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1 Introduction

In this thesis, we consider the Witten’s cubic string field theory [1], which is the field theory of bosonic
open string. The action is expressed by

1 ]1 1
S = 7 F(PIQNY) + (T[T T) ),
where |¥) is a string field, g is a coupling constant and @ is the BRST charge on world sheet theory. *
denotes a star product which grew two string fields to one string field. The first term is kinetic term, and
the second term is interaction term which corresponds to the three point vertex of string. Astonishingly,
it has been shown that this simple action reproduces the result of the purtarbation theory of string [2],
which corresponds to the first quantized theory of string.

One of the benefit of considering a string field theory is that the theory enables us to discuss the
classical background of a string field. In the open string theory, one can find a background of open string
as some objects which is spacially extended and on which the open string can be attached. These objects
are called Dy-branes [3|, where p denotes the spatial dimension of these object. Since the D,-brane have
the energy and is localized in spatially p dimensional space, it is thought as a soliton of string. In the
open string field theory, a Dp-brane is expressed more simply, as a solution of the equation of motion of
the open string field theory [4].

As the guidepost to discuss the nonperturbative aspect of string field theory, Sen gives a conjecture
about the background of string field [5]. The Sen’s conjecture states about the phenomenon called tachyon
condensation. In the perturbative vacuum, which corresponds to the single D,-brane background, there
is a tachyon excitation. For example, we take p = 25 and consider bosonic open string. The existence of
tachyon shows the unstability of the background. In string field theory, one can consider the potential of
the tachyon field, and the perturbative vacuum will correspond to the local maximum of the potential.
Sen predicted that there is a local minimum in the tachyon potential as dipcited in 1, and no tachyon
excitation exists around there. This implies the vanishing of Das-brane. This background is called a
tachyon vacuum. Quantitatively, Sen’s conjecture can be said that if one has a solution which corresponds
to the tachyon vacuum, the energy of the solution lower than perturbative vacuum by the energy of the
vanishing Dss-brane. Sen also gives two conjectures. Sen’s second conjecture is that there is a solution
which corresponds to the background with lower dimensional D,-brane. This corresponds to the vacuum
where the tachyon field has the configuration dipicted in Fig. 2. Since the configuration of the energy
becomes a lump as depicted in Figure 3, the solution is called lump solution. Sen’s third conjecture is
that there is no open string excitation around tachyon vacuum.

The first and the second Sen’s conjectures are about the energy, which is the one of the gauge invariant
quantities. For the static solution, the energy is —5,

1 ]1 1
EV] = —— [(Y[QIY) + (V[U xT) | .
g° |2 3
There is another simple gauge invariant quantities, which is called as the gauge invariant observables
discovered in [6, 7|:
WV, = (I|V (¢ = i) W) ,

where V (§) is a on-shell closed string vertex operator, and¢ is the coordinate of upper half plane. Similar
to the Sen’s conjecture, Ellwood gives a conjecture about the gauge invariant observables. It tells that the
gauge invariant observables coincide with the difference of the one-point functions of an on-shell closed
string state between the trivial vacuum and the one described by the solution |¥) [8, 9].



V(t) e : perturbative vacuum

A e : tachyon vacuum
t=t0 t
Figure 1: The potential of tachyon field
t(X)
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Figure 2: The lump solution
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Figure 3: The energy of the lump solution

In [10], Schnabl gives the tachyon vacuum solution!. The energy of this solution are computed ana-
lytically, and coincides with Sen’s first conjecture. More simple expression for tachyon vacuum solution is
discovered by Erler and Schnabl in [12]. The solution is written by string fields K, B and ¢ [13, 14]. K and
B is defined by a line integral of energy momentum tensor and antighost on a specific frame, it is called
sliver frame, respectively. The operators satisfy a simple algebra, which is called K Bc algebra, and a
simple transformation law under the action of BRST operator. Using this algebra and the transformation
low, one can show the equation of motion algebraically. The gauge invariant observables are computed
also, and the result coincides with Ellwood conjecture.

After the Erler-Schnabl solution of tachyon vacuum, some solutions have been constructed as a exten-
sion of it. In this thesis, we are interested in two specific solutions as a applications of our result. One
is the Murata-Schnabl solution, which is suggested as the solution of multi-brane background [15, 16].
The other is the Bonora-Maccaferri-Tolla (BMT) solution, which is suggested as the lump solution [4].
Although one can show that these solutions satisfy equation of motion easily, the computation of the
energy becomes difficult. Especially, the energy of the BMT solution is computed only numerically and
there is no analytic result from the direct computation of its energy [17, 18]. On the other hand, the gauge
invariant observables are computed analytically and easily in both of the solutions. This is because that
the energy of the solution includes third power of |¥), while the gauge invariant observables is linear to

Even though the computation of the energy of the solution is difficult, we can compute the energy from
the gauge invariant observable which seems to have the meaning of the energy. We consider the gauge
invariant observable with the vertex operator

) _
V= "—cedX0X",
i
which is the linear combination of a constant graviton and dilaton operator. Since this operator corresponds
to the metric g" with p = v = 0, the gauge invariant observable will be proportional to the expectation
value of the energy momentum tensor 7, with = v = 0. Therefore, it will equal to the energy of the

'For a review on these solutions, see [11].



system. Actually, the gauge invariant observables with this vertex operator give desired result for the
energy in each solutions.
What we show in this thesis is to prove the relation between the energy and gauge invariant observable

B[] = 912 IV (i) )

This relation can make the computation of the energy easy little bit, because the energy can be computed
from gauge invariant observable. As a application, we will compute the energy of Murata-Schnabl solution
and BMT solution. Especially, it is useful to use this relation because the energy of the BMT solution can
be computed analytically using this relation. The result coincides with the Sen’s second conjecture.

Our thesis is constructed as follows.

In the section 2, we review the Witten’s cubic string field theory and its gauge symmetry briefly. We
also give the notations which we use in this thesis. In the section 3, we review the Sen’s conjectures and
Ellwood conjecture. We see the definition of the gauge invariant observable and the gauge invariance of it.
In the section 4, the construction of the Erler-Schnabl tachyon vacuum solution is reviewed. On the way
to construct, we review the definition of K Bc algebra. We see that the energy and the gauge invariant
observable are calculated analytically and coincide with Sen’s first conjecture and Ellwood conjecture re-
spectively. In the section 5, we review the Murata-Schnabl solution and BMT solution. The computations
of the energy and gauge invariant observable of both solutions are shown in that section. One can see how
the computations of the energy are difficult, while the computations of the gauge invariant observable are
easy. In the section 6, we prove the relation between the energy and gauge invariant observable. We apply
it to Murata-Schnabl solution and BMT solution. The section 7 is devoted to conclusion. The appendixes
complement the computations in the section 6.

2 Witten’s cubic string field theory

2.1 Notations and definitions of string theory

Let us define the notation of the string theory, which we use in this thesis.
We will consider flat 26 dimensional spacetime. The coordinate on spacetime X* (o, 7) (u=0,1,--- ,25)
is described by the free worldsheet theory. The action of the woldsheet theory is given by

_ 1 _ 1 _
SwX,b,c] = / d*€0X"0X, + — / d?€bdc + — / d%¢boe
2ma! 27 27
where ¢ and b are ghost field and antighost field of conformal symmetry on worldsheet. The Rigge slope o/
is taken to be 1 in this thesis. We assume that X* satisfy the Neumann boundary condition. The energy

momentum tensors become

(&) = —:0XHM0X, :+:0bc: —20(:

be ),
(§) = —:0XM9X, :+:0bc:—20(: be

)

where : : means normal ordering. ¢ is the coordinate of upper half plane (U.H.P.), and we use this notation
in the following. Since ¢, b and T satisfies the boundary condition on real axis

NN

TE) = T(9),
C(é) = 5(@,
b(&) = b(E) .



It is useful to use doubling trick and define ¢, b and T on whole complex plane. It is given by

)T ,86=0
T = {T@ St <0’ (2.1)

the same extensions are applied to ¢ and b.
BRST operator on the world-sheet of the open bosonic string @ is defined by

Q = fdz (cT(X)—&-bc@c—&-gGQc) ,

2mi
where T™X) is the X part of energy momentum tensor 7. We frequently use the nilpotency of @
Q*=0,

and the invariance of the correlation function

(Q(-)r=0,
where R is an arbitrary complex plane. We also use the Virasolo generators, which are defined by

L= o daceir (o) .

2

2.2 Action of Witten’s cubic string field theory

Witten’s cubic string field theory [1] is the field theory of bosonic open string. The action is expressed by

1

g —
2g2

1
(v]Q[w) + 3?2(‘14‘1’*‘1’% (2.2)
where |U) is string field with worldsheet ghost number 1 and g is string coupling constant. The first term
of left hand side corresponds to kinetic term, and the second term corresponds to interaction term. The
string field |¥) is expanded by the basis of Fock space of worldsheet theory. In flat space, this expansion
becomes

) = /d%‘k (T (k)er + C (k) co+ Ay (k) yer + ) |k) (2.3)
where
‘k> _ eZk‘X(O)‘0> ,

with the SL (2,R) invariant vacuum [0). Since k runs any value, the modes in the integrand are the
off-shell extensions of the vertex operators. The terms inside of the expansion are characterized by their
levels, which are defined by the eigenvalues of Ly + 1. One can specify the coefficients of every levels as
the fields of the corresponding string excitation. For example, since T (k) corresponds to level 0, it will be
specified as the Fourier mode of Tachyon field.

We will explain the kinetic term and the interaction term of the action (2.2), by defining the inner
product (U|¥’) and the star product *. After these, we will see the gauge invariance of this action.



Inner product

On the upper half plane, the state-operator mapping gives the expression,
W) = Oy (£=0)[0),

using corresponding local operator Og. To define the action, we need conjugation of |¥). It is called BPZ
conjugation and defined by

(U] = (0[I00y(0),
where [ is inversion:

1
Io = ——.
: ¢

This maps the operator on & = 0 to £ = oco. With this conjugation, the inner product of string fields
(U|¥') is defined by expectation value

(U[w’) = (0| o Oy (0) Oy (0)]0), (2.4)
where we took the expectation value of ghost sector as

(c(&)c(&)e(@)vmr. = (& —E&)(L—E) (6 —&) . (2.5)

Using (2.4), we can see the fields T (k), A, (k), --- have correct kinetic terms. Since the fields T' (k),
A, (k), etc. have to be real fields, we need a condition imposing to string field. The condition is defined
by

(et = ), (2.6)

where t denotes Hermitian conjugate. This condition is called the reality condition. For example, the part
of T'(k) in the kinetic term of (2.2) becomes

41 26 1 2 2
—gp ey = /d k3 (1=K Tk + -,
and it shows that 7' (k) is tachyon field.

star product *

To define interaction term of (2.2), we have to define the star product x. In [19, 20], more general string
vertices are given by CFT expectation values on the disk, as

(U1 [Ty x Ug k-5 T) = (f 0Oy, (0)-- £M 0 Oy, (0))p, (2.7)

where D denotes a disk and

fo = <1j§> eI (2.8)

It is dipicted as Figure 4. When n = 2, this definition gives (2.4). From the form of expectation value
on the disk, one can see that the star product glues the right half of the |¥;) with the left half of |[¥;14),
and makes two string fields |¥;) and |¥;41) to one string field |¥; x U;41). Then, the inner product means
gluing the right and left half of remaining string field after taking all star products of string fields.



