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Abstract 

The catchment transit time, which is defined as the elapsed time from when a water molecule enters 

a catchment until it exits, is a lumped descriptor that reflects storage, flow pathways and sources of 

water in the catchment. The steady-state assumption for the catchment transit time is a controversial 

issue in catchment hydrology. The principal objectives of the present study are threefold: (1) to 

establish methodology for properly estimating time-variant mean transit time (MTT) and transit time 

distribution (TTD), (2) to clarify temporal variability of MTT and TTD in meso-scale catchments for 

re-examining the steady-state assumption, and (3) to identify inter-catchment variability of long-term 

average MTT (LAMTT) and its controlling factors. 

In this study, an approach to estimate the time-variant MTT and TTD using a five-layer tank model 

with isotopic tracers was proposed and tested for the five sub-catchments (SCs; SC1 to SC5) within 

Fuji River catchment, central Japan. Model parameters were optimized during the calibration phase 

based on hydrometric and isotopic observations and then validated in a separate validation phase. The 

LAMTT (mainly from 2003 to 2012) was estimated to be from 8.0 years for SC1 to 16.5 years for 

SC3. These values are almost comparable with previously reported ones using the independent 

methods for the same region. Daily MTT was highly variable with relative standard deviation ranges 

from 14.6% to 40.7%. Instantaneous TTD also varied markedly; the peak transit time is longer in drier 

periods than in wetter periods and form of the TTDs could not be approximated by any functions 

previously proposed. Although optimized model-parameters have some uncertainties, potential errors 

in estimating the MTT are relatively small (e.g., < ±3.0 years). Therefore, the tracer-aided tank model 

is concluded to be useful for estimating temporal variations in MTT and TTD with high reliability. 

The predominant factor controlling temporal variability of MTT is precipitation amount. Precipitation 
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alters TTD, with increases in younger components, and shortens the MTT. Thus, the steady-state 

assumption is inappropriate. Inter-catchment comparison of LAMTT revealed that it is correlated with 

mean slope, coverage of Mesozoic sand stone/shale, coverage of forest (or conversely the other land 

use types), evaporation, interception and storage (especially, of the 4-th tank) for each catchment. All 

of these are related to the amount of groundwater storage, which is smaller in mountainous areas and 

greater in plain areas. The amplitude of MTT and TTD changed in such significant way have not yet 

introduced in previous research. As well as such a topographic control of LAMTT for meso-scale 

catchments is a new finding, since the most previous studies have focused on mountainous small 

catchments. 

KEYWORDS  transit time; tank model; isotope tracer; catchment hydrology; Fuji river 
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Chapter 1    Introduction 

Introduction 

1.1 Background 

    Transit (or travel) time is defined as the elapsed time when water molecule exits a system (or 

reservoir; e.g., catchment, aquifer, lake, etc.) since it entered the system (e.g., Bolin and Rodhe, 1973). 

In catchment scale, it means the time water spends travelling through a catchment to the stream 

network (McDonnell, et al. 2010). The catchment transit time (CTT) is a lumped descriptor that 

reflects storage, flow pathways and sources of water in a catchment (McGuire and McDonnell, 2006). 

It allows us to examine how catchments retain and release water contaminated, for instance, by 

chemical/nuclear accidents. Especially for meso-scale catchments, which are usually tightly connected 

with spatial variation of geology, landuse, soil and topography (Niehoof et al., 2002). Therefore, 

quantifying CTT, which may depend on soil (Soulsby et al., 2006; Hrachowitz et al., 2010), 

topography/landscape (McGuire et al., 2005; Tetzlaff et al., 2009; Hrachowitz et al., 2010), catchment 

size (Soulsby et al., 2006; Hrachowitz et al., 2010), climate and the other geographical/geological 

settings (McDonnell et al., 2010). To figure out the relationship between CTT and the potential impact 

factors is fundamental for better management of catchments. 

The transit time can be defined for each molecule. In general, water flowing or sampled at a given 

time and location would be an integrative mixture of molecules having different transit time. 

Therefore, we should consider both mean transit time (MTT) and transit time distribution (TTD) for all 

constituent molecules. In a steady state the MTT equals to the turnover time (= M/F; M is the total 

mass of mobile water and F is the total flux) and thus indicates capacity of water storage as the whole 

catchment, if total flux (i.e., runoff) was known. On the other hand, TTD provides information about 
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diversity of flow pathways within a catchment and their temporal response characteristics to water 

inputs (i.e., available precipitation). Relatively short CTT components would be strongly linked to how 

quickly event-driven contamination pulse arises, while longer CTT components may helpful in 

addressing how long time contamination persists. 

In earlier works using environmental tracers (e.g., Maloszewski and Zuber, 1982; Maloszewski et 

al., 1983; Richter et al., 1993; DeWalle et al., 1997; Ozyurt and Bayari, 2003), some idealized, 

hypothetical TTD functions with steady-state assumption have been employed to estimate MTT. The 

same or similar, time-invariant TTD functions were applied into unsteady-state (i.e., variable flow) 

cases for reproducing tracer concentration variation (Zuber, 1986) and for estimating temporally 

averaged MTT (Ozyurt and Bayari, 2005). Amin and Campana (1996) proposed hypothetical, time-

variant TTD functions, while they were not tested by observed data. In a field experiment where step 

change in tracer concentration was given across a small catchment, Rodhe et al. (1996) estimated a 

non-idealized TTD. Lindström and Rodhe (1986) utilized a lumped hydrological model to simulate 

temporal variation of observed tracer concentration in stream water and then TTD was obtained by 

applying a virtual tracer pulse to the model with steady-state boundary conditions. Recently, McGuire 

et al. (2007) predicted time-variant TTD under field conditions using a simple hillslope model 

calibrated by hydrometric and tracer observations. Botter et al. (2010) also obtained time-variant TTD 

using a hillslope-scale stochastic soil moisture model with variable boundary conditions. These 

approaches clarified that TTD was highly variable in time corresponding to precipitation input, and 

temporally averaged TTDs had near-exponential form with a short time-lag, while they have been 

limitedly applied into small catchments. Sayama and McDonnell (2009) developed a time-space 

accounting scheme (T-SAS) with a distributed hydrologic model for tracking not only temporal but 

also spatial sources of runoff components. These progresses in recent studies clarified that MTT were 

not always constant and temporally averaged TTDs had near-exponential form with a short time-lag. 
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However, models used in these studies were highly complex with many uncertain model-parameters, 

so that reliability of estimated MTT and TTD remains unclear. In addition, many of them have been 

limitedly applied into small catchments. 

 

1.2 Objectives 

The principal objectives of the present study are threefold: (1) to establish methodology for properly 

estimating time-variant MTT and TTD, (2) to clarify temporal variability of MTT and TTD in meso-

scale catchments for re-examining the steady-state assumption, and (3) to identify inter-catchment 

variability of long-term average MTT (LAMTT) and its controlling factors. The reason why we 

highlight meso-scale (approximately 10
1
 - 10

3
 km

2
; Uhlenbrook et al., 2004) catchments is because 

those are more strongly linked to human sphere than small remote catchments are. Achieving our goals 

would provide useful information for better understanding catchment hydrology and biogeochemical 

cycle and for managing chemical/nuclear disaster risks. 

 

1.3 Outline of this study 

  A literature review of previously related researches is given in Chapter 2.  In Chapter 3, study area 

and method are described. The methodology for MTT and TTD calculations are described in this part. 

The results and discussions are presented in Chapter 4 and Chapter 5 respectively. Finally, conclusions 

were given in Chapter 6. 
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Chapter 2    Review of the literature 

Review of the literature 

2.1 Definition of transit time 

    There are several terms conceptually similar to the transit time, such as the age, turnover time, 

residence time, and others (McGuire and McDonnell, 2006; Li, 2010 and others). Bolin and Rodhe 

(1973) defined the age of the water parcel as the time that a water parcel has spent since it entered the 

reservoir, where the water age considered as a water-parcel-specific quantity and is time dependent 

and spatially varying within a system. Li (2010) expressed the turnover time (also named flushing 

time) as the time required to replace a certain mass or volume of water. For a well-mixed, steady-state 

system, a more quantitative description was presented by Geyer et al. (2000) as “the ratio of the mass 

of a scalar in a reservoir to the rate of renewal of the scalar.” Accordingly, Fischer et al. (1979) 

expressed the flushing time in a reservoir system. As mentioned in Chapter 1, the transit time is 

defined as the elapsed time from when the water molecule exit a system (Bolin and Rodhe, 1973), in 

contrast to the definition of the age that water molecules have spent inside a flow system. The 

residence time is a more general term representing the time scale of water cycle and has been used as 

the mean age, mean transit time or turnover time (Bolin and Rodhe, 1973; McGuire and McDonnell, 

2006; Li, 2010). McGuire and McDonnell (2006) stated that the distinction between residence time 

and transit time is often overlooked in the literature (including in their own previous works); however, 

a distinction can clearly be made. 

