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1 Introduction

In this thesis, we consider the Witten's cubic string �eld theory [1], which is the �eld theory of bosonic
open string. The action is expressed by

S =
1

g2

[
1

2
〈Ψ|Q|Ψ〉+

1

3
〈Ψ|Ψ ?Ψ〉

]
,

where |Ψ〉 is a string �eld, g is a coupling constant and Q is the BRST charge on world sheet theory. ?
denotes a star product which grew two string �elds to one string �eld. The �rst term is kinetic term, and
the second term is interaction term which corresponds to the three point vertex of string. Astonishingly,
it has been shown that this simple action reproduces the result of the purtarbation theory of string [2],
which corresponds to the �rst quantized theory of string.

One of the bene�t of considering a string �eld theory is that the theory enables us to discuss the
classical background of a string �eld. In the open string theory, one can �nd a background of open string
as some objects which is spacially extended and on which the open string can be attached. These objects
are called Dp-branes [3], where p denotes the spatial dimension of these object. Since the Dp-brane have
the energy and is localized in spatially p dimensional space, it is thought as a soliton of string. In the
open string �eld theory, a Dp-brane is expressed more simply, as a solution of the equation of motion of
the open string �eld theory [4].

As the guidepost to discuss the nonperturbative aspect of string �eld theory, Sen gives a conjecture
about the background of string �eld [5]. The Sen's conjecture states about the phenomenon called tachyon
condensation. In the perturbative vacuum, which corresponds to the single Dp-brane background, there
is a tachyon excitation. For example, we take p = 25 and consider bosonic open string. The existence of
tachyon shows the unstability of the background. In string �eld theory, one can consider the potential of
the tachyon �eld, and the perturbative vacuum will correspond to the local maximum of the potential.
Sen predicted that there is a local minimum in the tachyon potential as dipcited in 1, and no tachyon
excitation exists around there. This implies the vanishing of D25-brane. This background is called a
tachyon vacuum. Quantitatively, Sen's conjecture can be said that if one has a solution which corresponds
to the tachyon vacuum, the energy of the solution lower than perturbative vacuum by the energy of the
vanishing D25-brane. Sen also gives two conjectures. Sen's second conjecture is that there is a solution
which corresponds to the background with lower dimensional Dp-brane. This corresponds to the vacuum
where the tachyon �eld has the con�guration dipicted in Fig. 2. Since the con�guration of the energy
becomes a lump as depicted in Figure 3, the solution is called lump solution. Sen's third conjecture is
that there is no open string excitation around tachyon vacuum.

The �rst and the second Sen's conjectures are about the energy, which is the one of the gauge invariant
quantities. For the static solution, the energy is −S,

E [Ψ] = − 1

g2

[
1

2
〈Ψ|Q|Ψ〉+

1

3
〈Ψ|Ψ ?Ψ〉

]
.

There is another simple gauge invariant quantities, which is called as the gauge invariant observables
discovered in [6, 7]:

W [V,Ψ] = 〈I|V (ξ = i) |Ψ〉 ,

where V (ξ) is a on-shell closed string vertex operator, andξ is the coordinate of upper half plane. Similar
to the Sen's conjecture, Ellwood gives a conjecture about the gauge invariant observables. It tells that the
gauge invariant observables coincide with the di�erence of the one-point functions of an on-shell closed
string state between the trivial vacuum and the one described by the solution |Ψ〉 [8, 9].
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: tachyon vacuum

t=t 0

Figure 1: The potential of tachyon �eld

t(X)

X

t0

Figure 2: The lump solution
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Energy

X

Figure 3: The energy of the lump solution

In [10], Schnabl gives the tachyon vacuum solution1. The energy of this solution are computed ana-
lytically, and coincides with Sen's �rst conjecture. More simple expression for tachyon vacuum solution is
discovered by Erler and Schnabl in [12]. The solution is written by string �elds K, B and c [13, 14]. K and
B is de�ned by a line integral of energy momentum tensor and antighost on a speci�c frame, it is called
sliver frame, respectively. The operators satisfy a simple algebra, which is called KBc algebra, and a
simple transformation law under the action of BRST operator. Using this algebra and the transformation
low, one can show the equation of motion algebraically. The gauge invariant observables are computed
also, and the result coincides with Ellwood conjecture.

After the Erler-Schnabl solution of tachyon vacuum, some solutions have been constructed as a exten-
sion of it. In this thesis, we are interested in two speci�c solutions as a applications of our result. One
is the Murata-Schnabl solution, which is suggested as the solution of multi-brane background [15, 16].
The other is the Bonora-Maccaferri-Tolla (BMT) solution, which is suggested as the lump solution [4].
Although one can show that these solutions satisfy equation of motion easily, the computation of the
energy becomes di�cult. Especially, the energy of the BMT solution is computed only numerically and
there is no analytic result from the direct computation of its energy [17, 18]. On the other hand, the gauge
invariant observables are computed analytically and easily in both of the solutions. This is because that
the energy of the solution includes third power of |Ψ〉, while the gauge invariant observables is linear to
|Ψ〉.

Even though the computation of the energy of the solution is di�cult, we can compute the energy from
the gauge invariant observable which seems to have the meaning of the energy. We consider the gauge
invariant observable with the vertex operator

V =
2

πi
cc̄∂X0∂̄X0 ,

which is the linear combination of a constant graviton and dilaton operator. Since this operator corresponds
to the metric gµν with µ = ν = 0, the gauge invariant observable will be proportional to the expectation
value of the energy momentum tensor Tµν with µ = ν = 0. Therefore, it will equal to the energy of the

1For a review on these solutions, see [11].
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system. Actually, the gauge invariant observables with this vertex operator give desired result for the
energy in each solutions.

What we show in this thesis is to prove the relation between the energy and gauge invariant observable

E [Ψ] =
1

g2
〈I|V (i) |Ψ〉 .

This relation can make the computation of the energy easy little bit, because the energy can be computed
from gauge invariant observable. As a application, we will compute the energy of Murata-Schnabl solution
and BMT solution. Especially, it is useful to use this relation because the energy of the BMT solution can
be computed analytically using this relation. The result coincides with the Sen's second conjecture.

Our thesis is constructed as follows.
In the section 2, we review the Witten's cubic string �eld theory and its gauge symmetry brie�y. We

also give the notations which we use in this thesis. In the section 3, we review the Sen's conjectures and
Ellwood conjecture. We see the de�nition of the gauge invariant observable and the gauge invariance of it.
In the section 4, the construction of the Erler-Schnabl tachyon vacuum solution is reviewed. On the way
to construct, we review the de�nition of KBc algebra. We see that the energy and the gauge invariant
observable are calculated analytically and coincide with Sen's �rst conjecture and Ellwood conjecture re-
spectively. In the section 5, we review the Murata-Schnabl solution and BMT solution. The computations
of the energy and gauge invariant observable of both solutions are shown in that section. One can see how
the computations of the energy are di�cult, while the computations of the gauge invariant observable are
easy. In the section 6, we prove the relation between the energy and gauge invariant observable. We apply
it to Murata-Schnabl solution and BMT solution. The section 7 is devoted to conclusion. The appendixes
complement the computations in the section 6.

2 Witten's cubic string �eld theory

2.1 Notations and de�nitions of string theory

Let us de�ne the notation of the string theory, which we use in this thesis.
We will consider �at 26 dimensional spacetime. The coordinate on spacetimeXµ (σ, τ) (µ = 0, 1, · · · , 25)

is described by the free worldsheet theory. The action of the woldsheet theory is given by

SW [X, b, c] =
1

2πα′

∫
d2ξ∂Xµ∂̄Xµ +

1

2π

∫
d2ξb∂̄c+

1

2π

∫
d2ξb̄∂c̄ ,

where c and b are ghost �eld and antighost �eld of conformal symmetry on worldsheet. The Rigge slope α′

is taken to be 1 in this thesis. We assume that Xµ satisfy the Neumann boundary condition. The energy
momentum tensors become

T (ξ) = − : ∂Xµ∂Xµ : + : ∂bc : −2∂(: bc :) ,

T̄
(
ξ̄
)

= − : ∂̄Xµ∂̄Xµ : + : ∂̄b̄c̄ : −2∂̄(: b̄c̄ :) ,

where : : means normal ordering. ξ is the coordinate of upper half plane (U.H.P.), and we use this notation
in the following. Since c, b and T satis�es the boundary condition on real axis

T (ξ) = T̄
(
ξ̄
)
,

c (ξ) = c̄
(
ξ̄
)
,

b (ξ) = b̄
(
ξ̄
)
.
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It is useful to use doubling trick and de�ne c, b and T on whole complex plane. It is given by

T (ξ) =

{
T (ξ) , =ξ ≥ 0

T̄
(
ξ̄
)

, =ξ < 0
, (2.1)

the same extensions are applied to c and b.
BRST operator on the world-sheet of the open bosonic string Q is de�ned by

Q =

∮
dz

2πi

(
cT (X) + bc∂c+

3

2
∂2c

)
,

where T (X) is the X part of energy momentum tensor T . We frequently use the nilpotency of Q

Q2 = 0 ,

and the invariance of the correlation function

〈Q (· · · )〉R = 0 ,

where R is an arbitrary complex plane. We also use the Virasolo generators, which are de�ned by

Ln =
1

2πi

∮
dξξn+1T (ξ) .

2.2 Action of Witten's cubic string �eld theory

Witten's cubic string �eld theory [1] is the �eld theory of bosonic open string. The action is expressed by

S = − 1

2g2
〈Ψ|Q|Ψ〉+

1

3g2
〈Ψ|Ψ ?Ψ〉 , (2.2)

where |Ψ〉 is string �eld with worldsheet ghost number 1 and g is string coupling constant. The �rst term
of left hand side corresponds to kinetic term, and the second term corresponds to interaction term. The
string �eld |Ψ〉 is expanded by the basis of Fock space of worldsheet theory. In �at space, this expansion
becomes

|Ψ〉 =

∫
d26k

(
T (k) c1 + C (k) c0 +Aµ (k)αµ−1c1 + · · ·

)
|k〉 , (2.3)

where

|k〉 = eikX(0)|0〉 ,

with the SL (2,R) invariant vacuum |0〉. Since k runs any value, the modes in the integrand are the
o�-shell extensions of the vertex operators. The terms inside of the expansion are characterized by their
levels, which are de�ned by the eigenvalues of L0 + 1. One can specify the coe�cients of every levels as
the �elds of the corresponding string excitation. For example, since T (k) corresponds to level 0, it will be
speci�ed as the Fourier mode of Tachyon �eld.

We will explain the kinetic term and the interaction term of the action (2.2), by de�ning the inner
product 〈Ψ|Ψ′〉, and the star product ?. After these, we will see the gauge invariance of this action.
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Inner product

On the upper half plane, the state-operator mapping gives the expression,

|Ψ〉 = OΨ (ξ = 0) |0〉 ,

using corresponding local operator OΨ. To de�ne the action, we need conjugation of |Ψ〉. It is called BPZ
conjugation and de�ned by

〈Ψ| ≡ 〈0|I ◦ OΨ (0) ,

where I is inversion:

I ◦ ξ = −1

ξ
.

This maps the operator on ξ = 0 to ξ = ∞. With this conjugation, the inner product of string �elds
〈Ψ|Ψ′〉 is de�ned by expectation value

〈Ψ|Ψ′〉 = 〈0|I ◦ OΨ (0)OΨ′ (0) |0〉 , (2.4)

where we took the expectation value of ghost sector as

〈c (ξ1) c (ξ2) c (ξ3)〉U.H.P. = (ξ1 − ξ2) (ξ2 − ξ3) (ξ3 − ξ1) . (2.5)

Using (2.4), we can see the �elds T (k) , Aµ (k) , · · · have correct kinetic terms. Since the �elds T (k),
Aµ (k), etc. have to be real �elds, we need a condition imposing to string �eld. The condition is de�ned
by

(〈Ψ|)† = |Ψ〉 , (2.6)

where † denotes Hermitian conjugate. This condition is called the reality condition. For example, the part
of T (k) in the kinetic term of (2.2) becomes

− 1

2g2
〈Ψ|Q|Ψ〉 =

∫
d26k

1

2g2

(
1− k2

)
T (k)2 + · · · ,

and it shows that T (k) is tachyon �eld.

star product ?

To de�ne interaction term of (2.2), we have to de�ne the star product ?. In [19, 20], more general string
vertices are given by CFT expectation values on the disk, as

〈Ψ1|Ψ2 ?Ψ3 ? · · · ?Ψn〉 = 〈f (n)
1 ◦ OΨ1 (0) · · · f (n)

n ◦ OΨn (0)〉D , (2.7)

where D denotes a disk and

f
(n)
k =

(
1 + iξ

1− iξ

) 2
n

e
2πik
n . (2.8)

It is dipicted as Figure 4. When n = 2, this de�nition gives (2.4). From the form of expectation value
on the disk, one can see that the star product glues the right half of the |Ψi〉 with the left half of |Ψi+1〉,
and makes two string �elds |Ψi〉 and |Ψi+1〉 to one string �eld |Ψi ?Ψi+1〉. Then, the inner product means
gluing the right and left half of remaining string �eld after taking all star products of string �elds.
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Figure 4: The di�nition of the star product

From these de�nitions, the inner product and star product ? have following properties:

〈A|B〉 = (−1)|A||B| 〈B|A〉 ,
|A ? (B ? C)〉 = | (A ? B) ? C〉 ,
〈A|B ? C〉 = 〈A ? B|C〉 , (2.9)

〈QA|B〉 = − (−1)|A| 〈A|QB〉 ,
Q|A ? B〉 = |QA ? B〉+ (−1)|A| |A ? QB〉 ,

where |A〉 and |B〉 are arbitrary string �eld with arbitrary ghost number. |A| of |A〉 takes 0 when |A〉 is
bosonic and 1 when |A〉 is fermionic. Since Q is de�ned by integral of conformal weight 1 primary �eld,
these identities can hold on every coordinates. From these de�nitions, it has been shown that the action
(2.2) reproduces Veneziano amplitude [21, 22, 23, 24] and more general string amplitudes [24].

Using these de�nition of the action (2.2), one can get the equation of motion of a open bosonic string
�eld,

Q|Ψ〉+ |Ψ ?Ψ〉 = 0 . (2.10)

These equations, which solution give extreme of action, include the information about classical background.
One can discuss the classical background and nonperturbative aspect of string �eld by analyzing the
solution of (2.10). As one can see from (2.3), the string �eld |Ψ〉 can be expressed by a summation of
in�nite number of particles. Thus, the equation of motion (2.10) becomes in�nite number of equations
and solving it is not easy. Actually, the solutions which have been found are written by using string �elds
which physical meaning is obscure. Since these string �elds are not written in the language of particles,
the physical meaning of the solutions is also obscure. Because of this, one has to compute the observables
to con�rm that the solution corresponds to which background D-brane.

Gauge symmetry

From the identities (2.9), one can show that the in�nitesimal gauge transformation of (2.2) becomes

|Ψ〉 → |Ψ〉+Q|Λ〉+ |Ψ ? Λ〉 − |Λ ?Ψ〉 , (2.11)
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where |Λ〉 is some string �eld with worldsheet ghost number 0. To see the �nite gauge transform, let us
consider the analogy between (2.2) and the Chern-Simons action:

SCS =
k

2π

∫
Tr

(
1

2
AdA+

1

3
A3

)
, (2.12)

where A is connection of gauge group 1-form and d is exterior derivative. Here we abreviate the wedge
product ∧. To see the analogy, we consider the identity state |I〉 by

|I ?Ψ〉 = |Ψ ? I〉 = |Ψ〉 .

The explicit de�nition of identity state will be given later. From (2.9) and |I〉, we can express the inner
product by

〈Ψ|Ψ′〉 = 〈I|Ψ ?Ψ′〉 .

Using this expression, the analogy between (2.2) and (2.12) is seen by the replacements

〈I|·〉 →
∫
· ,

? → ∧ ,
|Ψ〉 → Ψ .

The property that the integration of (2.12) will vanish when integrand is not 3-form, corresponds to the
inner product will vanish when the sum of the ghost number of string �elds is not 3. Besides, all of the
property of d are satis�ed by Q,

Q2 = 0 ,∫
Q (Ψ) = 〈I|Q (Ψ)〉 = 0 .

