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WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed 

 

Akira Iwase･Kento Mita･Satoko Nonaka･Momoko Ikeuchi･Chie Koizuka･Mariko Ohnuma･Hiroshi Ezura･

Jun Imamura･Keiko Sugimoto 

 

Abstract 	
 Callus formation and de novo organogenesis often occur in the wounded tissues of plants. 

Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the 

wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding 

treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis 

thaliana. Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED 

DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the 

culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase 

de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica 

napus, activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further 

corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that 

sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 (LEC2) enhances 

generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote 

efficient and organ—specific regeneration. Our findings in the model plant and crop plant point to a possible 

way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular 

switch.  
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Introduction 

Plant cells exhibit high developmental plasticity when they face severe environmental stresses. De novo 

organogenesis after wounding is one of the most remarkable examples of cell fate change in plants as well as 

other multicellular organisms (Birnbaum and Sánchez Alvarado 2008). Like blastema formation in amphibian 

limb regeneration (Maden 1976), plants often form mass of proliferating cells called callus at the wound site, 

which often serves as a source for subsequent tissue regeneration (Bostock and Stermer 1989; Stobbe et al. 

2002; Ikeuchi et al. 2013). Callus formation is also observed in in vitro tissue culture. Groundbreaking research 

in mid 20th century has shown that two plant hormones, auxin and cytokinin, are key inducers for callus 

formation and subsequent regeneration (Skoog and Miller 1957). In the conventional tissue regeneration 

system, segments of plant explants are incubated on hormone-containing media. In the case of Arabidopsis 

thaliana (Arabidopsis), two-step culture method is most commonly adopted, where root and/or hypocotyl 

explants are preincubated on an auxin-rich callus induction medium (CIM), then transferred to a cytokinin-rich 

shoot induction medium (SIM) or auxin-rich root induction medium (RIM) (Valvekens et al. 1988; Ozawa et al. 

1998; Che et al. 2002). Enormous studies using the plant tissue culture system have contributed to the 

advancement of basic and applied science (Thorpe 2012) but the molecular mechanisms of how plant cells 

modify developmental plasticity in response to various environmental stimuli, especially wounding and 

hormonal treatment, is just beginning to be understood. 

By comparing differentially expressed genes between seedlings and cultured cell lines in Arabidopsis 

(Iwase et al. 2005), we identified an AP2/ERF transcription factor WOUND INDUCED 

DEDIFFERENTIATION 1 (WIND1) and its close homologs WIND2–4 as wound-responsive master 

regulators of callus formation (Iwase et al. 2011a; Iwase et al. 2011b). Plants ectopically overexpressing 

Arabidopsis WIND1 (AtWIND1) develop callus on phytohormone free media, not only in Arabidopsis but also 

in other species such as Brassica napus (rapeseed), Nicotiana tabacum (tobacco) and Solanum lycopersicum 

(tomato) (Iwase et al. 2011a; Iwase et al. 2011b; Iwase et al. 2013). In addition, calli generated by the chemical 

induction of WIND1 regenerate tissues when transferred to the chemical inducer-free medium where WIND1 is 

no longer activated (Iwase et al. 2011a). Therefore, WIND proteins have roles in modifying the developmental 

plasticity, which is conserved, at least to some extent, in plant kingdom. In the CIM-SIM two-step culture 

system, cells in explants that undergo callus formation during CIM incubation, are believed to acquire the 

competence to respond to shoot induction signals in the subsequent step (Sangwan et al. 1992; Che et al. 

2006；Duclercq et al. 2011; Perianez-Rodriguez et al. 2014). It is plausible that WIND1 participates in the 
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acquisition of competency and de novo organogenesis in tissue culture but this possibility is yet to be 

addressed. Recent studies have pointed out that callus formation in CIM is mainly generated from xylem pole 

pericycle cells and the competence for shoot regeneration can be considered as the ability to induce lateral root 

meristem (Atta et al. 2009; Sugimoto et al. 2010). Whether WIND1 affects callus induction from lateral root 

meristem is also one of the important questions to be answered.  