    Again, it should be noted that transit time differs for each individual molecule. Thus, we can define 

the MTT as the average of transit time for all molecules and TTD over all molecules in a mass of water 

collected at a given time and location (i.e., outlet of the catchment). 
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2.2 Methods to estimate transit time 

    To simulate water movement or flow path in natural circumstances is a crucial work for 

hydrological processes. However, it is very difficult to characterize the hydrologic response of a 

catchment with simple descriptors. Many efforts have been taken for simulating the water movement 

in more detailed (Dunne, 1970). This could be considered as the expression of transit time as MTT and 

TTD. MTTs are usually estimated by modeling input-output relationships of conservative tracers such 

as stable isotopes or chloride according to various assumed TTDs (e.g. Hrachowitz et al., 2009a; 

Kirchner et al., 2010). To estimate the TTD of a given catchment, conservative tracers in rainfall and 

stream flow are generally measured, and these input-output signals are related using theoretical 

transfer functions. Classic examples of such transfer functions are the piston flow model, the 

exponential model, the dispersion model, and the gamma distribution model (Małoszewski and Zuber, 

1982; McGuire and McDonnell, 2006, shown as Figure 2.1). The exponential model (EM) is a basic 

and widely used one-parameter model (e.g., Maloszewski et al., 1983; Stewart and McDonnell, 1991; 

McGuire et al., 2002), conceptualizing the catchment as well mixed linear reservoir. As shown by 

Kirchner et al. (2000) using spectral analysis, the Gamma distribution model (GM) with a shape 

parameter a = 0.5 is the mathematically ideal representation of stream signals exhibiting 1/f noise. The 

long tail of the gamma distribution enables this model to reproduce the long internal memory of many 

catchments. The two parallel linear reservoir (TPLR) models, as applied by Weiler et al. (2003) and on 

the basis of three parameters, allows separating the system into a fast and a slow component according 

to the partition parameter Φ (Hrachowitz et al., 2009). Functions of typical models are given in Table 

2.1. 

    Concerning the water flow pattern relevant to transit time or the age of water, Dunn (2010) using a 

semi-distributed conceptual hydrological model showed that the primary control on the stream water 
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MTT is storage within the unsaturated zone and compared the results of different flow path gradient 

and length. McGuire et al. (2007) presented spatially-explicit model constrained by soil hydrologic 

properties, runoff, and applied tracer data and used it to identify the dominant processes necessary to 

explain both water and solute flux from a steep hill slope to explore transit times (Figure 2.2). Botter et 

al. (2010) proposed a mathematical framework for the general definition and computation of TTDs 

defined by the closure of a catchment control volume, where the input flux is an arbitrary rainfall 

pattern and the output fluxes are green and blue water flows (Figure 2.3). Sayama and McDonnell 

(2009) used a physically based hydrologic model together with field data to explore how catchment 

properties, particularly soil depth, controls the age and source of stream flow, and presented a new 

time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, MTT, and 

spatial source of stream flow at the watershed scale (Figure 2.4). Theories for calculating the mean age 

and MTT have been proposed by Duffy (2010) to construct a dynamical system for the mean age and 

concentration under steady or transient flow conditions, and demonstrated that intermittency of wetting 

and drying periods affect the age of solutes.  

Van der Velde et al. (2010) argued on the basis of numerical simulations that the TTD is not only 

rapidly changing in time but also highly irregular in shape, reflecting rainfall and drought events 

during the transit of water particles through the catchment. A model assuming the time-invariant transit 

time distributions or steady conditions cannot reproduce MTT accurately, so it is important for transit 

time calculation to investigate time variant flow pathways and their effect on transit time calculation 

(Lindstrom and Rodhe, 1992).  
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2.3 Estimation of MTT and TTD on meso-scale catchment 

The hydrological responses are dominated by processes, which are difference at various spatial 

sacales (Blȍschl and Sivapalan, 1995; Uhlenbrook et al. 2004). The same applies to estimate of transit 

time issues.  

In different scale catchment, mechanisms of water response are usually different. For a micro-scale 

catchment, response to rainfall is usually dominated by the runoff generation process at hillslopes or 

near stream areas. (e.g. Anderson and Burt, 1990; McDonnell, 1990; Montgomery et al., 1997; 

Uhlenbrook et al. 2004).  For meso-scale catchments, processes from smaller scales formed into a 

complex way produce into an integrated response, (e.g. Scherrer and Naef, 2003; Uhlenbrook, 2004). 

At the same time, Bronstert et al, 1995 demonstrated a prevailing opinion that floods of medium and 

high probability in meso-scale catchments are most strongly influenced by land cover. However, for 

the macro-scale catchments, spatial and temporal distribution of rainfall or snow melt or the routing of 

runoff are dominated. As Niehoff et al. (2002) mentioned spatial data of landuse, soil and topography 

should be paid attention for storm-runoff generation processes in a meso-scale catchment. Meanwhile, 

basing on the meso-scale catchment are commonly connected with resident condition of human being, 

so meso-scale catchments are often of great interest for water resources development and for 

development interventions aimed at uplifting rural livelihoods (Love et al, 2011). So, to study the 

pattern and potential law of the MTT and TTD behave in a meso-scale catchment is significant and 

imperative.  

How to choose parameterization of land-surface and land cover and how to integrate the data 

representing from smaller scale into a meso-scale catchment using lumped model is a challenge in this 

study. 
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Table 2.1 Descriptions of ideal function of transit time distribution. 

Model TTD g(τ) MTT Parameter Description 

Exponential 
1 expm

m






  
 
 

 
m  -- 

Two parallel 

linear 

reservoirs 

1
exp expm m

f f s s

   
 

   

   
      

  

  1f s     

τf is MTT of fast reservoir; 

τs is MTT of slow reservoir; 

φ=volume of fast reservoir/total 
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Figure 2.1 Conceptual diagram of the lumped parameter transit time modeling approach (McGuire and 

McDonnell, 2006). Catchments receive temporal tracer (e.g., δ
18

O) inputs that are transported along diverse 

flow paths in the unsaturated and saturated zones as tracers migrate through the subsurface toward the stream 

network. 
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Figure 2.2 Changes in water storage and associated flow paths in a southwestern United States semiarid 

catchment (Marshall Gulch) undergoing seasonal shifts in water and energy availability (Heidbuchel et al., 

2012). During snowmelt in spring, water input is high, and energy input is low, resulting in increased storage, 

the activation of predominantly fast flow paths (interflow and overland flow), and rapid transfer of water. 
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Figure 2.3 Schematic representation of the control volume V within which transport processes are analyzed 

(Botter et al., 2010). (Left) An entire catchment where individual travel times are additive and composed 

geomorphically by serial and parallel arrangement through path probabilities. (Middle) The actual transport 

volume V considered in this study, chiefly composed of unchanneled areas. Note that the patchwork of such 

transport volumes covers the catchment. (Right) A cross section of V emphasizing the key components of exit 

time, the evapotranspiration time (Te) and the travel time (Tt). 
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Figure 2.4 Schematic diagram of separating the temporal and spatial hydrograph components (Sayama and 

McDonnell, 2009); (a) individual rainfall hyetograph segments are propagated through the storm hydrograph, 

and (b) The geographic source apportionment of flow. 
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Chapter 3    Methodology 

Methodology 

3.1 Study area 

The study catchments (SCs) are located within the Fuji river catchment (35.5˚-36.0˚N, 138.2˚-

138.9˚E), which is in the central of Japan (Figure 3.1). The area of the catchment is 2172.7 km
2
 as a 

whole and elevation ranges from approximately 234.7 m to 2962.8 m. Northern, eastern and southern 

parts of the catchment are characterized by mountainous topography, while central and eastern parts 

are alluvial fans and lowlands. Mountains are formed mostly by granite and partly by andesitic/basaltic 

rocks. The alluvial fans are covered by gravels with a thickness of 20-30 m, underlain by a clay layer 

with almost the same thickness. According to the meteorological observation records at Kofu station of 

Japan Meteorological Agency, climatic mean (1981-2010) of annual precipitation is 1135.2 mm with 

mean temperature of 14.7 ºC, mean relative humidity of 65%, and mean wind speed of 2.2 m/s. 

Dominant land use/land cover type is forest at mountainous areas, orchard and vegetable fields at 

alluvial fans, and residential areas and paddy fields at alluvial lowlands.  

     The five SCs were defined considering with the location of a gauging station maintained by 

Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan. 
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3.2 Data set 

3.2.1 Precipitation 

   Precipitation has been considered as the main component of the driving force within the entire 

hydrologic cycle (Brutsaert, 2005), and therefore the driving force in hydrologic modeling. The spatial 

distribution of precipitation could change significantly especially for basin- or catchment-scale. 