From the replacements, we can express (2.2) as the same form of (2.12):

S =
1

g2

∫ (
1

2
ΨQΨ + Ψ3

)
,

where we abbreviate ?. Thus, the string �eld Ψ corresponds to A and the BRST charge Q corresponds
to exterior derivative d. From the analogy with Chern-Simons theory, the �nite gauge transformation
becomes

Ψ→ U−1QU + U−1ΨU , (2.13)

with some string �eld U .
In addition to the gauge symmetry, this correspondence implies the form of solutions of equation of

motion. Since the equation of motion of Chern Simons theory implies vanishing the �eld strength,

dA+A ∧A = 0 ↔ F = 0 ,

where F is the �eld strength 2-form, if A is pure gauge form, it becomes equation of motion. Similary,
the solution of equation of motion (2.10) will become pure gauge form:

Ψ = U−1QU .

Since the pure gauge form with nonsingular U is trivial solution, one need singular gauge element U to
describe a nontrivial solution.
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The degree of exterior power in Chern-Simons theory corresponds to the ghost number. The di�erence
from Chern-Simons theory comes from that the degree of ghost number can take minus. This makes
gauge symmetry reducible. When |Ψ〉 is on-shell, the gauge transformation (2.11) is invariant under the
transformation

δ|Λ〉 → Q|Λ−1〉+ |Ψ ? Λ−1〉+ |Λ−1 ?Ψ〉 ,

where |Λ−1〉 is a string �eld with ghost number −1. Similarly, Λ−n, (n = 0, 1, · · · ) have a gauge transfor-
mation:

δ|Λ−n〉 → Q|Λ−(n+1)〉+ |Ψ ? Λ−(n+1)〉 − (−1)n+1 |Λ−(n+1) ?Ψ〉 ,

where |Λ−n〉 is a string �eld with ghost number −n. Thus, the gauge symmetry of (2.2) becomes an
in�nitely reducible. One can �x this gauge symmetry using Batalin-Vilkovisky formalism [25, 26, 27, 28, 29]
(see as reviews [30, 31] also).

3 Observables and conjecture

Since one has known the action (2.2) and its gauge symmetry (2.13), one can consider observables which
is invariant under the gauge transformation (2.11). We are interested in the nonperturbative information
which comes from equation of motion (2.10) for now. Since the meanings of analytic solutions which has
been found and we consider in this thesis are not clear, we will consider two observables which can indicate
the physical meanings of the solutions. One is the classical energy. We will consider a static solution of
(2.10) and denote it as |Ψ〉 in the following. The energy of static solution is just −S,

E [Ψ] =
1

g2

(
1

2
〈Ψ|Q|Ψ〉+

1

3
〈Ψ|Ψ ?Ψ〉

)
. (3.1)

Since it is the same form with the action, the gauge invariance is obvious. Another one is called a gauge
invariant observable de�ned by

W (Ψ,V) = 〈I|V (i) |Ψ〉 ,

where V (i) is an on-shell closed-string vertex operator inserted at the midle point of the string as dipicted
in Figure 5. Here, we used the coordinate of upper half plane. To distinguish the solutions, there are
conjectures for these observables.

We will explain the gauge invariance of the observables and the conjectures about the observables.

3.1 Sen's conjecture

Sen's conjecture [5] is a conjecture about the vacuum of tachyon �eld t. Tachyon is negative mass particles
living on unstable D-branes. Since the tachyon describes instability of the D-brane, an e�ective potential
V (t) of tachyon �eld has local maximum around t = 0 (perturbative vacuum for string theory), where
the D-brane exists. Here, we denote the vev of tachyon �eld as just t. Corresponding to another classical
solution of the equation of motion, the potential should also have a local minimum where t = t0 (other
�elds also take vev). Since the local minimum is stable and there is no tachyon excitation, the unstable
D-brane will vanish around the local minimum.

From these perspectives, Sen gives following 3 conjectures.

1. The depth of the local minimum equals the tension Tp of the original Dp-brane (with proper nor-
malization of the space-time volume).

V (0)− V (t0) = Tp ,

This re�ects the energy di�erence between the solutions with and without D-brane.

10



Figure 5: A gauge invariant observable with a closed string vertex operator V and classical solution |Ψ〉

V(t)

t

: perturbative vacuum

: tachyon vacuum

t=t 0

Figure 6: The potential of tachyon �eld
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t(X)

X

t0

Figure 7: The lump solution

2. Other solutions exist, representing lower dimensional D-branes. When we consider a lower dimen-
sional D-brane localizing in X direction, the con�guration of tachyon �eld is dipicted in Figure 7.
Since the energy distribution about X becomes lump as dipicted in Figure 8, these solutions are
called lump solutions.

3. There are no perturbative states of open string around the tachyon solution, because perturbative
states in open string �eld theory represent open string degrees of freedom and there are no open
strings when the D-brane is absent.

These conjectures are called Sen's conjecture. Since we have to consider �nite value of vev of tachyon
�eld, these conjectures have to be shown in string �eld theory. In this thesis, we use the �rst and the
second conjecture to support the identi�cation of the solutions. In this thesis we consider D25-brane as
the background D-brane which exits at perturbative vacuum.

The �rst conjecture implies that when one computes the energy (3.1) of a solution |Ψ〉, one will get
the energy measured from the tachyon vacuum solution,

E [Ψ] = E (DΨ)− T25V25 ,

where V25 is the volume of D25-brane and Tp is the tension of Dp-brane:

T25 =
1

2π2g2
.

E (DΨ) is energy of DΨ-brane expressed by |Ψ〉. For example, E (DΨ) = 0 when |Ψ〉 expresses tachyon
vacuum t = t0, and E (DΨ) = N × (T25V25) when |Ψ〉 expresses N D-branes background.

The second conjecture means as follows. There is a solution which the tachyon �eld has a con�guration
t = t (X) as dipicted in Figure 7 with some particular spacetime direction X. The solution |Ψ〉 which
corresponds t = t (X) expresses lower dimensional D-brane. For example, when X is one direction, |Ψ〉
expresses D24-brane and the energy becomes

E [Ψ] = T24V24 − T25V25 ,

12



Energy

X

Figure 8: The energy of the lump solution

where

T24 =
1

πg2
.

The third conjecture suggest that the tachyon vacuum solution supports no open string excitations.
To consider this conjecture, let us expand the string �eld around the tachyon vacuum solution |Ψ0〉

|Ψ〉 = |Ψ0〉+ |Ψ′〉 .

The action (2.2) becomes

S
[
Ψ0,Ψ

′] = S0 [Ψ0] +
1

g2

[
−1

2
〈Ψ|QΨ0 |Ψ〉+

1

3
〈Ψ|Ψ ?Ψ〉

]
,

where
QΨ0 |Ψ〉 ≡ Q|Ψ〉+ |

(
Ψ0 ?Ψ− (−)|Ψ|Ψ ?Ψ0

)
〉 ,

and S0 [Ψ0] is a constant

S0 [Ψ0] =
1

g2

[
−1

2
〈Ψ0|Q|Ψ0〉+

1

3
〈Ψ0|Ψ0 ?Ψ0〉

]
,

which takes the constant value predicted by the �rst conjecture. Following to [32, 33], the existence of
open string excitations around |Ψ0〉 can be checked by the existence of the homotopy operator of QΨ0 :

QΨ0 |A〉 = 1 .

If there is such a string �eld |A〉, every string �eld |Φ〉 which is QΨ0-closed can be expressed QΨ0-exact
form:

|Φ〉 = QΨ0 |A ? Φ〉 .

Therefore the third conjecture means that there is wellde�ned string �eld corresponding homotopy operator
of QΨ0 around the tachyon vacuum solution |Ψ0〉.

13



3.2 Gauge invariant observable and Ellwood's conjecture

A gauge invariant observable W (Ψ,V) is de�ned as a closed string tadpole in open string �eld theory
[6, 7].

W (Ψ,V) = 〈I|V (i) |Ψ〉 (3.2)

Here V (i) is a vertex operator of on-shell closed string inserted at middle point of string. We will see the
gauge invariance of W (Ψ,V) and Ellwood's conjecture about the value of it.

gauge invariance

We will see that W (Ψ,V) is invariant under the gauge transformation (2.11)

W (Ψ +QΛ + Ψ ? Λ− Λ ?Ψ) = W (Ψ,V) .

Since W (Ψ,V) is linear in |Ψ〉, this equation becomes

〈I|V (i) |QΛ〉 = 0 , (3.3)

〈I|V (i) |Ψ ? Λ− Λ ?Ψ〉 = 0 . (3.4)

The equation (3.3) is satis�ed from the property Q (V) = 0:

〈I|V (i) |QΛ〉 = 〈Q (V (i)OΛ (0))〉U.H.P. = 0 .

The second equation (3.4) is satis�ed from the invariance of expectation value. The two terms on the left
hand side of (3.4) becomes

〈I|V (i) |Ψ ? Λ〉 = 〈Λ|V (i) |Ψ〉 = 〈I ◦ OΛ (0)V (i)OΨ (0)〉U.H.P. ,
〈I|V (i) |Λ ?Ψ〉 = 〈Ψ|V (i) |Λ〉 = 〈I ◦ OΨ (0)V (i)OΛ (0)〉U.H.P. .

where I is inversion. Since the vertex operator V is conformal weight (0, 0) primary �eld and ξ = i is
invariant under the inversion I, the invariance of expectation value under SL (2,R) transformation shows

〈I ◦ OΛ (0)V (i)OΨ (0)〉U.H.P. = 〈I ◦ OΨ (0) I ◦ V (i) I ◦ (I ◦OΛ (0))〉U.H.P.
= 〈I ◦ OΨ (0)V (i)OΛ (0)〉U.H.P. .

Therefore (3.4) is satis�ed and W (Ψ,V) turns out to be gauge invariant.

Ellwood's conjecture

Compared with the energy (3.1), the meaning of the gauge invariant observable (3.2) is little bit subtle.
Ellwood gave a conjecture about this quantity in terms of the quantities in CFT on worldsheet associated
with the solution |Ψ〉 [8, 9].

• Let us denote the boundary CFT around perturbative vacuum as BCFT0 and the one around the
solution |Ψ〉 as BCFTΨ. Then,

W (Ψ,V) = AdiskΨ (V)−Adisk0 (V) , (3.5)

where AdiskΦ (V) is the disk amplitude with the vertex operator of closed string V and boundary
conditions given by BCFTΦ.
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Since the closed string vertex operator V take the form

V = cc̄Om ,

where Om is weight (1, 1) matter operator, the vacuum expectation value of V will vanish

〈V (z = 0)〉disk = 0 ,

where we use z as the disk coordinate. To get a non vanishing disk amplitude, we have to soak up three
ghost zero mode. Therefore the AdiskΦ (V) is de�ned by

AdiskΦ (V) = −e
−iθ

2πi
〈V (0) c

(
eiθ
)
〉BCFTΦ
disk .

The parameter θ is arbitrary. We will put it to 0.

In the next section, we will review the construction of analytic solution of tachyon vacuum. After the
solution was constructed, one has to investigate which background corresponds to the solution. To see
this, one computes the energy and gauge invariant observable. These conjecture are used to indicate the
solutions from the value of the energy and gauge invariant observable.

4 Construction of analytic solution

First, in [10], Schnabl found an analytic solution of equation of motion (2.10), it was the solution for tachyon
vacuum. After this, in [12], Erler and Schnabl found a simple analytic solution, it was constructed by
string �elds which satisfy a simple algebra. This algebra is called KBc subalgebra [13, 14]. Using this
simple algebra and their BRST transformation (it is also simple), many solutions have been constructed.
In this section, we will review the construction of Erler-Schnabl solution for tachyon vacuum, and the
computation of the energy and the gauge invariant observables. In the next section, we will review the
other solutions for multiple brane solution and for lump solution.

4.1 KBc algebra

Before the de�nition of KBc subalgebra, let us consider about the sliver frame which makes the algebraic
properties of star product clear.

4.1.1 sliver frame

The coordinate on sliver frame z is de�ned from upper half plane ξ

z =
1

πi
ln

1 + iξ

1− iξ
.

The sliver frame maps the upper half plane to semi in�nite stripe with width 1. Under the transfor-
mation, the right and left half of the arc |ξ| = 1 will be mapped to the left and right edges of stripe,(
<z = 1

2 , =z = 0→∞
)
, and

(
<z = −1

2 , =z = 0→∞
)
. Thus the point ξ = i will go to z = i∞. The

origin is unchanged. This is dipicted in Figure 9. When we use sliver frame to express the star product
(2.7), the position of stripe corresponds to |Ψa〉 is shifted by

z0 = z ,

za = z + a ,
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Figure 9: Sliver frame

Figure 10: The star product and inner product on sliver frame
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where <z = −1 ∼ 1. Thus star product is expressed as multiplication of stripes corresponding to the
string �elds, and inner product identi�es both edge of the remaining stripe, making semi in�nite cylinder
as dipicted in Figure 10.

To express algebraic properties, we express a string �eld with an operator inserted the cylinder with
width 0. To de�ne this operator, we introduce following string �eld

K =

∫ i∞

−i∞

dz

2πi
T (z) ,

where T (z) is the energy momentum tensor de�ned by doubling trick (2.1). The commutator of some
�eld φ (z) and K become

[K,φ (z)] = −∂φ (z) = − ∂

∂τ
φ (z) ,

where τ = <z. This shows that K is translation generator of the direction <z. Using K, we can express
the stripe corresponds to the string �eld |Ψ〉 as

|Ψ〉 ≡ e
K
2 OΨ (z = 0) e

K
2 |I〉 ,

where |I〉 is identity state. Since |I ? I〉 = |I〉, the star product of two string �elds |Ψ1〉 and |Ψ2〉 become

|Ψ1 ?Ψ2〉 = Ψ1Ψ2|I〉 ,
Ψi = e

K
2 OΨi (z = 0) e

K
2 .

We could use the correspondence between |Ψ〉 and Ψ, instead of the ordinary state-operator correspon-
dence. In this meaning, the operator K corresponds to the string �eld which is K|I〉. Then, star product
becomes just multiplications of the operators.

|Ψ1 ?Ψ2〉 ←→ Ψ1Ψ2 .

In the following, we call the string �eld Ψ|I〉 as Ψ. Using this expression, the algebraic structure become
simple and clear.

identity state

One can de�ne the identity state |I〉 using K. It is de�ned as string �eld |W0〉 which corresponds to a
stripe of width 0 without any operators insertion. Actually, from the de�nition of star product,

|A〉 ? |W0〉 = |W0〉 ? |A〉 = |A〉 ,

with arbitrary |A〉. We will see the explicit de�nition of |W0〉.
First, we will de�ne the string �eld |Wα〉 which corresponds to a stripe of width α without any operator

insertion. Since |Ψ〉 = OΨ (0) |0〉 corresponds to a stripe of width 1, |Wα〉 becomes

|Wα〉 = e−(α−1)K |0〉 .

|Wα〉 is called a wedge state. The explicit form can be got by considering the inner product with arbitrary
state |φ〉 = φ (0) |0〉. From the de�nition, the inner product becomes

〈Wα|φ〉 = 〈f ◦ φ (0)〉Cα+1 ,

where Ca is the cylinder with width a. On upper half plane, this becomes

〈Wα|φ〉 = 〈fα ◦ φ (0)〉U.H.P. , (4.1)
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where

fα ◦ ξ = tan

(
2

1 + α

1

πi
ln

1 + iξ

1− iξ

)
.

Since the generators of the conformal mappings are the Virasoro generators Ln, one can express fα ◦φ (ξ)
by

fα ◦ φ (ξ) = Ufαφ (ξ)U−1
fα

,

where Ufα is element of conformal mapping

Ufα = exp
(∑

vnLn

)
.

Since fα (ξ) is regular at ξ = 0 and fα (ξ = 0) = 0, vn = 0 (n < 0). Since Ln|0〉 = 0 (n ≥ 0), we can see

Ufα |0〉 = U−1
fα
|0〉 = |0〉 .

Therefore, the inner product (4.1) becomes

〈Wα|φ〉 = 〈0|Ufαφ (0) |0〉 .

This gives the de�nition of wedge state
〈Wα| = 〈0|Ufα . (4.2)

One can get the explicit form of a wedge state from the expression 4.2. Let us consider the case that
φ (ξ) is weight 0 primary �eld.

Ufαφ (ξ)U−1
fα

= φ (fα (ξ)) .