Interestingly, WIND1-overexpressing plants and callus show various regeneration phenotypes. 

Established callus lines in tobacco by constitutive AtWIND1 expression display shooty phenotype and 

chemical-induced AtWIND1 activation in tomato also form shooty callus on hypocotyls (Iwase et al. 2013). 

These observations are consistent with our previous findings that WIND1 upregulates cytokinin signaling 

(Iwase et al. 2011a). However, regeneration of roots or somatic embryos is occasionally observed in AtWIND1 

overexpressors and WIND1 ortholog in an Arabidopsis relative, a salt cress Thellungiella halophila 

(ThWIND1-L) overexpressors as well (Iwase et al. 2011a; Zhou et al. 2012; Ikeuchi et al. 2013), raising the 

possibility that WIND1 renders developmental plasticity and other factor(s) determine the direction of 

regeneration. Therefore, it is of great interest if combining WIND1 with other growth regulators will lead to 

directed regeneration of tissue/organs.  

In this study we describe roles of wound stimulus and WIND1 function on the cell fate change in tissue 

culture, i.e. Arabidopsis shoot regeneration from root explants. Based on our observation in Arabidopsis, we 

also apply the WIND1 function to rapeseed and tomato shoot regeneration process. In addition, we test 

co-expression of WIND1 and another developmental regulator to establish an efficient way for plant 

regeneration,. 

 

Material and methods 

Plant materials  

Arabidopsis lines used in this study, wild-type, 35S:WIND1, XVE-WIND1, ProWIND1:WIND1-SRDX 

(Iwase et al. 2011a), and 35S:LEC2-GR (Ledwoń and Gaj 2009) are all in ecotype Columbia (Col-0) 

background. 35S:AtWIND1-GR rapeseed (Brassica napus cv Westar) and 35S:AtWIND1-GR tomato (Solanum 

lycopersicum cv Micro-Tom) plants were previously reported (Iwase et al. 2013). Arabidopsis and tomato were 

grown at 22ºC with continuous light and rapeseed was grown at 23ºC, 16 h light and 18ºC, 8 h dark.    

 

Tissue culture conditions 
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The Arabidopsis shoot regeneration assay was performed according to the procedure previously 

reported (Valvekens et al. 1988). For germination, we used media containing Murashige and Skoog basal salt 

mixture (Wako), 1% sucrose and 0.6% Gellan Gum (Wako), with the pH adjusted to 5.8. The germination and 

shoot regeneration assays for rapeseed and tomato were performed according to the procedures described by 

Kohno-Murase et al. (1994) and Sun et al. (2006) respectively, except the Agrobacterium co-culture steps. 

Regenerated shoots were defined as green structures having two true leaves or leaf primordia, which were 

observed using a stereomicroscope (Leica M165C). The dexamethasone (Sigma) and the 17β-estradiole 

(Wako) were dissolved in ethanol and dimethyl sulphoxide, respectively, to make 10 mM stock solutions, and 

subsequently added to the medium after autoclaving. 

 

Results 

Wounding is required for the cell fate change during regeneration  

Most plant tissue culture techniques include a step for tissue wounding but how this stimulus affects 

plant regeneration is not well characterized. To investigate the importance of the wounding step in tissue 

culture, we first compared tissue regeneration phenotypes between unwounded and wounded roots using an 

Arabidopsis shoot regeneration system (Valvekens et al. 1998). Fig. 1 shows Arabidopsis roots grown on 

auxin-rich callus induction medium (CIM) for 4 days, then cytokinin-rich shoot induction medium (SIM) for 

21 days. We found that shoot regeneration never occurs from roots without wounding and instead multiple 

lateral roots are generated from main roots (Fig. 1a, b), indicating that the primary effect of CIM is to increase 

the number of lateral root primordial and the wound stimulus is required to initiate shoot regeneration. 