However, it is necessary to consider the average precipitation as input over the entire area in 

hydrologic analyses at the basin- or catchment-scale. In the past, precipitation data mainly observed 

from raingauge, however, many method have been regarded as effective for restrict the precipitation 

into catchment scale, such as, Thiessen polygon method (Thiessen, 1911, Brutsaert, 2005), the Inverse 

distance method, the Isohyetal method (Reed and Kincer, 1917) and others. The study catchment was 

defined considering with the location of a gauging station maintained by Ministry of Land, 

Infrastructure, Transport and Tourism (MLIT), Japan.  

Radar data 

It is important to use the quantitative precipitation to model run-off and flow processes. However, 

the accurate result in kind of difficult situation not only for the urban area but also for the forest area. 

By considering the geographical characters of research area, which consisted by more than 70% forest 

area and other landuse. The more accurate input of precipitation is key point for the simulations. So, 

the radar data was reasonably considered as priority choice. Within this study, the radar data series is 

from 1
st
 January 2006 to 30

th
 September 2012. However, the period before 2006 also is noticeable for 

the MTT and TTD calculating. So, we applied the hydro-meteorological stations’ precipitation data 

that modified by considering the elevation affection for regressing to the sub catchment. The locations 

of the hydro-meteorological stations could be found from the Figure 3.2 and Figure 3.3. For the period 
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since 2006, we used radar-AMeDAS (Automatic Meteorological Data Acquisition System) 

precipitation data produced by Japan Meteorological Agency (JMA). The data represent map of 1-hr-

accumulated precipitation estimated from combined observations using radars and rain gauges (e.g., 

Makihara 1996 for details). Its spatial resolution is approximately 1 km × 1 km (see Figure 3.4).  

Thinessen polygon method (TPM) 

  Thinessen polygon method also named as Voronoi diagrams, which means those associated with 

points located at random in the plane by a homogeneous planar Poisson point process (Boots, 1986). 

Concordant with the high reliable data precipitation as input, the water balance calibration as well as 

validation period was set within the period from 1
st
 January 2006 to 30

th
 September 2012, at the same 

time, the water discharge data of the monitoring site was considered as the upper boundary of the 

validation period.    

1

1 n

i i

i

P A P
A 

                                                                  (1) 

1

n

ii
A A


                                                                     (2) 

where, Ai is the surface area of the division, n is the number of rainfall stations, Pi is the 

precipitation at rainfall station i. Areal precipitation for whole catchment as an input was estimated by 

Thiessen Polygon Method (Brutsaert, 2005) using daily precipitation observed by rain gauge at 29 

weather stations of JMA AMeDAS data and modified by considering the ratio between the Radar data 

and TPM data (see Figure 3.5). 
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3.2.2 River discharge 

 Observed daily river discharge data that in daily step are produced by MLIT, were used for 

calibration and validation in the water flow part. For SC2-SC5 (seen as Figure 3.3), the calibration 

period was 2006-2007 and validation period was 2008-2010. But for SC1, the calibration period was 

2006 and validation period was 2007 and 2008.  Initial values of h(i) were determined by trials and 

errors. 

3.2.3 Meteorological data 

Meteorological data (solar radiation, air temperature, relative humidity, and wind speed) observed by 

Japan Meteorological Agency (JMA) at three weather stations were utilized for computing ETo. We 

applied values at a nearest station for the whole catchment (Figure 3.3).  

The method we applied FAO Penman-Monteith (Allen et al., 1998) for calculating the potential 

evapotranspiration.  

   

 

2

2

900
0.408

273

1 0.34

n s a

o

R G u e e
TET

u





   


  
                                                      (3) 

  where, ETo reference evapotranspiration; Rn net radiation at the crop surface; G means soil heat flux 

density; T means daily air temperature at 2 m height; u2 means wind speed at 2 m height; es is 

saturation vapour pressure; ea is actual vapour pressure; es-ea means saturation vapour pressure; slope 

vapour pressure curve; 𝛾� is psychrometric constant. 

3.2.4 Isotope data  

In addition to the existing data set, we newly performed monthly isotopic monitoring for river water 

at the gauging station from April of 2010 to March of 2012. Monthly monitoring for precipitation 
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isotope was also carried out at Kofu city (Figure 3.2). Hydrogen and oxygen stable isotope ratios 

(
2
H/

1
H and 

18
O/

16
O) of collected water samples were measured with a liquid water isotope analyzer 

(L1102-i, Picarro, CA, USA) based on wavelength-scanned cavity ring-down spectroscopy (WS-

CRDS), a kind of tunable diode laser adsorption spectroscopy (TDLAS). Measured results are 

expressed using δ values (i.e., δ
18

O and δD) relative to the Vienna Standard Mean Ocean Water (V-

SMOW). Measurement errors for the analyzer used are 0.1‰ for δ
18

O and 1‰ for δD (Yamanaka and 

Onda, 2011). Using δ
18

O and δD, deuterium excess (d ≡ δD-8δ
18

O) was calculated.  

From Figure 3.6, river water isotope composition as well as precipitation isotope composition was 

plotted from May 2010. The isotope composition value of precipitation varies in larger ranges than 

river water isotope composition. The local meteoric water line followed as a liner regression with a 

slope as 7.59, and incept as 8.07 (Figure 3.7), where the number of precipitation sample were 166, and 

with 0.960 as R
2
 for regression results. By considering regression four seasons’ precipitation 

composition separately, it is easy to conclude that the seasonal change of the local water isotope are 

different, especially by comparing the slopes and interceptions (Figure 3.8).  

 

3.3 Model description 

3.3.1 Overview of tank model 

    Hydrological models are efficient and powerful tools in rainfall/runoff process simulation. These 

models have been developed into several types depending on the hydrological data characteristics. In 

the hydrological model applications, the four-layered tank model proposed by Sugawara (1995) (see 

Figure 3.9) is considered a useful model in rainfall/runoff simulations and verifications because of its 

simplified model frame, reasonable function in runoff response and ability to provide good simulation 
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results. As being a semi-physical hydrological model, Tank model is simpler to determine parameters 

for meso-scale catchment than distributed model, which own many characters increasing more 

uncertainty and difficulty for setting parameters at the same time. Although the merits and demerits of 

lumped model and distributed model have not yet totally assured, it is worthy and ascendant to apply 

lumped model in this study. Fitting the model parameters is the major work in applying this 

hydrological model. The trial-and-error procedure has been commonly used for calibration. However, 

the manual calibration process is tedious owing to the 16 model parameters involved in the four-

layered tank model. The simulation results easily produce much uncertainty because of the subjective 

factors involved. Therefore, a number of studies have been performed to determine a more efficient 

calibration procedure. 

3.3.2 Water balance 

    In the present study, a hydrologic model is employed for predicting MTT and TTD. Among large 

numbers of model types, we selected so-called Tank Model (Sugawara and Maruyama, 1956; 

Sugawara, 1961), one of famous rainfall-runoff models (Brutsaert, 2005). While the Tank Model is a 

lumped conceptual model and relatively easy to handle, it can consider different flow paths and water 

pools having different temporal characteristics by arranging a set of several tanks. Therefore, it has 

been used not only for predicting runoff but also for simulating temporal change in water quality (e.g., 

Kato, 2005). Ikawa et al. (2011) successfully reproduced temporal variation of observed isotopic 

composition of stem flow using a two-layer tank (i.e., canopy tank and stem tank) model. And the 

basic principle for water balance could be considered as: 

( ) ( ) ( ),                 ( ) ( )
d

X t x t y t y t k X t
dt

                                                             (4) 
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  where X(t) means the storage x(t) is the input of the model, and y(t) is the output of the model, k 

means the coefficient of the model to balance or adjust the output and storage of the model. 