Oy

n

Oy,

Figure 4: The difinition of the star product

From these definitions, the inner product and star product x have following properties:

(AB) = (-nMIP1(B|4),
|Ax(BxC)) = |[(AxB)*C),
(AIBxC) = (AxB|C), (2.9)
(QAIB) = —(-1)"(41QB),
QIAxB) = |QAxB)+(-1)"AxQB),

where |A) and |B) are arbitrary string field with arbitrary ghost number. |A| of |A) takes 0 when |A) is
bosonic and 1 when |A) is fermionic. Since @ is defined by integral of conformal weight 1 primary field,
these identities can hold on every coordinates. From these definitions, it has been shown that the action
(2.2) reproduces Veneziano amplitude [21, 22, 23, 24| and more general string amplitudes [24].

Using these definition of the action (2.2), one can get the equation of motion of a open bosonic string
field,
QY) + |Tx¥)=0. (2.10)

These equations, which solution give extreme of action, include the information about classical background.
One can discuss the classical background and nonperturbative aspect of string field by analyzing the
solution of (2.10). As one can see from (2.3), the string field |¥) can be expressed by a summation of
infinite number of particles. Thus, the equation of motion (2.10) becomes infinite number of equations
and solving it is not easy. Actually, the solutions which have been found are written by using string fields
which physical meaning is obscure. Since these string fields are not written in the language of particles,
the physical meaning of the solutions is also obscure. Because of this, one has to compute the observables
to confirm that the solution corresponds to which background D-brane.

Gauge symmetry

From the identities (2.9), one can show that the infinitesimal gauge transformation of (2.2) becomes

W) = [B) + QIA) + [ x A) — |A % W), (2.11)



where |A) is some string field with worldsheet ghost number 0. To see the finite gauge transform, let us
consider the analogy between (2.2) and the Chern-Simons action:

_ - il 2.12
Scs QW/TT (zAdA-i- 3A > , ( )

where A is connection of gauge group 1-form and d is exterior derivative. Here we abreviate the wedge
product A. To see the analogy, we consider the identity state |I) by

[%W) = W I) = ).

The explicit definition of identity state will be given later. From (2.9) and |I), we can express the inner
product by
(U)W = (I|W % 0').

Using this expression, the analogy between (2.2) and (2.12) is seen by the replacements

)y = -,
* — A,
vy — v

The property that the integration of (2.12) will vanish when integrand is not 3-form, corresponds to the
inner product will vanish when the sum of the ghost number of string fields is not 3. Besides, all of the
property of d are satisfied by Q,

Q* = 0,
/@(@) — {1Q (W) =0.

From the replacements, we can express (2.2) as the same form of (2.12):

_ /(L 3
s = L[ (tvawses).

where we abbreviate x. Thus, the string field ¥ corresponds to A and the BRST charge @ corresponds
to exterior derivative d. From the analogy with Chern-Simons theory, the finite gauge transformation
becomes

U U'QU + UV, (2.13)

with some string field U.
In addition to the gauge symmetry, this correspondence implies the form of solutions of equation of
motion. Since the equation of motion of Chern Simons theory implies vanishing the field strength,

dA+ANA=0 < F=0,

where F' is the field strength 2-form, if A is pure gauge form, it becomes equation of motion. Similary,
the solution of equation of motion (2.10) will become pure gauge form:

U =U"1QU.

Since the pure gauge form with nonsingular U is trivial solution, one need singular gauge element U to
describe a nontrivial solution.



The degree of exterior power in Chern-Simons theory corresponds to the ghost number. The difference
from Chern-Simons theory comes from that the degree of ghost number can take minus. This makes
gauge symmetry reducible. When |¥) is on-shell, the gauge transformation (2.11) is invariant under the
transformation

OJA) = QA1) + U x A1) + A1+ V),

where |A_1) is a string field with ghost number —1. Similarly, A_,, (n =0,1,---) have a gauge transfor-
mation:

S|A—n) = QIA_(ny1)) + [T *A_(i1)) — (1)t A g1y * 0,

where |A_,) is a string field with ghost number —n. Thus, the gauge symmetry of (2.2) becomes an
infinitely reducible. One can fix this gauge symmetry using Batalin-Vilkovisky formalism [25, 26, 27, 28, 29|
(see as reviews [30, 31] also).

3 Observables and conjecture

Since one has known the action (2.2) and its gauge symmetry (2.13), one can consider observables which
is invariant under the gauge transformation (2.11). We are interested in the nonperturbative information
which comes from equation of motion (2.10) for now. Since the meanings of analytic solutions which has
been found and we consider in this thesis are not clear, we will consider two observables which can indicate
the physical meanings of the solutions. One is the classical energy. We will consider a static solution of
(2.10) and denote it as |¥) in the following. The energy of static solution is just —S,

B - <;<\1/\qu/> " ;)(quqf*xp)) . (3.1)

Since it is the same form with the action, the gauge invariance is obvious. Another one is called a gauge
invariant observable defined by
WA, V) =V (i) [¥),

where V (7) is an on-shell closed-string vertex operator inserted at the midle point of the string as dipicted
in Figure 5. Here, we used the coordinate of upper half plane. To distinguish the solutions, there are
conjectures for these observables.

We will explain the gauge invariance of the observables and the conjectures about the observables.

3.1 Sen’s conjecture

Sen’s conjecture [5] is a conjecture about the vacuum of tachyon field ¢. Tachyon is negative mass particles
living on unstable D-branes. Since the tachyon describes instability of the D-brane, an effective potential
V (t) of tachyon field has local maximum around ¢ = 0 (perturbative vacuum for string theory), where
the D-brane exists. Here, we denote the vev of tachyon field as just t. Corresponding to another classical
solution of the equation of motion, the potential should also have a local minimum where ¢ = ¢y (other
fields also take vev). Since the local minimum is stable and there is no tachyon excitation, the unstable
D-brane will vanish around the local minimum.
From these perspectives, Sen gives following 3 conjectures.

1. The depth of the local minimum equals the tension T, of the original D,-brane (with proper nor-
malization of the space-time volume).

V(0) =V (t) =T,

This reflects the energy difference between the solutions with and without D-brane.

10



Figure 5: A gauge invariant observable with a closed string vertex operator V and classical solution |¥)

V(t) e : perturbative vacuum
A e : tachyon vacuum
t=t,

Y .

Figure 6: The potential of tachyon field
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Figure 7: The lump solution

2. Other solutions exist, representing lower dimensional D-branes. When we consider a lower dimen-
sional D-bramne localizing in X direction, the configuration of tachyon field is dipicted in Figure 7.
Since the energy distribution about X becomes lump as dipicted in Figure 8, these solutions are
called lump solutions.

3. There are no perturbative states of open string around the tachyon solution, because perturbative
states in open string field theory represent open string degrees of freedom and there are no open
strings when the D-brane is absent.

These conjectures are called Sen’s conjecture. Since we have to consider finite value of vev of tachyon
field, these conjectures have to be shown in string field theory. In this thesis, we use the first and the
second conjecture to support the identification of the solutions. In this thesis we consider Dos-brane as
the background D-brane which exits at perturbative vacuum.

The first conjecture implies that when one computes the energy (3.1) of a solution |¥), one will get
the energy measured from the tachyon vacuum solution,

EV] = E(Dy) — TosVas,
where Va5 is the volume of Dos-brane and T), is the tension of D)-brane:

1

5 9.9 "

The =
%= 9,

E (Dy) is energy of Dy-brane expressed by |U). For example, £ (Dy) = 0 when |¥) expresses tachyon
vacuum t = tg, and E (Dy) = N x (Th5Va5) when |U) expresses N D-branes background.
The second conjecture means as follows. There is a solution which the tachyon field has a configuration
= t(X) as dipicted in Figure 7 with some particular spacetime direction X. The solution |¥) which
corresponds t = ¢ (X)) expresses lower dimensional D-brane. For example, when X is one direction, |¥)
expresses Dog-brane and the energy becomes

E V] = Tp4Vaq — To5Vas5,

12



Energy

Figure 8: The energy of the lump solution

where 1
Toy = — .
24 >
The third conjecture suggest that the tachyon vacuum solution supports no open string excitations.
To consider this conjecture, let us expand the string field around the tachyon vacuum solution |¥q)

W) = [To) +[¥).
The action (2.2) becomes
, 171 1
S [‘I/(),\I/] =5y [\I’o] + 972 —§<\If|Q\pO‘\I/> + §<\I/‘\I/ * \I’> ,
where
Qual®) = Q) + | (Wox ¥ — ()W wg)),
and Sy [Pyl is a constant

S0 (%] = 5 |~ (WalQI¥o) + L (Wal » o)

which takes the constant value predicted by the first conjecture. Following to [32, 33|, the existence of
open string excitations around |¥o) can be checked by the existence of the homotopy operator of Qu,:

Qu,lA) =1.

If there is such a string field |A), every string field |®) which is Qy,-closed can be expressed Qy,-exact
form:

[®) = Qu,|Ax D).

Therefore the third conjecture means that there is welldefined string field corresponding homotopy operator
of Qy, around the tachyon vacuum solution |¥y).

13



3.2 Gauge invariant observable and Ellwood’s conjecture

A gauge invariant observable W (¥, V) is defined as a closed string tadpole in open string field theory
[6, 7].
W (0, V) = V(i) [¥) (3.2)

Here V (i) is a vertex operator of on-shell closed string inserted at middle point of string. We will see the
gauge invariance of W (¥, V) and Ellwood’s conjecture about the value of it.

gauge invariance

We will see that W (¥, V) is invariant under the gauge transformation (2.11)
WP +QA+TxA—-AxT) =W (T,V) .

Since W (W, V) is linear in |¥), this equation becomes

(V@A) = 0, (3.3)
(IIV@) | TxA—AxT) =

The equation (3.3) is satisfied from the property @ (V) = 0:
(Y (@) |QA) =(Q (V (1) Oa (0)))v.rp. = 0.

The second equation (3.4) is satisfied from the invariance of expectation value. The two terms on the left
hand side of (3.4) becomes

IV @) wxA) = (AY(©@)[¥) = ({To0x(0)V(i)Ou (0))vn.r.,
(V@) [AxT) = (VY (i) [A) = (I oOg (0) V(i) Or(

(@)

)>U.H.P. .

where [ is inversion. Since the vertex operator V is conformal weight (0,0) primary field and § = i is
invariant under the inversion I, the invariance of expectation value under SL (2,R) transformation shows

(ToOA0)V (i) Oy (0uap = (ToOy(0)IoV(i)Io(IoO0s(0)vmp
= (IToOyg (0)V (i) O (0)v.a.P. -

Therefore (3.4) is satisfied and W (¥, V) turns out to be gauge invariant.

Ellwood’s conjecture

Compared with the energy (3.1), the meaning of the gauge invariant observable (3.2) is little bit subtle.
Ellwood gave a conjecture about this quantity in terms of the quantities in CFT on worldsheet associated
with the solution |¥) [8, 9].

e Let us denote the boundary CFT around perturbative vacuum as BC'FTj and the one around the
solution |¥) as BCFTy. Then,

W (0, V) = A (V) = AT (V) | (3.5)

where A%k (V) is the disk amplitude with the vertex operator of closed string V and boundary
conditions given by BCFTg.

14



Since the closed string vertex operator V take the form
Y = ccO™,
where O™ is weight (1, 1) matter operator, the vacuum expectation value of V will vanish
(V(z=0))aisk =0,

where we use z as the disk coordinate. To get a non vanishing disk amplitude, we have to soak up three
ghost zero mode. Therefore the A%** (V) is defined by

Adisk (V) _ _e—iG <V (0) c (€i9>>BCFT¢
@ disk :

21

The parameter 6 is arbitrary. We will put it to O.