Since WIND1 induces callus in response to wounding (Iwase et al. 2011a), ectopic expression of 

WIND1 may mimic the wounding signal leading to the cell fate change. As expected, 35S:WIND1 plants 

overexpressing WIND1 and therefore exhibiting a weak gain-of-function phenotype (Iwase et al, 2011a), show 

shoot regeneration even from unwounded root after the CIM-SIM treatment (Fig. 1c, d). Conversely, in a 

ProWIND1:WIND1-SRDX line which expresses WIND1 chimeric repressor and therefore shows dominant 

negative phenotype (Hiratsu et al. 2003; Iwase et al. 2011a), shoot regeneration from wounded roots is 

completely suppressed (Fig. 1e, f). These results clearly show that WIND1 plays a pivotal role for the cell fate 

alteration in the Arabidopsis shoot regeneration system.  

 

WIND1 promotes the acquisition of competency for regeneration 
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Based on our finding that WIND1 overexpression compensates the wounding process, we further 

examined whether it also bypasses the CIM treatment. Recent studies suggest that there are at least two types 

of callus generated from Arabidopsis root explants cultured on CIM, callus derived from wounded site and 

unwounded site (Iwase et al. 2011; Ikeuchi et al. 2013). In contrast to calli generated from unwounded sites 

that form from lateral root primordia and highly express root meristem markers (Sugimoto et al. 2010), callus 

induced at the wound-site does not display such marker expression and its formation is not blocked in solitary 

root mutants defective in lateral root initiation (Iwase et al. 2011a, see supplemental figure; Ikeuchi et al. 2013). 

Shoot regeneration occurs from calli at both wounded site and unwounded site, referred as ‘wounded site 

callus’ and ‘unwounded site callus’ hereafter. As shown in Fig. 1e and Fig. 1f, shoot regeneration from both 

types of callus is completely blocked in ProWIND1:WIND1-SRDX plants. In addition, WIND1 expression is 

found in both wounded site callus and unwounded site callus (data not shown), indicating that WIND1 also 

alters the cell fate of unwounded site callus induced by CIM treatment. These results, therefore, suggest that 

increasing WIND1 expression level alone might be sufficient to increase the shoot regeneration competency. 

To test this hypothesis, we used transgenic plants carrying 17β-estradiol (ED)-inducible LexA-VP16-estrogen 

receptor (XVE)-WIND1 (Zuo et al. 2000; Iwase et al. 2011a). As we expected, unwounded roots of the 

XVE-WIND1 plants treated with ED for 1 day form shoots from unwounded and CIM-untreated roots (Fig. 2d, 

e). We confirmed this promotion of shoot regeneration is not caused by ED itself (Fig. 2b) or a transgene 

insertion (Fig. 2c), and similar to the result in Fig.1a, roots with only a short CIM treatment (1 day) without 

wounding also fail to produce shoots (Fig. 2a). These results, together with earlier findings, emphasise that 

WIND1 can bypass the auxin pre-treatment step and confer a greater competency for regeneration to plant 

cells.  

 

AtWIND1 increases shoot regeneration competence in rapeseed callus 

Since Arabidopsis WIND1 (AtWIND1) orthologues are found in land plants (Iwase et al. 2013), we next 

asked if the promotion of tissue regeneration occurs in other species. We have already reported ectopic callus 

formation in seedlings of rapeseed and tomato from dexamethasone (DEX)-mediated AtWIND1 inducible 

lines, i.e. utilizing the 35S:AtWIND1-Glucocorticoid Receptor (GR) (Iwase et al. 2013). Normally, rapeseed 

and tomato transformation are performed through a tissue culture system for regeneration, namely via de novo 

organogenesis from callus using phytohormones (Kohno-Murase et al. 1994; Sun et al. 2006). In these systems, 

the tissue availability is restricted because of its regeneration capacity, for example, tissue segments close to 
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shoot apical meristem (SAM) are most often used in rapeseed shoot regeneration (Fig. 3a). We compared shoot 

regeneration capacity between hypocotyl segments near the SAM (Segment I, not containing the meristem) 

and segments relatively far from the SAM (Segment II, Fig. 3a), under DEX-treated WIND1 induction or 

non-DEX treated conditions (Table 1; Fig. 3b). In a condition without DEX, the number of large shoots 