Specifically, in this research, the storage involved the hydrologic accounting as: 

X(t) P E Tr I Outflow                                                                        (5) 

Although the most common type of the tank model has four tanks in series (Sugawara, 1995), in the 

present study a five-layer tank model (Figure 3.9) was developed to conceptually represent the 

overland flow, rapid throughflow, delayed throughflow, groundwater flow and bedrock flow. Vertical 

water flux, qV(i), and horizontal (exactly speaking, toward a stream network) water flux, qH(i), for the 

i-th tank are computed by the following equations, respectively: 

  0,)()()(max)( ihihikiq HHH  ,                                                            (6) 

where h(i) is the water level in the tank, hV(i) is the level of top of vertical pipes connecting bottom 

outlets, hH(i) is the level of lateral outlets, and kV(i) and kH(i) are the conductance parameters that 

regulate qV(i) and qH(i), respectively. Total runoff, Q, is given as:   

 ( ) max ( ) ( ) ( ) ,0V V Vq i k i h i h i                                                              (7) 

5

1

( )H

i

Q q i


 .                                                                                (8) 

Equations (1) and (2) seem to obey Darcy’s low; the conductance parameters are analogous to 

hydraulic coefficients, and the difference between h(i) and hV(i) or hH(i) correspond to hydraulic 

gradient. However, for the vertical fluxes in this model, water level (i.e., analogous to potential) in a 

lower tank do not affect flow from an upper tank and the flow direction is always downward. This 

simplification allows us to avoid an iteration procedure in computing fluxes and potentials, so that 
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computation time can be reduced markedly. Similarly, for the horizontal fluxes (or runoff 

components), water level in a stream channel is not considered, and the scale of the distance between 

the stream channel and a point, of which hydraulic status is represented by water level in the tank, is 

unknown. Such a vague expression introduces uncertainties mainly in determining kH(i), while it may 

implicitly represent the variable source area concept. Magnitude of ΔhH-V (≡ hH(i) − hV(i); > 0, in 

normal cases) controls relative importance of horizontal and vertical flows in each layer, so that values 

of kV(i), kH(i) and ΔhH-V are determined through calibration comparing observed and predicted 

hydrograph. Values of hV(i) or hH(i) themselves do not affect water flow but regulate isotope transport 

described in section of ‘Isotope transport part’ (Figure 3.9). 

Water budget equations for the 1st and the other four tanks are given as follows, respectively, 

( )
( ) ( ) ( ) ( )T r E s V H

dh i
P I f i T f i E q i q i

dt
        for   i = 1                                          (9) 

( )
( 1) ( ) ( ) ( ) ( )V T r E s V H

dh i
q i f i T f i E q i q i

dt
         for   i = 2 to 5                               (10) 

where t is the time, P is the precipitation, I is the interception loss, Tr is the transpiration, Es is the 

soil evaporation, and fT(i) and fE(i) are the weighting factors at the i-th tank for root water uptake and 

soil evaporation, respectively. We adopted daily time step for computing the above equations. The 

water storage of each layer could be considered as the depth of each tank layer, so the total storage 

means the total depth of each tank layer for each catchment.  

We assume I = fIP with fI = 0.85 on daily basis, considering with previous reports for humid 

temperate forests (Sugita and Tanaka, 2009). Evapotranspiration, ET (= Tr + Es + I), is estimated as 

c oET K ET                                                                                                           (11) 
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where Kc is the single crop coefficient and ETo is the reference evapotranspiration obtained from 

FAO Penman-Monteith equation (Allen et al., 1998). We applied the value of Kc for conifer trees (= 1). 

According to Kubota and Tsuboyama (2004), proportion of soil evaporation to total evapotranspiration 

at forests generally ranges from 3% to 20% with an average of 10%. Thus, we give Es and Tr as 

follows, 

 max ,0s EE F ET ,                                                                                           (12) 

 max ,0r sT ET I E   .                                                                                 (13) 

where FE (= 0.1 in the present study) is the Es/ET. At forests in the central Japan, root water uptake 

zone are usually situated shallower than 50 cm depth from the ground surface, while some species 

does uptake water from the soil deeper than 1 m (Yamanaka et al., 2009). So, we assumed fT(1, 2, 3, 4, 

5) = (0, 0.7, 0.3, 0, 0). In addition, we assumed that soil evaporation does not occur deeper tanks, that 

is, fE(3, 4, 5) = (0, 0, 0). Values for fE(i) at shallower tanks depend on water existence in the tank, as 

follows, 

1
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1 (1) 0
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

 
 
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                                                                      (14) 
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                                                                     (15) 

where superscript “t+1” means the value for the next time step. 

Although fT(i), fE(i), fI(i), Kc(i), and FE(i) should depend on land use type and/or vegetation 

condition, we set the values for typical forests in the study area, since the forest is the most dominant 

land cover in the most of study catchments (Table 4.4). 
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3.3.3 Isotope balance 

Isotope budget equations in the 1
st 

and the other tanks are expressed as the following: 

   
( ) ( )

( ) ( ) ( ) ( ) ( )w
P T r V H w E s E

dh i i
P I f i T q i q i i f i E

dt


       

   for i = 1                 (16) 

 
( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )w
V P T r V H w E s E

dh i i
q i f i T q i q i i f i E

dt


       

  for i = 2 to 5            (17) 

where δ is the isotopic composition (i.e., δ
18

O or δD), and subscripts P, E and w denote 

precipitation, soil evaporation and water in each tank. Instantaneous, complete mixing within each 

tank is assumed in this model. Time step is daily same as in water flow part. 

    The δE can be given by the following Craig-Gordon model (Craig and Gordon, 1965; Gat, 1996): 

3

3

( ) / (1 1/ ) 10

1 /10

w a a
E

a

i h

h

    




    


 
    for i = 1 or 2                                              (18) 

where α is the equilibrium isotopic fractionation factor as a function of temperature (see Majoube, 

1971 for experimental functions), ha is the relative humidity of air, and δa is the isotopic composition 

of atmospheric water vapor. The kinetic fractionation, Δε, is defined as 

    31 / 1 10
nM

a ih D D





     
 

                                                                               (19) 

where ρM is the resistance to molecular diffusion of water vapor, ρ is the total resistance to water 

vapor transfer from the evaporating surface to the air, D is the water vapor diffusivity in the air, Di is 

the water vapor diffusivity for heavy isotope, and n is a semi-empirical parameter (= 1/2 for fully 

turbulent condition). According to experimental results of Cappa et al. (2003), D/Di equals to 1.0319 

for oxygen and 1.0164 for hydrogen. A representative value of ρM/ρ is 0.32 (Yamanaka, 2009). Exactly 
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speaking ha is vapor pressure normalized by saturation vapor pressure at evaporating-surface 

temperature rather than air temperature, while we used relative humidity in common sense for 

convenient. 

Finally, isotopic composition of total runoff, δQ, can be obtained as: 

5

1

( ) ( )H w

i
Q

q i i

Q



 


.                                                                                 (20) 

Values of hV(i) are determined by comparing predicted and observed δQ. In the common type of tank 

model for predicting runoff only, hV(i)=0 is assumed. In other words, hV(i) cannot be determined 

without tracers. 

3.3.4 Estimation scheme for time-variant mean transit time (MTT) 

    To predict time-variant MTT using a calibrated/validated tank model, we introduce a virtual (or 

imaginary) “age” tracer in to the model (Such an approach has been already attempted by Goode 

(1996) for groundwater and Khatiwala et al. (2001) for Ocean). Concentration of this conservative and 

nonreactive tracer, A(i), is computed by 

 
( ) ( )

( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) 1V T r V H E s

dh i A i
q i A i f i T q i q i A i f i E A i

dt
          for i = 2 to 5.       (21) 

    If we define the age as the elapsed time after the water entering to the catchment across the ground 

surface, then A(1) = 0 throughout the simulation period. Solving A(i) under this boundary conditions, 

the value of A(i) indicates the mean age of water in each tank, and MTT, AQ, can be predicted as   

       

5

1

( ) ( )H

i
Q

q i A i

A
Q




.                                                                                                                        (22) 
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    If we take a time step of 1 day, unit of A(i) and AQ, is day; the last term, which is unity, indicates the 

rate of ageing. 

3.3.5 Estimation scheme for time-variant transit time distribution (TTD) 

A scheme for predicting time-variant TTD is different from that for MTT. In this scheme, a virtual 

(or imaginary) “date” tracer is introduced to the model as pulse (or artificial) input at a time window 

rather than as continuous (or natural) input. Now we consider concentration of the date tracer, D(i, j), 

in the i-th tank at the j-th time window. Although length of the time window is arbitrary, we took 30 

days in the present study. The D(i, j) at the 1
st
 tank can be assigned as follows, 

(1, ) 1D j                     for 30(j-1) < t < 30j,                                                       (23) 

And then temporal evolution of D(i,j) at each tank was computed by the following equation: 

 
( ) ( )

( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )V T r V H E s

dh i D i
q i D i f i T q i q i D i f i E D i

dt
                 for i = 2 to 5.     (24) 

Also, we can compute concentration of the date tracer in total runoff water: 

5

1

( ) ( , )

( )
H

i
Q

q i D i j

D j
Q




.                                                                                   (25) 

The value of DQ(j) at a given time represents proportion of water that entered below the ground at j-

th time window to the total runoff water at the time. For example (see Figure 3.10), when t = 180 (d), 

DQ(1) means proportion of water having transit times from 150 to 180 (d) and DQ(6) indicates that for 

transit times from 0 to 30 (d). On the other hand, when t = 360 (d), DQ(1) and DQ(6) reflect proportion 

of water with transit times from 330 to 360 (d), and from 180 to 210 (d), respectively. Consequently, 

DQ(j) corresponds to the TTD function and it is time-variant. 
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One problem is that the maximum transit time to be evaluated is limited by the simulation period. 