Using the identities

[Ln, φ (ξ)] = ξn+1∂φ (ξ) ,

e
∑
n≥0 vnLnφ (ξ) e−

∑
n≥0 vnLn = φ

(
e
∑
n≥0 vnξ

n+1∂ξξ
)
,

we can get the relation between vns and fα

e
∑
n≥0 vnξ

n+1∂ξξ = fα (ξ) .

Since L0|0〉 = 0, we can scale fα arbitrary. It is convenient that we take wedge state as

|Wα〉 = 〈0|U 1+α
2
fα
.

Let us de�ne vn as the coe�cient for U 1+α
2
fα
,

e
∑
n≥0 vnξ

n+1∂ξξ =
1 + α

2
fα (ξ) .

From this, wedge state can be written down recursively:

〈Wα| = 〈0| exp

[
−(1 + α)2 − 4

3 (1 + α)2 L−2 +
(1 + α)4 − 16

30 (1 + α)4 L−4

−

(
(1 + α)2 − 4

)(
176 + 128 (1 + α)2 + 11 (1 + α)4

)
1890 (1 + α)4 L−6 + · · ·

 .
From the explicit form of |Wα〉, we can de�ne the identity state |I〉 as |Wα=0〉. Even though |I〉 can

be expressed explicitly, the computations using |I〉 often diverge. Since the state |Wα→∞〉 (which is called
sliver state) exists, the eigenvalue of K is not negative and takes 0.
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4.1.2 KBc algebra

Similarly to K, one can de�ne following string �elds

B ≡
∫ −i∞
i∞

dz

2πi
b (z) ,

c ≡ c (z = 0) ,

where z is the coordinate of sliver frame. K, B and c satisfy the following algebra

[K,B] = 0 , [K, c] = ∂c ,

{B, c} = 1 , B2 = c2 = 0 ,

where the multiplication is the star product and we abbreviate that from now on. This algebra is called
the KBc algebra [14, 13]. The BRST transformations of these string �elds are

[Q,K] = 0 , {Q,B} = K ,

{Q, c} = c∂c = cKc .

These string �elds satisfy the reality condition (2.6).

4.2 Erler-Schnabl solution

The tachyon vacuum solution constructed from KBc algebra has been constructed by Erler and Schnabl
[12]. The solution is given by

Ψ0 =
1√

1 +K
[c+ cKBc]

1√
1 +K

, (4.3)

which satis�es the reality condition (2.6). To show that Ψ0 satis�es equation of motion (2.10), one can
express this as the pure gauge form:

Ψ0 =

(
1− 1√

1 +K
Bc

1√
1 +K

)
Q

(
1− 1√

1 +K
Bc

1√
1 +K

)−1

. (4.4)

Since

1

1− F (K)BcF (K)
= 1 +

∞∑
n=1

F 2n−1 (K)BcF (K) ,

= 1 +
1

1− F 2 (K)
F (K)BcF (K) , (4.5)

when we express (1 +K)−1/2 = F (K), (4.4) becomes

Ψ0 = (1− F (K)BcF (K))Q

(
1

1− F 2 (K)
F (K)BcF (K)

)
= (1− F (K)BcF (K))

1

1− F 2 (K)
F (K) (cKBc)F (K)

=
1

1− F 2 (K)
F (K) (cKBc)F (K)− F (K)Bc

(
−1 +

1

1− F 2 (K)

)
(cKBc)F (K) (4.6)

= F (K) c
1

1− F 2 (K)
KBcF (K)

=
1√

1 +K
[c+ cKBc]

1√
1 +K

.
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Therefore the solution (4.3) is a pure gauge solution and satis�es equation of motion. Since the eigenvalues
of K take 0 and positive numbers, the factor

1

1− F 2 (K)
=

1 +K

K
,

is singular, while
√

1 +K is wellde�ned. Thus the Erler-Schnabl solution expresses nontrivial solution.

4.2.1 Energy

To compute the energy, one can express the solution as the superposition of wedge states e−αK , (α > 0).
Using the gauge transformation, Erler-Schnabl solution (4.3) becomes

Ψ0 = [c+ cKBc]
1

1 +K
. (4.7)

Since the eigenvalue of K is not negative, we can express 1/1 +K by using Laplace transform

1

1 +K
=

∫ ∞
0

dte−t(1+K) .

Then, the solution (4.7) is expressed by

Ψ0 =

∫ ∞
0

dte−t [c+ cKBc] e−tK .

The energy of Ψ0 is computed analytically. Since cKBc = Q (Bc), the energy becomes,

E [Ψ0] =
1

6g2
〈Ψ0|Q|Ψ0〉

=
1

6g2

∫
dt1dt2e

−(t1+t2)〈I|c (0) e−t1KcKc (0) e−t2K |I〉

=
1

6g2

∫
dt1dt2e

−(t1+t2)〈e(t1+t2)Kc (0) e−t1KcKc (0) e−t2K〉Ct1+t2

=
1

6g2

∫
dt1dt2e

−(t1+t2)〈c (t1 + t2) c∂c (t2)〉Ct1+t2
,

where we denote CL as a cylinder of circumference L and

e−tKc (0) etK = c (t) . (4.8)

Therefore the problem becomes to compute the correlation function on a cylinder. From the normalization
of the expectation value of the ghost �elds (2.5), the expectation value on sliver frame becomes,

〈c (z1) c (z2) c (z3)〉CL =

(
L3

π

)
sin

π

L
(z1 − z2) sin

π

L
(z2 − z3) sin

π

L
(z3 − z1) . (4.9)

Using this, one can compute the energy

E [Ψ0] =
1

6g2
V25

∫
dt1dt2e

−(t1+t2)

(
−(t1 + t2)2

π2
sin2

(
πt2

t1 + t2

))

= − 1

6π2g2
V25

∫ ∞
0

dte−tt2
∫ 1

0
ds sin2 (πs)

= − 1

2π2g2
V25 ,
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where we took t = t1 + t2 and t2 = st. V25 is the volume of D25-brane which comes from the path integral
of the zero mode of spacetime coordinate Xµ. Since the tension of D25-brane is

T25 =
1

2π2g2
,

the energy can be expressed by
E [Ψ0] = −T25V25 .

This shows the Sen's �rst conjecture, and Ψ0 corresponds to tachyon vacuum.
We can see this solution have a homotopy operator

A = B
1

1 +K
,

which is wellde�ned and satis�es QΨ0A = 1. Because of this, the solution (4.7) satis�es Sen's third
conjecture.

4.2.2 Gauge invariant observable

It is easy to show the Ellwood's conjecture about gauge invariant observables. Since cKBc = Q (Bc) and
Q (V) = 0,

W [Ψ0,V] = 〈I|V (i∞,−i∞) |Ψ0〉

=

∫
dte−t〈I|V (i∞,−i∞) c (0) e−tK |I〉

=

∫
dte−t〈V (i∞,−i∞) c (0)〉Ct , (4.10)

where we used z ' z+ t on Ct. By a scale transformation, we can reduce the expectation value to the one
on a cylinder of circumference 1, producing a factor of t for the c ghost.

∴W [Ψ0,V] = 〈V (i∞,−i∞) c (0)〉C1

∫
dte−tt

= 〈V (i∞,−i∞) c (0)〉C1

Under the transformation to a disk coordinate, this equals to the disk amplitude of free BCFT0 (we
denoted it as BCFT0). Since the expectation value of closed string tadpole in tachyon vacuum is zero,
this result can be expressed by

W [Ψ0,V] = AdiskΨ (V)−Adisk0 (V) .

This shows the Ellwood's conjecture.

4.3 Okawa type solution

The derivation of (4.6) shows that the string �eld

Ψ = F (K) c
1

1− F 2 (K)
KBcF (K) (4.11)

with arbitrary function F (K) can be expressed by pure gauge form and satisfy equation of motion. The
solutions which take this form are called Okawa type solution [13, 14, 34]. When we take F (K) =

(1 +K)−1/2, we get Erler-Schnabl tachyon vacuum solution.
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The pure gauge form of Ψ is written in

Ψ = (1− FBcF )Q

(
1 +

F

1− F 2
BcF

)
,

where we used (4.5) instead of (1− FBcF )−1. Then, one can show the string �eld

A =
1− F 2

K
B

is homotopy operator of QΨ, because

QA = 1− F 2 ,

ΨA+AΨ = F 2 .

Similar to the classical solution of Chern-Simons theory, we need a singularity in the solution Ψ to get
nontrivial solution. This singularity comes from the function of K which can take 0 or positive value as
the eigenvalue. On the other hand, we need regular expression for homotopy operator of QΨ because of
Sen's third conjecture. Since the singularity of homotopy operator can come from

1− F 2

K
,

F has to be regular. Then, the singular part of solution can come from

F

1− F 2
.

Therefore the conditions which gives nontrivial solution become

1− F 2

K
: regular in K ,

F

1− F 2
: singular in K .

For example, Erler-Schnabl solution is

1− F 2

K
=

1

1 +K
,

F

1− F 2
=

√
1 +K

K
,

where F/
(
1− F 2

)
has singularity at K = 0 while

(
1− F 2

)
/K is regular. Since the solution have a

singularity, we often need to regulate the solution.

5 Other solutions

In this section, we will review two analytic solutions.
One is called Murata-Schnabl solution [15, 16], which is the one of Okawa-type solution. Murata-

Schnabl solution is thought that it corresponds to multi-brane background. As we will see soon, the
energy and gauge invariant observable is calculated and shows they satisfy Sen's conjecture and Ellwood's
conjecture. However the regularizations of the energy and gauge invariant observable are di�erent.

The other one is called Bonora-Maccaferri-Tolla (BMT) solution [4, 17], which is thought that it
corresponds to a lump solution. While the computation of a gauge invariant observable is very easy, the
computation of energy is very hard and there is only numerical result. Moreover, we need regularization
to the solution and it causes anomaly to the equation of motion.

In the following, we will review the construction of Murata-Schnabl solution and BMT solution, the
computations of the energy and gauge invariant observable, and the problems about regularizations.
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5.1 Murata-Schnabl solution

Murata-Schnabl solution [16, 15] is the Okawa type solution (4.11) with

ΨMS = F (K) cB
B

G (K)
cF (K) ,

G (K) ≡ 1− F 2 (K)

=

(
K + 1

K

)N−1

. (5.1)

We can use gauge equivalent form of this

ΨMS = (1−G) cB
K

G (K)
c .

ΨMS corresponds to a con�guration with N D-branes. When N = 0, this is equal to Erler-Schnabl
solution.

5.1.1 Useful correlators

In the computation of the energy, we need to compute the quantity

〈F1, F2, F3, F4〉 ≡ 〈I|F1 (K) cF2 (K) cF3 (K) cF4 (K) cB|I〉 ,

where Fi (K) , i = 1, · · · , 4 is a function of K. We assume that Fi (K) can be written in a Laplace
transform,

Fi (K) =

∫ ∞
0

dtifi (ti) e
−tiK ,

of arbitrary distributions fi, which is called geometric string �elds [35]. Similarly to the computation of
the energy of Erler-Schnabl solution, the quantity can be expressed by

〈F1, F2, F3, F4〉 ≡
∫ ∞

0

(
4∏
i=1

dtifi (ti)

)
〈c (t2 + t3 + t4) c (t3 + t4) c (t4) c (0)B〉C∑4

i=1
ti
. (5.2)

To commute the integrand, we need to eliminate B insertion. From the de�nition of B,

B =
1

L

(∫ δ−ε+i∞

δ−ε−i∞

dz

2πi
(z)δ b (z)−

∫ δ+ε+i∞

δ+ε−i∞

dz

2πi
(z)δ b (z)

)
,

where (z)δ is analytic function on CL which is de�ned by

(z)δ =

{
z <z > δ

z + L <z < δ
.

We can enclose the counter of B around c (zi) respectively, so that the integrand becomes

〈c (t2 + t3 + t4) c (t3 + t4) c (t4) c (0)B〉Cs = − t4
s
〈c (t2 + t3 + t4) c (t3 + t4) c (0)〉Cs

+
t3 + t4
s
〈c (t2 + t3 + t4) c (t4) c (0)〉Cs

− ts + t3 + t4
s

〈c (t3 + t4) c (t4) c (0)〉Cs ,
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where s =
∑4

i=1 ti. Using (4.9), this becomes

〈c (t2 + t3 + t4) c (t3 + t4) c (t4) c (0)B〉Cs =
s2

π3

{
−t4 sin

π

s
t2 sin

π

s
(t3 + t4) sin

π

s
(t2 + t3 + t4)

+ (t3 + t4) sin
π

s
(t2 + t3) sin

π

s
(t4) sin

π

s
(t2 + t3 + t4)

− (t2 + t3 + t4) sin
π

s
(t3) sin

π

s
(t4) sin

π

s
(t3 + t4)

}
.

(5.3)

We can reduce this to more useful form [10, 13, 34]

〈c (t2 + t3 + t4) c (t3 + t4) c (t4) c (0)B〉Cs =
s2

4π3

{
t4 sin

2πt2
s
− (t3 + t4) sin

2π (t2 + t3)

s

+ t2 sin
2πt4
s
− (t2 + t3) sin

2π (t3 + t4)

s

+t3 sin
2π (t2 + t3 + t4)

s
+ (t2 + t3 + t4) sin

2πt3
s

}
.

To compute (5.2), they insert into the integral an identity in the form

1 =

∫ ∞
0

dsδ

(
s−

4∑
i=1

ti

)
=

∫ ∞
0

ds

∫ i∞

−i∞

dz

2πi
esze−z

∑4
i=1 ti .

The second equality is just the ordinary Fourier representation of the delta function with the i absorbed
in the integration variable, so the contour runs along the imaginary axis. Since the integral of ti in (5.2)
can be computed using ∫ ∞

0
dtifi (ti) e

−zti = Fi (z) ,∫ ∞
0

dtitifi (ti) e
−zti = F ′i (z) ,∫ ∞

0
dtifi (ti) e

−ti(z± 2πi
s ) = Fi

(
z ± 2πi

s

)
,

where F ′i (z) = ∂zF (z), (5.2) becomes

〈F1, F2, F3, F4〉 =

∫ ∞
0

ds

∫ i∞

−i∞

dz

2πi

s2

4π2
esz

1

2i

×
[
−F1∆F2F3F

′
4 + F1∆

(
F2F

′
3

)
F4 + F1∆ (F2F3)F ′4 − F1F

′
2F3∆F4

+F1F
′
2∆ (F3F4) + F1F2∆

(
F ′3F4

)
− F1∆

(
F2F

′
3F4

)
− F1 (F2∆F3F4)′

]
, (5.4)

where all the arguments of function Fi are z and

∆sF (z) ≡ F
(
z − 2πi

s

)
− F

(
z +

2πi

s

)
.

We abbreviated s of ∆s in (5.4).
Let us consider some identities for 〈F1, F2, F3, F4〉. From the de�nition,

〈F1, 1, F3, F4〉 = 0 ,

〈F1, F2, 1, F4〉 = 0 ,

〈F1, F2, F3, 1〉 = 0 , (5.5)

〈F1,K,K, F4〉 = 0 ,

〈F1, F2,K,K〉 = 0 ,
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because c2 = cKcKc = 0. In addition these identities, we consider the case

〈K,F2,K, F4〉 = 0 . (5.6)

This should be satis�ed because the left hand side is expressed by

〈K,F2,K, F4〉 = 〈I|Q (BcF2 (K)Q (c)F4 (K)) |I〉 = 0 .

This relation can be broken by anomaly. To see the condition that this identity becomes correct, we will see
explicit computation of 〈K,F2,K, F4〉. When we took F1 (K) = K and F3 (K) = K, the square-bracket
part of the integrand of (5.4) becomes

2πi

s2
(z∂z − s∂s)

(
−sF2∆2

2sF4

)
+∆2s (F2 ◦s zF4)−∆2s (z ◦s F2F4)−∆2s

(
F2 ◦s z2F ′4

)
+ ∆2s

(
zF2 ◦s zF ′4

)
, (5.7)

where

∆2s (f1 (z) ◦s f2 (z)) ≡ ∆2s

(
f

(
z − πi

s

)
g

(
z +

πi

s

)
+ f

(
z +

πi

s

)
g

(
z − πi

s

))
= (∆sf) g + f (∆sg) .