(having leaf more than 5mm in length) generated from segment I is greater than those generated from segment 

II (Table 1), and same tendency is also observed in the case of small shoots (having leaf less than 5mm in 

length) (data not shown), indicating that tissue near the SAM possess higher regenerative competency in this 

system. Continuous WIND1 activation by DEX treatment (DEX ++, Fig. 3b) seems to have an positive effect 

on small shoot regeneration from segment II (Table 2), where a 24 to 47 times higher average number of 

regenerated shoots per segment is observed (Table 1 and Table 2, Fig. 3c, e, f). Importantly, this remarkable 

promotion of shoot regeneration is reproducibly detected in independent experiments compared to the 

condition without WIND induction (DEX --, Table 2), suggesting that WIND1 can alter cell fate even in callus 

cells that are recalcitrant for regeneration. It is also striking that, in the culture of segment II, removal of DEX 

from culture media which presumably stops the WIND1 activation, positively affects larger shoot regeneration 

(Table 1 and Table 2, Fig. 3c, d, f), indicating that WIND1 promotes shoot initiation in the culture system but 

inhibits leaf growth. This tendency is also seen in the segment I, where continuous WIND1 activation by DEX 

treatment (DEX ++, Fig. 3b) appears to have an inhibitory effect on large shoot regeneration (Table 1), while it 

promotes regeneration of small shoots (Data not shown). These observations are consistent with the idea that 

WIND1 promotes shoot initiation in the culture system but inhibit leaf growth. We confirmed that the DEX 

treatment itself does not affect callus formation and regeneration in this culture condition (Data not shown).  

To test whether Arabidopsis WIND1 has similar effects in other crop plants, we used three independent 

lines of tomato 35S:AtWIND1-GR which we observed promotion of callus formation in seedling germinated on 

WIND1 induction condition (Iwase et al. 2013), in a shoot regeneration assay using a method previously 

reported (Sun et al. 2006). We used segments of cotyledon and hypocotyl, treated with DEX (0.1 µM) from the 

beginning of the culture containing phytohormones. We have, however, not detected any significant promotion 

of callus formation nor shoot regeneration so far (data not shown).  

 

Two-step induction of WIND1 and LEC2 promotes somatic embryogenesis 

Given that WIND1 increases the competency for regeneration, co-expression of WIND1 with other 

developmental regulators might be a method to promote organ or tissue-specific regeneration. To explore this 
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possibility, we crossed the Arabidopsis XVE-WIND1 line with an inducible overexpressor of a B3 domain 

transcription factor LEC2 (35S:LEC2-GR) in which somatic embryogenesis is induced by DEX treatment 

(Ledwoń and Gaj 2009). We cut etiolated hypocotyls and used plantlets containing the SAM for examining the 

effect of transgene induction. When only DEX is applied and LEC2 is solely induced, embryonic callus are 

generated from very limited loci such as those around the SAM and wound sites (Fig. 4a, b, c). When only ED 

is applied and thus WIND1 is solely induced, callus formation is observed at around the SAM and broad region 

in hypocotyls but organ regeneration does not take place (Fig. 4d, e, f). Interestingly, WIND1 induction 

followed by LEC2 induction results in vigorous embryonic callus formation in nearly all tissues in the plantlets 

(Fig. 4g, h). When these somatic embryos generated in hypocotyls are transferred to a media without DEX and 

ED, they regenerate whole plants (Fig. 4i). These results strongly suggest that WIND1 increases the number of 

competent cells that are responsive to regeneration stimuli and that combining WIND1 with other 

developmental regulators offers novel opportunity for efficient regeneration. 

 

Discussion  

In this study we found overexpression of WIND1 in Arabidopsis and rapeseed greatly enhances de novo 

shoot regeneration from explants as well as callus cultured on media for promoting shoot regeneration. 

Expressing another transcription factor LEC2 after the activation of WIND1 also induces efficient somatic 

embryogenesis from tissue that hardly forms embryonic callus under single LEC2 expression condition. These 

results reinforce our model that WIND1 increases cellular plasticity in plants, which subsequently promotes de 

novo organogenesis.  

