3.1580 (6) 2.7680 (5) 2.5401 (8) 2.9232 (6) 3.2325 (7) 3.6937 (7) 3.4374 (6)

S150Se150-6 Sb2S1.50Se1.50 2.6137 (9) 2.6259 (6) 3.1589 (8) 2.7666 (6) 2.541 (1) 2.9259 (7) 3.2314 (9) 3.6942 (9) 3.4383 (7)

S150Se150-7 Sb2S1.53Se1.47 2.6143 (9) 2.6269 (6) 3.1598 (8) 2.7689 (7) 2.542 (1) 2.9251 (8) 3.235 (1) 3.6967 (8) 3.4397 (8)

S150Se150-8 Sb2S1.51Se1.49 2.6140 (9) 2.6243 (6) 3.1578 (8) 2.7666 (6) 2.539 (1) 2.9226 (7) 3.2350 (9) 3.6941 (9) 3.4369 (7)

S075Se225-1 Sb2S0.70Se2.30 2.6445 (9) 2.6570 (6) 3.1910 (7) 2.7906 (6) 2.5755 (9) 2.9707 (7) 3.2464 (9) 3.7264 (9) 3.4689 (7)

S075Se225-2 Sb2S0.66Se2.34 2.645 (2) 2.662 (1) 3.193 (1) 2.795 (1) 2.579 (2) 2.974 (1) 3.252 (2) 3.729 (2) 3.468 (1)

S075Se225-3 Sb2S0.69Se2.31 2.6420 (8) 2.6549 (5) 3.1877 (7) 2.7881 (5) 2.5758 (8) 2.9689 (6) 3.2441 (9) 3.7219 (8) 3.4646 (7)

S075Se225-9 Sb2S0.66Se2.34 2.6423 (9) 2.6525 (6) 3.1882 (7) 2.7867 (6) 2.5716 (9) 2.9658 (7) 3.244 (1) 3.7207 (9) 3.4626 (7)

S075Se225-10 Sb2S0.69Se2.31 2.649 (4) 2.658 (2) 3.191 (2) 2.794 (2) 2.583 (4) 2.964 (2) 3.249 (3) 3.715 (4) 3.467 (3)

S0Se300-1 Sb2Se3 2.665 (1) 2.681 (1) 3.217 (1) 2.806 (1) 2.591 (1) 3.008 (1) 3.250 (1) 3.746 (1) 3.488 (1)

S0Se300-3 Sb2Se3 2.6680 (9) 2.6784 (7) 3.2146 (8) 2.8013 (7) 2.5927 (9) 3.0043 (8) 3.245 (1) 3.7405 (8) 3.487 (1)

Symmetry operations: 1, x , y -1, z ; 2, x , y +1, z ; 3, -x +1, -y +1, -z ; 4, -x +1, -y +2, -z ; 5, -x +1, -y +1, -z +1; 6, x +1/2, -y +1/2, -z +1/2; 7, -x +1/2, y +1/2, z -1/2; 8, -x +1/2, y -1/2, z -1/2.

Sb(1)-
X(2)

X(2)1

Sample#

Intra-ribbon distances (Å)

Sb(1)- X(1)
X(3)

X(3)1

X(1)

X(1)2

Chemical
composition X(2)Sb(2)-

X(2)3

X(2)4

Inter-ribbon distances (Å)

Sb(1)- X(3)5 Sb(1)- X(1)6
X(3)7

X(3)8