In the next section, we will review the construction of analytic solution of tachyon vacuum. After the
solution was constructed, one has to investigate which background corresponds to the solution. To see
this, one computes the energy and gauge invariant observable. These conjecture are used to indicate the
solutions from the value of the energy and gauge invariant observable.

4 Construction of analytic solution

First, in [10], Schnabl found an analytic solution of equation of motion (2.10), it was the solution for tachyon
vacuum. After this, in [12], Erler and Schnabl found a simple analytic solution, it was constructed by
string fields which satisfy a simple algebra. This algebra is called K Be subalgebra [13, 14]. Using this
simple algebra and their BRST transformation (it is also simple), many solutions have been constructed.
In this section, we will review the construction of Erler-Schnabl solution for tachyon vacuum, and the
computation of the energy and the gauge invariant observables. In the next section, we will review the
other solutions for multiple brane solution and for lump solution.

4.1 K Bc algebra
Before the definition of K Bc subalgebra, let us consider about the sliver frame which makes the algebraic
properties of star product clear.

4.1.1 sliver frame

The coordinate on sliver frame z is defined from upper half plane £

1. 144
z=—1In — |
w1 —1d€

The sliver frame maps the upper half plane to semi infinite stripe with width 1. Under the transfor-
mation, the right and left half of the arc |{| = 1 will be mapped to the left and right edges of stripe,
(?Rz = %, Fz=0— oo), and (?Rz = —%, Sz=0— oo). Thus the point & = i will go to z = ico. The
origin is unchanged. This is dipicted in Figure 9. When we use sliver frame to express the star product

(2.7), the position of stripe corresponds to |¥,) is shifted by

20 = Z,

2¢ = zZ-+a,

15



€l =1

v

T
r=g arctan £

>

v

1 1
2 2
Upper half plane Sliver frame
Figure 9: Sliver frame
’\Ifl*‘llg> <’>
A
® > >
Oy, Oy,
stripe cylinder

Figure 10: The star product and inner product on sliver frame
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where Rz = —1 ~ 1. Thus star product is expressed as multiplication of stripes corresponding to the
string fields, and inner product identifies both edge of the remaining stripe, making semi infinite cylinder
as dipicted in Figure 10.

To express algebraic properties, we express a string field with an operator inserted the cylinder with
width 0. To define this operator, we introduce following string field

k={ Zorpy,

—ico 211

where T (z) is the energy momentum tensor defined by doubling trick (2.1). The commutator of some
field ¢ (2) and K become

[K.6 ()] = ~06 () =~ 5 0(2)

where 7 = Rz. This shows that K is translation generator of the direction z. Using K, we can express
the stripe corresponds to the string field |¥) as

|0) = e Oy (z=0) e%\ﬁ ,
where |I) is identity state. Since |I x I) = |I), the star product of two string fields |¥;) and |¥3) become

|\IJ1*\I/2> = \Ifl\I/2|I>,
U, = e%(’)qji(z:O)e

K
2

We could use the correspondence between |W) and ¥, instead of the ordinary state-operator correspon-
dence. In this meaning, the operator K corresponds to the string field which is K|I). Then, star product
becomes just multiplications of the operators.

|\I/1 * \I/2> — \1’1\1’2 .

In the following, we call the string field W|I) as . Using this expression, the algebraic structure become
simple and clear.

identity state

One can define the identity state |I) using K. It is defined as string field |Wp) which corresponds to a
stripe of width 0 without any operators insertion. Actually, from the definition of star product,

[A) x [Wo) = [Wo) x|A) = [4),

with arbitrary |A). We will see the explicit definition of [Wy).
First, we will define the string field |W,,) which corresponds to a stripe of width «a without any operator
insertion. Since |¥) = Oy (0) |0) corresponds to a stripe of width 1, |W,) becomes

Wa) = e DX|0).

|W,) is called a wedge state. The explicit form can be got by considering the inner product with arbitrary
state |¢) = ¢ (0)|0). From the definition, the inner product becomes

(Walg) = (f 2 ¢(0))Casn

where C, is the cylinder with width a. On upper half plane, this becomes

(Walg) = (fa e @ (0))v.np., (4.1)

17



where

—In
l+am 1—14€

Since the generators of the conformal mappings are the Virasoro generators Ly, one can express f, 0 ¢ (§)
by

faogztan< 1l 1+i§>.

fa06(€) = Up o (6 UsL,

where Uy, is element of conformal mapping

Us, = exp (Z ann> .
Since fq () is regular at £ =0 and f, (( =0) =0, v, =0 (n < 0). Since L,|0) =0 (n > 0), we can see
Uy, |0) = U;.!0) = |0).
Therefore, the inner product (4.1) becomes
(Wal¢) = (0]Uf, ¢ (0) |0) -

This gives the definition of wedge state
(Wal = (0[Uy, - (4.2)

One can get the explicit form of a wedge state from the expression 4.2. Let us consider the case that
¢ (€) is weight 0 primary field.

Us ¢ (O Us = ¢ (fa () -
Using the identities

Lo b€ = €4106(0),
Enzovibng ()¢ Szatrbn — g (eZuzom€tokg)

we can get the relation between v,s and f,
n+1
e2nzo 0 = £ (€) -
Since Lp|0) = 0, we can scale f, arbitrary. It is convenient that we take wedge state as
[We) = (0Us50

Let us define v,, as the coefficient for Uita fur
2 «

v n+1 1—1—0(
e2nz0mn S0 = 2 fa (6) -

From this, wedge state can be written down recursively:
1+a)? -4 1+a)! —16
(LtaP -1, . (L+a)~16,
3(1+a) 30 (14 «)
((1 ta)? - 4) (176 +128(1+a)®+11(1+ a)4>
- 1890 (1 + )?

(Wal = (0exp

L_g+---

From the explicit form of |W,), we can define the identity state |I) as |W,=o). Even though |I) can
be expressed explicitly, the computations using |I) often diverge. Since the state |[W,_,00) (which is called
sliver state) exists, the eigenvalue of K is not negative and takes 0.

18



4.1.2 K Bc algebra

Similarly to K, one can define following string fields

B = / dzb(z),

o 2mi
c = ¢c(z=0),

where z is the coordinate of sliver frame. K, B and c satisfy the following algebra

[K,B]=0 , [K,c]=0c,
{B,c}=1 , B*=c*=0,

where the multiplication is the star product and we abbreviate that from now on. This algebra is called
the K Bc algebra [14, 13]. The BRST transformations of these string fields are

[QvK]:O ’ {QaB}:K7
{Q,c} = cOc=cKec.

These string fields satisfy the reality condition (2.6).

4.2 FErler-Schnabl solution

The tachyon vacuum solution constructed from K Bc algebra has been constructed by Erler and Schnabl
[12]. The solution is given by

[c+ cK Bc] (4.3)

1 1
U, = ,
0T AT K VIt K

which satisfies the reality condition (2.6). To show that U satisfies equation of motion (2.10), one can
express this as the pure gauge form:

1 1 1 1 !
%_<1_\/1+KBC\/1+K>Q<1_\/1+KBC\/1+K) ' (4.9
Since
= (K)chF & - 1+ 7; F?> Y (K)BcF (K) |
1
= 1+ mF(K) BcF (K) (4.5)
when we express (1 + K)_l/2 = F (K), (4.4) becomes
Vo = (1—F(K)BeF (K))Q <1_F12(K)F(K) BeF (K)>
1
= (1- F(K)BcF (K)) mF (K) (cKBc) F (K)
_ 1_Fl2<K)F (K) (¢KBe) F (K) — F (K) Be <—1 + 1_;2([{)> (cKBe)F(K)  (4.6)
— F(K) CI_;Q(K)KBCF (K)
1 1
= NiEe [c + ¢K B(] Ve
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Therefore the solution (4.3) is a pure gauge solution and satisfies equation of motion. Since the eigenvalues
of K take 0 and positive numbers, the factor
1 1+ K
1-F2(K) K '

is singular, while /1 + K is welldefined. Thus the Erler-Schnabl solution expresses nontrivial solution.

4.2.1 Energy

To compute the energy, one can express the solution as the superposition of wedge states e =%, (a > 0).
Using the gauge transformation, Erler-Schnabl solution (4.3) becomes

Uy = KB . 4.7
0= [c+ cKBc] T K (4.7)
Since the eigenvalue of K is not negative, we can express 1/1 + K by using Laplace transform
! = /OO dte t0+K)
1+ K 0
Then, the solution (4.7) is expressed by
oo
Uy = / dte™![c+ cKBc] e &
0
The energy of ¥y is computed analytically. Since cK Be = @ (Bc), the energy becomes,
E[Wo] = 69 2<‘1’0\Q|‘I’0>
1 _
= o /dtldtge (t1+t2) (1) (0) e K eK e (0) e 72K T)
1
= 652 /dtldtge t1+t2)<e(t1+t2)Kc(0) e " KeKe(0) e_t2K>Ct1+t2
= o2 /dtldtge (H2) (0 (ty +t2) cOc (t2)) oy »
where we denote C, as a cylinder of circumference L and
e e (0) e =c(t) . (4.8)

Therefore the problem becomes to compute the correlation function on a cylinder. From the normalization
of the expectation value of the ghost fields (2.5), the expectation value on sliver frame becomes,

L3
(c(z1)c(z2)c(=3))c, = <7r> sin% (21 — 22) sin% (29 — 23) sin% (23 — 21) . (4.9)
Using this, one can compute the energy
1 _ (tl + t2)2 . Tt
E[Uy] = Vo [ dtydtge” 1) [ 22 T2 gin?
(o) 657 25/ 1dtse o s
1 > i [ 2
= —V25/ dte 't / dssin” (7s
6m2g? 0 0 (ms)
1
= Vz
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where we took t = t1 +t9 and to = st. Vas is the volume of Dos-brane which comes from the path integral
of the zero mode of spacetime coordinate X*. Since the tension of Dys-brane is

1
Tos = 5

2m2g
the energy can be expressed by

E Vo] = —TsVos .

This shows the Sen’s first conjecture, and Wy corresponds to tachyon vacuum.
We can see this solution have a homotopy operator

1
1+ K’

which is welldefined and satisfies Qg,A = 1. Because of this, the solution (4.7) satisfies Sen’s third
conjecture.
4.2.2 Gauge invariant observable

It is easy to show the Ellwood’s conjecture about gauge invariant observables. Since ¢K Be = @ (Bc) and

QW) =0,
W W, V] = (I|V(ico, —iocc) [Wo)
- / dteH{T|V (ivo, —ioo) ¢ (0) e K| 1)

_ / dte=(V (ico, —ico) ¢ (0))c, (4.10)

where we used z ~ z 4+t on Cy. By a scale transformation, we can reduce the expectation value to the one
on a cylinder of circumference 1, producing a factor of ¢ for the ¢ ghost.

W ¥,V = (Y (ioo,—ioo)c(O)}cl/dtett
= (V(ioo, —ic0)c(0))cy

Under the transformation to a disk coordinate, this equals to the disk amplitude of free BCFT, (we
denoted it as BCFTy). Since the expectation value of closed string tadpole in tachyon vacuum is zero,
this result can be expressed by

W [0, V] = A (V) — AL (1)

This shows the Ellwood’s conjecture.