 

Roles of wounding in tissue culture  

 Generally, explants, not intact plants, are used as a starting material in tissue culture. However, roles 

of wounding in tissue culture system have not been explicitly acknowledged thus far. In this study we observed 

extensive lateral roots generated from unwounded roots after the CIM-SIM treatment (Fig.1a, b). This 

observation clearly shows that cell fate change requires wounding treatment. It is well known that lateral root 

formation is induced by auxin (Yadav et al. 2010) which is transported from shoots (Robert and Friml 2009), 

therefore extensive lateral root development observed in this study might be explained by endogenous auxin 

which comes from aerial tissue. It is conceivable that disturbance of these tissue-tissue or cell-to-cell 

communication caused by wounding is one of the triggers for the cell fate change such as callus formation 
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and/or shoot regeneration in the tissue culture system. Surprisingly, WIND1 ectopic overexpression achieves 

shoot regeneration from roots even from unwounded explants (Fig.1c, Fig.2d) and conversely, reduction of 

shoot regeneration is seen in the wounded explants of WIND1 chimeric repressor line (Fig.1e, f). We 

previously showed that WIND1 is expressed at the wound site of root explants (Iwase et al. 2011b), together 

indicating that one role of the wounding step is to increase the expression of key factors such as WIND1 

required for the cell fate modification.  

 

WIND1 plays pivotal roles for the acquisition of regeneration competency in the culture system 

  It is well known that regeneration capacity of plant cells varies depending on the tissue or cell origin 

and type of callus (Guzzo et al. 1995). Calli have various physiological traits even if they are induced under the 

same culture condition, like unwounded site callus and wounded site callus in the CIM culture (Sugimoto et al. 

2010; Iwase et al. 2011; Ikeuchi et al. 2013). In this study we observed that shoot regeneration from both 

unwounded site callus and wounded site callus in Arabidopsis is inhibited in the ProWIND1:WIND1-SRDX plant 

(Fig. 1e, f). Moreover, rapeseed callus derived from hypocotyls close to the SAM (Segment I, Fig. 3a) and 

those distant from the SAM (Segment II, Fig. 3a) show different capacity for regeneration (Table 1, Table 2). 

Very strikingly, shoot regeneration competency is increased by AtWIND1 activation in both Segment I and 

Segment II (Table 1, Table 2), implying that capacity for regeneration in callus, at least in Arabidopsis and 

rapeseed, is dominantly controlled by WIND1 and other functional redundant factors such as WIND2-4. Our 

observation that the frequency of shoot regeneration in the Segment II is increased more than 20 times also 

highlights that WIND1 can improve regeneration capacity in tissue having less competency for regeneration. 

The molecular mechanisms underlying this amazing ability of WIND1 should be elucidated in future studies in 

order to understand the acquisition of competence at cellular and molecular levels. It is important to note that 

our trial of WIND1 overexpression in tomato tissue culture using cotyledon and hypocotyl explants does not 

result in any obvious positive effects on callus and shoot regeneration so far. The main differences between 

these experiments and those we reported previously (Iwase et al. 2013) are timing of WIND1 induction and 

presence of phytohormones in culture medium. Since WIND1 induction from germination promotes callus 

formation and successive shoot regeneration from hypocotyls on phytohormone free medium (Iwase et al. 

2013), reactions of tissues against WIND1 activation must be different depending on, for instance, tissues and 

their developmental stages. It will be therefore interesting to further explore how WIND1 induction is 

influenced by various factors, such as timing and strength of WIND1 induction, tissue used for induction as 
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well as application of exogenous plant hormones.  