In current situation F2 and F4 can be G, KG or K/G, and at most O (z) at in�nity. Because of the factor
esz in the integrand of (5.4), we can add a line integral along the arch at in�nity in the left half plane
<z < 0, and make the closed contour integral along the contour Cs. The contour Cs needs subscript s to
indicate that the contour which encircles all of the poles which appear in (5.7) depends on s. Then the
integral of the second line of (5.7) becomes zero because∮

Cs

esz∆2s (f1 ◦s f2) = 0 . (5.8)

Therefore 〈K,F2,K, F4〉 reduces to the surface terms

〈K,F2,K, F4〉 =

∫ ∞
0

ds

∮
Cs

dz

2πi
esz

1

4π2
(z∂z − s∂s)

(
−sF2∆2

2sF4

)
=

(
lim
s→∞

− lim
s→0

)∮
Cs

dzesz
1

8π3i
s2F2∆2

2sF4 .

The surface term at s = 0 vanishes if both F2 and F4 are at most O (z) at in�nity, and it is the current
situation. The one at s =∞ vanishes if F2∂

2F4 does not have poles on the imaginary axis, because

F2∆2
2sF4 = F2 (z)

(
F4

(
z − 2πi

s

)
− 2F4 (z) + F4

(
z +

2πi

s

))
∼

(
2πi

s

)2

F2 (z) ∂2F4 +O
(
s−3
)
.

When all of the assumptions we use are satis�ed, 〈K,F2,K, F4〉 = 0.

5.1.2 Energy

Using the formula (5.4), we can compute the energy of Murata-Schnabl solution. From the equation of
motion, energy becomes

E [ΨMS ] =
1

6g2
〈ΨMS |Q|ΨMS〉 (5.9)

=
1

6g2

[
〈K
G
, (1−G) ,

K

G
,KG〉 − 〈K, (1−G) ,

K

G
,K〉

−〈K
G
, (1−G) ,K,K〉+ 〈K, (1−G) ,K,

K

G
〉
]
.
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Here we abbreviate the volume factor V25. From (5.5), the third term will vanish. The forth term will
vanish in current condition (5.1). However, to see the general expression of energy, it is better to keep it.
Using (5.4), one can get

E [ΨMS ] =
1

6g2

∫ ∞
0

ds

∫ i∞

−i∞

dz

2πi

s2

8π3i
esz
[

16πiz2

s

G′

G
− zG∆

(
z2 G

′

G2

)
+ 2z∆

(
z2G

′

G

)
+2z2∆ (zG)

G′

G2
− z

∆
(
z2G′

)
G

+ 2z2G′∆
( z
G

)]
.

To use (5.8), we can simplify this to

E [ΨMS ] =
1

6g2

∫ ∞
0

ds

∫ i∞

−i∞

dz

2πi

esz

8π3i

[
24πisz2G

′

G
− 3 (z∂z − s∂s)

(
s2z

∆ (zG)

G

)
+2s2∆2s

(
z ◦ z

2G′

G

)
− s2∆2s

(
zG ◦ z

2G′

G2

)
+ 2s2∆2s

(
z2G′ ◦ z

G

)]
.

When we close the contour of z integral by adding su�cient large arch at the in�nity of the left half plane
<z < 0, the second line of the right hand side will vanish because of (5.8).

E [ΨMS ] =
1

6g2

∫ ∞
0

ds

∮
Cs

dz

2πi
esz
[

3

π2
sz2G

′

G
− 3

8π3i
(z∂z − s∂s)

(
s2z

∆ (zG)

G

)]
(5.10)

Let us consider the second term explicitly, which are thought as the anomalous contribution. From
the explicit form of G (5.1), the second term becomes

− 3

8π3i

(
lim
s→∞

− lim
s→0

)∮
Cs

dz

2πi
eszs2z

(
z

z + 1

)N−1
{(

z + 1− 2πi
s

)N−1(
z − 2πi

s

)N−2
−
(
z + 1 + 2πi

s

)N−1(
z + 2πi

s

)N−2

}
.

The contour is taken to encircle all of the poles on imaginary axis. When N = 0, 1 or 2, the integral of z
will vanish. When N > 2,

− 3

8π3i

(
lim
s→∞

− lim
s→0

)∮
Cs

dz

2πi
eszs2z

(
z

z + 1

)N−1
{(

z + 1− 2πi
s

)N−1(
z − 2πi

s

)N−2
−
(
z + 1 + 2πi

s

)N−1(
z + 2πi

s

)N−2

}

∝
(

lim
s→∞

− lim
s→0

)∂N−3
z

(
s2esz

zN

(z + 1)N−1

(
z + 1− 2πi

s

)N−1
)∣∣∣∣∣

z= 2πi
s

− (s→ −s)

 .
Since this behaves as O (s) in the limit s→ 0 and O

(
s−1
)
in the limit s→∞, this contribution vanishes

when N > 2. When N < 0, this contribution proportional to

(
lim
s→∞

− lim
s→0

)[
∂−N−1
z

{
s2esz (z + 1)1−N

( (
z − 2πi

s

)−N+2(
z + 1− 2πi

s

)−N+1
−

(
z + 2πi

s

)−N+2(
z + 1 + 2πi

s

)−N+1

)}
z=0

]
.

Since this also behaves as O (s) in the limit s → 0 and O
(
s−1
)
in the limit s → ∞, this contribution

vanishes when N < 0. Therefore the second term vanishes at all N .
Then, the energy becomes

E [ΨMS ] =
1

2π2g2

∫ ∞
0

ds

∮
C

dz

2πi
eszsz2G

′

G
.
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Here we remove the index s of Cs, because the position of pole of the integrand is independent from s.
Thus, we can integrate about s before the integral of z and we get

E [ΨMS ] = − 1

2π2g2

∮
C

dz

2πi

G′

G
.

From (5.1), we get the energy of Murata-Schnabl solution

E [ΨMS ] = − 1

2π2g2

∮
C

dz

2πi

(
z

z + 1

)N−1

(N − 1)

(
(z + 1)N−2

zN−1
− (z + 1)N−1

zN

)
= − 1

2π2g2
(1−N) ,

which coincide with N D25-brane con�guration according to Sen's �rst conjecture. Note that we abbrevi-
ated the volume of the brane V25.

In the way to compute the energy, the regularization problem arises in the choice of the contour of the
integral (5.10). The way to enclose the contour is little bit obscure because the contour passing through
the poles of integrand.

5.1.3 Gauge invariant observable

We will consider the gauge invariant observable

W (ΨMS ,V) = 〈I|V (i∞,−i∞) cB
K

G
c (1−G) |I〉 . (5.11)

The Ellwood's conjecture indicate the gauge invariant observable of Murata-Schnabl solution becomes

W (ΨMS ,V) = (N − 1)Adisk0 (V) ,

because AdiskΨMS
(V) = NAdisk0 (V) if ΨMS corresponds to N branes background.

Using the Laplace transform of K/G and (1−G)

K

G
≡

∫ ∞
0

dt1e
−t1Kg1 (t1) ,

1−G ≡
∫ ∞

0
dt2e

−t2Kg2 (t2) ,

the gauge invariant observable (5.11) becomes

W (ΨMS ,V) =

∫ ∞
0

dt1dt2g1g2〈V (i∞,−i∞) c (0)Bc (t2)〉Ct1+t2

=

∫ ∞
0

dt1dt2g1g2t2〈V (i∞,−i∞) c (0)〉C1 ,

where we used the properties that B commutes with V and c is weight 1 primary. The integrals can be
evaluated by ∫

dt1g1 (t1) e−εt1 =
z

G (z)

∣∣∣∣
z=ε

,∫
dt1g2 (t2) t2e

−εt2 = ∂z (1−G (z))|z=ε , (5.12)
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with taking the limit of ε → 0. Since 〈V (i∞,−i∞) c (0)〉C1 = Adisk0 (V), the gauge invariant observable
becomes

W (ΨMS ,V) = lim
ε→0

z

G (z)
∂z (1−G (z))

∣∣∣∣
z=ε

Adisk0 (V)

= lim
ε→0

εN

(ε+ 1)N−1

(
−(ε+ 1)N−2

εN−1
+

(ε+ 1)N−1

εN

)
(N − 1)Adisk0 (V)

= (N − 1)Adisk0 (V) ,

which support Ellwood conjecture too.

Let us comment to the results about Murata-Schnabl solution. Since both of the value of the energy
and gauge invariant observable coincide with Sen's conjecture and Ellwood conjecture respectively, the
Murata-Schnabl solution can be considered as the multi-brane solution. Compared with the Erler-Schnabl
solution, the computation of the energy became complicated. On the other hand, the computation of the
gauge invariant observable was not so complicated. This is because the energy is computed from three
point function of string �eld, while the gauge invariant observable is computed from one point function of
string �eld (even though there is on-shell closed string vertex operator).

Although the value of the energy and gauge invariant observable was acceptable, there is a problem
about the regularization. In the computation of the energy, the authors started the computation from
(5.10) and express it as the integrals of s and z,∫ ∞

0
ds and

∫ i∞

−i∞
dz .

Since the pole of the integrand of this integral placed on the imaginary axis of z plane, we have to regulate
the z integral to state which poles we will encircle. On the other hand, the computation of gauge invariant
observable needed the regularization (5.12). This regularization corresponds to the replacement of K by
K + ε (ε� 1) regulating the singularity from K = 0. Then the regularized Murata-Schnabl solution
becomes

Ψε
MS = (1−G (K + ε)) cB

(K + ε)

G (K + ε)
c . (5.13)

However, Ψε
MS does not satisfy the equation of motion and the anomaly term will arise:

QΨε
MS + (Ψε

MS)2 = Γε , (5.14)

Γε = ε (1−Gε (K)) c
K + ε

Gε (K)
c ,

where Gε (K) = G (K + ε). This causes anomaly term to the expression of energy (5.10)

E [Ψε
MS ] =

1

g2

[
1

2
〈Ψε

MS |Q|Ψε
MS〉+

1

3
〈Ψε

MS |Ψε
MS ?Ψε

MS〉
]

=
1

6g2
〈Ψε

MS |Q|Ψε
MS〉+

1

3g2
〈Ψε

MS |Γε〉 .

Therefore, the computation of the energy will be di�erent from the above computation. It is necessary
to �nd a more solid way to de�ne the solution, and there are many attempts to rectify the situation
[36, 37, 38, 39, 40].
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5.2 Bonora-Maccaferri-Tola solution

In [4], Bonora, Maccaferri, and Tolla construct solutions corresponding to a relevant deformations of
BCFT, called BMT solution2. Before we see the construction of the solution, we review how the lump
solution will be expressed by BCFT. Then, we will see how Erler-Schnabl solution can be extended to a
lump solution.

5.2.1 BMT solution

In [42, 43], Witten makes so-called boundary string �eld theory (BSFT). Roughly speaking, the action of
BSFT is a partition function of BCFT which is the theory of bulk free and interactive on the boundary.

SBCFT = Sbulk + Sboundary ,

where Sbulk is the action of free closed string of half in�nite cylinder CT ,

Sbulk =
1

8π

∫
d2σ∂Xµ∂̄X

µ

and Sboundary is the interaction term on the boundary. In [43], Witten computes the partition function
with Witten deformation

Sboundary =
1

8π

∫ T

0
dsu

(
1

2
: X2 : (s) + γ − 1 + ln (2πu)

)
, (5.15)

where u is a coupling constant and X is a some speci�c direction of Xµ. The Witten deformation is valid
when the volume of X is in�nite. The constant terms γ− 1 + ln (2πu) are necessary to make the partition
function converge and to make the preferable property of Sboundary under the scale transformation,

Sboundary (u,CT ) = Sboundary (uT,C1) .

Since the interaction term is just a mass term inserted on the boundary, one can compute the partition
function explicitly [44]

Z (uT ) ≡ 〈e−Sboundary〉CT
=

1√
2π

√
2uTΓ (2uT )

( e

2uT

)2u
,

where Γ (a) is Euler gamma function. We took the �nite volume VXµ 6=X of the direction Xµ 6= X to 1 as
the normalization. The partition function diverges in the UV limit uT → 0 as 1/

√
uT . We regulate this

by

lim
uT→0

Z (uT ) = lim
uT→0

1

2
√
πuT

= lim
uT→0

∫
dx

2π
e−uTx

2
=
VX
2π

.

On the other hand, in the IR limit uT →∞, the partition function becomes

lim
uT→∞

Z (uT ) = 1 .

In the UV limit, the interaction on the boundary will vanish and the BCFT becomes free theory on D25-
brane background. In the IR limit, the value of X at the boundary is suppressed to 0 by in�nite mass
term on the boundary. Therefore, the corresponding BCFT with uT → ∞ is the theory with D24-brane

2An earlier proposal for such solutions were made in [41]
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background. Then, the ratio of the tensions of D25-brane and D24-brane is given by the ratio of the
partition functions divided by volume.

τ24

τ25
=

limu→∞ Z (u)

limu→0
Z(u)
VX

= 2π . (5.16)

This is expected value of the ratio of the tensions.
The result (5.16) needs the regularization of in�nite volume of X in (5.15). For a �nite volume of

spacetime, the deformation has to be the cosine deformation:

Sboundary =

∫ T

0
dsu

[
−u−1/R2

: cos

(
1

R
X

)
: (s) +A(R)

]
, (5.17)

where X direction is a circle of radius R >
√

2. A (R) is a constant determined in [4]. The partition
function of the cosine deformation is computed exactly in [45, 46]. The result is the same as (5.16).

Let us consider the case that Sboundary is a constant u and the volume of X is �nite. Then, the partition
function becomes

Z (uT ) = e−uT ,

where we took the whole volume of D25-brane to 1 by normalization. In this case, the partition function
is just 1 in the UV limit, while the one is 0 in the IR limit. This implies vanishing D25-brane in the IR
limit. Actually, in the computation of Erler-Schnabl solution, we can �nd the same factor. For example,
in (4.10) the factor e−t corresponds this where t is the circumference of the cylinder in the integrand of
the right hand side of (4.10). This factor comes from the Laplace transform:

1

K + 1
=

∫ ∞
0

dte−tKe−t .

From this, one can guess that the lump solution will be given by the operator which Laplace transform
becomes ∫ ∞

0
dte−tKe−Sboundary , (5.18)

instead of (1 +K)−1. This operator is given by considering a relevant matter string �eld φ which satis�es

lim
s→0

sφ (s)φ (0) = 0 ,

[c, φ] = [B,φ] = 0 ,

Qφ = c∂φ+ ∂cδφ .

φ is taken to be the Witten deformation

φ (s) = u

(
1

2
: X2 : (s) + γ − 1 + ln (2πu)

)
, (5.19)

when X is noncompact, or the cosine deformation

φ(s) = u

[
−u−1/R2

: cos

(
1

R
X

)
: (s) +A(R)

]
, (5.20)

when X is compact. The string �eld φ is called seed. Then, the string �eld which Laplace transform
becomes (5.18) is given by

1

K + φ
=

∫ ∞
0

dte−t(K+φ) ,
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We will comment about the problem caused by limt→∞ e
−t(K+φ) 6= 0 later. The factor exp (−t (K + φ))

can be expressed by

e−t(K+φ) = e−tK exp

[
−
(
tφ (0) +

t2

2
[K,φ (0)] +

t3

3!
[K, [K,φ (0)]] + · · ·

)]
= e−tK exp

(
−
∫ t

0
dsφ (s)

)
,

where we used Zassenhaus formula

et(X+Y ) = etXetY e−
t2

2
[X,Y ]e

t3

3!
(2[Y,[X,Y ]]+[X,[X,Y ]]) · · · ,

and assumed that [[K,φ] , φ] = 0, [[[K,φ] ,K] , φ] = 0, etc. inside a correlator. We call the BCFT with
boundary interaction

∫ t
0 dsφ as BCFTφ.

Using the relevant deformation matter operator φ, Bonora, Maccaferri and Tolla construct the BMT
solution:

ΨBMT = cφ− 1

K + φ
(φ− δφ)Bc∂c , (5.21)

or its pure gauge form

ΨBMT =

(
1− 1

K + φ
φBc

)
Q

(
1 +

1

K
φBc

)
.

Since the BMT solution is written in form of the pure gauge, the solution satisfy equation of motion. Let
us denote that if φ is a constant u, the BMT solution becomes

ΨBMT,0 = uc− 1

K + u
uBc∂c .

As we expect, this is gauge equivalent to the Erler-Schnabl solution (4.3). We can see this from a scale
transformation of sliver frame

z → uz .

The operators K, B and c transform under this scale transformation as

c→ 1

u
c, (B,K)→ u (B,K) .