4.3 Okawa type solution
The derivation of (4.6) shows that the string field

1

W:F(K)cm

K BcF (K) (4.11)

with arbitrary function F' (K) can be expressed by pure gauge form and satisfy equation of motion. The
solutions which take this form are called Okawa type solution [13, 14, 34]. When we take F (K) =
1+ K )71/ % we get Erler-Schnabl tachyon vacuum solution.
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The pure gauge form of ¥ is written in

F
W::ﬂ——FBcFMQ<1+]__FQBcF>,

where we used (4.5) instead of (1 — FBcF) . Then, one can show the string field

11— F?

A
K

B

is homotopy operator of Qy, because
QA = 1-F?,
VA+AV = F?.
Similar to the classical solution of Chern-Simons theory, we need a singularity in the solution ¥ to get
nontrivial solution. This singularity comes from the function of K which can take 0 or positive value as

the eigenvalue. On the other hand, we need regular expression for homotopy operator of Qg because of
Sen’s third conjecture. Since the singularity of homotopy operator can come from

1—F?
K
F has to be regular. Then, the singular part of solution can come from
F
1—-F2°
Therefore the conditions which gives nontrivial solution become

1— F?

regular in K,

singular in K.

|
cle

For example, Erler-Schnabl solution is
1-F% 1
1+ K’
_ VIFE
1—-F2 K
where F'/ (1 — F2) has singularity at K = 0 while (1 — F2) /K is regular. Since the solution have a
singularity, we often need to regulate the solution.

R

5 Other solutions

In this section, we will review two analytic solutions.

One is called Murata-Schnabl solution [15, 16|, which is the one of Okawa-type solution. Murata-
Schnabl solution is thought that it corresponds to multi-brane background. As we will see soon, the
energy and gauge invariant observable is calculated and shows they satisfy Sen’s conjecture and Ellwood’s
conjecture. However the regularizations of the energy and gauge invariant observable are different.

The other one is called Bonora-Maccaferri-Tolla (BMT) solution [4, 17|, which is thought that it
corresponds to a lump solution. While the computation of a gauge invariant observable is very easy, the
computation of energy is very hard and there is only numerical result. Moreover, we need regularization
to the solution and it causes anomaly to the equation of motion.

In the following, we will review the construction of Murata-Schnabl solution and BMT solution, the
computations of the energy and gauge invariant observable, and the problems about regularizations.
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5.1 Murata-Schnabl solution

Murata-Schnabl solution [16, 15] is the Okawa type solution (4.11) with

v = F(K)cB F (K
us = F(K)eB g ek (K)

G(K) = 1-F*(K

K41\t
= <+> . (5.1)
K
We can use gauge equivalent form of this
K
Uys = (1— B :

Wrs corresponds to a configuration with N D-branes. When N = 0, this is equal to Erler-Schnabl
solution.

5.1.1 Useful correlators
In the computation of the energy, we need to compute the quantity
<F1, FQ, 1737 F4> = <I‘F1 (K) CF2 (K) CF3 (K) CF4 (K) CB’I> y

where F; (K),i = 1,---,4 is a function of K. We assume that F;(K) can be written in a Laplace
transform,

F;(K) = /000 dtifi (t;) e K,

of arbitrary distributions f;, which is called geometric string fields [35]. Similarly to the computation of
the energy of Erler-Schnabl solution, the quantity can be expressed by

o [ 4
<F1,F2,F3,F4> = /0 (H dtifi (tz)> <C (tQ + i3 +t4)C(t3 +t4)C(t4)C(0) B>sz_1ti . (5.2)
=1 N

To commute the integrand, we need to eliminate B insertion. From the definition of B,

1 §—e+ioco dz §+e+ioo d
b= Z </5—E—Z'OO % (2)6 ’ (Z) - /5—‘,—5—1'00 % (2)5 b (Z)> )

where (2); is analytic function on Cf, which is defined by

z Rz >0
(2)5: :
z+L Rz<d

We can enclose the counter of B around c (z;) respectively, so that the integrand becomes

(c(ta +t3+ts)c(ts +ta)c(ts)c(0) B, = —%(c (ta +t3 +ta4) c(ts +ts) c(0))e,

_|_t3 ::t4 (c(te+ts+tg) c(ts) c(0))c,

_ts+t3+t4
S

(c(ts +ta) c(ta) c(0))cy
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where s = Z?:l t;. Using (4.9), this becomes

2
S . . T T
(c(ta+ts+ts)c(ts+ts)c(ts)c(0)B)e, = oy {—t4 sin gtg sin — (t3 + t4) sin " (ta +t3 + t4)

. . . T
+ (t3 + t4) sin " (ta + t3) sin S (t4) sin S (to +t3 +t4)

. . .
— (to +t3 +t4) sin — (t3) sin " (t4) sin " (ts + t4)} :

(5.3)
We can reduce this to more useful form [10, 13, 34]
(c(ty+ts+tg) c(ts +ta) ¢ (ta) ¢ (0) B)e, = ;; {t4 sin 272 (1 + t4)sm2”(tz”3)
+tysin 274 _ (1 + t5) sin W
1 t38in 2m (¢ +St3 1) + (ty +t5 + tg)sin 27:3 } .

To compute (5.2), they insert into the integral an identity in the form

4
o0 100 dz
1= dsd _ E t; d e%* —Zzz 1t
/0 i (8 i=1 > / s/ 27”

The second equality is just the ordinary Fourier representation of the delta function with the ¢ absorbed
in the integration variable, so the contour runs along the imaginary axis. Since the integral of ¢; in (5.2)
can be computed using

/ dt;f; (t)e " = Fj(2),
0
/ dtitifi (t) e % = F!(2),
0
/ dtifi(ti)e—ti(zi%) - F (zim)7
0

where F/ (z) = 0,F (z), (5.2) becomes
0 dy 52 1
F\, Fy, F3, Fy) d e —
< 1,4'2,1'3, 4 / 8/ 27TZ 47‘( 27,
[—FlAF2F3F4 + FlA (FQFé) F4 + FlA (F2F3) Fi — F1F2,F3AF4
+F FyA (F3Fy) + PR A (FyFy) — FLA (FF3Fy) — Fy (FRAF3Fy) ], (5.4)

where all the arguments of function F; are z and

ASF(z):F<z—2:i>—F<z+2:i> .

We abbreviated s of A; in (5.4).
Let us consider some identities for (Fy, Fy, F3, Fy). From the definition,

(F1,1,F3,Fy) = 0,
(F1, Fp, 1, Fy) = 0,
(F1,Fy, F3,1) = 0, (5.5)
(I, KK, Fy) = 0,
(F1, By, K, K) = 0,



because ¢ = cKcKc = 0. In addition these identities, we consider the case
(K,Fy, K, Fy) =0. (5.6)
This should be satisfied because the left hand side is expressed by
(K, Fp, K, Fy) = (I|Q (BcFz (K) Q (¢) Fy (K)) [I) =0.

This relation can be broken by anomaly. To see the condition that this identity becomes correct, we will see
explicit computation of (K, Fy, K, Fy). When we took F} (K) = K and F3 (K) = K, the square-bracket
part of the integrand of (5.4) becomes

27
372 (Zaz — Sas> (—SFQA%Sle)
+Aoy (F2 Og ZF4) — Aoy (Z Og F2F4) — Aoy (FQ Og ZQFZD + Aoy (ZFQ Og 2F4D , (57)
where
Aos (1 (2) 05 f2(2)) = Ao (f <z—7:)g<z+7:> —i—f(z—i—?)g(z—?))

= (Asf)g+ f(Asg) -

In current situation Fy and Fy can be G, KG or K/G, and at most O (z) at infinity. Because of the factor
e*® in the integrand of (5.4), we can add a line integral along the arch at infinity in the left half plane
Rz < 0, and make the closed contour integral along the contour Cs. The contour Cs needs subscript s to
indicate that the contour which encircles all of the poles which appear in (5.7) depends on s. Then the
integral of the second line of (5.7) becomes zero because

j{ GSZAQS(f1 Osfg) = 0. (58)

Therefore (K, Fy, K, Fy) reduces to the surface terms
dz 1

o
(K, Fy, K, Fy) = /0 ds A %eszﬁ(zaz—sas) (—sFA3Fy)

s—oo0  s—0 ’/T3’i

1
= (hm — lim) ?{ dze® ——s?Fy A3 Fy.
Cs 8

The surface term at s = 0 vanishes if both Fy and Fy are at most O (z) at infinity, and it is the current
situation. The one at s = oo vanishes if F50%2F; does not have poles on the imaginary axis, because

21 21

RBALE, = F(z) <F4 <z—s>—2F4(Z)+F4 <z+5>>

~ <2m>2F2 (2) PFy+ 0 (57%) .

S

When all of the assumptions we use are satisfied, (K, Fs, K, Fy) = 0.

5.1.2 Energy

Using the formula (5.4), we can compute the energy of Murata-Schnabl solution. From the equation of
motion, energy becomes

E[Uys] = 6;2<\IIMS|Q\PMS> (5.9)
- 6;2 %,(1-0),%,1{6‘)—<K,(1—G),g,K>
K K
~(5(1-G), K, K) + (K,(1- G), K, &)



Here we abbreviate the volume factor Vas. From (5.5), the third term will vanish. The forth term will
vanish in current condition (5.1). However, to see the general expression of energy, it is better to keep it.
Using (5.4), one can get

10y §2 167miz2 G/ 5 G’ 5 G’

plovs) = g [T [ Sname [P G s (2 v (2)
el A(ZQG,) z
2 2 (7

+22°A (2G) g5 — 2 +2°CA (G)

To use (5.8), we can simplify this to

B 10y 52 . oG 5 A(2G)
Elusl = o5 / / 2ri 873 [247”52 G~ 3(20: = 50:) (8 a

ZQG/ QG/ p
+252 Ao, (zo e ) — 52 Ao (zGo e ) + 252 Aoy (zQG’ o G>] .

When we close the contour of z integral by adding sufficient large arch at the infinity of the left half plane
Rz < 0, the second line of the right hand side will vanish because of (5.8).

e5? 3 2G/ 3 ) A(ZG)
E[Vys] = 5 2/ 7{ ool [ 2 m T (20, — s0s) (s = (5.10)

Let us consider the second term explicitly, which are thought as the anomalous contribution. From
the explicit form of G (5.1), the second term becomes

>N_1{(Z+1 QWZ)Nfl (Z—i—l—i— 27r1)N 1}

3 <1, ! ) dz o, o z
-~ 1 — 11m — € Sz
8737 \s—oo 50/ Jo 2mi z41 (2 — %)Nﬁ (z+ %)N 2

The contour is taken to encircle all of the poles on imaginary axis. When N = 0, 1 or 2, the integral of z
will vanish. When N > 2,

3 : : dz 4. o 2 \ Nt (z—i—l—% B (z+1+2m)N1
_8 35 (shﬁnolo_ll—{%) 27‘("L'6 57 z+1 2mi\ V-2 N 2mi\ N—2
" c (= =22 (z+ %)
N Qi N—-1
o <lim —lim) 8?7’3 (gzeszle <z+1 . m)
§00  s=0 (z+1)"" s

Since this behaves as O (s) in the limit s — 0 and O (s™!) in the limit s — oo, this contribution vanishes
when N > 2. When N < 0, this contribution proportional to

I\ —N+2 _N42
( lim — hm) 7N $%e%% (2 + l)l_N (Z — LT) _ (z + %) |
s—oo  s—0 ? (Z 41— 27”) —N+1 (Z i %)7N+1 .

