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Abstract 
 

        In neurogenic ectoderm at animal pole (animal plate) in sea urchin embryo, 

various gene expressions are localized along the dorsoventral axis, and serotonergic 

neurons are differentiated only at dorsal/lateral side of the plate. It is already reported 

that the localization of serotonergic neurons is influenced by TGF-ß signals from 

outside of nueroectoderm, but the detailed mechanism and the gene regulatory network 

of the differentiation of serotonergic neurons are not understood yet. It is shown that 

some genes expressing at neurogenic animal plate of sea urchin embryo are orthologous 

to those in vertebrate forebrain, suggesting that the study of neural differentiation in 

echinoderms lead us to uncover the universal developmental mechanism of neurogenic 

ectoderm and the evolution of concentrated nervous system in deuterostomes. Here, I 

revealed the molecular mechanisms of differentiation of serotonergic neurons through 

the analysis of two transcription factors, Zinc finger homeobox 1 (Zfhx1) and 

Homeobrain (Hbn). With loss-of-function analysis, I showed that both of them are 

required for differentiation of the serotonergic neurons. As well, the expression of 

mRNA encoding those proteins is strongly regulated by TGF-ß signals. In this study, I 

provide important observations and insights toward entire elucidation of the gene 

regulatory network for the development of anterior neurogenic ectoderm including the 

serotonergic neurons. 
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General Introduction 
 

        A fraction of the large group of Six3-dependent regulatory proteins in the sea 

urchin embryos are orthologous to those expressed in vertebrate forebrains, suggesting 

that they controlled formation of the early neurogenic domain in the common 

deuterostome ancestor of echinoderms and vertebrates (Wei et al., 2009). This 

consequence shows that the study of neurogenesis in sea urchins not only provide 

elucidation of universal mechanisms of neural development but also offer valuable 

insight for thinking about emergence of concentrated nervous system, central nervous 

system, and brain at the evolutionary process. In variable animals, it is being advanced 

to reveal of mechanisms of genes that necessary for process of differentiation of 

neurons and nervous system, also in sea urchin, large number of genes that indicate the 

participation in neurogenesis is reported from the genomic information and the 

knowledge is being accumulated (Burke et al., 2006, Angerer et al., 2011). However the 

molecular pathway that controls the differentiation of neurons and the detailed gene 

functions involved in the pathway are less information in variable animal yet.  

        Serotonergic neurons in the sea urchin embryos are formed at the dorsal edge 

of the neurogenic animal plate by 3 days post-fertilization (Yaguchi et al., 2000). This 

deflection of localization of the neurons to the dorsal edge is intriguing, because the 

entire animal plate has a potential to produce serotonergic neurons everywhere if any 

known transforming growth factor-ß (TGF-ß) signals are absent in this region (Yaguchi 

et al., 2010a). This suggests that TGF-ß signaling system decides the precise position of 



 3 

the serotonegic neurons in the animal plate. In this respect, the sea urchin embryo is a 

great model to understand the relationship between the cell fate specification/patterning 

of neurogenic ectoderm as well as serotonergic neurons and the secreted signaling 

molecules like members of TGF-ß family, because the simultaneously functional 

analysis of multiple genes including complicated microinjection methods based on 

embryology is applicable. In addition, the echinoderms including the sea urchin 

phylogenetically share the common ancestors with chordates, suggesting that the study 

of the sea urchin nervous system will let us know the universal mechanisms regulating 

the formation of nervous system, at least among the deuterostomes, during animal 

evolution. However, although the knowledge on development of nervous system of the 

sea urchin is being accumulated, still only a countable number of papers that challenged 

to understand the molecular pathway for neural differentiation are published so far. Two 

papers, in which I was one of the authors, revealed the involvement of FoxQ2 and Six3 

in animal plate formation. These two factors are one of the earliest genes zygotically 

expressed in the animal pole region and are required for specification of the entire 

neurogenic ectoderm; i.e. FoxQ2 or Six morphants lose the neurogenic ectoderm 

(Yaguchi et al., 2008; Wei et al., 2009). So, because the morphants lack the entire 

animal plate, we could not understand the molecular pathway to form serotonergic 

neurons in these studies. In this thesis, I show how the serotonergic neurons are formed 

at the precise position, and draw the molecular pathway from the initial input like 

FoxQ2 activity to the terminal differentiation of serotonergic neurons through analyzing 

the molecular function of two transcription factors, Zinc finger homeobox 1 (Zfhx1) 
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and Homeobrain (Hbn), in the sea urchin embryos. Simultaneously, I show their gene 

expressions and the consequent functions are strongly regulated by TGF-ß signals that 

play an essential role on the secondary axis specification/formation in the sea urchin 

embryo.  
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Part I. 

 

 

 

 

 

Zinc finger homeobox is required for the differentiation of 

serotonergic neurons in the sea urchin embryo. 
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Summary 

 

        Serotonergic neurons differentiate in the neurogenic animal plate ectoderm of 

the sea urchin embryo. The regulatory mechanisms that control the specification or 

differentiation of these neurons in the sea urchin embryo are not yet understood, 

although, after the genome was sequenced, many genes encoding transcription factors 

expressed in this region were identified. Here, I reveal that zinc finger homeobox (zfhx1) 

is expressed in serotonergic neural precursor cells, using double in situ hybridization 

screening with a serotonergic neural marker, tryptophan 5-hydroxylase (tph) encoding a 

serotonin synthase that is required for the differentiation of serotonergic neurons. zfhx1 

begins to be expressed at gastrula stage in individual cells in the animal plate, some of 

which also express delta. zfhx1 expression gradually disappears as neural differentiation 

begins with tph expression. When the translation of Zfhx1 is blocked by morpholino 

injection, embryos express neither tph nor the neural marker synaptotagmin B in cells of 

the animal plate, and serotonergic neurons do not differentiate. In contrast, Zfhx1 

morphants do express fez, another neural precursor marker, which appears to function in 

the initial phase of specification/differentiation of serotonergic neurons. In addition, 

zfhx1 is one of the targets suppressed in the animal plate by anti-neural signals such as 

Nodal as well as Delta-Notch. I conclude that Zfhx1 functions during the specification 

of individual anterior neural precursors and promotes the expression of tph and 

synaptotagmin B, required for the differentiation of serotonergic neurons. 
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Introduction 

 