 

Cell fate manipulation by transcription factors 

  As reported in the reprogramming of mammalian somatic cells into pluripotent stem cells by Oct4, 

Sox2, Klf4 and c-Myc so-called Yamanaka-factors (Takahashi and Yamanaka 2006), co-expression of 

transcription factors has a potential to alter cellular differentiation status dramatically. Gallois et al. (2004) 

observed that floral organ directly regenerated from root tip when LEAFY (LFY) was co-expressed with 

WUSCHEL (WUS). LFY is a FLO/LFY family transcription factor that acts as a master regulator of floral 

development (Weigel et al., 1992) and WUS is a homeodomain containing transcription factor that maintains 

the shoot apical cells in an undifferentiated state. WUS overexpression alone causes ectopic shoot regeneration 

from root tip but LFY overexpression alone never forms floral organs on root. They also showed WUS 

expression combined with auxin induces somatic embryogenesis in roots, suggesting that WUS can establish 

developmental plasticity (Gallois et al. 2004). Similar to this pioneer work, our results reinforce that WIND1 

has an ability to increase the developmental plasticity of plant cells from tissue and callus. Our results also 

show that the combined expression of WIND1 and other developmental regulators is useful for directed 

alteration of plant cell fate in tissue culture.  

 

Future perspectives 

How plants regulate developmental plasticity is one of the biggest unanswered questions in plant 

biology (Vogel 2005). In this study we uncovered that wounding or wound-induced transcription factor 

WIND1 plays central roles in in vitro organ regeneration. Recent studies have also started to shed light on 

understanding this question. For instance, comprehensive gene expression analyses have begun to advance our 

understandings of molecular networks underlying shoot regeneration from Arabidopsis root explants (Che et al. 

2002; Che et al. 2006), cell fate reprogramming from wounded gametophore leaf cells into chloronema apical 

cells in Physcomitrella patens (Ishikawa et al. 2011), tissue reunion in the Arabidopsis inflorescence stem 

(Asahina et al. 2011) and whole plant regeneration from Arabidopsis mesophyll protoplasts (Chupeau et al. 

2013). Several key regulators involved in plant regeneration have also been identified from other studies, for 

instance, using Arabidopsis cDNA overexpression screening (Banno et al. 2001), Arabidopsis temperature 

sensitive mutants (Ohtani and Sugiyama 2005; Tamaki et al. 2009; Ohbayashi et al. 2011), and quantitative 

trait loci analyses based on comparison of Arabidopsis accessions (Motte et al. 2014). Such regulators are 
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interconnected at multiple levels and further system-level studies of these molecular networks should 

accelerate our understanding of plant cell totipotency as well as building efficient tissue culture systems.  
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Tables 

Table 1. Number of shoots (>5 mm in length) regenerated from rapeseed hypocotyl segments I and II 

 

Induction  
Number of total 

shoots 

Number of 

segments 

Average Number of shoots per 

segment 

Segment I 
DEX - - 7 11 0.65 

DEX ++ 5 11 0.45 

Segment II 

DEX - - 49 126 0.39 

 DEX + - 46 63 0.73 

 DEX ++ 20 63 0.32 

Data were scored 2 month after start of culture 

   

 

Table 2. Number of shoots (including <5mm in length) regenerated from rapeseed hypocotyl segments II 

  
Induction  

Number of total 

shoots 

Number of 

segments* 

Average Number of shoots 

per segment 

Experiment 1** 

DEX - - 3 10 0.3±2.0 

 DEX + - 59 10 5.9±3.9 

 DEX ++ 74 10 7.4±3.5 

Experiment 2** 

DEX - - 2 10 0.2±1.3 

 DEX + - 75 10 7.5±3.8 

 DEX ++ 95 10 9.5±4.3 

*10 segments were randomly selected. ** Two independent culture experiments 
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Figure Legends 

Fig.1. Wounding has a pivotal role on cell fate change. 

(a-f) 7-day-old Arabidopsis whole seedlings, with or without wound treatments of root, were transferred onto 

callus induction medium (CIM) and cultured for 4 days. Subsequently, plants were transferred to shoot 

induction medium (SIM) and cultured for 21 days. Roots of wild-type Col-0 plants (WT) unwounded (a) or 

wounded (b). Roots of WIND1 overexpressing plants (35S:WIND1), unwounded (c) or wounded (d). Roots of 

WIND1 loss-of-function ProWIND1:WIND1-SRDX (WIND1-SRDX) plants, unwounded (e) or wounded (f). 