Since this also behaves as O (s) in the limit s — 0 and O (s_l) in the limit s — oo, this contribution
vanishes when N < 0. Therefore the second term vanishes at all V.
Then, the energy becomes

— (s — —s)

= 27
s

1 o0 dz G
E [\IJMS} = W/) ds %€SZ8226.
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Here we remove the index s of Cs, because the position of pole of the integrand is independent from s.
Thus, we can integrate about s before the integral of z and we get

1 dz G
Blsl =5 3

From (5.1), we get the energy of Murata-Schnabl solution

1 d N-1 1N72 1N71
ElUys] = — ]{ z» z (N 1) (Z+z _(Z+)
27292 Jo2mi \ z+ 1 ZN-1 2N
1
- _(1-N
27T292( )7

which coincide with N Dos-brane configuration according to Sen’s first conjecture. Note that we abbrevi-
ated the volume of the brane Va5.

In the way to compute the energy, the regularization problem arises in the choice of the contour of the
integral (5.10). The way to enclose the contour is little bit obscure because the contour passing through
the poles of integrand.

5.1.3 Gauge invariant observable

We will consider the gauge invariant observable
. ‘ K
W (Urs, V) = (I|V (ico, —ico) cBac(l -G)|I). (5.11)
The Ellwood’s conjecture indicate the gauge invariant observable of Murata-Schnabl solution becomes

because A%k (V) = NAZ** (V) if ¥)ss corresponds to N branes background.

Vars

Using the Laplace transform of K/G and (1 — G)

K oo
E = /0 dtle*thgl (tl) R
1-G = / dtae™ 2K gq (12) |
0

the gauge invariant observable (5.11) becomes
W (Uys,V) = / dt1dtag1g2(V (ico, —ico) ¢ (0) Be (t2))cy, 4,
0
= / dtldtgglggtg <V (iOO, —iOO) C (0)>Cl 5
0

where we used the properties that B commutes with V and c is weight 1 primary. The integrals can be
evaluated by

dtigr (t1) e =
/ 191( 1)6 G(z) - )
/dt192 (t2) tae 2 =

o))

- (1= G (2)].=c » (5.12)
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with taking the limit of e — 0. Since (V (ico, —ic0) ¢ (0))¢, = A (V), the gauge invariant observable
becomes

W (Pys, V) = lm %82(1—G(z)) )
N . N-2 (. N-1 4

= (V- DAfT )

AGE(W)

which support Ellwood conjecture too.

Let us comment to the results about Murata-Schnabl solution. Since both of the value of the energy
and gauge invariant observable coincide with Sen’s conjecture and Ellwood conjecture respectively, the
Murata-Schnabl solution can be considered as the multi-brane solution. Compared with the Erler-Schnabl
solution, the computation of the energy became complicated. On the other hand, the computation of the
gauge invariant observable was not so complicated. This is because the energy is computed from three
point function of string field, while the gauge invariant observable is computed from one point function of
string field (even though there is on-shell closed string vertex operator).

Although the value of the energy and gauge invariant observable was acceptable, there is a problem
about the regularization. In the computation of the energy, the authors started the computation from
(5.10) and express it as the integrals of s and z,

/ ds and / dz.
0 —1400

Since the pole of the integrand of this integral placed on the imaginary axis of z plane, we have to regulate
the z integral to state which poles we will encircle. On the other hand, the computation of gauge invariant
observable needed the regularization (5.12). This regularization corresponds to the replacement of K by
K + € (e < 1) regulating the singularity from K = 0. Then the regularized Murata-Schnabl solution
becomes

(K +e¢)
Us=1-G(K B————— 5.13
s = ( (K+e)c G(K+€)C (5.13)
However, ¥,¢ does not satisfy the equation of motion and the anomaly term will arise:
QUSs + (Tiys)® = T, (5.14)

K+ €
G (K)°

I'e = e(1-Gc(K))c

where G, (K) = G (K + ¢). This causes anomaly term to the expression of energy (5.10)

11 1
BVl = 7 §< 5\45\@|‘I’5\4S>+§< s ¥irs * Piss)
1 € € 1 €
= 76g2< MS|Q‘\I’MS>+7392< wslTe) -

Therefore, the computation of the energy will be different from the above computation. It is necessary
to find a more solid way to define the solution, and there are many attempts to rectify the situation
[36, 37, 38, 39, 40].
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5.2 Bonora-Maccaferri-Tola solution

In [4], Bonora, Maccaferri, and Tolla construct solutions corresponding to a relevant deformations of
BCFT, called BMT solution?. Before we see the construction of the solution, we review how the lump
solution will be expressed by BCFT. Then, we will see how Erler-Schnabl solution can be extended to a
lump solution.

5.2.1 BMT solution

In [42, 43|, Witten makes so-called boundary string field theory (BSFT). Roughly speaking, the action of
BSFT is a partition function of BCFT which is the theory of bulk free and interactive on the boundary.

SBCFT = Stulk + Sboundary »

where Sy is the action of free closed string of half infinite cylinder Crp,
_ 1 2 Y M
Shulk = = d°c0X,0X

and Spoundary 15 the interaction term on the boundary. In [43], Witten computes the partition function
with Witten deformation

1

/OTdsu <; C X2 (s) +y — 1+1n(27m)> : (5.15)

Sboundary = ST

where u is a coupling constant and X is a some specific direction of X#. The Witten deformation is valid
when the volume of X is infinite. The constant terms v — 1 4 In (27u) are necessary to make the partition
function converge and to make the preferable property of Spoundary under the scale transformation,

Sboundary (u, CT) = Sboundary (UT, Cl) .

Since the interaction term is just a mass term inserted on the boundary, one can compute the partition
function explicitly [44]

Z (UT) = <6_Sboundary >CT
1 e 2u
—  ——_\2ulT (2uT (—) :
\/ 27 v (U ) 2uT

where I' (a) is Euler gamma function. We took the finite volume Vy.x of the direction X* # X to 1 as
the normalization. The partition function diverges in the UV limit uT" — 0 as 1/vuT. We regulate this
by
1 d V;
lim Z (uT) = lim = lim [ Leula® - XX
uT—0 uT—0 /muT  uwlT—0 ) 27 2T

On the other hand, in the IR limit «T" — oo, the partition function becomes

lim Zul)=1.
uT— o0
In the UV limit, the interaction on the boundary will vanish and the BCF'T becomes free theory on Das-
brane background. In the IR limit, the value of X at the boundary is suppressed to 0 by infinite mass
term on the boundary. Therefore, the corresponding BCFT with w1 — oo is the theory with Dayy-brane

2 An earlier proposal for such solutions were made in [41]
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background. Then, the ratio of the tensions of Das-brane and Doy-brane is given by the ratio of the
partition functions divided by volume.
T4 M — 9. (5.16)

Z(u)

T25 hmu_>0 W

This is expected value of the ratio of the tensions.
The result (5.16) needs the regularization of infinite volume of X in (5.15). For a finite volume of
spacetime, the deformation has to be the cosine deformation:

T 2 1
Shoundary = / dsu {—ul/R : CoS (RX> 2 (s) + A(R)] , (5.17)
0

where X direction is a circle of radius R > v/2. A(R) is a constant determined in [4]. The partition
function of the cosine deformation is computed exactly in [45, 46]. The result is the same as (5.16).

Let us consider the case that Spoundary is a constant u and the volume of X is finite. Then, the partition
function becomes

ZWT) = eT,

where we took the whole volume of Dss-brane to 1 by normalization. In this case, the partition function
is just 1 in the UV limit, while the one is 0 in the IR limit. This implies vanishing Dss-brane in the IR
limit. Actually, in the computation of Erler-Schnabl solution, we can find the same factor. For example,
in (4.10) the factor e~ corresponds this where ¢ is the circumference of the cylinder in the integrand of
the right hand side of (4.10). This factor comes from the Laplace transform:

1 o0
—_— = / dte et
K+1 0

From this, one can guess that the lump solution will be given by the operator which Laplace transform
becomes

/ dte™ K e~ Svoundary (5.18)
0

instead of (1 + K )71. This operator is given by considering a relevant matter string field ¢ which satisfies

lim s¢ (s) ¢ (0) = 0,

s—0

[c,¢] = [B,¢] = 0,
Qo = c0p+ 0cdd.

¢ is taken to be the Witten deformation

1
¢(5):u<2:X2:(s)+'y1+ln(27ru)> , (5.19)
when X is noncompact, or the cosine deformation
1
o(s) =u [—u‘”RQ : Cos (RX> (s) + A(R)] ) (5.20)

when X is compact. The string field ¢ is called seed. Then, the string field which Laplace transform
becomes (5.18) is given by
o
1 / dte 1 E+d) 7
0

K+
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We will comment about the problem caused by lim; o, e {5+®) £ (0 later. The factor exp (—t (K + ¢))
can be expressed by

S =K e [ (1000) + 5 1RO+ 5 (K6 O+ )

3!
t
— —tK _ d
([ 0.

where we used Zassenhaus formula

SHXHY) _ X 1Y D XY] S Y YN XY |

)

and assumed that [[K,¢],¢] = 0, [[[K,¢],K],¢] = 0, etc. inside a correlator. We call the BCFT with
boundary interaction fg ds¢ as BCOFTy.

Using the relevant deformation matter operator ¢, Bonora, Maccaferri and Tolla construct the BMT
solution:

UpyT = Ccp — K_:—gb(qﬁ—égﬁ)) Bceoc, (5.21)

or its pure gauge form

K+¢

Since the BMT solution is written in form of the pure gauge, the solution satisfy equation of motion. Let
us denote that if ¢ is a constant u, the BMT solution becomes

\IIB]\/[T = <1 — 1(;5BC> Q (1 + I:L((ﬁBC) .

Uppr,o = uc — uBcoc.

+u

As we expect, this is gauge equivalent to the Erler-Schnabl solution (4.3). We can see this from a scale
transformation of sliver frame
Z— uz.

The operators K, B and c transform under this scale transformation as
1
c— —c, (B,K) - u(B,K) .
U

Then the BMT solution with ¢ = v becomes

and it is gauge equivalent to the Erler-Schnabl solution Wy:

‘I’BMT,(): 1(@-{—‘1’0) K+1.

K+

There is a problem coming from the regularization of the solution. This problem relates to the definition
of —4— which appears in the BMT solution as

K+¢
1 = /OO dte tE+o)
K+¢ Jo ’

via the Schwinger parametrization. Since the deformed sliver state limy_,oo e “5*9) does not vanish,
K + ¢ has zero or positive value as its eigenvalue. Thus, we have to regularize this expression. One
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way to regularize the divergence is the same as the regularization in the computation of gauge invariant
observable of Murata-Schnabl solution. This regularization replaces ﬁ by ﬁ with 1 > € > 0 and

consider )

CK+4¢+e

As we saw in the case of Murata-Schnabl solution (5.14), this regularization causes anomaly to the equation
of motion [47].

Uyt = co (¢p — d¢) Bede. (5.22)

€

QUG + (Topp)’ =T = Ktote (¢ —d¢) cc.

In [17], the authors propose a way to deal with the problem using the distribution theory.

5.2.2 Energy

Since the BMT solution with cosine deformation has nontrivial interaction, the exact computation of
correlation functions with ¢ in BCFTj with boundary is difficult. The computation of the energy, which
includes three point function of ¢, is hard to perform. Even though in the case of the Witten deformation,
the computation of the energy is hard to get exact value and only performed numerically [18, 17]. Moreover,
in the Witten deformation, the volume of Dos-brane is infinite and the energy is divergent. There are a
problem about the regularization and anomaly also. On the other hand, the gauge invariant observable can
be computed easily. The computation of the gauge invariant observable include the computation of one
point function of ¢ in BCFTy. This one point function can be computed by differentiating the partition
function by the coupling constant.