        The presence of serotonergic neurons in animal plate, as in a brain or an 

apical organ, is conserved in all metazoans except for sponges and ctenophores 

(Hay-Schmidt, 2000). Although a number of previous studies have revealed some of the 

regulatory mechanisms involved in serotonergic neuron development (reviewed in 

Cordes, 2005), the whole pathway from specification to terminal differentiation still 

needs to be elucidated, especially in invertebrates. Because the regulatory state of 

ectoderm in absence of signals supports neural differentiation in vertebrates and sea 

urchin embryos (Levine and Brivanlou, 2007: Tropepe et al., 2001; Vallier et al., 2004; 

Watanabe et al., 2005), researchers have focused more on the mechanisms of how this 

state is protected from anti-neural signals like BMP (De Robertis and Kuroda, 2004; 

Bradham et al., 2009; Lapraz et al., 2009; Yaguchi et al., 2010a). However, in order to 

understand how specific neurons differentiate within the neuroectoderm, it is important 

to decipher the underlying regulatory mechanisms that promote it.     

        In sea urchin embryos, the two early neurogenic ectoderm territories are the 

anterior neuroectoderm, which includes animal plate and adjacent cells, and the ciliary 

band ectoderm (reviewed in Angerer et al., 2011). Each of these is specified separately 

and patterned by combined functions of maternal factors and different zygotic signaling 

molecules. Under the control of those factors, a number of neurons differentiate at 

specific locations in each region. The first neurogenic territory to be specified is the 

anterior neuroectoderm. Within this region, serotonin-positive neurons appear at the 
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aboral edge of animal plate of late gastrula (Bisgrove and Burke, 1986; 1987). They 

progressively increase in number and at pluteus stage their axons extend to form a 

plexus (Yaguchi et al., 2000). In embryos, in which all signals are shut down by 

injecting ∆cadherin or discarding the vegetal half (Logan et al., 1999; Wikramanayake 

and Klein, 1997; Duboc et al., 2004), most of the prospective ectoderm becomes the 

animal plate and consequently many serotonergic neurons differentiate throughout it but, 

unlike in the normal embryo, they are scattered without any orderly pattern (Yaguchi et 

al., 2006). These findings suggest that the state of sea urchin embryo blastomeres in the 

absence of Wnt/ß-catenin or Nodal/BMP2/4 signaling supports differentiation of 

anterior neuroectoderm, which contains the animal plate. Subsequently Wnt/ß-catenin 

signals convert blastomere fates to endoderm, mesoderm and, within the ectoderm, 

eliminates anterior neuroectoderm fates except at the animal pole.   

        After the animal plate is restricted to the animal pole at early blastula stage, 

the differentiation of serotonergic neurons is prevented on the oral side by Nodal signals. 

In contrast to the process of ciliary band formation (Yaguchi et al., 2010a), Nodal is not 

involved in the specification of the animal plate (Yaguchi et al., 2006) but in patterning 

the region along oral-aboral axis (Yaguchi et al., 2007). In the absence of Nodal 

signaling, serotonergic neurons develop radially around the animal plate, while in its 

presence they are restricted to the aboral edge (Yaguchi et al., 2006, 2007). However, it 

is yet unclear how this patterning leads to serotonergic neurons differentiating only at 

the aboral edge of the animal plate. Here I show that Zinc finger homeobox (Zfhx1) is 

the earliest known transcription factor to be expressed specifically in individual 
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serotonergic neural precursor cells in the animal plate, to be required for their 

differentiation and to be repressed on the oral side by Nodal signaling. Furthermore, it is 

co-expressed with Delta and repressed by Delta/Notch-mediated lateral inhibition. I 

show that Zfhx1 is required for synthesis of serotonin and that it depends on FoxQ2, 

which is essential for animal plate formation. This work establishes an important layer 

of regulatory control for the development and precise patterning of serotonergic neurons 

in the neurogenic animal plate ectoderm of sea urchin embryos. 
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Materials and Methods 

 

Animals and embryo culture   

        Embryos of Hemicentrotus pulcherrimus collected around Shimoda Marine 

Research Center, University of Tsukuba, and around Marine and Coastal Research 

Center, Ochanomizu University were used. The gametes were collected by 

intrablastocoelar injection of 0.5 M KCl and the embryos were cultured by standard 

methods with filtered natural seawater (FSW) at 15 ˚C.   

 

Whole-mount in situ hybridization and immunohistochemistry   

        Whole-mount in situ hybridization was performed as described previously 

(Minokawa et al., 2004; Yaguchi et al., 2010b). Immunohistochemistry for detecting 

serotonin, synaptotagmin B (synB), and c-myc was performed as described previously 

(Yaguchi et al., 2006). The primary antibodies were detected with secondary antibodies 

conjugated with Alexa-568 and Alexa-488 (Life Technologies, Carlsbad, CA, USA). 

The specimens were observed with a Zeiss Axio Imager.Z1 equipped with Apotome 

system, and optical sections were stacked and analyzed with ImageJ and Adobe 

Photoshop. Panels and drawings for figures were made with Microsoft PowerPoint.   

 

Microinjection of morpholino antisense oligonucleotides (MO)   

        Microinjection into fertilized eggs and one blastomere of two-cell stage were 

performed as described previously (Yaguchi et al., 2006; Yaguchi et al., 2010b). I used 
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the following morpholinos (Gene Tools, Philomath, OR, USA) at the indicated 

concentrations in 24% glycerol in injection needles: Two different morpholinos 

blocking expression of Zfhx1 [Zfhx1-MO1 (2.0 mM), Zfhx1-MO2 (1.9-3.8 mM)] were 

used to confirm the specificity of Zfhx1 function. The phenotypes obtained with 

FoxQ2-MO (200 µM; Yaguchi et al., 2010b), Delta-MO (2.0 mM), Nodal-MO (200 

µM; Yaguchi et al., 2010b), Lefty-MO (400 µM; Yaguchi et al., 2010b), BMP2/4-MO 

(400 µM; Yaguchi et al., 2010b) were the same as published previously in H. 

pulcherrimus or other species (Duboc et al., 2004; Duboc et al., 2008; Yaguchi et al., 

2008; Lapraz et al., 2009). The morpholino sequences were the following:   

Zfhx1-MO1: 5’- ACGTAGGTATGTTCCAAAACACAAG -3’, and  

Zfhx1-MO2: 5’- CAGAAGGCAGAGTCCCACAGTCCCA -3’.   