For instance, if we conduct 1-yr simulation, contribution from water having transit time longer than 1 

year cannot be accounted for, even though total contribution of old waters with unknown transit time 

can be estimated. Therefore, contribution-weighted-mean of the transit time based on DQ(j) are not 

always equivalent to the MTT predicted by the another scheme given in section 3.3.4. 

To obtain time-variant TTD, McGuire et al. (2007) employed similar approach. However, they 

evaluated it as temporal variation of a tracer concentration that is applied instantaneously at a given 

time in a model; it corresponds to a single DQ(j) time-series in our scheme. In this context, an approach 

of Botter et al. (2010) is the same. On the other hand, we evaluate TTD by combination of multiple 

DQ(j) time-series. Although this procedure is somewhat complicated, it should represent TTD more 

correctly for stream water sampled at a given time. The difference between these two approaches is 

examined in section 5.1. The main scheme could be referred as Figure 3.11, and the upper boundary 

setting for models as well as parameter period was shown as Figure 3.12.  
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Table 3.1 Annual average river discharge (m3/s) at outlet of each sub-catchments (SCs). 

 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Y1 -- -- 9.70 4.88 6.17 4.93 3.34 -- -- 

Y2 9.44 13.79 14.51 8.19 10.27 8.81 9.23 7.10 14.15 

Y3 -- 29.87 31.19 20.67 26.14 19.50 17.27 21.71 26.10 

Y4 -- 18.03 21.26 14.26 13.11 13.28 12.49 13.28 16.33 

Y5 57.24 75.27 79.65 44.22 49.85 53.29 68.97 51.30 67.90 
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Figure 3.1 Map of study area. 
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Figure 3.2 Locations of isotopic monitoring sites. 

 

  



29 

 

 

Figure 3.3 Locations of meteorological observation stations. 
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Figure 3.4 Gridding of Radar data. 

  



31 

 

 

Figure 3.5 Thinessen polygons for estimating areal precipitation. 
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Figure 3.6 Time series of isotopic composition of precipitation (crosses) and river water (circles); (a) δD, (b) 

δ
18

O, and (c) d-excess. 
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Figure 3.7 Relationship between δ
18

O and δD of precipitation. 
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Figure 3.8 Relationship between δ
18

O and δD of precipitation in each season. 
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Figure 3.9 Structure of the tank model with five-layers. 
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Figure 3.10 Schematic illustration of TTD calculation. 
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Figure 3.11 Flowchart of estimating MTT and TTD. 
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Figure 3.12 Upper boundary conditions of the model 

 



39 

 

Chapter 4    Results 

Results 

4.1 Water balance 

Hydrograph in water balance simulation for calculation and validation from 2006 to 2010 (from 

2006 to 2008 for SC1 by considering the data condition) were shown in Figure 4.1. Table 4.1 shows 

the calibration and validation results evaluated by Nash-Sutcliffe Efficiency (NSE), which is a 

normalized statistic that determines the relative magnitude of the residual variance ("noise") 

compared to the measured data variance ("information") (Nash and Sutcliffe, 1970). The NSE is 

represented by the following equation.  

 

   
2 2

1 1

1 /
n n

obs sim obs mean

i i i i

i i

NSE Y Y Y Y
 

 
    

 
                                                                (1) 

 

 where Y is the runoff, and super scripts obs, sim and mean denote observed, simulated and 

observed mean values, respectively. When NSE equal to 1, the result is the best. On the contrast, 

when NSE is smaller than 1 and approaching to 0, simulation is getting worse. If the NSE is around 

or more than 0.4, one can judge the performance is acceptable. The calibration and validation were 

carried out with the goal of the best agreement between simulated and observed runoff at the outlet of 

each SCs. After the determination of parameters in the calibration period, one can examine the result 

in the validation period (Table 4.1). The optimized simulation shown in Figure 4.1 exhibited a good 

agreement with observed runoff. For getting better-optimized combination of model parameters, 
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20,635 times of simulations were carried out. Optimized parameters settings finally obtained are 

summarized in Table 4.2. 

For SC1 the model was calibrated within the period of 1
st
 Jan. 2006 and 31

st
 Dec. 2006, and the 

period for validation is between 1
st
 Jan. 2007 to 31

st
 Dec. 2009. For SC2-SC5 the calibration period is 

between 1
st
 Jan. 2006 and 31

st
 Dec. 2007, and the validation period is between 1

st
 Jan. 2008 to 31

st 

Dec. 2010, as shown in Table 4.1. The simulated results fit the observed data acceptably (Figure 4.1), 

where most of the NSE is higher than 0.3; in case of SC5, NSE is higher than 0.6 in calibration period 

and around 0.5 in validation. For all of the SCs water balance simulation, deflected discharge from 

observed data shown in SC2 in 2009 and others, as shown in Figure 4.1. The observed discharge from 

SC2 is relatively lower than those from other SCs, especially in 2009.  

The long-term mean values of hydrological variables for each SC are summarized in Table 4.3. 

Especially for the value of evaporation (E) and transpiration (Tr) could be considered as small amount 

comparing to the precipitation amount. Long-term average runoff both for observed and simulated 

values could be checked from Table 4.3. At the same time, storage of each layer of each SC has been 

calculated as the thickness of each tank. Total storage shown in Table 4.4 was considered as the sum 

of the storage over all layers. 

 

4.2 Isotope balance 

Transit time is expected to depend upon not only water flow but also water storage within the 

catchment (or tank in the model). Water balance simulation or simulated discharge is sensitive to the 

change in water storage and less sensitive to the water storage itself. On the other hand, isotope 

balance simulation is more sensitive to water storage. Therefore, better performance of isotope 

balance simulation can be linked to better estimation of transit time.  
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The river water δ
18

O and δD were relatively stable than the precipitation isotopes data, as shown 

in Figures 4.2 to 4.6. The calibration and validation period for isotopes simulation were slightly 

different among SCs as summarized in Table 4.5. The table shows RMSE of simulated δ
18

O and δD. 

The RMSE values for δ
18

O are smaller than those for δD. By considering the total performance of 

δ
18

O and δD, combined RMSE (=(RMSE_δD/8+RMSE_δ
18

O)/2) was used for choosing the optimal 

results. The combined RMSE of SC3 and SC5 are smaller than other SC. On the contrast, the 

combined RMSE of SC4 is 1.08. For SC3, simulated results well corresponds to observed data, not 

only for δ
18

O and δD, but also for d-excess (Figure 4.4). However, in most SCs and variables, non-

negligible differences between the simulated and observed values still exist, probably because of 

spatial heterogeneity of the isotope compositions of precipitation.  

 

4.3 Spatial and temporal variation of MTT 

  Figures 4.7 to 4.11 represent the MTT variations with precipitation at SC1 to SC5. Daily results 

were shown for about ten years, as well as monthly results. As precipitation happen, MTT were 

changed significantly. The MTT ranges from several years to decades. In case of SC1 and SC4, the 

MTT are all lower than the other SCs, and the ranges of MTT at SC1 were mainly from 2.6 yr to 13.0 

yr, which with 8.0 yr as average value. At SC4, MTT were mainly between 6.8 yr to 12.5 yr. At SC2, 

the ranges of MTT variation are from 5.4 yr to 31.4 yr. At SC5, the minimum value is 5.1 yr and the 

maximum value is 31.5 yr. The MTTs at SC2 and SC5 tend to be greater than other SCs, especially 

during dry periods. The amplitudes of MTT variations were different for each SC; the coefficient of 

variation (CV) at SC2 and SC5 are greater than the other SCs (Table 4.6). At SC4 with the smallest 

variation, CV was about 14.55%. The ranges at SC3 are between 6.7 yr to 25.5 yr, with intermediate 

values of MTT as compared to the other SCs. 
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  For monthly results, more obviously trend of MTT variation associated with precipitation can be 

seen from lower panels of Figures 4.7 to 4.11. For example, as precipitation amount is greater, MTT 

is smaller, and high MTT exists during relatively dry periods, vice versa. MTT values tend to be 

higher during dry periods and smaller during wet periods. The amplitudes of the change are different 

for each SC; the amplitude at SC4 is the smallest. The comparison of monthly MTT and precipitation 

showed more obvious relationships than daily values, probably because random noise in the MTT-

precipitation relationship is cancelled out by averaging procedures.    

  LAMTT in winter, which could be considered as typical value in the dry period, tends to be higher 

than in the other seasons (Table 4.6). On the contrast, LAMTT in summer (i.e., rainy season) showed 

smallest value.  