In this subsection, we review the analysis by Erler and Maccaferri [47] about the energy of regularized
BMT solution (5.22). They show the energy of the BMT solution becomes the one of the lump solution,
if the solution

UG =c(p+e) (¢ + € —d¢) Bede, (5.23)

CK+¢+e

has the energy of tachyon vacuum. Since this is the BMT solution with seed ¢ + €, this solution has no
anomaly in the equation of motion.

Since the regularized BMT solution (5.22) is static solution and does not satisfy equation of motion,
the energy becomes

. € . 1 1 € € 1 €
fig £ [Warr] = i |5 (Wair Q) + (Vi)

11 1
=ty | (W)’ - 5 Wi lT)]

where <(\IIEBMT)3> = (Y ur|YSur * Yeur) - Using ¥, the regularized BMT solution is expressed by

€ _ €
sur = Yot A,

A, = —e+ B €

o,
K+ote ©

Note that there is no factor of ¢ except for (K + ¢ + e)_l. Then, the energy becomes

1

1 1
E [‘I’€BJVIT] = T3 [

ST + AL (5 + 5((A02 185) + (A" - (AT

g- |6

= BI)- p |5Ad (Warr)®) = HUAP Wharr) + §(A)") = 5 (WharalTa)]
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where we use the fact that W satisfies the equation of motion. Erler and Maccaferri assume that E [U{]
is the energy of tachyon vacuum. The second bracket seems to include the correlation function of ¢ and
to hard to compute. However one can reduce this to more simple expression by using an identity:

AE\IIGB]\/IT — FE .
Then the energy becomes

. € . € 3 i 1 _1 3
lm B8 (W77] = limy 2 [5] + iy | (AT = (A0 (5.24)

We can see the second term can be computed from one point function of ¢ and the third term can be

computed from partition function in the BCFTy.
From the explicit definition, the second term of (5.24) becomes

1 1
» (]
g

AT = —
(AT = 5.5

€ €
K+¢+6B080K+¢+6(¢—5q§)c@c>.

Since limy_,oo e ‘5919 vanishes because of the regularization of €, the factor (K + ¢+ €)' can be
expressed by Laplace transform

L [T —ite _/t
K—}—(;S—i—e_/o dte exp ; dso (s) ] .

Using this, the second term of (5.24) becomes

2192<A61F6> = 2192 /0 dtydtase M+ (6 — 56) (0))2°FT ™ Bede () cde (0)) 90

Cf1+t2 Ct1+t2
1 * 2 _—es BCFTym 1 gh
= 3y dss“e™*((¢ — ¢) (0)) ¢, dq(Bcde (q) cde (0))%
0 0
where we separated the expectation value into matter part (-)Z¢F7e™ in the BOFTy and ghost part (-)9".

The variable s and ¢ is defined by s = t1 + t2 and t3 = sq. Using (5.3), this becomes

1 1

2¢2 (AcTe) = _47T292/0 dss*e (¢ — 6¢) (0)>gSCFT¢’m

— Ll > 2 —« _ BCFT¢u,m
- i /0 dac?e{(6 — 56),, (0)) 2"

1 > o 0
= —7471_292 /0 daae (@ (@) ZBCFTd, (L)> e ,
where o = es and we used 9
¢—o0p=ug-¢. (5.25)

u is the coupling constant of the deformation (5.19) or (5.20). Since the partition function Zpcrr, (L) is
finite in the limit L — oo, the differential of Z (L) by L will vanish faster than 1/L. The contribution from
where v goes to 0 faster than e is evaluated as follows. When ¢ is the Witten deformation, the behavior
of the partition function in the UV limit is limy_,o Z (L) & 1/v/L. Then the contribution becomes

L
: —a 9 /
%11_1)%) ; daae ((MZBCFT¢ (L ))

o lim VL ,
L—0

L=%uy
€
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and vanish. When ¢ is the cosine deformation, the contribution from where « goes to 0 faster than e will
vanish because limy,_,o Z (L) is finite. Therefore, we can put v/e — oo inside the integral and get

1

The third term of the right hand side of (5.24) can be computed in the similar way.

1 2 _a « ! 1 gh
= o daa”e”“Zpcrr, (z) ; dq ; dr(Bcdc (q) Bede (r) Bede (0))¢,

1 9 _ o
= W/daa e O‘ZBCF% (z) .

Since the contribution to the integral where « falls faster than e is at most O (a5/2), we can take e — 0
before the integral.

——{(A)? —~ lim Z L) .
62 (8)7) 23 omrge A, Znor, (1)

Therefore, the energy of the regularized BMT solution becomes

. . 1
g%E (Wt = g%E (] + ﬁzé%FTd, ;

where Zé%FT = limp e ZBCFT, (L). When we normalize the energy of tachyon vacuum solution as
—T55Va5, the second term of the right hand side of the energy becomes
L iR
22 ZBCFT¢ = T54Voy
from (5.16). If the term lim._,o E'[¥§] is the energy of tachyon vacuum, the energy of regularized BMT
solution becoimnes
lg%E (WG] = —TosVas + TogVoy . (5.26)

This satisfies the Sen’s second conjecture.

5.2.3 Gauge invariant observable

The gauge invariant observable of the BMT solution is computed in [4]. From the definition,

Hm W (U7, V) = Him(I|V (ico, —ico) <c¢)u — u@ugbuBc@c) 0) 1),
e—0 e—0

1
K+ ¢+e
where we wrote the coupling constant u explicitly and used (5.25). The contribution from the first term
vanishes because

(IV (oo, —ico) edy|I) = lim(V (ico, —00) cdu)c,
£—0

— %1_{{(1)0/ (ZOO, *OO) C¢u§>01

= 0.
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Therefore the gauge invariant observable becomes

. . 1
W (U, V) = —I|V (ico, —ioco) muﬁud)uBcac 0) 1)

= —/ dte_et(V(ioo,—oo)u@uqﬁuBcac(O))gtCFT‘b“

0

e 1
= [t (i o) e (0) b0 ) T

0

BCFT,,

0
_ d ey/u . .
= /0 ye ay (V (oo, —ico) ¢ (0)) ¢, ,

where y = ut. The integral can be performed and we get

w (\I’EBMTv V) — _A(C)lisk (V) + 5 / dye—ey/uo; (ioo, —ioo) ¢ (0)>glOFT¢y ’
0

where we used same notation in (3.5). The second term of the right hand side becomes

1 [ , BOFT, ,
u/ dy' eV (V) (ico, —ioo) ¢ 0)¢e, <,
0

where 3/ = ey. In Witten deformation, the contribution from the region of y'/e ~ 0 vanishes because of

L
li dy'Z / li L.
Him ; Y Zport, (G ) < ngbf
In cosine deformation, the contribution from the same region vanishes also. Because of these, we can take
€ — 0 before the integral giving

o0 , BCFT, , ,
1/ dy' eV "(V (ico, —ic0) ¢ (0)) ¢, ey pdisk )y

u Jo e—0

where we called the BCF'T in the IR limit as BO'F'T,. Therefore, the gauge invariant observables becomes
lim W (U, V) = AL (V) = AT (V)

This satisfies Ellwood conjecture.

As we saw, the computation of the energy of the BMT solution is difficult. The assumption that ¥§ is
the tachyon vacuum solution is reasonable expectation. This is based on the fact the constant seed ¢ = a
has the coupling constant a which have mass dimension 1. It is more relevant in the IR limit than other
operators in the seed of W§. We can compute the correlation functions of ¢s in BCFTy in such a limit.
However, we have to compute the correlation functions of ¢s with finite coupling constant, because the
computation of the energy of W includes the integral of the coupling constant multiplied the length of
cylinder. The computation is performed numerically in [18] using the Witten’s deformation. Since there
is a divergence of the volume of Dys-brane in the Witten’s deformation, the regularization problem arise
also.

On the other hand, the computation of the gauge invariant observable is computed analytically. More-
over, the computation is easier than that of the energy. This is because that the gauge invariant observable
can be computed by evaluating the one point function of ¢ in BCFTy. This one point function is written
in the differential of the partition function 0r,Zgc FT, (L), and the gauge invariant observable becomes the
difference of the A%Y... (V) between IR limit and UV limit.
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6 Energy from gauge invariant observable

From the examples in the previous section, we can see how much difficult the computation of the energy is.
In the case of Murata-Schnabl solution, the computations of the energy and the gauge invariant observable
need different regularization. In the case of BMT solution, the computation of energy is hard to perform
analytically while the computation of gauge invariant observable is performed analytically. On the other
hand, the gauge invariant observables are able to be computed analytically. Moreover, we may be able to
compute the energy from the gauge invariant observable with the vertex operator

V= icaaxoéxo. (6.1)

T

The gauge invariant observable with this vertex operator corresponds to the one point function of the
linear combination of graviton and dilaton g¢g*”| =0 with zero momentum. Since ¢% couples to the
energy momentum tensor Ty, this one point function is expected to proportional to the energy of the
system. Actually, the one point function

Aq (V) = (V (ico, —io0) ¢ (0)) g e
becomes
1
T on?
where we used the expectation value of ghosts (4.9) and that of X% (C.1) in the appendix (C). The
volume factor V, varies as follows

Aqa (V) Vas

Vos  ,BCFT, = BCFTj
Va=140 ,the vanishing D-brane background ,
Vou ,BCFT, = BCFT,

where we used the notation of the discussion of the BMT solution. This gives the expected values of the
energy of the solutions.

In this chapter, we will show that the energy can be expressed by gauge invariant observable with
vertex operator (6.1) by

o 912 IV (i) [9) . (6.2)

Using this relation, we will compute the energy of the Murata-Schnabl solution regularized by the same
way of the computation of gauge invariant observable. In addition, we will compute the energy of the
BMT solution, showing that the energy of W§ defined by (5.23) becomes the one of the tachyon vacuum
solution.

In the section (6.1), we will prove (6.2) in the case of that the operator Oy is local operator, where
Oy corresponds to the solution |¥) with ordinary state-operator mapping

W) = Ou (£=0)]0) ,

where |0) is SL(2,R) invariant vacuum and & is the complex coordinate on the upper half plane. This
gives formal proof of (6.2). This proof can be applied to the analytic solution constructed by K Bc algebra,
which does not satisfy the assumption that Oy is local. In the section (6.2), we will show the relation
(6.2) to the Okawa type solution (4.11). Since the regularization of the solution can cause anomaly to the
equation of motion, we will consider (6.2) with anomalous contribution. In the section (6.3), we will show
the relation (6.2) can hold to the Murata-Schnabl solution and the BMT solution. Using this relation,
we will compute the energy of the Murata-Schnabl solution with the same regularization of that of the
gauge invariant observable, and we can compute the energy of the BMT solution with cosine deformation
analytically.
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6.1 A proof of (6.2) for local Oy

As we emphasized in the previous chapter, the energy of the solutions is proportional to ¥3, while the
gauge invariant observable is linear to W. To transform the gauge invariant observable to the energy of
the solution, we will use the equation of motion and increase the degree of ¥. Because of this, we need
some quantity which produce BRST operator () from gauge invariant observable. What we will see in this
section is that when there is no other vertex operator, there is a nonlocal operator x (XO) and G (XO)
which satisfy

V(i) = {Q,x},
Q.6] = x—x",

where x! is the BPZ conjugate of y. Using these identity and equation of motion, the gauge invariant
observable will be transformed to the term proportional to the third power of ¥ in which G is inserted.
When the contribution from G can be computed independently, the gauge invariant observable become to
be proportional to W3, thus to the energy of the solution. Because of this, we assume that Oy does not
involve X© variable.