mRNAs were synthesized from linearized plasmids using the mMessage mMachine kit 

(Life Technologies, Carlsbad, CA, USA), and injected at the indicated concentrations in 

24% glycerol: ∆-cadherin (0.3-0.6 µg/µl; Logan et al., 1999), myc-mRNA (0.1 µg/µl).   
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Results 

 

Expression of zfhx1 during development  

        During the annotation of the sea urchin genome sequence (Sodergren et al., 

2006), the spatial patterns of expression of a number of predicted genes encoding 

putative transcription factors were determined. Among those that were expressed in the 

neurogenic animal plate ectoderm was one encoding a zinc finger-containing protein, 

called Z81 (Materna et al., 2006). Further studies showed that its expression in the 

animal plate depended on Six3, a factor required for neural development (Wei et al., 

2009). This gene (Z81; SPU_022242) was initially annotated as zfh-1 (Sodergren et al., 

2006) and has subsequently been called Smad Interacting protein, Sip1 or SmadIP 

(Saudemont et al., 2010) or SpSip1 (Su et al., 2009). As shown below, I confirmed 

previously reported expression patterns in other species (Howard-Ashby et al., 2006; 

Materna et al., 2006; Saudemont et al., 2010) in Hemicentrotus pulcherrimus and 

observed that this gene is expressed in individual cells of the animal plate arranged in a 

pattern suggesting they could be serotonergic precursors (Fig. 1-1A, B). Because 

revealing the transcription factor activities required for specification or differentiation 

of serotonergic neurons in sea urchin embryos is the primary goal, I selected this gene 

for further study. I cloned and sequenced it using a Japanese sea urchin, H. 

pulcherrimus, employed 5’RACE to determine the 5’ end of the ORF (accession 

number: AB630322), and found that it lacks the first two exons included in the 

predicted sequence, SPU_022242. I analyzed its phylogenetic position in detail and 
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found that the gene belongs to the E-box binding zinc finger protein family including 

delta-EF and smad-interacting protein1 (SIP1). Based on the phylogenetic tree, it 

belongs to neither of these but is very closely related to non-vertebrate zinc finger 

homeobox proteins (Saccoglossus-Zfhx and Amphioxus-Zfhx: Fig. 1-1C, Fig. 1-2). 

Among the 4 classes of vertebrate Zfhx proteins, this non-vertebrate, deuterostome 

group type is more closely related to Zfhx1a (Delta-EF; ZEB1) and Zfhx1b (SIP1; 

ZEB2) than to Zfhx3 and Zfhx4. Among other invertebrate proteins, Fly-Zfh-1 and C. 

elegans Zag-1 are the closest. Therefore, I named it Hp-Zfhx1 (Zfhx1 hereafter in this 

paper).   

        zfhx1 is not expressed maternally (Wei et al., 2006), but just before embryo 

hatching, the mRNA appears in a broad region except at the vegetal plate, which 

expresses foxA (Fig. 1-1D, E). The function of Zfhx1 at this early time is discussed in 

elsewhere (Su et al., 2009). Expression in this domain disappears when the embryo 

hatches (Fig. 1-1F), and appears in a new set of cells in the endomesoderm region at 

mesenchyme blastula stage (Fig. 1-1G). Adding to the vegetal expression, when the gut 

begins to invaginate, zfhx1 is expressed in a few cells in the animal plate region as well 

as a few cells in the lateral ectoderm, where the lateral ganglion will form (Fig. 1-1H, 

arrows and arrowheads, respectively; Howard-Ashby et al., 2006). At later stages, zfhx1 

is expressed in a pattern like that of the future ciliary band neurons (Fig. 1-1J-L; most 

clearly revealed in the fluorescent in situ hybridization in panel K) (Bisgrove and Burke, 

1986; Nakajima et al., 2004). Here I focus only on zfhx1 expression in the animal plate 

because the pattern of its expression is similar to that of serotonergic neurons (Fig. 
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1-1A). At the prism stage, zfhx1 continues to be expressed in similar regions as those in 

gastrulae, but disappears from the central part of the animal plate (Fig. 1-1I, between 

arrows). In pluteus larvae, the gene expression patterns of the ciliary band are the same 

as those in prism stage, and lower lip cells and mesenchymal cells at the vertex begin to 

express zfhx1 (Fig. 1-1J-L; black and red arrow, respectively). In contrast, the 

expression in animal plate region begins to disappear at this stage (Fig. 1-1L, bracket).   

 

zfhx1 expression is transient in neural precursor cells, disappearing after 

tryptophan 5-hydroxylase expression begins   

        To investigate when and where zfhx1 is expressed in the animal plate region in 

detail, I performed double fluorescent in situ hybridization detecting zfhx1 and 

tryptophan 5-hydroxylase (tph), which encodes the rate-limiting enzyme in serotonin 

synthesis and therefore is a differentiation marker specific for serotonergic neurons in 

the sea urchin embryo (Yaguchi and Katow, 2003). zfhx1-expressing cells in the animal 

plate (as described in Figure 1-1) begin to express tph at late gastrula stage (36 hours 

post fertilization (h); Fig. 1-3A-D, arrows). This indicates that zfhx1 is expressed in 

serotonergic neural precursor cells. However, although these neural precursors express 

both genes at 36 h (Fig. 1-3A-D), at 39 h most of them lack zfhx1 transcripts (Fig. 

1-3E-H, arrowheads), suggesting that zfhx1 expression precedes tph. At this stage, a cell 

appears which expresses zfhx1 strongly but tph weakly and is likely to be a new 

serotonergic precursor cell (Fig. 1-3E-H, asterisk). Next, I compared distributions of 

zfhx1 and fez, forebrain embryonic zinc finger, recently reported as being expressed in 
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the entire animal plate during blastula stages and subsequently in serotonergic neurons 

and their precursors (Yaguchi et al., 2011). When the blastula-stage expression of fez 

begins to fade and is progressively replaced by stronger signals in a few individual cells 

in the animal plate region at mid-gastrula stage (Fig. 1-3K), zfhx1 mRNA is present in 

the same cells (Fig. 1-3I-L, arrows). Afterward, zfhx1 transcripts disappear by the prism 

stage, whereas fez mRNA remains in the serotonergic neurons (Fig. 1-3M-P, 

arrowheads). Taken together, zfhx1 is expressed in neural precursors at beginning of 

gastrulation and disappears soon after these cells begin to differentiate, as indicated by 

tph expression at late gastrula stage.   