Multiple lateral roots appeared in all unwounded plants, while shoots regenerated only from WT cut roots. 

Contrastingly, in 35S:WIND1, both uncut and cut roots regenerated shoots. Note that unwounded explant 

remains aerial part. Scale bars represent 3 mm. 

 

Fig. 2. WIND1 promotes acquisition of competency. 

(a, b) 7-day-old Arabidopsis wild-type seedlings (WT) were transferred onto CIM (a), or 10 µM 17β-estradiol 

(ED)-containing MS medium (b) for 1 day, and subsequently cultured on SIM for 21 days. (c, d) 7-day-old 

XVE-WIND1 plants, harboring a transgene for chemical induction of WIND1 transcription, were transferred 

onto CIM (c) , or 10 µM 10 µM ED containing MS medium (e) for 1 day, then transferred to SIM for 21 days. 

(e) Number of regenerated shoots from the roots of WT and XVE-WIND1 plants. Shoots were defined as green 

structure having two true leaves or leaf primordia. Error bars show s.d. (n = 4, Biological replicates). Scale 

bars represent 1 mm.     

 

Fig. 3. AtWIND1 increases shoot regeneration-competent cells in rapeseed callus. 

(a) Schematic diagram of tissue samples used for the rapeseed regeneration assay. Parts of the hypocotyl 

representing I and II in the figure show segments 2 mm (without meristem), and 1.2~6.2 mm from shoot apical 

meristem, respectively. (b) Schematic diagram of time periods used for chemical treatments in the regeneration 

assay. 2,4-D, BA, and DEX are 2,4-dichlorophenoxyacetic acid (1mg/L), 6-Benzylaminopurine (3 mg/L) and 

dexamethasone (0.1 µM), respectively. WIND1 induction was controlled by culturing on medium with DEX 

(+) or without DEX (−). wk; week, D; day. (c to e) Shoot regenerating calli generated from the II segment of 

hypocotyls, cultured without DEX for 13 weeks (DEX − − ; c), with DEX treatment for 7 weeks followed by 

DEX-free medium for 6 weeks (DEX + −; d) and with continuous DEX treatment for 13 weeks (DEX + +; e). 

(f) Three representative calli from each of the DEX (− −), DEX (+ −) and DEX (+ +) conditions shows are 

Page 16 of 21Journal of Plant Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 17 

shown in the left, middle and right columns, respectively. Scale bars represent 1 cm (c, d, e) and 3mm (f). 

 

Fig. 4. Two-step expression of WIND1 and LEC2 promotes somatic embryogenesis in Arabidopsis 

(a, b, c) 7-day-old etiolated 35S:LEC2-GR plant seedlings were cut at positions 7 mm away from the junction 

and the plantlets with the shoot apical meristem were cultured on 10 µM DEX-containing medium for 25 days. 

Magnification of shoot part and hypocotyl region in a plantlet in (a) is shown in (b). (c) is magnification of 

hypocotyl part in another individual. (d, e, f) 7-day-old etiolated XVE-WIND1 plant seedlings were cut at 

positions 7 mm away from the junction and the plantlets with the shoot apical meristem were cultured on 1 µM 

17β-estradiol (ED)-containing medium for 25 days. Magnification of shoot part and hypocotyl region of a 

plantlet in (d) are shown in (e) and (f), respectively. (g, h) 7-day-old etiolated 35S:LEC2-GR/XVE-WIND1 

seedlings were cut at positions 7 mm away from the junction and the plantlets with the shoot apical meristem 

were cultured on 1 µM 17β-estradiol (ED) for 4 days then cultured on 10 µM DEX-containing medium for 21 

days. Magnification of shoot part of a plantlet in (g) is shown in (h). (i) Embryonic callus generated in 

hypocotyls were transferred on DEX and ED-free medium then cultured for 30 days. Black and white asterisks 

show somatic embryo-like structure. Scale bars represent 1 mm. 
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