6.1.1 Open string field theory in a weak gravitational background

In this subsection, we will consider the string field expressed on upper half plane &.
It also serves as a review of [48] to consider the string field theory with closed string background:

Sh === |5 (WIQN) + 3 (¥« ¥) + (1Y ()9)] (6.3)
where h < 1. It has been shown in [49] that such a string field action describes string theory in a closed
string background, for general on-shell V. The vertex operator (6.1) is a linear combination of the constant
graviton and dilaton. Therefore the action (6.3) should be the open string field theory in a constant metric
and dilaton background. However, the constant metric can be transformed to flat metric n* and the effect
of dilaton background causes the change of the coupling constant g — ¢’. Because of this, the action (6.3)
can be transformed to the action of the ordinary cubic string field theory (2.2) with coupling constant ¢'.
To see the transformation of the action (6.3), let us define the nonlocal operator x:

V(i) ={Q,x}, (6.4)

where

§—0 21
i (&€ =40X°(£)e0X° (€) ,
J (5,5) =49X"Y (@ cOXY &) .

o d§ . dé - c(1)
X = hm[/Plj(E’g)_/lej(&g)+27T5 ) (6.5)

The contour P; is depicted in the Figure (11) and P; is its complex conjugate. We took the normal
ordering for operators implicitly. Since the correlation function (9X° (¢)9X?° (E))U g.p. diverges on the
real axis we regularized the edge of contour by . Because of the third term of the right hand side of (6.5),
X is not singular in the limit of 6 — 0. We give the details of the definition of y and the derivation of
(6.4)(6.6) in appendix A. Using (6.4) and equation of motion, the action (6.3) becomes

1|1

1
Si= =3 |3 (VIQIY) + g (VIV' = ¥) | +0 (), (6.6)
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where
) = |@) +hx|D), (6.7)
Q = Q-h(x-x').

x' denotes the BPZ conjugate of y and

) B
Xox B %I_I}% |:/Pl+P2 27” 5 @ /1+ Py 27T ( j
c(1) (=1

27T(5 2mé }

where Py is depicted in (11).

The string field theory (6.6) is similar to the one considered in [48] as the open string field theory
in the soft dilaton background. They have shown that the effect of such a background corresponds to a
rescaling of the string coupling constant g. To see this, let us define G which satisfies

Q.6 =x—x". (6.8)
This is given by
g = %1_1% [/;>l+p2 271'29g 5 g) / = 2m 5 g) (6.9)
9 (6,6) =2 (X7 (&6 - X° r»&W@,

9: (6,8 =2(X%(£,6) — X° (i, —1)) 9X° (€) .

Since gg, g¢ have singularity at £ = ¢, the contour Py + P, is deformed to the contour depicted in Figure
(12). The X (i, —4) is necessary for welldefined g¢ and g 9, gg are defined with the usual normal ordering
prescription (C.2) and under a conformal transformation { — &' (§), g¢ transforms as

¢ ¢

. 1
ger (€,€) = ge19% (6:€) + 501 9 (6.10)

The singularities comes from real axis are canceled between the first term and the second term of the right
hand side of (6.9). We give the derivation of (6.8) in A.

When the string fields does not include X°, we can compute the contribution of G. There are useful
identities which can be shown from the definition of G:

(GU1[W3) + (V1|GW2) = (V1[Vs) , (6.11)
(G| Wy # Uy) + (U1|GTy % Us) + (Uy|Ty 5 GUg) = (U [Ty + Ts) . (6.12)

s

Figure 11: Contours P, P»
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Y ™

Figure 12: the contour to define G

Y
Y

Using these identities and (6.8), we can transform the action (6.6) to

1+h |1

S, =
h 92 9

(WIQI") + 3 (V9" < 9"} | +0 (42) (6.13)
where
|¥") = (1—hgG) |¥') .

Therefore, the action (6.3) with the vertex operator (6.1) corresponds to the original action (2.2) for the
string field |[¥”) with the coupling constant ¢':

1
/: .
RV

G can be regarded as the generator of general coordinate transformation.

6.1.2 Derivation of (6.2)

From the two expression of Sy (6.3) and (6.13), we can deduce the relation (6.2). When the solution |¥)
is a static solution, the action (6.3) can be expressed by

Sp= —E[U] - gh IV @) (6.14)

where E [¥] is the energy of |¥U). On the other hand, the string field |[¥”) in (6.13) is related to |¥) by
’\I/”> =|U) + ’5"\If> ,
where [6”WU) is O (h). Using this expression, the action (6.13) becomes

SR Q) + (e w)

S, =
h 92 2

+ (0"V| (Q[¥) + [V x U))] + O (B?) .
Since |¥) satisfy the equation of motion, the first term of the second line vanish. Therefore (6.13) becomes
Sp=—(1+h)E[¥]+0(h?) . (6.15)

Comparing the terms of order h in (6.14) and (6.15), we get the relation between energy and gauge

invariant observable ]
E = ?<I]V(z)|\lf) . (6.16)
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We can show this relation in more direct way. From (6.11) and (6.12), we can show the identities

%m\p*@ — QU )

SQY) = (GUIQW) — 5 (¥][Q.6]|W) | (617)

Using these identities, equation of motion and

Q. G]|¥) = (x - x*) ) (6.18)

we can obtain

N | =

=[5 wiem) +  ww s w)]
L

GU{Q¥) + ¥+ w)} ~ L (¥/[Q.q r\m]

i)

= 5 ¥ (x =) 1)
1
T2

I|x |U W
g<\! )

e
- LUV . (6.19)

kS)

Before closing this section, a few comments are in order:

The vertex operator V is expressed in a BRST exact form (6.4), with x being a completely legal
operator. This fact may appear odd because it implies that all the amplitudes involving V vanish?.
Actually (6.4) holds on the assumption that there exists no operators around £ = 1. In the derivation
of (6.4) in appendix A, we use (A.5) which is valid only when such a condition is satisfied, which
is the case in our setup. However, in calculating amplitudes, this is not guaranteed because of the
existence of other vertex operators and (6.4) cannot be used in such a situation.

It is also possible to use B
V = ccOX"0X"hy ,

with hf; = —1 and derive (6.2), provided the variables X* are described by the free worldsheet theory
with the Neumann boundary condition.

Suppose that |¥) does not satisfy the equation of motion:
Q¥) + | *xW)=1T) #0. (6.20)
It is easy to see that the relation (6.19) is modified as

1

E=
g2

IV (i) [¥) — 92 (I X T) + gl Gur) . (6.21)

3This question was raised by M. Schnabl.
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6.2 Derivation of (6.2) for Okawa type solutions

The proof in the previous section based on the assumption that the solution |¥V) = Oy|0) is written by
a local operator Oy which is located away from the arch |£| = 1. However, the analytic solutions which
we are interested in are written by non local operators K and B, which is the integral of the energy
momentum tensor T and antighost b from £ = —i to £ = i. These contour of K and B across the contour
Py + P, and do not commute with g and j¢. Because of this, we need to check that the proof of the
previous section can be held to such solutions. In the following, we will consider the string field expressed
on sliver frame. Therefore, we use the state-operator mapping in the form of

W) = WlI),

where |I) is identity state.
As the model, we consider the Okawa-type solution (4.11),

v :F(K)Cl—[}il(}K)zCF(K) .

We assume that the F' (K) and K/ (1 — F?) can be expressed by Laplace transform,

F(K) /dL “LEf(L),

K
= ) e,

We will consider the case later, that the regularization is necessary to define the Laplace transform. Using
these Laplace transforms and (4.8), the string field itself can be expressed by Laplace transform

U / dLe Y5 (L) | (6.22)
0
where
'(7@ (L) = /dleLQdL36 (L — Ly — Ly — L3)

x¢(Ly + Ls) Be(Ls) f (L1) f (La) f (Ls) - (6.23)

We express (4.2) as
U =L{y},
where £ denotes the operation of the Laplace transform. When we define an inverse Laplace transform
by £71, 1 is expressed by
Y (L) =L} .
In order to trace the computation (6.19), we have to show the identities (6.17) and (6.18) about the
Okawa type solution. We will define G and x on sliver frame, and show how the operators K and B affect

the calculation of (6.17) and (6.18). Actually, as we will see, the effects of nonlocal operators are canceled
each other and the identities are also hold on the Okawa type solution.

6.2.1 Definition of G

The solution W is expressed by the sum of wedge state e ~/¥ with insertion ¢ (L) in (4.2). Similarly, |G¥)
is defined by the sum of wedge state with insertion of ¢ (L) and G (L). G (L) is defined by
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G(L,A,0) = Zoli_{?m [/P Qd—;gz(z Z) — /P ;;gz(z,i)] )
9:(2,2) =2 (XO (2,2) — X% (20, 20)) 0X°(2),
9z(2,2) =2 (XO (2,2z) — XO(ZO,EO)) 0X°(2),

where the contour is depicted in Flgure (13). We can define G as the operation of G (L, A, d) to e 254 (L)

of every L. Using a test state |¢) = O (£ = 0) |0), the definition of |GW) is given by
v o= i dL (F2)K 0 04 (0) e~ (FH2)KG(L, A, 6)0) (L . (624
wow) = tim [ an (R po0, 00 CIRGL A (L), L (624)

Here, we used f(£) = Zarctan¢ and the fact that |0) = e ®|I). 2 which appears in the definition of
G(L,A,9) is the complex coordinate on Cr,1 such that e~ (L) corresponds to the region 0 < Rez < L.

From this definition of G, we can deduce the identities (6.11) and (6.12). The first term of the left
hand side of (6.12) becomes

% <6(L2+L3 Kg(Ll, A, 8)r (Ly)e 2K apy (L2)€7L3K¢3(L3)> ’

CrLi+Ly+Ly
(6.25)

where v; (L;) = L7 {¥;} (L;). When we assume that every ¥;s do not include X°, we can separate the

contribution of G (L, A, §) from other expectation values:
<6(L2+L3)KQ(L1, A, a)%ﬁl(Ll)e_LQK%(L2)6’_L3K¢3(L3)>
CLy+1y+13
<g(L1’ A a’)> CL1+L2+L5
X < (L2+L3)K 7/}1( ) L2K¢2(L2)€_L3Kw3(L3)> CLy+Ly+Ly > (6.26)

where (-)X" is the expectation value of X0, This expectation value of X° can be computed by using (C.3).
Since the expectation value of g¢ and gg does not depend on Rz of the integral in the limit zp — oo and
constant §z — oo, it becomes

lim  (G(Li, A, 0)) Y L

- 6.27
(A,8)—(00,0) CL1+L2+L3 Ly+ Lo+ Ls (6.27)
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Therefore, the first term of the left hand side of (6.12) becomes

Ly
Li+Ly+ L3

% <6(L2+L3)K1/}1(Ll)e_L2K¢Q(L2)€_L3K7/)3(L3)> CLit+Ly+Lg

From the same computation, the second and the third term of the left hand side of (6.12) becomes

<g‘1’1‘\1’2 * \I’3> = /dleLQdLg

Loy
Uq|GWy x U = dLidLodLg—————
(W1|GWq * U3) / 1dlodly = =
x (R g (L)L Ky (L) 5K g (La) Y oy 1y oy
L3
Uy |y x GW- = dLidLodLg———"——
(U1|Wq % GU3) / 1dL2 ST % Lo+ L

% <6(L2+L3)K¢1 (Ll)e_L2K¢2(L2)6_L3K¢3(L3)> CLy+Ly+Lg

From this, we can deduce the relation (6.12). Similarly, (6.11) and (6.17) can be shown from the definition.