         

Zfhx1 is required for the differentiation of serotonergic neurons   

        The spatial and temporal expression pattern of zfhx1 suggests that it might be 

involved in the specification and/or differentiation of serotonergic neurons in the sea 

urchin embryo. To examine this, I blocked the translation of zfhx1 by injecting 

morpholino anti-sense oligonucleotide (MO; Zfhx1-MO represents Zfhx1-MO2 

throughout this study otherwise indicated). In embryos injected with Zfhx1-MO at 2 

mM, gastrulation is delayed (Fig. 1-4F) and their body size becomes smaller than 

normal (Fig. 1-4A-C, F-H). The number of serotonergic neurons decreases in morphants, 

but those that do form still extend axons to form a complex in the animal plate region as 

they do normal embryos (Fig. 1-4D, E, I, J). Although serotonergic neurons do not 

appear in 3.8 mM Zfhx1-MO-injected embryo as well as in the 2.3 mM 

Zfhx1-MO1-injected embryo (Fig. 1-4P), it is unclear whether this effect results directly 
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from blocking Zfhx1 function in neural precursor cells or because of indirect effects that 

drastically delay gastrulation and lead to ectoderm patterning defects, including loss of 

oral-aboral polarity (Fig. 1-4K-O). Indirect effects are possible because zfhx1 is 

expressed broadly in ectoderm at early blastula stage (Saudemont et al., 2010) and then 

in animal and vegetal cells (Howard-Ashby et al., 2006) and is thought to play a role in 

oral-aboral polarity (Su et al., 2009) (also see Fig. 1-1).  

        To eliminate possible indirect effects, I examined Zfhx1 function in two types 

of embryos that lack vegetal signals that are necessary for endomesoderm development 

and for Nodal expression that regulates oral-aboral polarity. These are embryos either 

injected with ∆cadherin (∆cad) (Logan et al., 1999; Wikramanayake et al., 1998; 

Yaguchi et al., 2008) or lacking the vegetal half starting from 8-cell or 16-cell stages 

(Wikramanayake et al., 1995; Yaguchi et al., 2006; Yaguchi et al., 2008). These two 

types of embryos are thus far not detectably different as monitored by gene expression 

and responses to experimental perturbations (Logan et al., 1999; Yaguchi et al., 2006; 

Yaguchi et al., 2007; Yaguchi et al., 2008; Sasaki and Kominami, 2008). In 

∆cadherin-injected embryos, the expanded animal plate contains a greatly increased 

number of serotonergic neurons as reported previously (Yaguchi et al., 2006). As 

expected, zfhx1-expressing cells are scattered throughout the expanded animal plate of 

these embryos at 24 h (Fig. 1-5A, B). As development proceeds, the number of 

zfhx1-positive cells gradually decreases, as observed in normal embryos (Fig. 1-5B-D), 

especially, in the central part of the expanded animal plate where foxQ2 is strongly 

expressed (Fig. 1-5E). At 2 days after fertilization, the ∆cad-injected embryo lacks zfhx1 
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expression in individual cells completely (Fig. 1-5F). Therefore, the expression patterns 

of zfhx1 in the expanded animal plate reflect the behavior of zfhx1 in normal embryos. If 

Zfhx1 is knocked down in these embryos, development of serotonergic neurons is 

strongly inhibited (3.8 mM Zfhx1-MO2 injection; Fig. 1-5J-L). This morpholino effect 

is confirmed by injecting 2.0 mM Zfhx1-MO1 (data not shown). This is also true in 

animal-half embryoids (Fig. 1-5M, O), because loss of Zfhx1 completely eliminates the 

large number of serotonergic neurons normally present in them (Yaguchi et al., 2006) 

(Fig. 1-5N; cf. with G). To confirm that the requirement for Zfhx1 for serotonergic 

neuron differentiation is cell-autonomous, Zfhx1-MO and mRNA encoding 5 myc 

epitopes as a lineage tracer were injected into one blastomere of 2-cell embryos already 

containing ∆cad-mRNA (Fig. 1-5P). In these embryos, the serotonergic neurons 

differentiate normally in the myc-negative, Zfhx1-positive side but not in the 

myc-positive, Zfhx1-negative region (Fig. 1-5Q, R). The lack of serotonergic neurons at 

the border of first cleavage plane next to Zfhx1-positive cells strongly supports the idea 

that Zfhx1 is not required for even short-range signals promoting serotonergic neuron 

differentiation, but rather acts cell-autonomously. Together, these results indicate that 

Zfhx1 is required for the differentiation of serotonergic neurons in the animal plate. 

 

Zfhx1 is required for the expression of tph but not early neuronal genes  

        To examine at which step Zfhx1 is involved during the specification and 

differentiation of serotonergic neurons, I examined Zfhx1 morphants for expression of 

foxQ2, normally in all cells of the animal plate, tph, and fez, an early serotonergic neural 
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marker (Yaguchi et al., 2011). I again used ∆cad-injected embryos to eliminate indirect 

effects caused by Zfhx1 functions at earlier stages in other regions of the embryo. In 

∆cad-injected Zfhx1 morphants foxQ2 is expressed throughout the expanded animal 

plate as in control ∆cad alone-injected embryos (cf. Fig. 1-6A with B) but tph is not 

expressed at all (Fig. 1-6B), indicating that Zfhx1 is required for tph expression but not 

for foxQ2. As well, fez, another serotonergic neural marker, is expressed in 

∆cad-injected Zfhx1 morphants as in control embryos, indicating that Zfhx1 is not 

required for neuron-specific expression of fez (Fig. 1-6C, D). Conversely, zfhx1 

expression does not require Fez (Figure 1-7), indicating that these two genes, while 

co-expressed in individual cells at the animal plate of early gastrulae, function in 

parallel pathways. As shown in Figure 1-3, zfhx1 transcripts gradually start to disappear 

from the animal plate in control ∆cad alone-injected embryos (Fig. 1-6E). However, 

intriguingly in ∆cad-injected Zfhx1 morphants, zfhx1 transcripts remain (Fig. 1-6F), 

indicating that zfhx1 is regulated by auto-repression mechanism in these embryos (Fig. 