Then the BMT solution with φ = u becomes

ΨBMT,0 = c− 1

K + 1
Bc∂c ,

and it is gauge equivalent to the Erler-Schnabl solution Ψ0:

ΨBMT,0 =
1√

K + 1
(Q+ Ψ0)

√
K + 1 .

There is a problem coming from the regularization of the solution. This problem relates to the de�nition
of 1

K+φ which appears in the BMT solution as

1

K + φ
≡
∫ ∞

0
dte−t(K+φ) ,

via the Schwinger parametrization. Since the deformed sliver state limt→∞ e
−t(K+φ) does not vanish,

K + φ has zero or positive value as its eigenvalue. Thus, we have to regularize this expression. One
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way to regularize the divergence is the same as the regularization in the computation of gauge invariant
observable of Murata-Schnabl solution. This regularization replaces 1

K+Φ by 1
K+φ+ε with 1 � ε > 0 and

consider

Ψε
BMT = cφ− 1

K + φ+ ε
(φ− δφ)Bc∂c . (5.22)

As we saw in the case of Murata-Schnabl solution (5.14), this regularization causes anomaly to the equation
of motion [47].

QΨε
BMT + (Ψε

BMT )2 = Γε ≡
ε

K + φ+ ε
(φ− δφ) c∂c .

In [17], the authors propose a way to deal with the problem using the distribution theory.

5.2.2 Energy

Since the BMT solution with cosine deformation has nontrivial interaction, the exact computation of
correlation functions with φ in BCFTφ with boundary is di�cult. The computation of the energy, which
includes three point function of φ, is hard to perform. Even though in the case of the Witten deformation,
the computation of the energy is hard to get exact value and only performed numerically [18, 17]. Moreover,
in the Witten deformation, the volume of D25-brane is in�nite and the energy is divergent. There are a
problem about the regularization and anomaly also. On the other hand, the gauge invariant observable can
be computed easily. The computation of the gauge invariant observable include the computation of one
point function of φ in BCFTφ. This one point function can be computed by di�erentiating the partition
function by the coupling constant.

In this subsection, we review the analysis by Erler and Maccaferri [47] about the energy of regularized
BMT solution (5.22). They show the energy of the BMT solution becomes the one of the lump solution,
if the solution

Ψε
0 = c (φ+ ε)− 1

K + φ+ ε
(φ+ ε− δφ)Bc∂c , (5.23)

has the energy of tachyon vacuum. Since this is the BMT solution with seed φ + ε, this solution has no
anomaly in the equation of motion.

Since the regularized BMT solution (5.22) is static solution and does not satisfy equation of motion,
the energy becomes

lim
ε→0

E [Ψε
BMT ] = lim

ε→0

1

g2

[
1

2
〈Ψε

BMT |Q|Ψε
BMT 〉+

1

3
〈(Ψε

BMT )3〉
]
,

= lim
ε→0
− 1

g2

[
1

6
〈(Ψε

BMT )3〉 − 1

2
〈Ψε

BMT |Γε〉
]
.

where 〈(Ψε
BMT )3〉 = 〈Ψε

BMT |Ψε
BMT ?Ψε

BMT 〉. Using Ψε
0, the regularized BMT solution is expressed by

Ψε
BMT = Ψε

0 + ∆ε ,

∆ε ≡ −εc+B
ε

K + φ+ ε
c∂c .

Note that there is no factor of φ except for (K + φ+ ε)−1. Then, the energy becomes

E [Ψε
BMT ] = − 1

g2

[
1

6
〈(Ψε

0)3〉+
1

2
〈∆ε| (Ψε

0)2〉+
1

2
〈(∆ε)

2 |Ψε
0〉+

1

6
〈(∆ε)

3〉 − 1

2
〈∆ε|Γε〉

]
= E [Ψε

0]− 1

g2

[
1

2
〈∆ε| (Ψε

BMT )2〉 − 1

2
〈(∆ε)

2 |Ψε
BMT 〉+

1

6
〈(∆ε)

3〉 − 1

2
〈Ψε

BMT |Γε〉
]
,
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where we use the fact that Ψε
0 satis�es the equation of motion. Erler and Maccaferri assume that E [Ψε

0]
is the energy of tachyon vacuum. The second bracket seems to include the correlation function of φ and
to hard to compute. However one can reduce this to more simple expression by using an identity:

∆εΨ
ε
BMT = Γε .

Then the energy becomes

lim
ε→0

E [Ψε
BMT ] = lim

ε→0
E [Ψε

0] + lim
ε→0

1

g2

[
1

2
〈∆ε|Γε〉 −

1

6
〈(∆ε)

3〉
]
. (5.24)

We can see the second term can be computed from one point function of φ and the third term can be
computed from partition function in the BCFTφ.

From the explicit de�nition, the second term of (5.24) becomes

1

2g2
〈∆ε|Γε〉 =

1

2g2
〈I| ε

K + φ+ ε
Bc∂c

ε

K + φ+ ε
(φ− δφ) c∂c〉 .

Since limt→∞ e
−t(K+φ+ε) vanishes because of the regularization of ε, the factor (K + φ+ ε)−1 can be

expressed by Laplace transform

1

K + φ+ ε
=

∫ ∞
0

dte−t(K+ε) exp

(
−
∫ t

0
dsφ (s)

)
.

Using this, the second term of (5.24) becomes

1

2g2
〈∆ε|Γε〉 =

1

2g2

∫ ∞
0

dt1dt2e
−ε(t1+t2)〈(φ− δφ) (0)〉BCFTφ,mCt1+t2

〈Bc∂c (t2) c∂c (0)〉ghCt1+t2

=
1

2g2

∫ ∞
0

dss2e−εs〈(φ− δφ) (0)〉BCFTφ,mCs

∫ 1

0
dq〈Bc∂c (q) c∂c (0)〉ghC1

,

where we separated the expectation value into matter part 〈·〉BCFTφ,m in the BCFTφ and ghost part 〈·〉gh.
The variable s and q is de�ned by s = t1 + t2 and t2 = sq. Using (5.3), this becomes

1

2g2
〈∆ε|Γε〉 = − 1

4π2g2

∫ ∞
0

dss2e−εs〈(φ− δφ) (0)〉BCFTφ,mCs

= − 1

4π2g2

1

ε

∫ ∞
0

dαα2e−α〈(φ− δφ)u (0)〉BCFTφu ,mCα/ε

= − 1

4π2g2

∫ ∞
0

dααe−α
(

∂

∂ (L)
ZBCFTφ (L)

)∣∣∣∣
L=α

ε
u

,

where α = εs and we used

φ− δφ = u
∂

∂u
φ . (5.25)

u is the coupling constant of the deformation (5.19) or (5.20). Since the partition function ZBCFTφ (L) is
�nite in the limit L→∞, the di�erential of Z (L) by L will vanish faster than 1/L. The contribution from
where v goes to 0 faster than ε is evaluated as follows. When φ is the Witten deformation, the behavior
of the partition function in the UV limit is limL→0 Z (L) ∝ 1/

√
L. Then the contribution becomes

lim
L→0

∫ L

0
dααe−α

(
∂

∂ (L′)
ZBCFTφ

(
L′
))∣∣∣∣

L=α
ε
u

∝ lim
L→0

√
L ,
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and vanish. When φ is the cosine deformation, the contribution from where α goes to 0 faster than ε will
vanish because limL→0 Z (L) is �nite. Therefore, we can put v/ε→∞ inside the integral and get

1

2g2
〈∆ε|Γε〉 −→

ε→0
0 .

The third term of the right hand side of (5.24) can be computed in the similar way.

− 1

6g2
〈(∆ε)

3〉 = − 1

6g2
〈I|
((

ε

K + φ+ ε

)
Bc∂c

)3

|I〉

= − 1

6g2

∫
dαα2e−αZBCFTφ

(α
ε

)∫ 1

0
dq

∫ q

0
dr〈Bc∂c (q)Bc∂c (r)Bc∂c (0)〉ghC1

=
1

4π2g2

∫
dαα2e−αZBCFTφ

(α
ε

)
.

Since the contribution to the integral where α falls faster than ε is at most O
(
α5/2

)
, we can take ε → 0

before the integral.

− 1

6g2
〈(∆ε)

3〉 −→
ε→0

1

2π2g2
lim
L→∞

ZBCFTφ (L) .

Therefore, the energy of the regularized BMT solution becomes

lim
ε→0

E [Ψε
BMT ] = lim

ε→0
E [Ψε

0] +
1

2π2
ZIRBCFTφ ,

where ZIRBCFTφ = limL→∞ ZBCFTφ (L). When we normalize the energy of tachyon vacuum solution as
−T25V25, the second term of the right hand side of the energy becomes

1

2π2
ZIRBCFTφ = T24V24

from (5.16). If the term limε→0E [Ψε
0] is the energy of tachyon vacuum, the energy of regularized BMT

solution becomes
lim
ε→0

E [Ψε
BMT ] = −T25V25 + T24V24 . (5.26)

This satis�es the Sen's second conjecture.

5.2.3 Gauge invariant observable

The gauge invariant observable of the BMT solution is computed in [4]. From the de�nition,

lim
ε→0

W (Ψε
BMT ,V) = lim

ε→0
〈I|V (i∞,−i∞)

(
cφu −

1

K + φ+ ε
u∂uφuBc∂c

)
(0) |I〉 ,

where we wrote the coupling constant u explicitly and used (5.25). The contribution from the �rst term
vanishes because

〈I|V (i∞,−i∞) cφu|I〉 = lim
ξ→0
〈V (i∞,−∞) cφu〉Cξ

= lim
ξ→0
〈V (i∞,−∞) cφuξ〉C1

= 0 .
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Therefore the gauge invariant observable becomes

W (Ψε
BMT ,V) = −〈I|V (i∞,−i∞)

1

K + φ+ ε
u∂uφuBc∂c (0) |I〉

= −
∫ ∞

0
dte−εt〈V (i∞,−∞)u∂uφuBc∂c (0)〉BCFTφuCt

=

∫ ∞
0

dte−εt
1

t
〈V (i∞,−i∞) c (0)u∂uφu〉

BCFTφu
Ct

=

∫ ∞
0

dye−εy/u
∂

∂y
〈V (i∞,−i∞) c (0)〉BCFTφyC1

,

where y = ut. The integral can be performed and we get

W (Ψε
BMT ,V) = −Adisk0 (V) +

ε

u

∫ ∞
0

dye−εy/u〈V (i∞,−i∞) c (0)〉BCFTφyC1
,

where we used same notation in (3.5). The second term of the right hand side becomes

1

u

∫ ∞
0

dy′e−y
′/u〈V (i∞,−i∞) c (0)〉

BCFTφy′/ε
C1

,

where y′ = εy. In Witten deformation, the contribution from the region of y′/ε ∼ 0 vanishes because of

lim
L→0

∫ L

0
dy′ZBCFTφ

(
φy′/ε

)
∝ lim

L→0

√
L .

In cosine deformation, the contribution from the same region vanishes also. Because of these, we can take
ε→ 0 before the integral giving

1

u

∫ ∞
0

dy′e−y
′/u〈V (i∞,−i∞) c (0)〉

BCFTφy′/ε
C1

−→
ε→0
Adisk∗ (V) ,

where we called the BCFT in the IR limit as BCFT∗. Therefore, the gauge invariant observables becomes

lim
ε→0

W (Ψε
BMT ,V) = Adisk∗ (V)−Adisk0 (V) .

This satis�es Ellwood conjecture.

As we saw, the computation of the energy of the BMT solution is di�cult. The assumption that Ψε
0 is

the tachyon vacuum solution is reasonable expectation. This is based on the fact the constant seed φ = a
has the coupling constant a which have mass dimension 1. It is more relevant in the IR limit than other
operators in the seed of Ψε

0. We can compute the correlation functions of φs in BCFTφ in such a limit.
However, we have to compute the correlation functions of φs with �nite coupling constant, because the
computation of the energy of Ψε

0 includes the integral of the coupling constant multiplied the length of
cylinder. The computation is performed numerically in [18] using the Witten's deformation. Since there
is a divergence of the volume of D25-brane in the Witten's deformation, the regularization problem arise
also.

On the other hand, the computation of the gauge invariant observable is computed analytically. More-
over, the computation is easier than that of the energy. This is because that the gauge invariant observable
can be computed by evaluating the one point function of φ in BCFTφ. This one point function is written
in the di�erential of the partition function ∂LZBCFTφ (L), and the gauge invariant observable becomes the

di�erence of the AdiskBCFT (V) between IR limit and UV limit.
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6 Energy from gauge invariant observable

From the examples in the previous section, we can see how much di�cult the computation of the energy is.
In the case of Murata-Schnabl solution, the computations of the energy and the gauge invariant observable
need di�erent regularization. In the case of BMT solution, the computation of energy is hard to perform
analytically while the computation of gauge invariant observable is performed analytically. On the other
hand, the gauge invariant observables are able to be computed analytically. Moreover, we may be able to
compute the energy from the gauge invariant observable with the vertex operator

V =
2

πi
cc̄∂X0∂̄X0 . (6.1)

The gauge invariant observable with this vertex operator corresponds to the one point function of the
linear combination of graviton and dilaton gµν |µ,ν=0 with zero momentum. Since g00 couples to the
energy momentum tensor T00, this one point function is expected to proportional to the energy of the
system. Actually, the one point function

Aa (V) = 〈V (i∞,−i∞) c (0)〉BCFTaC1
,

becomes

Aa (V) =
1

2π2
Va ,

where we used the expectation value of ghosts (4.9) and that of X0s (C.1) in the appendix (C). The
volume factor Va varies as follows

Va =


V25 , BCFTa = BCFT0

0 , the vanishing D-brane background

V24 , BCFTa = BCFT∗

,

where we used the notation of the discussion of the BMT solution. This gives the expected values of the
energy of the solutions.

In this chapter, we will show that the energy can be expressed by gauge invariant observable with
vertex operator (6.1) by

E =
1

g2
〈I|V (i) |Ψ〉 . (6.2)

Using this relation, we will compute the energy of the Murata-Schnabl solution regularized by the same
way of the computation of gauge invariant observable. In addition, we will compute the energy of the
BMT solution, showing that the energy of Ψε

0 de�ned by (5.23) becomes the one of the tachyon vacuum
solution.

In the section (6.1), we will prove (6.2) in the case of that the operator OΨ is local operator, where
OΨ corresponds to the solution |Ψ〉 with ordinary state-operator mapping

|Ψ〉 = OΨ (ξ = 0) |0〉 ,

where |0〉 is SL (2,R) invariant vacuum and ξ is the complex coordinate on the upper half plane. This
gives formal proof of (6.2). This proof can be applied to the analytic solution constructed by KBc algebra,
which does not satisfy the assumption that OΨ is local. In the section (6.2), we will show the relation
(6.2) to the Okawa type solution (4.11). Since the regularization of the solution can cause anomaly to the
equation of motion, we will consider (6.2) with anomalous contribution. In the section (6.3), we will show
the relation (6.2) can hold to the Murata-Schnabl solution and the BMT solution. Using this relation,
we will compute the energy of the Murata-Schnabl solution with the same regularization of that of the
gauge invariant observable, and we can compute the energy of the BMT solution with cosine deformation
analytically.
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6.1 A proof of (6.2) for local OΨ

As we emphasized in the previous chapter, the energy of the solutions is proportional to Ψ3, while the
gauge invariant observable is linear to Ψ. To transform the gauge invariant observable to the energy of
the solution, we will use the equation of motion and increase the degree of Ψ. Because of this, we need
some quantity which produce BRST operator Q from gauge invariant observable. What we will see in this
section is that when there is no other vertex operator, there is a nonlocal operator χ

(
X0
)
and G

(
X0
)

which satisfy

V (i) = {Q,χ} ,
[Q,G] = χ− χ† ,

where χ† is the BPZ conjugate of χ. Using these identity and equation of motion, the gauge invariant
observable will be transformed to the term proportional to the third power of Ψ in which G is inserted.
When the contribution from G can be computed independently, the gauge invariant observable become to
be proportional to Ψ3, thus to the energy of the solution. Because of this, we assume that OΨ does not
involve X0 variable.