 

4.4 Spatial and temporal variation of TTD 

  Two examples of estimated TTD are shown in Figure 4.12. The first case (4 Sep. 2011) reflects 

situations just after a large storm event. The peak of transit time is located on the left-hand edge; the 

youngest component (i.e., transit time < 30 days) is the most dominant contributor, accounting for 

more than 20% of total river water. The shape of the TTD is similar to an exponential form, while 

there are 1-yr periodic variations, probably due to seasonal variations in precipitation. Conversely, the 

second case (17 Feb. 2011) reflects low flow conditions during a long drought period. The peak in 

transit time shifts toward a greater (i.e., older) time domain and the peak height is small (< 0.5%). 

The shape of the TTD for this case is similar to neither exponential nor any other known functions. 

Consequently, it is clear that the TTD is highly variable over time, reflecting that the history of 

precipitation variation and the assumption of idealized TTD functions, which have often been applied 

in previous studies, are not appropriate.  
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  In the present study, TTD computation was performed for six years (2006−2011), so that 

components older than six years (= 2,190 days) cannot be explicitly evaluated. Because the MTT 

extends to more than 20 years, Figure 4.12 does not show the entire range of TTD. In other words, 

integration of the TTD shown in Figure 4.12 cannot give the actual MTT. Therefore, the use of a TTD 

estimation scheme is not recommended for the purpose of MTT estimation. 

Figure 4.13 shows the comparison of TTD between five SCs.  Not only the cases for the SC3, but 

also for the cases of the other SCs, the difference of TTD due to wetness conditions mentioned above 

can be found. At SC1 and SC3, younger components of water account for relatively higher 

percentage than in the other SC for both wet and dry cases. 
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Table 4.1 Evaluation for simulations of water balance. 

  SC1   SC2   SC3   SC4   SC5  

 Period NSE Period NSE Period NSE Period NSE Period NSE 

Calibration 2006 0.2711 2006-2007 0.4342 2006-2007 0.3746 2006-2007 0.5019 2006-2007 0.6025 

Validation 

2007 0.343 2008 0.326 2008 0.404 2008 0.064 2008 0.570 

2008 0.010 2009 0.058 2009 0.217 2009 0.403 2009 0.342 

  2010 0.289 2010 0.297 2010 0.311 2010 0.487 
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Table 4.2 Parameters setting for each layer.  

 SC1 SC2 SC3 SC4 SC5 

Kr1 7.5E-06 7.3E-06 6.2E-05 4.0E-06 5.3E-06 

Kr2 1.6E-06 4.2E-06 6.7E-07 3.7E-07 1.9E-06 

Kr3 1.0E-07 4.5E-07 8.6E-08 7.5E-08 2.5E-07 

Kr4 2.6E-08 4.8E-08 6.4E-08 8.0E-09 3.0E-08 

Kr5 2.0E-09 5.4E-08 8.7E-08 6.8E-08 1.1E-09 

Kd1 1.3E-05 1.1E-05 5.8E-05 1.5E-05 8.0E-06 

Kd2 2.5E-06 7.5E-05 8.2E-07 1.5E-06 7.7E-06 

Kd3 3.9E-07 8.1E-08 2.1E-06 8.5E-07 1.2E-07 

Kd4 4.7E-08 3.0E-07 5.7E-09 4.6E-08 1.3E-08 

Hr1 2.5 14.3 3.0 6.1 5.3 

Hr2 22.0 11.3 5.0 15.9 19.5 

Hr3 73.0 30.0 140.0 85.8 13.3 

Hr4 338.6 29.5 230.0 190.0 183.3 

Hr5 617.3 20.9 50.0 188.7 425.8 

Hd1 10.4 21.4 8.0 10.0 12.4 

Hd2 30.0 59.8 15.0 18.1 42.5 

Hd3 85.0 80.0 210.0 101.1 42.9 

Hd4 369.0 90.0 300.0 290.0 203.3 

Hd5 671.7 420.2 350.0 308.7 454.3 
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Table 4.3 Area and long-term* mean hydrological variables characterizing each SC 

Variables** SC1 SC2 SC3 SC4 SC5 

Area 

(km
2
) 

268.03 518.54 905.70 480.27 2172.72 

Total  depth of water 

over all tanks in the 

model (m) 

 

62.88 99.60 131.09 103.53 223.85 

P 

(mm/d) 
3.658 3.223 3.328 4.073 3.803 

ET 

(mm/d) 
3.117 2.852 3.123 3.928 3.129 

E 

 (mm/d) 
0.075 0.106 0.090 0.067 0.092 

Tr  

(mm/d) 
0.925 1.316 0.936 1.031 0.918 

I 

(mm/d) 
0.600 0.429 0.393 0.615 0.445 

Qobs 
(mm/d)* 

5.806 10.610 24.279 15.316 60.862 

Qsim 

(mm/d) 
7.454 16.733 30.637 17.259 78.392 

P − Qsim 

(mm/d) 
1.255 0.435 0.405 0.969 0.686 

ET/(P − Qsim) 

(%) 
40.275 15.251 12.974 24.657 21.909 

 

* 2004-2012 for SC1, 2002-2012 for SC2, 2003-2012 for SC3, 2003-2012 for SC4, and 2002-2012 for SC5. 

** P is the precipitation, ET is the evapotranspiration, E is the soil evaporation, Tr is the transpiration, I is the 

interception, Qobs is the observed runoff, Qsim is the simulated runoff 
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Table 4.4 Storage of water in each layer and total storage. 

 SC1 SC2 SC3 SC4 SC5 

Layer1 (m) 0.55  3.15  0.77  0.61  11.05  

Layer2 (m) 14.57  13.68  18.03  24.51  19.12  

Layer3 (m) 3.37  21.54  13.90  21.30  12.44  

Layer4 (m) 8.10  15.02  25.89  12.34  21.21  

Layer5 (m) 36.29  46.21  72.50  44.77  160.03  

Total (m) 62.88  99.60  131.09  103.53  223.85  
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Table 4.5 Evaluation for simulations of isotope balance. 

  

Period 

RMSE 

(δ
18

O) 

RMSE 

(δD) 

RMSE 

((δD/8+ δ
18

O)/2) 

SC1 

Calibration 2011.04-2011.07 0.54 4.6 0.56 

Validation 2011.08-2012.03 0.57 1.8 0.40 

SC2 

Calibration 2011.04-2011.10 1.00 7.1 0.80 

Validation 2011.10-2012.03 0.30 3.2 0.35 

SC3 

Calibration 2010.05-2011.07 0.23 1.6 0.24 

Validation 2011.08-2012.03 0.24 2.4 0.22 

SC4 

Calibration 2011.05-2011.10 1.17 8.8 1.08 

Validation 2011.11-2012.03 0.17 1.1 0.16 

SC5 

Calibration 2011.04-2011.10 0.21 1.9 0.23 

Validation 2011.10-2012.03 0.27 3.6 0.36 
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Table 4.6 Long-term statistics of estimated mean transit time. 

 SC1 SC2 SC3 SC4 SC5 

Average (yr) 7.96 14.20 16.54 9.89 14.62 

Minimum (yr) 2.56 5.39 6.70 6.84 5.05 

Maximum (yr) 12.96 31.38 25.49 12.51 31.47 

SD* (yr) 2.17 5.78 3.91 1.44 6.01 

CV** (%) 27.26 40.69 23.62 14.55 41.11 

 LAMTTSpring (yr) 
7.99  12.81  16.67  9.81  14.49  

  LAMTTSummer (yr) 
6.80  10.60  13.76  8.59  10.60  

 LAMTTAutumn (yr) 
7.22  12.47  14.76  9.78  12.12  

 LAMTTWinter (yr) 
9.67  20.82  21.00  11.41  21.03  

*SD:  Standard deviation;  

**CV: Coefficient of variation  



50 

 

 

Figure 4.1 Comparison between observed and simulated hydrographs for both calibration and validation phases. 
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Figure 4.2 Comparison between observed and simulated isotope compositions for both calibration and 

validation phases in SC1. 
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Figure 4.3 Comparison between observed and simulated isotope compositions for both calibration and 

validation phases in SC2. 
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Figure 4.4 Comparison between observed and simulated isotope compositions for both calibration and 

validation phases in SC3. 
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Figure 4.5 Comparison between observed and simulated isotope compositions for both calibration and 

validation phases in SC4. 
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Figure 4.6 Comparison between observed and simulated isotope compositions for both calibration and 

validation phases in SC5. 
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Figure 4.7 Temporal variations of MTT and precipitation in SC1; (upper) daily values and (lower) monthly 

values. 
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Figure 4.8 Temporal variations of MTT and precipitation in SC2; (upper) daily values and (lower) monthly 

values. 
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Figure 4.9 Temporal variations of MTT and precipitation in SC3; (upper) daily values and (lower) monthly 

values. 
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Figure 4.10 Temporal variations of MTT and precipitation in SC4; (upper) daily values and (lower) monthly 

values. 
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Figure 4.11 Temporal variations of MTT and precipitation in SC5; (upper) daily values and (lower) monthly 

values. 
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Figure 4.12 Examples of (top) hydrograph separated by different time source and selected TTD of (a) wet and (b) 

dry cases). 
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Figure 4.13 Inter-catchment comparison of selected TTDs; (a) wet and (b) dry cases. 