1-6G, H). These results support the temporal expression data (Fig. 1-1, 1-3), which 

suggests that zfhx1 and fez transcripts appear after foxQ2 is expressed, but before the 

serotonin synthase tryptophan 5-hydroxylase gene, tph. Although both zfhx1 and fez 

depend on FoxQ2 and are co-expressed in cells in the foxQ2-positive animal plate (see 

below, Fig. 1-8), they have independent roles in these serotonergic precursors, since 

Zfhx1 is required for differentiation of these neurons while Fez is not (Yaguchi et al., 

2011). 

        It has been supposed that Delta functions in neurogenesis in the sea urchin 
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embryo based on its expression pattern in ectoderm (Röttinger et al., 2006; Lapraz et al., 

2009; Saudemont et al., 2010) and the fact that DAPT, which inhibits Notch signaling 

and lateral inhibition, results in significant increases in neuron number (Wei et al., 2011; 

Yaguchi et al., 2011). Further support that it is Delta that mediates lateral inhibition in 

the animal plate through Notch signaling is that a cluster of contiguous serotonergic 

neurons develops on the aboral side of the animal plate (Fig. 1-8C-C’’’), exactly as 

observed previously in DAPT-treated embryos (Yaguchi et al., 2011). These facts 

suggest that delta is specifically expressed in neural precursors in sea urchin embryos 

and could be co-expressed with zfhx1. This is in fact the case since fluorescent double in 

situ hybridizations showed that it is co-expressed with zfhx1 in serotonergic neuron 

precursors in the animal plate (Fig. 1-8D-H; stacks of a few optical sections). In contrast, 

delta is not expressed in differentiating tph-positive neurons (data not shown). Taken 

together, these results show that, in animal plate neurons, transient expression of delta 

and zfhx1 is followed by tph.  

        To establish regulatory relationships between FoxQ2, Delta and Zfhx1, I 

carried out a series of morpholino-mediated knock-downs. In FoxQ2 morphants, in 

which serotonergic neurons fail to differentiate, neither delta nor zfhx1 is expressed in 

the animal plate region (Fig. 1-8I-L, arrows). In contrast, both genes are expressed in 

lateral regions, as expected, since FoxQ2 is not expressed at these sites. Thus, animal 

plate expression of delta and zfhx1 requires FoxQ2 function. When the translation of 

delta is blocked by injecting Delta-MO, zfhx1-positive cells increase in number and are 

immediately adjacent to each other, making a cluster in the animal plate region (cf. Fig. 
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1-8A with B; stacks of a few optical sections), as do serotonergic neurons (Fig. 

1-8C-C’’’). These data suggest that Delta functions to inhibit neighboring cells, but not 

its own expressing cells, from differentiating as Zfhx1-expressing serotonergic neuronal 

precursors. Delta expression in animal plate cells does not require Zfhx1 because it is 

expressed in the same scattered pattern as serotonergic neurons in ∆cad-injected 

embryos that either contain or lack Zfhx1 (Fig. 1-8M, N). Taken together, Zfhx1 

appears in animal plate cells during gastrulation where it is required for tph expression 

and subsequent serotonin synthesis, but not for the early regulatory genes like foxQ2, 

fez and delta.   

 

Nodal signaling suppresses zfhx1 expression  

        Previous studies showed that serotonergic neurons differentiate only at the 

aboral/lateral edge of the animal plate, and this asymmetry is caused by Nodal signaling 

from cells on the oral side of the plate (Fig. 1-9F; Yaguchi et al., 2007). As expected, in 

normal embryos, zfhx1 is also expressed in cells at the aboral/lateral edge of the 

foxQ2-positive animal plate region at gastrula stage (Fig. 1-9A, B), and at prism and 

pluteus stages the serotonergic neurons expressing tph gene are aligned similarly (Fig. 

1-9G). When the translation of Nodal is blocked by injecting Nodal-MO, zfhx1- and 

tph-positive cells surround the animal plate (Fig. 1-9C, asterisks; 1-9H, respectively). In 

contrast, when Nodal signaling is enhanced and extends to the aboral side of the animal 

plate (Duboc et al., 2004; Duboc et al., 2008) by blocking the translation of Lefty, an 

endogenous antagonist of Nodal signaling, neither zfhx1 nor tph is expressed in the 
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animal plate (Fig. 1-9D, I). When translation of BMP2/4, another TGF-ß member 

involved in cell fate specification along the aboral side of the embryo, is blocked, the 

morphants also do not express zfhx1 and tph (Fig. 1-9E, J). In these morphants Nodal 

signaling extends further to the aboral side (Yaguchi et al., 2010a), where it suppresses 

expression of zfhx1 and differentiation of serotonergic neurons. Taken together, Nodal 

signals in the oral ectoderm suppress the expression of zfhx1 and subsequently tph, 

leading to development of serotonergic neurons only on the aboral edge of the animal 

plate. 
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Discussion 

 

        The data presented here show that Zfhx1 is required cell-autonomously for 

the differentiation of serotonergic neurons in sea urchin embryos. Most of the 

transcription factors expressed early throughout the animal plate are required for the 

specification and differentiation of this territory (Yaguchi et al., 2008; Wei et al., 2009). 

When the function of those genes is blocked, the animal plate is lost as are the neurons 

that develop within it as well as the apical tuft (Yaguchi et al., 2010b). Therefore, it was 

not clear how these early regulatory activities were connected to the specification of 

individual neurons expressing the terminal differentiation genes, tph and synaptotagmin 

B, at late gastrula stage (Yaguchi and Katow, 2003; Burke et al., 2006). Here I show that 

Zfhx1 is one of the intermediate factors downstream of genes specifying the early 

animal plate and upstream of those sponsoring terminal differentiation of serotonergic 

neurogenesis. Knock-down of either FoxQ2 or Zfhx1 significantly decreases the 

number of serotonergic neurons (Yaguchi et al., 2008; this study) and FoxQ2 morphants 

do not express zfhx1. Furthermore, zfhx1 is co-expressed with delta at early gastrula 

stage, the first direct demonstration that delta is expressed in neural cells in the animal 

plate of sea urchin embryos. As in other embryos, I show here that Delta functions in 

neuronal precursors to limit the number of cells in the animal plate that differentiate as 

neurons through lateral inhibition. Thus, Delta and Zfhx1 mark neuronal precursors. As 

well, the expression pattern and timing of zfhx1 relative to terminal differentiation genes 

is appropriate for its requirement for the differentiation of serotonergic neurons. Zfhx1 
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could be a direct activator of tph since it is co-expressed with tph as serotonergic 

neurons begin to differentiate. In contrast, delta and tph are rarely co-expressed in 

normal embryos, consistent with the sequential waves of expression of delta, zfhx1 and 

tph. Together, the expression patterns and loss-of-function data indicate that FoxQ2 is 

required for delta and zfhx1 expression in neuronal precursors. Delta/Notch signaling 

limits the number of these precursors and Zfhx1 then is required of expression of genes 

necessary for the terminal differentiation of serotonergic neurons.   