6.1.1 Open string �eld theory in a weak gravitational background

In this subsection, we will consider the string �eld expressed on upper half plane ξ.
It also serves as a review of [48] to consider the string �eld theory with closed string background:

Sh = − 1

g2

[
1

2
〈Ψ|Q|Ψ〉+

1

3
〈Ψ|Ψ ?Ψ〉+ h 〈I|V (i) |Ψ〉

]
, (6.3)

where h� 1. It has been shown in [49] that such a string �eld action describes string theory in a closed
string background, for general on-shell V. The vertex operator (6.1) is a linear combination of the constant
graviton and dilaton. Therefore the action (6.3) should be the open string �eld theory in a constant metric
and dilaton background. However, the constant metric can be transformed to �at metric ηµν and the e�ect
of dilaton background causes the change of the coupling constant g → g′. Because of this, the action (6.3)
can be transformed to the action of the ordinary cubic string �eld theory (2.2) with coupling constant g′.

To see the transformation of the action (6.3), let us de�ne the nonlocal operator χ:

V (i) = {Q,χ} , (6.4)

where

χ ≡ lim
δ→0

[∫
P1

dξ

2πi
j
(
ξ, ξ̄
)
−
∫
P̄1

dξ̄

2πi
j̄
(
ξ, ξ̄
)

+
c (1)

2πδ

]
, (6.5)

j
(
ξ, ξ̄
)
≡ 4∂X0 (ξ) c̄∂̄X0

(
ξ̄
)
,

j̄
(
ξ, ξ̄
)
≡ 4∂̄X0

(
ξ̄
)
c∂X0 (ξ) .

The contour P1 is depicted in the Figure (11) and P̄1 is its complex conjugate. We took the normal
ordering for operators implicitly. Since the correlation function 〈∂X0 (ξ) ∂̄X0

(
ξ̄
)
〉U.H.P. diverges on the

real axis we regularized the edge of contour by δ. Because of the third term of the right hand side of (6.5),
χ is not singular in the limit of δ → 0. We give the details of the de�nition of χ and the derivation of
(6.4)(6.6) in appendix A. Using (6.4) and equation of motion, the action (6.3) becomes

Sh = − 1

g2

[
1

2

〈
Ψ′|Q′|Ψ′

〉
+

1

3

〈
Ψ′|Ψ′ ∗Ψ′

〉]
+O

(
h2
)
, (6.6)

37



where ∣∣Ψ′〉 ≡ |Ψ〉+ hχ |I〉 , (6.7)

Q′ ≡ Q− h
(
χ− χ†

)
.

χ† denotes the BPZ conjugate of χ and

χ− χ† = lim
δ→0

[∫
P1+P2

dξ

2πi
j
(
ξ, ξ̄
)
−
∫
P̄1+P̄2

dξ̄

2πi
j̄
(
ξ, ξ̄
)

+
c (1)

2πδ
− c (−1)

2πδ

]
,

where P2 is depicted in (11).
The string �eld theory (6.6) is similar to the one considered in [48] as the open string �eld theory

in the soft dilaton background. They have shown that the e�ect of such a background corresponds to a
rescaling of the string coupling constant g. To see this, let us de�ne G which satis�es

[Q,G] = χ− χ† . (6.8)

This is given by

G ≡ lim
δ→0

[∫
P1+P2

dξ

2πi
gξ
(
ξ, ξ̄
)
−
∫
P̄1+P̄2

dξ̄

2πi
gξ̄
(
ξ, ξ̄
)]

, (6.9)

gξ
(
ξ, ξ̄
)
≡ 2

(
X0
(
ξ, ξ̄
)
−X0 (i,−i)

)
∂X0 (ξ) ,

gξ̄
(
ξ, ξ̄
)
≡ 2

(
X0
(
ξ, ξ̄
)
−X0 (i,−i)

)
∂̄X0

(
ξ̄
)
.

Since gξ, gξ̄ have singularity at ξ = i, the contour P1 + P2 is deformed to the contour depicted in Figure

(12). TheX0 (i,−i) is necessary for wellde�ned gξ and gξ̄. gξ, gξ̄ are de�ned with the usual normal ordering
prescription (C.2) and under a conformal transformation ξ → ξ′ (ξ), gξ transforms as

gξ′
(
ξ′, ξ̄′

)
=
∂ξ

∂ξ′
gξ
(
ξ, ξ̄
)

+
1

2
∂ξ′ ln

∂ξ

∂ξ′
. (6.10)

The singularities comes from real axis are canceled between the �rst term and the second term of the right
hand side of (6.9). We give the derivation of (6.8) in A.

When the string �elds does not include X0, we can compute the contribution of G. There are useful
identities which can be shown from the de�nition of G:

〈GΨ1|Ψ2〉+ 〈Ψ1|GΨ2〉 = 〈Ψ1|Ψ2〉 , (6.11)

〈GΨ1|Ψ2 ∗Ψ3〉+ 〈Ψ1|GΨ2 ∗Ψ3〉+ 〈Ψ1|Ψ2 ∗ GΨ3〉 = 〈Ψ1|Ψ2 ∗Ψ3〉 . (6.12)

Figure 11: Contours P1, P2
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Figure 12: the contour to de�ne G

Using these identities and (6.8), we can transform the action (6.6) to

Sh = −1 + h

g2

[
1

2

〈
Ψ′′|Q|Ψ′′

〉
+

1

3

〈
Ψ′′|Ψ′′ ∗Ψ′′

〉]
+O

(
h2
)
, (6.13)

where ∣∣Ψ′′〉 ≡ (1− hG)
∣∣Ψ′〉 .

Therefore, the action (6.3) with the vertex operator (6.1) corresponds to the original action (2.2) for the
string �eld |Ψ′′〉 with the coupling constant g′:

g′ =
1√

1 + h
g .

G can be regarded as the generator of general coordinate transformation.

6.1.2 Derivation of (6.2)

From the two expression of Sh (6.3) and (6.13), we can deduce the relation (6.2). When the solution |Ψ〉
is a static solution, the action (6.3) can be expressed by

Sh = −E [Ψ]− h

g2
〈I|V (i) |Ψ〉 , (6.14)

where E [Ψ] is the energy of |Ψ〉. On the other hand, the string �eld |Ψ′′〉 in (6.13) is related to |Ψ〉 by∣∣Ψ′′〉 = |Ψ〉+
∣∣δ′′Ψ〉 ,

where |δ′′Ψ〉 is O (h). Using this expression, the action (6.13) becomes

Sh = −1 + h

g2

[
1

2
〈Ψ|Q|Ψ〉+

1

3
〈Ψ|Ψ ∗Ψ〉

+
〈
δ′′Ψ

∣∣ (Q |Ψ〉+ |Ψ ∗Ψ〉)
]

+O
(
h2
)
.

Since |Ψ〉 satisfy the equation of motion, the �rst term of the second line vanish. Therefore (6.13) becomes

Sh = − (1 + h)E [Ψ] +O
(
h2
)
. (6.15)

Comparing the terms of order h in (6.14) and (6.15), we get the relation between energy and gauge
invariant observable

E =
1

g2
〈I|V (i) |Ψ〉 . (6.16)
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We can show this relation in more direct way. From (6.11) and (6.12), we can show the identities

1

3
〈Ψ|Ψ ∗Ψ〉 = 〈GΨ|Ψ ∗Ψ〉 ,

1

2
〈Ψ|Q |Ψ〉 = 〈GΨ|Q |Ψ〉 − 1

2
〈Ψ| [Q,G] |Ψ〉 . (6.17)

Using these identities, equation of motion and

[Q,G] |Ψ〉 =
(
χ− χ†

)
|Ψ〉 , (6.18)

we can obtain

E =
1

g2

[
1

2
〈Ψ|Q|Ψ〉+

1

3
〈Ψ|Ψ ∗Ψ〉

]
=

1

g2

[
〈GΨ| {Q |Ψ〉+ |Ψ ∗Ψ〉} − 1

2
〈Ψ| [Q,G] |Ψ〉

]
= − 1

2g2
〈Ψ|

(
χ− χ†

)
|Ψ〉

= − 1

g2
〈I|χ |Ψ ∗Ψ〉

=
1

g2
〈I|χQ |Ψ〉

=
1

g2
〈I|V (i) |Ψ〉 . (6.19)

Before closing this section, a few comments are in order:

• The vertex operator V is expressed in a BRST exact form (6.4), with χ being a completely legal
operator. This fact may appear odd because it implies that all the amplitudes involving V vanish3.
Actually (6.4) holds on the assumption that there exists no operators around ξ = 1. In the derivation
of (6.4) in appendix A, we use (A.5) which is valid only when such a condition is satis�ed, which
is the case in our setup. However, in calculating amplitudes, this is not guaranteed because of the
existence of other vertex operators and (6.4) cannot be used in such a situation.

• It is also possible to use
V = cc̄∂Xµ∂̄Xνhµν ,

with hµµ = −1 and derive (6.2), provided the variables Xµ are described by the free worldsheet theory
with the Neumann boundary condition.

• Suppose that |Ψ〉 does not satisfy the equation of motion:

Q |Ψ〉+ |Ψ ∗Ψ〉 ≡ |Γ〉 6= 0 . (6.20)

It is easy to see that the relation (6.19) is modi�ed as

E =
1

g2
〈I|V (i) |Ψ〉 − 1

g2
〈I|χ |Γ〉+

1

g2
〈GΨ|Γ〉 . (6.21)

3This question was raised by M. Schnabl.
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6.2 Derivation of (6.2) for Okawa type solutions

The proof in the previous section based on the assumption that the solution |Ψ〉 = OΨ|0〉 is written by
a local operator OΨ which is located away from the arch |ξ| = 1. However, the analytic solutions which
we are interested in are written by non local operators K and B, which is the integral of the energy
momentum tensor T and antighost b from ξ = −i to ξ = i. These contour of K and B across the contour
P1 + P2 and do not commute with gξ and jξ. Because of this, we need to check that the proof of the
previous section can be held to such solutions. In the following, we will consider the string �eld expressed
on sliver frame. Therefore, we use the state-operator mapping in the form of

|Ψ〉 = Ψ|I〉 ,

where |I〉 is identity state.
As the model, we consider the Okawa-type solution (4.11),

Ψ = F (K) c
KB

1− F (K)2 cF (K) .

We assume that the F (K) and K/
(
1− F 2

)
can be expressed by Laplace transform,

F (K) =

∫ ∞
0

dLe−LKf (L) ,

K

1− F 2
=

∫ ∞
0

dLe−LK f̃ (L) .

We will consider the case later, that the regularization is necessary to de�ne the Laplace transform. Using
these Laplace transforms and (4.8), the string �eld itself can be expressed by Laplace transform

Ψ =

∫ ∞
0

dLe−LKψ (L) , (6.22)

where

ψ (L) =

∫
dL1dL2dL3δ (L− L1 − L2 − L3)

×c (L2 + L3)Bc (L3) f (L1) f̃ (L2) f (L3) . (6.23)

We express (4.2) as
Ψ = L{ψ} ,

where L denotes the operation of the Laplace transform. When we de�ne an inverse Laplace transform
by L−1, ψ is expressed by

ψ (L) = L−1 {Ψ} (L) .

In order to trace the computation (6.19), we have to show the identities (6.17) and (6.18) about the
Okawa type solution. We will de�ne G and χ on sliver frame, and show how the operators K and B a�ect
the calculation of (6.17) and (6.18). Actually, as we will see, the e�ects of nonlocal operators are canceled
each other and the identities are also hold on the Okawa type solution.

6.2.1 De�nition of G

The solution Ψ is expressed by the sum of wedge state e−LK with insertion ψ (L) in (4.2). Similarly, |GΨ〉
is de�ned by the sum of wedge state with insertion of ψ (L) and G (L). G (L) is de�ned by
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Figure 13: PL,Λ,δ

G(L,Λ, δ) ≡ lim
z0→i∞

[∫
PL,Λ,δ

dz

2πi
gz(z, z̄)−

∫
P̄L,Λ,δ

dz̄

2πi
gz̄(z, z̄)

]
,

gz(z, z̄) = 2
(
X0 (z, z̄)−X0(z0, z̄0)

)
∂X0(z) ,

gz̄(z, z̄) = 2
(
X0 (z, z̄)−X0(z0, z̄0)

)
∂̄X0(z) ,

where the contour is depicted in Figure (13). We can de�ne G as the operation of G (L,Λ, δ) to e−LKψ (L)
of every L. Using a test state |φ〉 = Oφ (ξ = 0) |0〉, the de�nition of |GΨ〉 is given by

〈φ|GΨ〉 = lim
(Λ,δ)→(∞,0)

∫ ∞
0

dL
〈
e(L+ 1

2)Kf ◦ Oφ (0) e−(L+ 1
2)KG(L,Λ, δ)ψ (L)

〉
CL+1

. (6.24)

Here, we used f (ξ) ≡ π
2 arctan ξ and the fact that |0〉 = e−K |I〉. z which appears in the de�nition of

G(L,Λ, δ) is the complex coordinate on CL+1 such that e−LKψ (L) corresponds to the region 0 ≤ Rez ≤ L.
From this de�nition of G, we can deduce the identities (6.11) and (6.12). The �rst term of the left

hand side of (6.12) becomes

〈GΨi|Ψi ?Ψi〉 = lim
(Λ,δ)→(∞,0)

∫ ∞
0

dL1

∫ ∞
0

dL2

∫ ∞
0

dL3

×
〈
e(L2+L3)KG(L1,Λ, δ)ψ1(L1)e−L2Kψ2(L2)e−L3Kψ3(L3)

〉
CL1+L2+L3

,

(6.25)

where ψi (Li) = L−1 {Ψi} (Li). When we assume that every Ψis do not include X0, we can separate the
contribution of G (L,Λ, δ) from other expectation values:〈

e(L2+L3)KG(L1,Λ, a)ψ1(L1)e−L2Kψ2(L2)e−L3Kψ3(L3)
〉
CL1+L2+L3

= 〈G(L1,Λ, a)〉X0

CL1+L2+L3

×
〈
e(L2+L3)Kψ1(L1)e−L2Kψ2(L2)e−L3Kψ3(L3)

〉
CL1+L2+L3

, (6.26)

where 〈·〉X0
is the expectation value of X0. This expectation value of X0 can be computed by using (C.3).

Since the expectation value of gξ and gξ̄ does not depend on <z of the integral in the limit z0 → ∞ and
constant =z →∞, it becomes

lim
(Λ,δ)→(∞,0)

〈G(L1,Λ, δ)〉X
0

CL1+L2+L3
=

L1

L1 + L2 + L3
. (6.27)
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Therefore, the �rst term of the left hand side of (6.12) becomes

〈GΨ1|Ψ2 ∗Ψ3〉 =

∫
dL1dL2dL3

L1

L1 + L2 + L3

×
〈
e(L2+L3)Kψ1(L1)e−L2Kψ2(L2)e−L3Kψ3(L3)

〉
CL1+L2+L3

.

From the same computation, the second and the third term of the left hand side of (6.12) becomes

〈Ψ1|GΨ2 ∗Ψ3〉 =

∫
dL1dL2dL3

L2

L1 + L2 + L3

×
〈
e(L2+L3)Kψ1(L1)e−L2Kψ2(L2)e−L3Kψ3(L3)

〉
CL1+L2+L3

,

〈Ψ1|Ψ2 ∗ GΨ3〉 =

∫
dL1dL2dL3

L3

L1 + L2 + L3

×
〈
e(L2+L3)Kψ1(L1)e−L2Kψ2(L2)e−L3Kψ3(L3)

〉
CL1+L2+L3

.

From this, we can deduce the relation (6.12). Similarly, (6.11) and (6.17) can be shown from the de�nition.

6.2.2 (6.18) for Okawa type solutions

Let us consider the identity (6.18). For an arbitrary test state |φ〉 = |φ〉, we can deduce

〈φ| [Q,G] |Ψ〉 = lim
(Λ,δ)→(∞,0)

[∫ ∞
0

dL
〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)KQG(L,Λ, δ)ψ (L)

〉
CL+1

−
∫ ∞

0
dL
〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)KG(L,Λ, δ)L−1 {QΨ} (L)

〉
CL+1

]
= A1 +A2 ,

where

A1 ≡ lim
(Λ,δ)→(∞,0)

∫ ∞
0

dL
〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)K [Q,G(L,Λ, δ)]ψ (L)

〉
CL+1

, (6.28)

A2 ≡ lim
(Λ,δ)→(∞,0)

∫ ∞
0

dL
〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)K

× G(L,Λ, δ)
[
Qψ (L)− L−1 {QΨ} (L)

]〉
CL+1

.