  

(a) 

(b) 



63 

 

Chapter 5   Discussion 

Discussion 

5.1 Sensitivity of simulation  

Sensitivity analyses enable to distinguish which uncertainty-sources impact the output 

predominantly. It is a common and useful way to find an optimal solution and to evaluate uncertainty 

from plenty of results that provided by Monte Carlo simulation (Moel et al., 1971). This method 

performs sampling from a possible range of the input parameter values followed by model evaluations 

for the sampled values. An essential component of every Monte Carlo simulation is the generation of 

random samples. These generating methods produce samples drawn from a specified distribution 

(typically a uniform distribution). The random numbers from this distribution are then used to 

transform model parameters according to some predetermined transformation equation. The optimal 

result was chosen from more than 20,000 times of Monte Carlo simulation (Figure 5.1), within which 

optimal range of each parameter have been magnified in the smaller boxes. For inspecting the 

sensitivity of the MTT, results of 100 Monte Carlo simulations were chosen for clarifying relationship 

of LAMTT with NSE for water flow simulation or RMSE for isotope transport simulation (Figure 5.2). 

From Figure 5.1, variation of the MTT deviations from the optimal value were ranged around 3.0 years 

with 5% changes of model parameters. In other words, the MTT would change around 3 years if the 

uncertainty within 5% errors of model parameters. Figure 5.3 shows MTT change caused by errors of 

each parameter.  
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5.2 Temporal variability of MTT and TTD 

  Concerning if the data length for calculating transit time is long enough or not, it is necessary to 

discuss the length of the ten-year data have been used in this study.  From Figure 4.7 to Figure 4.11, as 

well as the standard deviation in Table 4.6, the pattern of MTT change of year to year is not so much 

different. So, ten-year data is long enough for investigating the daily variation of MTT and TTD in this 

study. 

  As mentioned in section 4.6, temporal variation of MTT seems to be induced by occurrence of 

precipitation events. In this section, relationship between temporal variations of MTT and precipitation 

amount is examined at four different time scales. For daily values, the inverse relationship between 

MTT and precipitation amount was clearly found (Figure 5.4 (a) to Figure 5.8 (a)). However, R
2
 values 

are generally low for most of SCs, except for SC4 (R
2
 > 0.4). On the other hand, for monthly values, 

R
2
 values are relatively high up to 0.87 for SC4 (Figure 5.4 (b) to Figure 5.8 (b)). This may be because 

random noise in the relationship tends to be canceled out. For both time scales, exponential decay 

fitting provides better results than line fitting does. This means that change in MTT per unit increase in 

precipitation is not constant but is getting small with increasing precipitation amount. The reason for 

this is because deep groundwater, which cannot be refreshed quickly and thus have greater age, 

contributes to runoff even though precipitation amount is very large.  

Inter-catchment comparison of relationships between monthly average MTT and monthly total 

precipitation at each SC is shown in Figure 5.9. The y-intercept of the regression curve ranges from 

10.40 for SC1 to 23.99 for SC2, which could be considered as the MTT when monthly precipitation 

equals to 0. The inter-catchment difference of the y-intercept is similar to that for LAMTT (Table 4.6). 

However, as precipitation amount is getting greater, monthly average MTT of all the SCs approaches 

to a same value. As the result, the change in MTT per unit increase in precipitation is greater at SC2, 
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SC3 and SC5 than at SC1 and SC4. Possible factors controlling such an inter-catchment difference are 

discussed in the next section. 

Fundamentally the same characteristics mentioned above can be found for the seasonal (i.e., 3-

month interval) time scale (Figure 5.10). However, correlation between annual average MTT and 

annual total precipitation is relatively weak (Figure 5.11), indicating that year-to-year variation of 

MTT is not very large.  

 

5.3 Factors controlling spatial variability of long-term average MTT 

(LAMTT) 

To identify the relative significance of various factors characterizing each catchment in controlling 

LAMTT, the relationships of LAMTT with the several topographic indices (Table 5.1; Figure 5.14), 

percentage of slope ranks (Table 5.2), coverage of surface soil types (Table 5.3; Figure 5.12), coverage 

of land use types (Table 5.4; Figure 5.18), coverage of surface geology types (Table 5.5; Figure 5.16) 

and water balance component (Table 4.3) were analyzed. Scatter plots of LAMTT versus these factors 

are shown in Figures 5.13, 5.15, 5.17, 5.19, 5.20, and 5.21.  

In this study, not significant relationship between area and LAMTT was found (Figure 5.15); this is 

no contradictory with previous studies. Although Hrachowitz et al. (2010) have shown that the MTT 

tends to be greater as catchment size increases, high values of MTT have also been obtained for the 

small size catchments. Linear relationship between catchment-mean elevation and LAMTT could not 

be seen (Figure 5.15). McGuire et al. (2005) have also shown no direct relationship between MTT and 

elevation. The catchment-mean slope showed a weak negative relationship with LAMTT. This is 
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similar with the results of McGuire et al. (2005). For the other topographical indexes, the maximum 

length of river and total storage showed no strong relationship. 

For geological factors, the following geological composition found in the study area have been 

taken into consideration: basalt of undefined geological time (Ba), welded tuff of Quaternary (Wt), 

sandstone-shale-conglomerate of Mesozoic (Ss), and granite of undefined geological time (Gr). 

Among them, Ss showed positive relationship with LAMTT (Figure 5.17). 

Coverage of the forest has positive relationship with LAMTT, while agricultural land and range 

grass land showed negative relationship (Figure 5.19). The forest is the dominant land-use type over 

the whole study area and its percentage ranges from 67% to 94% (Table 5.4). The residual percentage 

is mainly occupied by agricultural land and range grass land, so the relationship between land use type 

and LAMTT can be summarized by coverage of the forest or the other land use. 

Although the absolute value of evaporation and interception are not large very much as compared to 

the total amount of precipitation (Table 4.2), obvious relationships of them with LAMTT can be seen 

(Figure 5.20). Figure 5.21 shows the relationship between storage of each layer at each SC and 

LAMTT; a strong relationship between the storage in 4th layer and LAMTT. In the tank model, 4
th

 

layer tank is proxy of groundwater storage. Therefore, it is inferred that groundwater storage plays an 

important role in controlling LAMTT. 

Table 5.6 and Figure 5.22 summarize correlation of LAMTT with selected factors or between the 

factors, which have high correlation coefficient. From Figure 5.22, it is clearly found that coverage of 

forest in each SC has negative correlation with evaporation and positive correlation with interception. 

Forests distribute at high-slope areas, so that forest coverage has positive correlation with areal 

percentage of slope between 3-90˚. In addition, forest coverage and percentage of slope between 3-90˚ 

has negative correlation with storage of 4
th

 layer tank in the model.  
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To identify the most important factors controlling LAMTT, a multi-regression analysis was carried 

out using the following parameters: areal percentage of slope between 3-90˚, storage of Layer 4, 

coverage of Ss, coverage of forest, and soil evaporation. Since the correlation between them is 

considerably high, independent parameter of the best model is only storage of Layer 4 (Table 5.7, 

Table 5.8 and Table 5.9). This result suggests groundwater storage is the most important factor 

controlling LAMTT. In the mountainous areas, forest is the dominant land use, soil evaporation is low 

and slope is high. Therefore, it can be inferred that groundwater storage is small in the mountainous 

and thus LAMTT is also small. On the other hand, in the plain area, groundwater storage and LAMTT 

is large. 

Additional parameter in the second best multi-regression model was coverage of Ss. This may be 

because sand-shale-conglomerate of Mesozoic is deposited as alluvial fans in the study area and forms 

good groundwater aquifer. This result also support that groundwater storage associated with 

topography is the most important factor controlling LAMTT.  

In the previous study, the importance of groundwater storage or its topographic control has not been 

clarified. This is probably because mountainous small catchments have been mainly focused in the 

previous studies and few meso-scale catchments that include plains with large groundwater storage 

have been studied. 
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Table 5.1 Summary of topographic indices for each SC. 

ID 
Elevation 

(m) 

Area 

(km2) 

Weighted 

 Slope (˚) 

MaxL_river* 

(km) 

SC1 1211.10 268.00 28.60 28.10 

SC2 615.60 518.50 25.78 36.24 

SC3 448.00 905.70 23.01 52.02 

SC4 2455.40 480.30 23.63 43.23 

SC5 376.20 2172.70 22.57 84.59 

* MaxL_river: Maximum length of river 
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Table 5.2 Percentage of slope ranks in each SC. 