        The results reported here indicate that Nodal signaling-mediated suppression 

of serotonergic neural differentiation on the oral side of the animal plate (Yaguchi et al., 

2007) must occur downstream of FoxQ2 and at or upstream of zfhx1 expression because 

here I show that Nodal suppresses zfhx1 expression, but has no detectable effect on 

foxQ2 expression. Thus, this work fills an important gap in our understanding of the 

regulatory path that links specification of the neurogenic field to the differentiation of 

individual neurons in sea urchin embryos.   

        Zfh/ZEB family members have a characteristic molecular structure; N- and C- 

terminal zinc finger domains and a central homeodomain (Fortini et al., 1991; Genetta 

et al., 1994). It has been reported that these transcription factors bind to E-boxes and 

have been shown to play a role in regulating myogenesis in vertebrates and 

invertebrates (Postigo et al., 1999). In addition, the vertebrate-type family of ZEB 

factors includes branches to delta-EF1 and SIP1. They attenuate BMP signaling with 

Smad-interacting activity (Postigo, 2003), and the Smad-binding domain (SBD) in SIP1 

has been already identified (Verschueren et al., 1999). In contrast, the amino acid 
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sequence alignment shows the sea urchin Zfhx1 as well as fly Zfh-1 have no conserved 

SBD sequence (Fig. 1-2). Although it was annotated as SIP1 after the sea urchin 

genome was sequenced (Su et al., 2009; Saudemont et al., 2010), there is no evidence 

that it interacts with the Smad family; instead my phylogenetic analysis suggests that 

this gene, SPU_022242, does not belong to the SIP1 branches but is most closely 

related to the invertebrate-type ZEB member, Zfhx (Fig. 1-1).   

        In flies and worms, Zfh-1 and Zfh-2 were reported to possess both zinc 

fingers and homeodomains, and both are expressed in the nervous system. Zfh-2 

contains 17 zinc-finger domains and 3 homeodomains, and in Drosophila it binds to a 

regulatory region of the DOPA decarboxylase gene, which is essential for the second 

step of biosynthesis of dopamine and serotonin (Lundell and Hirsh, 1992). The homolog 

of vertebrate zfh-2 in sea urchins is atbf1 (SPU_017348), suggesting that Zfhx-1, the 

gene studied here, and Zfh-2 also have different functions in the sea urchin. The 

function of Zfh-1 in flies is not well understood but it is expressed in the serotonergic 

lineage in their central nervous system where its expression is regulated by Notch 

signaling and Eagle transcription factor (Lai et al., 1991; Lee and Lundell, 2007). In C. 

elegans, a homolog of Zfh-1, Zag-1, is expressed several neuronal lineages including 

those leading to head and tail ganglia, dorsal and ventral cords, and some of them 

express tph and synthesize serotonin (Sze et al., 2002; Wacker, et al., 2003). Among 

those serotonergic neurons, the HSN serotonergic motor neurons require Zag-1 for 

expression of tph (Clark and Chiu, 2003). However, because tph expression in the head 

region is not affected in zag-1 mutants, the function of Zfh-1/Zag-1 in the serotonergic 
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neuron-lineage in the animal plate of an ecdysozoan invertebrate differs from the role of 

Zfhx-1 in this region of sea urchin embryos. Whether Zfhx proteins are involved in 

development of serotonergic neurons in other deuterostomes is not yet known, although 

predictions from genome sequences of hemichordate and amphioxus reveal that they 

have the same invertebrate-type Zfhx (XM_002740578.1; XM_002592121.1, Putnam et 

al., 2008).  

        A diagram summarizing the mechanism and timing of Zfhx1 function is 

presented in Figure 1-10. At the beginning of neurogenesis in the animal plate of the sea 

urchin embryos, FoxQ2 and Six3 are required for formation of the animal plate and 

expression of downstream genes like fez and nk2.1, which are expressed uniformly in 

this territory (Yaguchi et al., 2011; Yaguchi et al., 2008; Wei et al., 2009). Whereas 

Nk2.1 is involved in formation of the long immotile cilia of the apical tuft, (Dunn et al., 

2007; Yaguchi et al., 2010b), Fez functions in controlling animal plate size and 

ultimately the number of serotonergic neurons, but is not required for nerve cell 

differentiation itself (Yaguchi et al., 2011). delta is expressed in neural precursors in the 

animal plate starting at late mesenchyme blastula stage and Delta signals through Notch 

to neighboring cells preventing their differentiation to serotonergic neurons. Shortly 

thereafter, zfhx1 and fez are expressed in these neural precursors. However, the 

expression of these three genes, delta, zfhx1 and fez, is regulated by independent 

mechanisms because knock-downs of each does not affect the expression of other two 

(Fig. 1-6, 1-7, 1-8; Yaguchi et al., 2011).  

        At least, three independent signaling cascades regulate the differentiation of 
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serotonergic neurons: Wnt/ß-catenin positions the animal plate at the anterior end of the 

embryo where serotonergic neurons develop and Delta/Notch and Nodal determine, 

respectively, the number and position of these neurons. zfhx1 expression exclusively in 

serotonergic neuron precursors in the animal plate depends on at least one or two 

positive inputs (FoxQ2 and Six3), and three negative inputs (Nodal, Notch and Zfhx1 

itself). zfhx1 expression depends on Six3 (Wei et al., 2009) and FoxQ2 . The fact that 

Six3 is important for maintaining foxQ2 (Wei et al., 2009), may explain these 

observations (Fig. 1-8). Although FoxQ2 could provide direct inputs into regulating 

zfhx1 transcription, this would occur well after initial formation of the animal plate. 