(6.29)

One can guess that A1 gives the contribution of
(
χ− χ†

)
|Ψ〉. As we will see soon, there is an additional

contribution which comes from B in ψ. Similarly, one may guess that A2 will vanish. However because

QL−1 {Ψ} (L)− L−1 {QΨ} (L) 6= 0 ,

there is an additional contribution. This contribution comes from K and cancels to the additional contri-
bution of A1. We will see this cancellation explicitly.

Using the expression (4.2) and (6.23), A1 becomes

A1 =

∫
dL

∫
dL1dL2dL3δ (L− L1 − L2 − L3)

× f (L1) f̃ (L2) f (L3)

×
〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)K [Q,G(L,Λ, δ)] c (L2 + L3)Bc (L3)

〉
CL+1

.

(6.30)
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Figure 14: PL,Λ,δ and B in A1

From the de�nition [Q,G (L,Λ, δ)] becomes

[Q,G(L,Λ, δ)] =

∫
PL,Λ,δ

dz

2πi
4∂X0 (z) c̄∂̄X0 (z̄)−

∫
P̄L,Λ,δ

dz̄

2πi
4∂̄X0 (z̄) c∂X0 (z)

−2
(
c∂X0 (i∞) + c̄∂̄X0 (−i∞)

)(∫
PL,Λ,δ

dz

2πi
∂X0 (z)−

∫
P̄L,Λ,δ

dz̄

2πi
∂̄X0 (z̄)

)

+

∫
PL,Λ,δ

dz

2πi

1

2
∂2c−

∫
P̄L,Λ,δ

dz̄

2πi

1

2
∂̄2c̄

+

∫
PL,Λ,δ

dz∂κ (z, z̄) +

∫
P̄L,Λ,δ

dz̄∂̄κ (z, z̄) , (6.31)

κ (z, z̄) ≡ 1

πi

(
X0 (z, z̄)−X0 (i∞,−i∞)

) (
c∂X0 (z)− c̄∂̄X0 (z̄)

)
.

Since for Imz, Imz′ ∼ ∞,

〈
∂X0 (z) ∂̄X0

(
z̄′
)〉X0

CL
∼ −2

(π
L

)2
exp

(
2πi

L

(
z − z̄′

))
,

c (z) ∝ exp

(
−2πi

L
z

)
,

we can ignore the Imz = Λ part of the contours PL,Λ,δ, P̄L,Λ,δ in the �rst and the second terms of (6.31),
in the limit Λ → ∞. The second and the third lines are integrated to the surface term of the contour
PL,Λ,δ, P̄L,Λ,δ. For the second line, one can integrate it explicitly using (C.1) and see that it will vanish in
the limit of δ → 0. The third line vanishes because of the boundary conditions of c, c̄.

The nontrivial e�ect of B comes from the fourth line of (6.31). Since the operators in the expectation
value in (6.30) is time ordered by time variable <z and B across the contour PL,Λ,δ and P̄L,Λ,δ, the
contribution from the fourth line of (6.31) becomes
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〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)K

(∫
PL,Λ,δ

dz∂κ (z, z̄) +

∫
P̄L,Λ,δ

dz̄∂̄κ (z, z̄)

)
c (L2 + L3)Bc (L3)

〉
CL+1

= −Tr
[
e−

1
2
Kf ◦ φ (0) e−(L+ 1

2)Kc (L2 + L3)Bc (L3)κ (iδ,−iδ)

+ e−
1
2
Kf ◦ φ (0) e−(L+ 1

2)Kκ (L1 + iδ, L1 − iδ) c (L2 + L3)Bc (L3)

+e−
1
2
Kf ◦ φ (0) e−(L+ 1

2)Kc (L2 + L3) {B, κ (a+ iΛ, a− iΛ)} c (L3)
]
.

where we denote a as the position of B insertion. Therefore (6.28) becomes

A1 =

∫
dLTr

[
e−

1
2
Kf ◦ φ (0) e−

1
2
K
(
χe−LKψ (L) + e−LKψ (L)χ

)]
+

∫
dL

1

L+ 1
Tr
[
e−

1
2
Kf ◦ φ (0) e−

1
2
Ke−LKα (L)

]
, (6.32)

where α (L) is de�ned in (B.5) and χ is given as

χ = lim
(Λ,δ)→(∞,0)

[∫ iΛ

iδ

dz

2πi
4∂X0 (z) c̄∂̄X0 (z̄)

−
∫ −iΛ
−iδ

dz̄

2πi
4∂̄X0 (z̄) c∂X0 (z)

+
c (0)

2πδ

]
.

As we expected, A1 gives the contribution 〈φ|
(
χ− χ†

)
|Ψ〉 which is given by the �rst line of (6.32). The

second line is the e�ect of non local operator B.
In order to show (6.18), the second line of (6.32) have to be canceled with A2. Using (B.7) and

G (0,Λ, δ) = 0, A2 becomes

A2 = lim
(Λ,δ)→(∞,0)

∫ ∞
0

dL
〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)K

× G(L,Λ, δ)eLK∂L
(
e−LKα (L)

)〉
CL+1

. (6.33)

The expectation value of integrand is computed by

∂t

〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)KG(L,Λ, δ)e−tKα (L+ t)

〉
CL+1

∣∣∣∣
t=0

.

Using (6.27), this becomes

∂t

[
L

L+ t+ 1

〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)Kα (L+ t)

〉
CL+t+1

]∣∣∣∣
t=0

=
L

L+ 1

〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)KeLK∂L

(
e−LKα (L)

)〉
CL+1

− L

(L+ 1)2

〈
e(L+ 1

2)Kf ◦ φ (0) e−(L+ 1
2)Kα (L)

〉
CL+1

.

Substituting this to (6.33), we get
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A2 =

∫ ∞
0

dL

{
L

L+ 1
Tr
[
e−

1
2
Kf ◦ φ (0) e−

1
2
K∂L

(
e−LKα (L)

)]
− L

(L+ 1)2 Tr
[
e−

1
2
Kf ◦ φ (0) e−

1
2
Ke−LKα (L)

]}
= −

∫ ∞
0

dL
1

L+ 1
Tr
[
e−

1
2
Kf ◦ φ (0) e−

1
2
Ke−LKα (L)

]
.

The result is minus sign of the second line of (6.32). Therefore, there is no contribution from non local
operator in Ψ and we get

A1 +A2 =

∫
dLTr

[
e−

1
2
Kf ◦ φ (0) e−

1
2
K
(
χe−LKψ (L) + e−LKψ (L)χ

)]
.

This shows that the relation (6.18)

[Q,G] |Ψ〉 =
(
χ− χ†

)
|Ψ〉 ,

is also held to Okawa type solution.

6.2.3 (6.2) for Okawa type solutions

Since the identities (6.17) and (6.18) have been shown, we can apply the formal proof (6.19) to the Okawa
type solution. In summary, we have proved (6.2) for Okawa type solutions Ψ assuming the following
conditions:

• Ψ satis�es the equation of motion.

• α (∞) = 0 and α (0) is well-de�ned for α (L) de�ned in (B.5).

In addition to these, it is implicitly assumed that all the quantities which appear in the course of the
calculations are �nite4. Conditions other than the equation of motion are concerning the regularity of the
solution. If the equation of motion is not satis�ed, we obtain (6.21) with |Γ〉 given in (6.20).

6.3 Other solutions

The computation in the previous section depends on that the solution satis�es the assumptions or not.
Because of this, we can extend the computation to the other solutions 5. We will see the applications to
BMT solution (5.21) and Murata-Schnabl solution (5.1). What we have to do are de�ne α (L) for each
solution and check the assumptions we used in previous section.

6.3.1 BMT solution

As we saw in 5.2, the direct computation of the energy of regularized BMT solution (5.22) is di�cult,
while the computation of the gauge invariant observable is easy. Thus, the relation (6.2) can make the
computation of the energy easy a bit. From the review in (5.2.2) about [47], we will show the relation
(6.2) to the BMT solution (5.23) which is considered as the tachyon vacuum. From the de�nition (5.23),
we get the Laplace transform of Ψε

0:

4This is also assumed in section 6.1.
5Our results will not be useful for the marginal deformation solutions, for which it is trivial to calculate the energy, but

may be relevant [50] in the context of the discussions in Ref. [51].
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Ψε
0 =

∫ ∞
0

dLe−LKψε0 (L) ,

ψε0 (L) = δ (L) c (φ+ ε)− e−εL−
∫ L
0 dsφ(s) (φ− δφ+ ε)Bc∂c ,

where we assume thatX in φ is di�erent direction fromX0. From the same discussion in (B), the di�erence
between L−1 {QΨε

0} and QL−1 {Ψε
0} becomes

L−1 {QΨε
0} (L) = QL−1 {Ψε

0} (L)− eLK∂L
(
e−LKαε0 (L)

)
− δ (L)αε0 (0) ,

with
αε0 (L) = e−εL−

∫ L
0 dsφ(s) (φ− δφ) c∂c .

One can see αε0 (L) satis�es the conditions that αε0 (L→∞) = 0 and αε0 (0) is wellde�ned. Since there is
divergence in the Witten deformation which comes from noncompactness of X, the relation (6.2) can not
be held in this case. The cosine deformation does not seem to have such problem 6. Thus, the relation
(6.2) can be held to the cosine deformation and one can see the energy of Ψε

0 from the gauge invariant
observable W [V,Ψε

0] with the vertex operator (6.1). It shows correct energy of tachyon vacuum. Using
this, one can get the energy of regularized BMT solution (5.22) analytically, and get the preferable result
(5.26) which coincide with Sen's second conjecture.

It may be possible to calculate the energy of Ψε
BMT directly for the cosine deformation. Since Ψε

BMT

has an anomaly in equation of motion, we need to evaluate the second and the third terms of (6.21). In
order to do so, we need to know the IR behavior of some correlation functions of φ.

6.4 Murata-Schnabl solution

When we consider the regularized Murata-Schnabl solution (5.13), we can see the factor e−εL in α (L)
for Murata-Schnabl solution. This satis�es the assumption that α (L→∞) and we can show the formal
proof. Since there is an anomaly in the equation of motion, the relation between the energy and gauge
invariant observable becomes (6.21).

As we saw in (5.1), the computations of the energy and gauge invariant observable of the Murata-
Schnabl solution (5.1) are performed with di�erent regularizations. As an application of our results, let
us calculate the energy of the regularized Murata-Schnabl solution (5.13). Since it is regularized by the
same way to compute the gauge invariant observable, we can get the energy with the same regularization
with gauge invariant observable.

Since Ψε
MS has an anomaly in equation of motion (5.14) the relation we have is

E =
1

g2
[〈I|V (i) |Ψε

MS〉 − 〈I|χ |Γε〉+ 〈GΨε
MS |Γε〉] . (6.34)

After some calculations, details of which are presented in appendix D, we obtain in the limit ε→ 0

〈I|V (i) |Ψε
MS〉 =

N − 1

2π2

〈I|χ |Γε〉 → RN , (6.35)

〈GΨε
MS |Γε〉 → 0 , (6.36)

6The partition function
g (uT ) ≡ Tre−T (K+φ) ,

can be calculated perturbatively [45] and is �nite for 0 ≤ uT <∞. The UV and IR behaviors of the correlation functions of
φ's are harmless.
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where

RN ≡

−
i

8π3

∑N−2
k=0

N !
k!(k+2)!(N−2−k)!

(
(2πi)k+2 − (−2πi)k+2

)
, (N ≥ 1) ,

i
8π3

∑−N−1
k=0

(1−N)!
k!(k+2)!(−N−1−k)!

(
(2πi)k+2 − (−2πi)k+2

)
, (N ≤ 0) .

Therefore we get the energy

E =
1

g2

(
N − 1

2π2
−RN

)
.

This coincides with the desired value N−1
2π2 for N = −1, 0, 1, 2. Thus, for these N , the anomaly Γε is

harmless at least in the calculation of energy, although we do not know the reason why this is so for
N = −1, 2 7.

7 Conclusion

We showed the relation (6.2) between the energy and the gauge invariant observable with the static
solution of equation of motion in Witten's cubic string �eld theory. The vertex operator we used is the
linear combination of a constant graviton and dilaton operator (6.1). We also showed the relation in
the case that the solution is written by using KBc algebra. In a recent paper [52], it is found that the
boundary states can also be constructed from the gauge invariant observables. Therefore now we possess
a more e�cient way to study the physical properties of solutions which have been or will be discovered.

Recently in [40] the authors propose several new types of solutions made from K,B, c. It seems that
our method can be applied to these solutions and derive (6.2) if the solutions are su�ciently regular. One
particularly interesting solution mentioned in [40] is the one due to Masuda, which is claimed to have the
energy of the double brane con�guration but the gauge invariant observables of the perturbative vacuum.
It would be intriguing to check how our derivation of (6.2) fails for this solution.

Interrelationship between energy and the gauge invariant observable will be important in exploring
various aspects of string �elds. For example, in the case of the BMT solution, the calculation of gauge
invariant observables reduces to the integral of total derivative. This implies that these gauge invariant
observables may have some topological nature. On the other hand, in [37], the energy is interpreted to be
the winding number in string �eld theory. Our results may shed some light on the study of the topological
invariants of the space of string �elds.

In this paper, we consider the solutions which have a singularity in K = 0. In [53], the author shows
there is a transformation which sends K → 1/K, and the energy is not changed under this transformation.
On the other hand, the gauge invariant observable on the right hand side of (6.2) does not have such a
symmetry. In [54], the author show that the relation (6.2) is modi�ed to include the contribution from
the singularity in K =∞, which has a symmetry under the transformation.

This Doctorial thesis is based on the paper [55] which we have submitted in Journal of High Energy
Physics.
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A Derivations of (6.4), (6.6) and (6.8)

Since the quantities which appear in section 6.1 involve unusual combinations of operators, some explana-
tion is necessary about the de�nitions and the treatment of them. In this appendix, we present the details
of the de�nition of χ,G and the derivation of (6.4)(6.6)(6.8).

{Q,χ} = V (i,−i)

Introducing θ such that ξ = eiθ, the contour integral on the right hand side of (6.5) is expressed as∫
P1

dξ

2πi
j
(
ξ, ξ̄
)
−
∫
P̄1

dξ̄

2πi
j̄
(
ξ, ξ̄
)

=

∫ π
2

δ

dθ

2πi
ieiθj

(
eiθ, e−iθ

)
−
∫ π

2

δ

dθ

2πi

(
−ie−iθ

)
j̄
(
eiθ, e−iθ

)
. (A.1)

In calculating the BRST variation of this quantity, it is useful to notice

1

2πi
j
(
ξ, ξ̄
)

=

∮
ξ

dξ′

2πi
b
(
ξ′
)
V
(
ξ, ξ̄
)
, (A.2)

− 1

2πi
j̄
(
ξ, ξ̄
)

=

∮
ξ̄

dξ̄′

2πi
b̄
(
ξ̄′
)
V
(
ξ, ξ̄
)
, (A.3)

where V
(
ξ, ξ̄
)
is the vertex operator de�ned in (6.1). Since V is BRST invariant, it is straightforward to

show {
Q,

∫
P1

dξ

2πi
j
(
ξ, ξ̄
)
−
∫
P̄1

dξ̄

2πi
j̄
(
ξ, ξ̄
)}

=

∫ π
2

δ
dθ

(
deiθ

dθ
∂ξV

(
eiθ, e−iθ

)
+
de−iθ

dθ
∂ξ̄V

(
eiθ, e−iθ

))
= V (i,−i)− V

(
eiδ, e−iδ

)
. (A.4)

Assuming that there are no other operators around ξ = 1, the OPE's of c, c̄, X0 imply

V
(
eiδ, e−iδ

)
=
c∂c (1)

2πδ
+O (δ) =

{
Q,

c (1)

2πδ

}
+O (δ) , (A.5)

for δ ∼ 0. The assumption is valid in the setup of this paper. Using (A.5), we obtain

{Q,χ} = V (i,−i) .

It is possible to generalize our construction here to other closed string vertex operators. For any BRST
invariant closed string vertex operator V

(
ξ, ξ̄
)
, one can de�ne j, j̄ as in (A.2)(A.3), and one can prove

(A.4). If V
(
eiδ, e−iδ

)
can be expressed as

V
(
eiδ, e−iδ

)
= {Q,U}+O (δ) , (A.6)

in the limit δ → 0 as in (A.5), we obtain V (i,−i) = {Q,χ} with

χ ≡ lim
δ→0

[∫
P1

dξ

2πi
j
(
ξ, ξ̄
)
−
∫
P̄1

dξ̄

2πi
j̄
(
ξ, ξ̄
)

+ U
]
.