 Slope  

(˚) 
SC1 SC2 SC3 SC4 SC5 

0~3 2.03 9.49 16.21 6.8 1.06 

3~5 1.58 2.65 3.35 10.28 14.65 

5~8 2.93 3.83 3.99 10.25 6.39 

8~15 9.38 9.48 9.86 10.93 17.62 

15~25 21.32 19.02 18.62 13.73 16.46 

25~30 14.94 12.86 11.7 8.88 10.04 

30~45 41.67 37.06 31.69 30.57 28.49 

45~60 6.08 5.56 4.53 8.22 5.16 

60~75 0.07 0.05 0.05 0.33 0.12 

75~ 0 0 0 0.01 0 
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Table 5.3 Coverage (%) of surface soil types in each SC. 

  SC1 SC2 SC3 SC4 SC5 

Brown forest soil 57.06 73.00 67.98 75.20 49.55 

Podsol 5.51 6.49 5.65 12.39 10.47 

Andosol 17.70 7.89 8.66 3.57 28.48 

Lithosol 2.41 1.47 1.12 2.78 5.40 

Rocky land 1.11 0.57 0.46 1.09 1.50 

Red yellow soil 4.38 5.21 5.58 4.37   

Gley soil 2.08   1.99     

Others 0.69   0.09   1.03 
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Table 5.4 Coverage (%) of land use types in each SC. 

  SC1 SC2 SC3 SC4 SC5 

Forest  86.71 76.46  67.55  93.84  67.11  

Agriculture  8.29 15.53 16.14 0.44 13.31 

Residence  1.78 1.24 1.78 1.03 2.87  

Range grass  1.93 4.47 7.44 2.84 6.02 

Transportation 0.03 0.22 0.48 1.74 0.46 

Water  0.50 1.22 1.99 0.11 2.21 

Institution  0.06 0.16  0.74  - 0.93  

Rice  0.49 0.59 3.21  - 6.52 

Pasture - 0.12 0.66  - 0.57 
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Table 5.5 Coverage (%) of surface geology types in each SC. 

  SC1 SC2 SC3 SC4 SC5 

Ba 77.67 61.17 45.13 2.99 22.17 

Wf 17.85 13.91 19.72 7.11 16.04 

Ss 1.95 22.01 15.37 6.04 10.64 

Gr 2.54 1.31 2.33 20.43 5.54 

Gc 

 

1.61 9.85 6.19 12.32 

Smc 

  

3.96 23.71 16.9 

Dg 

  

3.43 23.62 12.43 

An 

  

0.21 3.52 2.56 

Sscs 

   

3.98 0.88 

Li 

   

2.26 0.5 

Cs       0.15 0.03 
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Table 5.6 Correlation matrix among LAMTT and related factors. 

 Slope Storage Ss Forest E LAMTT 

Slope 1.00      

Storage -0.85 1.00     

Ss -0.74 0.54 1.00    

Forest 0.81 -0.86 -0.58 1.00   

E -0.67 0.48 0.89 -0.74 1.00  

LAMTT -0.90 0.93 0.80 -0.89 0.74 1.00 
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Table 5.7 Multi-regression Coefficients. 

  Unstandardized Coefficients Standardized coefficients   

Model B Std. Error Beta t Sig. 

1 (Constant) 4.87 1.85  2.63 0.08 

StorageL4 0.01 0.00 0.93 4.51 0.02 

2 (Constant) 4.61 0.49  9.35 0.01 

StorageL4 0.00 0.00 0.71 10.85 0.01 

Ss 0.19 0.03 0.42 6.35 0.02 

a. Dependent Variable: LAMTT  
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Table 5.8 Multi-regression analysis for chose characters. 

Model R R Square 

Adjusted R 

 Square 

Std. Error of 

 the Estimate 

1 0.93a 0.87 0.83 1.48 

2 1.00 b 0.99 0.99 0.39 

a. Predictors: (Constant),  StorageL4 

b. Predictors: (Constant),  StorageL4, Ss 
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Table 5.9 Results of ANOVA
c
. 

  Sum of  

Squares 

df Mean Square F Sig. 
Model 

1 Regression 44.47 

6.56 

51.03 

50.72 

0.31 

51.03 

1 44.47 20.32 0.02
a
 

Residual 3 2.19   

Total 4    

2 Regression 2 25.36 163.43 0.01
b
 

Residual 2 0.16   

Total 4    

 

a. Predictors: (Constant), StorageL4 

b. Predictors: (Constant), StorageL4, Ss 

c. Dependent Variable: LAMTT 
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Figure 5.1 Scatter diagrams of Monte Carlo simulations for examining sensitivity of water flow simulation to 

model parameters for SC3. 
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Figure 5.2 Results of 100 Monte Carlo simulations for sensitivity analysis: relationship of long-term mean MTT 

deviation (ΔMTT) with (left) Nash-Sutcliffe efficiency (NSE) for water flow simulation, and (right) combined 

root mean square error (combined-RMSE; see text for definition) for isotope transport simulation for SC3. 
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Figure 5.3 Sensitivity of water flow simulation to model parameters for SC3. 
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Figure 5.4 Relationship between MTT and precipitation amount in SC1; (a) daily average and (b) monthly 

average. 

  

a) 

b) 
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Figure 5.5 Relationship between MTT and precipitation amount in SC2; (a) daily average and (b) monthly 

average. 

  

a) 

b) 
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Figure 5.6 Relationship between MTT and precipitation amount in SC3; (a) daily average and (b) monthly 

average. 

 

a) 

b) 
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Figure 5.7 Relationship between MTT and precipitation amount in SC4; (a) daily average and (b) monthly 

average. 

  

b) 

a) 
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Figure 5.8 Relationship between MTT and precipitation amount in SC5; (a) daily average and (b) monthly 

average. 

  

b) 

a) 
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Figure 5.9 Inter-catchment comparison of relationships between monthly average MTT and  precipitation 

amount. 
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Figure 5.10 Inter-catchment comparison of relationships between 3-month average MTT and  precipitation 

amount. 
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Figure 5.11 Inter-catchment comparison of relationships between annual average MTT and  precipitation 

amount. 
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Figure 5.12 Spatial distribution of surface soil types and their coverage in each SC. 
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Figure 5.13 Releationship of LAMTT and coverage of surface soil types in each SC. 
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Figure 5.14 Topographical condition of each SC. 
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Figure 5.15 Relationship of LAMTT and topographical index of for SC. 
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Figure 5.16 Spatial distribution of surface geology types and their coverage in each SC. 
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Figure 5.17 Relationship of LAMTT and coverage of surface geology types in each SC. 
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Figure 5.18 Spatial distribution of land use types and their coverage in each SC. 
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Figure 5.19 Relationship of LAMTT and coverage of land use types in each SC. 
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Figure 5.20 Relationship of LAMTT and water fluxes in each SC. 
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Figure 5.21 Relationship between LAMTT of each SC and storage in each layer.  



98 

 

 

Figure 5.22 Correlation among potential factors controlling LAMTT. 
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Chapter 6   Conclusions 

Conclusions 

 In this study, an approach to estimate the time-variant MTT and TTD using a five-layer tank model 

with isotopic tracers was proposed and tested for the five sub-catchments (SC1 to SC5) within Fuji 

River catchment, central Japan. The main conclusions are summarized as follows. 

The long-term average MTT for each SC was estimated to be from 8.0 to 16.5 years. These values 

of MTT are almost comparable with previously reported values using the independent methods for the 

same region. In addition, the tank model used for the transit time estimation was calibrated and then 

validated by comparing observed and simulated results of not only water balance but also isotope 

balance. Although optimized model-parameters have some uncertainties, potential errors in estimating 

the MTT are relatively small (e.g., < ±3.0 years). Therefore, it is concluded that the use of the tracer-

aided tank model for estimating catchment transit time is valid. 

Daily/monthly/seasonal MTT was highly variable in time. Instantaneous TTD also varied markedly; 

the peak transit time is longer in drier periods than in wetter periods and form of the TTDs could not 

be approximated by any functions previously proposed. The predominant factor controlling temporal 

variability of MTT is precipitation amount. Occurrence of precipitation alters TTD, with increases in 

younger components, and shortens the MTT. In other words, river water is repeatedly refreshed by 

precipitation and ages during rainless periods. Thus, the steady-state assumption for MTT and TTD 

estimation is not appropriate. 

Long-term MTT values correlated with mean slope, coverage of Mesozoic sand stone/shale, 

coverage of forest (or conversely the other land use types), evaporation, interception and storage 
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(especially, of the 4-th tank) for each catchment. All of these are related to the amount of groundwater 

storage, which is smaller in mountainous areas and greater in plain areas. Such a topographic control 

of LAMTT for meso-scale catchments is a new finding, since the most previous studies have focused 

on mountainous small catchments. 
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