Furthermore, it is clearly not sufficient to control its spatial pattern since zfhx1 is 

expressed in only a subset of animal plate cells. The mechanism that activates 

expression of zfhx1 and delta in this subset is not yet understood. Negative regulation of 

serotonergic neural development by Nodal from the oral side or by 

Delta/Notch-mediated lateral inhibition in the animal plate acts at or upstream of zfhx1. 

Finally, Zfhx1-mediated negative auto-regulation of zfhx1 transcription implies tight 

regulation of Zfhx1 levels is required in these neural cells (Fig1-6E-H). All of these 

mechanisms help to ensure zfhx1 expression in a few neural precursors on the aboral 

side of the animal plate, where it activates expression of genes required for serotonergic 

differentiation. The regulatory relationships established here provide an important 

framework for the eventual construction of the serotonergic neural gene regulatory 

network in the sea urchin embryo.  
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Figure 1-1.  zfhx1 is expressed in serotonergic neurons in the animal plate.   

        The animal pole of embryos in each microscopic image is at the top unless 

otherwise indicated. (A) Serotonergic neurons in a prism larva of the sea urchin, 

Hemicentrotus pulcherrimus (green). (B) DIC image of (A). (C) Phylogenetic tree 

drawn using MEGA 5 (Tamura et al., 2011) shows that Hp-Zfhx1 belongs to basal 

deuterostome-type Zfhx/Zfh branch. ZEB1 and ZEB2, zinc finger E-box binding 

protein 1 and 2, respectively. SIP1, smad-interacting protein 1. humanProx, 

prospero-related homeobox of human. Numbers on the branches show the bootstrap 

value (%; 1,000 replicates). The scale bar indicates 0.2 amino acid substitutions per 

position in sequence. (D-L) Expression of zfhx1 at the following stages. (D) unhatched 

blastula, 10 h. (E) double fluorescent in situ hybridization with zfhx1 (green) and foxA 

(magenta) in unhatched blastula, 12 h. (F) hatched blastula, 16 h. (G) mesenchyme 

blastula, 18 h. (H) early gastrula, 24 h. Arrows and arrowheads show zfhx1 expression 

in the animal plate and future ciliary band region, respectively. (I) prism larva, 38 h. The 

arrows indicate the outer edge of the central part of animal plate, where zfhx1 is missing. 

(J) pluteus larva, 48 h. Black and red arrow shows zfhx1 gene expression in lower lip 

region and posterior mesenchyme cells, respectively. (K) lateral view of pluteus larva, 

fluorescent in situ hybridization. (L) pluteus stage, 72 h. Scale bar in (A): 20 µm.   
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Figure 1-2. Sea urchin zinc-finger homeobox (Zfhx1) does not have a Smad binding 

domain (SBD).  

        ClustalW alignment of amino acid sequences of zinc-finger E-box binding 

proteins, human-Delta-EF1a, human-Delta-EF1b, chicken-Delta-EF1, zebrafish-Kheper, 

human-SIP1, Xenopus-SIP1, zebrafish-SIP1a, zebrafish-SIP1b, Hemicentrotus 

pulcherrimus Zfhx1 (Hp-Zfhx; bold), Saccoglossus kowalevskii Zfhx, amphioxus-Zfhx, 

and fly-Zfh1. The position of the SBD domain is highlighted in red. Green and magenta 

squares indicate conserved zinc-finger domains and homeodomain, respectively, 

according to the domain search results by SMART. The numbers on the right ends show 

the amino acid positions within each protein sequence. 
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Figure 1-3.  zfhx1 is transiently expressed in serotonergic neural precursor cells. 

         (A-H) Double fluorescent in situ hybridization detecting zfhx1 and tph in 

36-h (A-D) and 39-h (E-H) embryos. (A) zfhx1 is expressed in the animal plate region. 

A square region is magnified in (B-D). (B) zfhx1 is expressed in a few cells (arrows). 

(C) tph at the same region (arrows). (D) Merged image of (B) and (C). Arrows show the 

cells expressing both zfhx1 and tph. (E) Most of zfhx1 disappears from the animal plate 

in 39-h embryo. A square shows the region that is magnified in (F-H). (F) zfhx1 is not 

expressed in tph-positive cells (arrowheads). Asterisk shows zfhx1-positive cell. (G) tph 

expression in the same region. Arrowheads indicate the cells expressing tph strongly. 

Asterisk shows a cell expressing tph weakly. (H) Merged image of (F) and (G). (I-P) 
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Double fluorescent in situ hybridization detecting zfhx1 and fez in 29-h (I-L) and 48-h 

(M-P) embryos. (I) zfhx1 is expressed in the animal plate region in 29 h. The square 

shows the region that is magnified in (J-L). (J) zfhx1-expressing cells in the animal plate 

(arrows). (K) fez-expressing cells in the same region. (L) Merged image of (J) and (K). 

(M) zfhx1 is down regulated in a 48 h embryo. (N) zfhx1 is not detected in the cells in 

which fez is expressed (arrowheads). (O) fez expression in the same region. (P) Merged 

image of (N) and (O). zfhx1-positive cells (magenta) in (M-P) are non-serotonergic 

neurons in the animal plate. 
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Figure 1-4.  Knockdown of Zfhx1 not only decreases the number of serotonergic 

neurons but also inhibits normal vegetal tissue development and oral/aboral 

polarity.   

         (A-E) Control embryos (glycerol-injected). (A) 36-h prism stage. (B) 48-h 

pluteus stage. (C) 72-h early 4-arm pluteus stage, lateral view. (D) Immuno-fluorescent 

image of a 72-h embryo stained for serotonin and synaptotagmin B; the rectangle shows 

the region magnified in (E). (E) Seven serotonergic neurons are present in this embryo. 

(F-J) 2.0 mM Zfhx1-MO-injected embryos. (F) 36 h. (G) 48 h. (H) 72 h. The length of 

the body along the anterior-posterior axis is shorter than that of normal embryos (C). (I) 
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The development of the nervous system is incomplete in the morphant. The square 

shows the region magnified in (J). (J) The number of serotonergic neurons is less than 

that of control. (K-O) 3.8 mM Zfhx1-MO-injected embryos. (K) 36 h. (L) 48 h. (M) 72 

h. (N) This morphant has no detectable neurons in the animal plate. Square shows the 

region magnified in (O). (O) Neural development is strongly suppressed in the 

morphants. (P) 2.3mM Zfhx1-MO1-injected embryo.   
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Figure 1-5.  Zfhx1 is required for the differentiation of serotonergic neurons.     