(A.6) holds if there exists no on-shell open string vertex operator Vo such that

〈VVo〉disk 6= 0 .
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(6.6)

Figure 15: C ′

Substituting (6.7) into (6.3), we obtain

Sh = − 1

g2

[
1

2

〈
Ψ′|Q|Ψ′

〉
+

1

3

〈
Ψ′|Ψ′ ∗Ψ′

〉
+ h 〈I|V (i) |Ψ〉

−h 〈I|χQ |Ψ〉 − h

2

〈
Ψ′
∣∣ (χ− χ†) ∣∣Ψ′〉] ,

where we have used

χ |I〉 = χ† |I〉 ,
〈Ψ|χ |Ψ〉 = −〈Ψ|χ† |Ψ〉 .

Since Q |I〉 = 0,
〈I|χQ |Ψ〉 = 〈I| {Q,χ} |Ψ〉 ,

and we may be able to use (6.4) to show (6.6). We should check if the Q in the open string �eld action
yields the BRST variation of χ as an operator in the bulk. The BRST operator acting on a string �eld
|Ψ〉 = OΨ (0) |0〉 is given as

Q |Ψ〉 =

(∫
C′

dξ

2πi
JB −

∫
C̄′

dξ̄

2πi
J̄B

)
OΨ (0) |0〉 ,

where JB, J̄B are the BRST current and C ′, C̄ ′ are depicted in the �gure 15. Since JB (ξ) = J̄B

(
ξ̄
)
for real

ξ the contour integral can be expressed as ∮
0

dξ

2πi
JB ,

on the doubled Riemann surface. (Qχ (i,−i) + χ (i,−i)Q) |Ψ〉 in the open string �eld theory is given as(∮
C′′

dξ

2πi
JB −

∮
C̄′′

dξ̄

2πi
J̄B

)
χ
(
ξ, ξ̄
)
Oψ |0〉 ,

where the contours C ′′, C̄ ′′ are the one which surrounds P1P̄1 as depicted in �gure 16. Hence the contour
integral yields the BRST variation of χ and we obtain V (i,−i) |Ψ〉.
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Figure 16: Contour which surrounds P1

{Q,G} = χ− χ†

The contour integral on the right hand side of (6.9) is de�ned in the same way as in (A.1). It is straight-
forward to calculate the BRST variations of gξ, gξ̄ as[

Q, gξ
(
ξ, ξ̄
)]

=
1

2
∂2c (ξ) + ∂ξ

(
2
(
X0
(
ξ, ξ̄
)
−X0 (i,−i)

)
c∂X0 (ξ)

)
+2c̄∂̄X0∂X0

(
ξ, ξ̄
)
− 2

(
c∂X0 (i) + c̄∂̄X0 (−i)

)
∂X0 (ξ) ,[

Q, gξ̄
(
ξ, ξ̄
)]

=
1

2
∂̄2c̄

(
ξ̄
)

+ ∂ξ̄
(
2
(
X0
(
ξ, ξ̄
)
−X0 (i,−i)

)
c̄∂̄X0

(
ξ̄
))

+2c∂X0∂̄X0
(
ξ, ξ̄
)
− 2

(
c∂X0 (i) + c̄∂̄X0 (−i)

)
∂̄X0

(
ξ̄
)
,

and we �nd [Q,G] is equal to

lim
δ→0

[
1

4πi

(
∂c
(
−e−iδ

)
− ∂̄c

(
−eiδ

)
− ∂c

(
eiδ
)

+ ∂̄c̄
(
e−iδ

))
+

1

2πi

(∫
dξ∂ξ +

∫
dξ̄∂ξ̄

)(
2
(
X0
(
ξ, ξ̄
)
−X0 (i,−i)

)
c∂X0 (ξ)

)
− 1

2πi

(∫
dξ∂ξ +

∫
dξ̄∂ξ̄

)(
2
(
X0
(
ξ, ξ̄
)
−X0 (i,−i)

)
c̄∂̄X0

(
ξ̄
))

+

∫
P1+P2

dξ

2πi
4∂X0c̄∂̄X0

(
ξ, ξ̄
)
−
∫
P̄1+P̄2

dξ̄

2πi
4∂̄X0c∂X0

(
ξ, ξ̄
)

− 2
(
c∂X0 (i) + c̄∂̄X0 (−i)

)(∫
P1+P2

dξ

2πi
∂X0 (ξ)−

∫
P̄1+P̄2

dξ̄

2πi
∂̄X0

(
ξ̄
))]

.

The terms on the �rst line cancel with each other in the limit δ → 0 because of the boundary conditions
of c, c̄. Those on the �fth vanish if OΨ does not involve X0. The second and the third lines yield in the
limit δ → 0

1

πi

(
X0
(
ξ, ξ̄
)
−X0 (i,−i)

) (
c∂X0 (ξ)− c̄∂̄X0

(
ξ̄
))∣∣∣∣(−e−iδ,−eiδ)

(ξ,ξ̄)=(eiδ ,e−iδ)

∼ −c (−1)

2πδ
+
c (1)

2πδ
.

Thus we get
[Q,G] = χ− χ† .

51



B Laplace transformed form of the string �eld

We derive two formulas (B.1) (B.7) concerning the Laplace transform of the string �eld de�ned in section
6.2.

For two string �elds A1, A2, which can be expressed as a sum of wedge states with insertions, it is easy
to show

L−1 {A1A2} (L) =

∫ L

0
dL′eL

′KL−1 {A1}
(
L− L′

)
e−L

′KL−1 {A2}
(
L′
)
. (B.1)

The right hand side can be regarded as an operator version of convolution.
For ψ (L) in (6.23),

Qψ (L) = QL−1 {Ψ} (L)

=

∫
dL1dL2dL3δ (L− L1 − L2 − L3)

× [c∂c (L2 + L3)Bc (L3)− c (L2 + L3)Kc (L3) + c (L2 + L3)Bc∂c (L3)]

×f (L1) f̃ (L2) f (L3) , (B.2)

which is not equal to

L−1 {QΨ} (L) =

∫
dL1dL2dL3δ (L− L1 − L2 − L3)

×

[
{∂c (L2 + L3)Bc (L3) + c (L2 + L3)Bc∂c (L3)}

× f (L1) f̃ (L2) f (L3)

−c (L2 + L3) c (L3) f (L1)L−1

{
K2

1− F 2

}
(L2) f (L3)

]
. (B.3)

Therefore the BRST transformation and L−1 do not commute with each other. Comparing (B.2) and
(B.3), assuming α (0) = α (∞) = 0, we obtain

L−1 {QΨ} (L) = QL−1 {Ψ} (L)− eLK∂L
(
e−LKα (L)

)
, (B.4)

where

α (L) ≡ L−1

{
Fc

K

1− F 2
cF

}
(L) . (B.5)

We expect α (∞) = 0 for regular solutions. α (0) is related to the behavior of F (K) , K
1−F 2 for K ∼ ∞

and may not vanish even if Ψ is regular. For example, the Erler-Schnabl solution [12] has

f (L) =
1

Γ
(

1
2

)L− 1
2 e−L ,

α (L) = e−L
1(

Γ
(

1
2

))2 ∫ L

0
dL′

(
L− L′

)− 1
2 L′−

1
2 c∂c

(
L′
)
,

and
α (0) = c∂c (0) ,

With α (0) 6= 0, (B.4) cannot be valid for such solutions.
In order to get an identity similar to (B.4) for the solutions with α (∞) = 0, α (0) 6= 0, we regularize

Ψ and consider

Ψη ≡ F (K) e−ηKc
BK

1− F 2 (K)
e−ηKcF (K) e−ηK ,
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for η > 0. Ψη coincides with the original one in the limit η → 0 and

L−1 {Ψη} (L) =

∫
dL1dL2dL3δ (L− L1 − L2 − L3)

× c (L2 + L3)Bc (L3)L−1 {Fη} (L1)L−1
{
F̃η

}
(L2)L−1 {Fη} (L3) ,

where

Fη (K) ≡ F (K) e−ηK ,

F̃η (K) ≡ K

1− F 2 (K)
e−ηK .

L−1 {Fη} (L) ,L−1
{
F̃η

}
(L) vanish for L < η and we do not encounter any problem in deriving

L−1 {QΨη} (L) = QL−1 {Ψη} (L)− eLK∂L
(
e−LKαη (L)

)
, (B.6)

where
αη (L) ≡ L−1

{
FηcF̃ηcFη

}
(L) .

αη (L) ∼ α (L) for L� η and αη (L) = 0 for L < 3η. Therefore, in the limit η → 0,

∂αη (L)→ ∂α (L) + δ (L)α (0) ,

and (B.6) becomes

L−1 {QΨ} (L) = QL−1 {Ψ} (L)− eLK∂L
(
e−LKα (L)

)
− δ (L)α (0) , (B.7)

which can be used for solutions with α (∞) = 0, α (0) 6= 0, provided α (0) is well-de�ned. One can check
that the Laplace transform of the right hand side yields QΨ.

C Correlation functions of X variables

In the calculations in section 6.2, we need the correlation functions of X variables, which are described
by the free worldsheet theory with the Neumann boundary condition, on CL. A conformal transformation
which maps CL to the upper half plane is given as

CL → UHP

z → ξ = tan
πz

L
.

From the correlation functions 〈
∂Xµ (ξ) ∂Xν

(
ξ′
)〉

UHP
=

−1
2η

µν

(ξ − ξ′)2 ,〈
∂Xµ (ξ) ∂̄Xν

(
ξ̄′
)〉

UHP
=

−1
2η

µν(
ξ − ξ̄′

)2 ,
we can get 〈

∂Xµ (z) ∂Xν
(
z′
)〉
CL

= −1

2
ηµν

(π
L

)2 1

sin2 π(z−z′)
L

,

〈
∂Xµ (z) ∂̄Xν

(
z̄′
)〉
CL

= −1

2
ηµν

(π
L

)2 1

sin2 π(z−z̄′)
L

. (C.1)
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We are interested in the correlation function of the form
〈(
X0 (z, z̄)−X0 (z0, z̄0)

)
∂X0 (z)

〉
CL

. Since

the di�erence X0 (z, z̄)−X0 (z0, z̄0) for some z0, z̄0 can be written as

X0 (z, z̄)−X0 (z0, z̄0) =

∫ z

z0

dz′∂X0
(
z′
)

+

∫ z̄

z̄0

dz̄′∂̄X0
(
z̄′
)
,

using ∂X0, ∂̄X0, the correlation function
〈(
X0 (z, z̄)−X0 (z0, z̄0)

)
∂X0 (z)

〉
CL

is well-de�ned. Here it is
assumed that the operators are normal ordered as

: X0∂X0 : (z, z̄) ≡ lim
z′→z

[
X0 (z, z̄) ∂X0

(
z′
)
− 1

2

1

z′ − z

]
. (C.2)

From (C.1) we obtain 〈(
X0 (z, z̄)−X0 (z0, z̄0)

)
∂X0 (z)

〉
CL

=
π

2L

[
cot

π (z − z̄)
L

− cot
π (z − z0)

L
− cot

π (z − z̄0)

L

]
. (C.3)

If one chooses the reference point z0 to be i∞, we get

〈(
X0 (z, z̄)−X0 (i∞,−i∞)

)
∂X0 (z)

〉
CL

=
π

2L
cot

π (z − z̄)
L

.

D Derivation of (6.35)(6.36)

We would like to calculate the second and the third terms on the right hand side of (6.34) in the limit
ε→ 0. These can be calculated basically using the s-z trick [16, 15].

Using

L−1 {Γε} (L) =

∫ ∞
0

dL1dL2δ

(
L−

∑
i

Li

)
c(L2)c(0)L−1

{
F 2
ε

}
(L1)L−1

{
K + ε

Gε

}
(L2) ,

and

〈c (L2) c (0) c (z)〉CL

= −1

2

(
L

π

)3
[(

sin
(πz
L

))2
sin

2πL2

L
−
(

sin

(
πL2

L

))2

sin
πz

L

]
,〈

c (L2) c (0)

(∫ iΛ

iδ

dz

2πi
4∂X0 (z) c̄∂̄X0 (z̄)−

∫ −iΛ
−iδ

dz̄

2πi
4∂̄X0 (z̄) c∂X0 (z)

)〉
CL

−→
(δ,Λ)→(0,∞)

1

4π

(
L

π

)2

sin
2πL2

L
,

〈c (L2) c (0)κ (iδ,−iδ)〉CL −→
δ→0

0 ,
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Figure 17: contour P

〈I|χ |Γε〉 becomes

〈I|χ |Γε〉 =
−1

4π3
ε

∫ ∞
0

dss2

∫ ∞
0

dL1dL2δ

(
s−

∑
i

Li

)

× L−1 {Gε} (L1)L−1

{
K + ε

Gε

}
(L2) sin

2π

s
L2

=
−1

4π3
ε

∫ ∞
0

dss2

∫ ∞
0

dL1dL2

∫ i∞

−i∞

dz

2πi
e(s−

∑
i Li)z

× L−1 {Gε} (L1)L−1

{
K + ε

Gε

}
(L2) sin

2π

s
L2

=
i

8π3
ε

∫ ∞
0

dss2

∫ i∞

−i∞

dz

2πi
eszGε(z)∆

(
z + ε

Gε

)
=

i

8π3
ε

∫ ∞
0

dss2

∮
P

dz

2πi
eszGε(z)∆

(
z + ε

Gε

)
. (D.1)

Here P is contour on the z plane shown in �gure 17 and ∆ is de�ned as [16, 15]

∆F (z) = F

(
z − 2πi

s

)
− F

(
z +

2πi

s

)
.

For the Murata-Schnabl solution (5.1), (D.1) is evaluated as

〈I|χ |Γε〉 = RN +O (ε) , (D.2)

RN ≡

−
i

8π3

∑N−2
k=0

N !
k!(k+2)!(N−2−k)!

(
(2πi)k+2 − (−2πi)k+2

)
, (N ≥ 1) ,

i
8π3

∑−N−1
k=0

(1−N)!
k!(k+2)!(−N−1−k)!

(
(2πi)k+2 − (−2πi)k+2

)
, (N ≤ 0) ,

for ε� 1.
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The third term on the right hand side of (6.34) becomes∫
dL1dL2

L1

L1 + L2
〈eL2KL−1 {Ψε} (L1) e−L2KL−1 {Γε} (L2)〉CL1+L2

= ε

∫ ∞
0

ds
4∏
i=1

dLiδ

(
s−

4∑
i=1

Li

)
L1 + L2

s

× Tr

[
e−L1KL−1 {Gε} (L1) cBe−L2KL−1

{
K + ε

Gε

}
(L2) c

× e−L3KL−1 {Gε} (L3) ce−L4KL−1

{
K + ε

Gε

}
(L4) c

]
.

Using
LL−1 {f} (L) = L−1 {∂f} (L) ,

and eq.(2.5) in [15], we obtain∫
dL1dL2

L1

L1 + L2
〈eL2KL−1 {Ψε} (L1) e−L2KL−1 {Γε} (L2)〉CL1+L2

=
i

8π3
ε

∫ ∞
0

dss

∮
C

dz

2πi
esz

1

2i

×
{[

z + ε

Gε
, Gε,

z + ε

Gε
, G′ε

]
+

[(
z + ε

Gε

)′
, Gε,

z + ε

Gε
, Gε

]}
,

where

[F1, F2, F3, F4] ≡
[
−F1∆F2F3F

′
4 + F1∆

(
F2F

′
3

)
F4 + F1∆ (F2F3)F ′4 − F1F

′
2F3∆F4

+F1F
′
2∆ (F3F4) + F1F2∆

(
F ′3F4

)
− F1∆

(
F2F

′
3F4

)
− F1 (F2∆F3F4)′

]
.

The contribution of O
(
ε0
)
is given by the following replacements

G′ (z) → − (N − 1)G (z) ,

G′′ (z) → N (N − 1)
1

z2
G (z) ,( z

G

)′
(z) → NG−1 (z) ,

and one can see∫
dL1dL2

L1

L1 + L2
〈eL2KL−1 {Ψε} (L1) e−L2KL−1 {Γε} (L2)〉CL1+L2

∼ O (ε) .
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