         (A) Microinjection to inhibit canonical Wnt signaling. (B-F) The expression 

patterns of zfhx1 in ∆cad-injected embryos. (B) zfhx1-positive neural precursors are 

scattered in the expanded 24-h embryo. (C) 30-h embryo. (D) 36-h embryo; the number 

of zfhx1 cells decreased. (E) Double fluorescent in situ hybridization shows that zfhx1 

disappears from the central part of the animal plate. (F) zfhx1 is down regulated in 48-h 

∆cad-injected embryos. The apparent staining in this embryo is background diffuse 

staining that is higher in the thickened ectoderm of these embryos. (G) Many 

serotonergic neurons differentiate in the expanded animal plate in ∆cad-injected embryo. 

(H) All of serotonergic and non-serotonergic neurons in the animal plate are 

synaptotagmin B-positive. (I) Merged image of (G) and (H). (J) ∆cad-injected Zfhx1 

morphants have no serotonergic neurons at 72 h. (K) Serotonin-negative synaptotagmin 

B-positive neurons begin to differentiate in morphants. (L) Merged image of (J) and (K). 

(M) Method for creating animal caps from Zfhx1 morphants. (N) Serotonergic neurons 

differentiate in the glycerol-injected control animal cap. (O) No serotonergic neurons 

differentiate in the animal cap of Zfhx1 morphants. (P) Method to inject Zfhx1-MO and 

myc mRNA into one of two blastomeres derived from a ∆cad-injected egg. (Q) Nearly 

all of the serotonergic neurons differentiate in the myc (i.e. Zfhx1-MO)-negative half of 

the embryo. (R) Only the outline of myc-positive, Zfhx1-deficient region of (Q) is 

shown. Insets are DIC images for each panel. 
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Figure 1-6.  Zfhx1 is not required for expression of genes involved in early 

specification of the animal plate.   

         (A) foxQ2 and tph in a ∆cad-injected embryo at 36 h. (B) The expression 

pattern of foxQ2 is not altered in ∆cad-injected Zfhx1 morphants, whereas no tph 

expression is detected. (C, E, G) ∆cad-alone-injected control embryo. (D, F, H) 

∆cad-injected Zfhx1 morphant. (C, D) The expression patterns of fez at 36 h. (E, F) The 

expression patterns of zfhx1. (G, H) Merged images of (C) and (E), and (D) and (F), 

respectively. 
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Figure 1-7.  Forebrain embryonic zinc finger, Fez, is not required for the 

expression of zfhx1.  

        Zfhx1 is expressed in the animal plate region of (A) control (Gly; 

glycerol-injected) embryo (arrows) and (B) Fez morphants (arrows) at 36 h. Note that 

the animal plate in which serotonergic neurons develop is smaller in Fez morphants 

(Yaguchi et al., 2011). 
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Figure 1-8.  delta is a specific neural marker in the animal plate.   

         (A) zfhx1 expression in the animal plate of 30 h embryo detected with 

fluorescent in situ hybridization. (B) More cells express zfhx1 and make a cluster in the 

animal plate of Delta morphants. (C) The normal patterning of serotonergic neurons in 

72-h embryo. A square shows the region magnified in (C’’). Synaptotagmin B, a 

pan-neural marker (magenta); serotonin (green). (C’) A cluster of serotonergic neurons 

is formed in the animal plate of Delta morphants. A square shows the region magnified 

in (C’’’). (C’’) Magnified image of the square region in (C). (C’’’) Magnified image of 

the square region in (C’). (D) Double fluorescent in situ hybridization detects zfhx1 and 

delta co-expression at gastrula stage. The magnified images are shown in (E-G) for 

animal plate and (H) for lateral regions. (E) A cell expressing zfhx1 in the animal plate. 

(F) delta expression. (G) Merged image of (E) and (F). (H) A cell expressing zfhx1 
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(green) and delta (magenta) in the lateral region. (I) delta expression in the control 

(glycerol-injected) late gastrula. (J) delta expression in the animal plate is suppressed in 

FoxQ2 morphants (arrow). (K) zfhx1 in the control late gastrula. (L) zfhx1 expression in 

the animal plate requires FoxQ2 (arrow). (M) Many delta-expressing cells are present in 

the expanded animal plate of ∆cad-injected embryos. (N) delta expression pattern is 

unaltered in ∆cad-injected Zfhx1 morphants. 
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Figure 1-9.  Nodal suppresses the expression of zfhx1 on the oral side of the 

animal plate.   

         (A) The expression pattern of zfhx1 (magenta) in the animal plate of control 

(glycerol-injected) embryos is marked by foxQ2 (green) expression. A square shows the 

region magnified in (B). Animal pole view. (B) zfhx1 is expressed in cells along the 

aboral edge of the animal plate (asterisks). (C) zfhx1 is expressed all around the 

circumference of the animal plate in Nodal morphants (asterisks). (D) zfhx1 is not 

expressed in Lefty or BMP morphants, in which Nodal expression extends around the 

animal plate (E). (F) Schematic illustrating that Nodal suppresses the differentiation of 

serotonergic neurons on the oral side of the animal plate. (G) The expression pattern of 

tph in the control (glycerol-injected) embryo (green). Oral view. (H) tph is radially 

expressed in the animal plate in Nodal morphants. Animal pole view. (I, J) tph is not 

expressed in either Lefty or BMP morphants.  
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Figure 1-10.  Model of the regulatory mechanisms controlling differentiation of 

serotonergic neurons in the sea urchin embryo.   

        FoxQ2 and Six3 are involved in the specification of the animal plate during 

early development (1; Yaguchi et al., 2008, 2; Wei et al., 2009). FoxQ2 is required for 

fez expression and then Fez maintains foxQ2 expression on the aboral side of the animal 

plate (3; Yaguchi et al., 2011). Both FoxQ2 and Six3 regulate zfhx1 and delta expression 

and Six3 supports FoxQ2 expression (2). Zfhx1 is required for the expression of tph, 

which is required for serotonin synthesis, and for synaptotagmin B (synB). Delta-Notch 

signaling limits the number of differentiating neurons by lateral inhibition and Nodal 

inhibits their development on the oral side of the animal plate. Zfhx1 suppresses its own 

expression.  
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