6.2.2 (6.18) for Okawa type solutions

Let us consider the identity (6.18). For an arbitrary test state |¢) = |¢), we can deduce

~— lim T L (DK f o g (0) e~ (K
o) = tm [T (DR o) e DR QeL A (1),
- /OO dL <e(L+%)Kf 0§ (0) e (LHDEG(L A, 6) L~ {QU) (L)> }
0 Cri1
= A+ As,
where
A = (A,(S)li—>rr(loo,0)/0 dL<e(L+§)Kfo¢(O)e_(L+§)K[Q,Q(L,A75)]¢(L)>CLH7 (6.28)

i L (K £ o b (0) e~ (LK
1 )/0 dL< foé(0)

(A,8)— (00,0

X G(L,A,8) [Qu (L) — L7 {QU} (L)])

Cri1

(6.29)

One can guess that Ay gives the contribution of (X — XT) |W). As we will see soon, there is an additional
contribution which comes from B in 1. Similarly, one may guess that A will vanish. However because

QLTH{W} (L) — L7HQY} (L) #0,

there is an additional contribution. This contribution comes from K and cancels to the additional contri-
bution of A;. We will see this cancellation explicitly.
Using the expression (4.2) and (6.23), A; becomes

Al = /dL/dleLQdLg(s (L - L1 - L2 - Lg)

x f(L1) f (L2) f (L3)
x (el 0 6.(0) (RN [Q.G(L A B) e (L2 + L) Be(La)) ,

(6.30)
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From the definition [@, G (L, A, §)] becomes

dz - dz -
LG(L,A,0)] = / —40X° (2)e0X" (z —/ —40X°(2) 0 X" (=
@oLAs) = [ GLAOX @DX ()= [ SC0X0 (20X’ (o
—2(c0X" (ico) + e0X° (—icc)) / dfz.@Xo (z)—/ dfg.éXo (2)
Pr a5 2mi Pras 2
e [ Sl
Pras 271 2 Pras 271 2
+/ dz0kK (2,2)+/ dz0k (z,%) , (6.31)
Pr a6 Proas
k(7)) = & (XO(z2) — X° (ioo, —ico)) (cDX? () — @DX° (2)) .
i

Since for Imz, Imz’ ~ oo,
_ X0 w2 2mi _
(0X° (2) 90X (7) o, ~ 2 (Z) exp <L (z — z')) ,
c(z) o« ex —@z
p I )

we can ignore the Imz = A part of the contours P a s, PL7A75 in the first and the second terms of (6.31),
in the limit A — oo. The second and the third lines are integrated to the surface term of the contour
Pp s, PLyA,(;. For the second line, one can integrate it explicitly using (C.1) and see that it will vanish in
the limit of & — 0. The third line vanishes because of the boundary conditions of ¢, €.

The nontrivial effect of B comes from the fourth line of (6.31). Since the operators in the expectation
value in (6.30) is time ordered by time variable Rz and B across the contour P, s and PL,A,(;, the
contribution from the fourth line of (6.31) becomes
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<e(L+§)Kf 0 ¢ (0) e (L+3)K </P dz0k (2, 2) + /_ dzOk (2, 5)) ¢(L2+ Ls) BC(L3)>

P
L,AS CLJrl

- Ty [e—%K Fod(0)e (L2 e (Ly + Ly) Be (Ls) k (i8, —i6)

+e 280 (0)e (LMK (L + 6, Ly —i6) c (Ly + Ls) Be (Ls)
e 4K 0.6 (0) e (FR e (Ly + Ly) {B,w (a+ iha — iA)} e (Ls)| -

where we denote a as the position of B insertion. Therefore (6.28) becomes

A = /dLTr [e_%Kf 0 ¢ (0) e oK (Xe_LKTZJ (L) + e LB (L) X)}

1
+/dLL+1Tr [e*%Kfoqﬁ(O) e 2le LKy (L)} : (6.32)
where « (L) is defined in (B.5) and y is given as

I / " de 49X° (2)c0X" (2)
= 1m -_— Z ) C z
(A,8)—(c0,0) | Jis 271

N -
_ / 92 15X0 (2) c0XO (2)
—id 271
c(0)
* 271'5} '

As we expected, A; gives the contribution (] (x — XT) |W) which is given by the first line of (6.32). The
second line is the effect of non local operator B.

In order to show (6.18), the second line of (6.32) have to be canceled with Ay. Using (B.7) and
G (0,A,9) =0, Ay becomes

_ li T L (LYK 0) e~ (L+3)K
Ay s /0 <6 foo(0)e

x G(L, A, 8)e™ay, (e K (L))> . (6.33)

Cri1

The expectation value of integrand is computed by

B} <e<L+%>Kf o (0) e EF2)EG(L, A, 8)e K a (L + t)>

CL+1 t=0

Using (6.27), this becomes

o | oy (oo KK |
_ LL-|-1 (3K fog(0) e (HDK PR, (7ERa (L)) )

_ (L+L1)2 (DK fog ) e (HH)Ka ()

t=0
Cri1

Cr41

Substituting this to (6.33), we get
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o0 L ! !
Ay = /0 dL{L+1Tr[e2Kfo¢(0)e2K8L(eLKa(L))}

ol s e ta ]}

= —/OOOdLLJlrlTr [eféKfogZ)(O)e*%Ke*LKa(L)} .

The result is minus sign of the second line of (6.32). Therefore, there is no contribution from non local
operator in ¥ and we get

A+ Ag = /dLTr [eféKf o (0) e 3K (XefLKzl) (L) + e M4 (L) X)} )

This shows that the relation (6.18)

@.119) = (x = x) 1) .

is also held to Okawa type solution.

6.2.3 (6.2) for Okawa type solutions

Since the identities (6.17) and (6.18) have been shown, we can apply the formal proof (6.19) to the Okawa
type solution. In summary, we have proved (6.2) for Okawa type solutions ¥ assuming the following
conditions:

e U satisfies the equation of motion.
e a(00) =0 and «(0) is well-defined for o (L) defined in (B.5).

In addition to these, it is implicitly assumed that all the quantities which appear in the course of the
calculations are finite?. Conditions other than the equation of motion are concerning the regularity of the
solution. If the equation of motion is not satisfied, we obtain (6.21) with |T') given in (6.20).

6.3 Other solutions

The computation in the previous section depends on that the solution satisfies the assumptions or not.
Because of this, we can extend the computation to the other solutions ®. We will see the applications to
BMT solution (5.21) and Murata-Schnabl solution (5.1). What we have to do are define o (L) for each
solution and check the assumptions we used in previous section.

6.3.1 BMT solution

As we saw in 5.2, the direct computation of the energy of regularized BMT solution (5.22) is difficult,
while the computation of the gauge invariant observable is easy. Thus, the relation (6.2) can make the
computation of the energy easy a bit. From the review in (5.2.2) about [47], we will show the relation
(6.2) to the BMT solution (5.23) which is considered as the tachyon vacuum. From the definition (5.23),
we get the Laplace transform of W§:

“This is also assumed in section 6.1.
5Our results will not be useful for the marginal deformation solutions, for which it is trivial to calculate the energy, but
may be relevant [50] in the context of the discussions in Ref. [51].
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v = [Tty
0

YE(L) = 6(L)c(p+e)— e Lmlo d95) (¢ — 5 + ) Bede,

where we assume that X in ¢ is different direction from X°. From the same discussion in (B), the difference
between £~ {QU§} and QL™ {¥§} becomes

L7HQUE (L) = QLTHYG} (L) — " op (e7HFaf (L)) — 6 (L) of (0)

with .
af (L) = e~ L= d595) (¢ — 5¢) coc .

One can see of (L) satisfies the conditions that af (L — oo) = 0 and «f (0) is welldefined. Since there is
divergence in the Witten deformation which comes from noncompactness of X, the relation (6.2) can not
be held in this case. The cosine deformation does not seem to have such problem 9. Thus, the relation
(6.2) can be held to the cosine deformation and one can see the energy of U§ from the gauge invariant
observable W [V, U§] with the vertex operator (6.1). It shows correct energy of tachyon vacuum. Using
this, one can get the energy of regularized BMT solution (5.22) analytically, and get the preferable result
(5.26) which coincide with Sen’s second conjecture.

It may be possible to calculate the energy of V<, directly for the cosine deformation. Since V%, 1
has an anomaly in equation of motion, we need to evaluate the second and the third terms of (6.21). In
order to do so, we need to know the IR behavior of some correlation functions of ¢.

6.4 Murata-Schnabl solution

When we consider the regularized Murata-Schnabl solution (5.13), we can see the factor e=“* in « (L)
for Murata-Schnabl solution. This satisfies the assumption that o (L — oo) and we can show the formal
proof. Since there is an anomaly in the equation of motion, the relation between the energy and gauge
invariant observable becomes (6.21).

As we saw in (5.1), the computations of the energy and gauge invariant observable of the Murata-
Schnabl solution (5.1) are performed with different regularizations. As an application of our results, let
us calculate the energy of the regularized Murata-Schnabl solution (5.13). Since it is regularized by the
same way to compute the gauge invariant observable, we can get the energy with the same regularization
with gauge invariant observable.

Since ¥, ¢ has an anomaly in equation of motion (5.14) the relation we have is

E= 912 [(I1V (i) [Wirs) = ([ x [Te) + (GWhrs[Te)] - (6.34)

After some calculations, details of which are presented in appendix D, we obtain in the limit € — 0

N N-1
IV 3@) [ ¥ys) = o2
(|xTe) — Ry, (6.35)
(GUysle) — 0, (6.36)

6The partition function
g (uT) = Tre” THE+9)

can be calculated perturbatively [45] and is finite for 0 < w7 < co. The UV and IR behaviors of the correlation functions of
¢’s are harmless.
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where

—5k5 Lo, HORFR V2R ((27”')“2 - (*27”')“2) , (N=1),

—N— 1-N)! . Nk
55 Lo k!(k+2()!(7]\2—17k)! ((27”)k+2 — (—2mi) +2> , (N<0).
Therefore we get the energy
1 /(N-1
F=—(— R .
g’ < 22 N>

This coincides with the desired value % for N = —1,0,1,2. Thus, for these N, the anomaly I, is
harmless at least in the calculation of energy, although we do not know the reason why this is so for
N=-1,2T".

Ry =

7 Conclusion

We showed the relation (6.2) between the energy and the gauge invariant observable with the static
solution of equation of motion in Witten’s cubic string field theory. The vertex operator we used is the
linear combination of a constant graviton and dilaton operator (6.1). We also showed the relation in
the case that the solution is written by using K Be algebra. In a recent paper [52], it is found that the
boundary states can also be constructed from the gauge invariant observables. Therefore now we possess
a more efficient way to study the physical properties of solutions which have been or will be discovered.

Recently in [40] the authors propose several new types of solutions made from K, B,c. It seems that
our method can be applied to these solutions and derive (6.2) if the solutions are sufficiently regular. One
particularly interesting solution mentioned in [40] is the one due to Masuda, which is claimed to have the
energy of the double brane configuration but the gauge invariant observables of the perturbative vacuum.
It would be intriguing to check how our derivation of (6.2) fails for this solution.

Interrelationship between energy and the gauge invariant observable will be important in exploring
various aspects of string fields. For example, in the case of the BMT solution, the calculation of gauge
invariant observables reduces to the integral of total derivative. This implies that these gauge invariant
observables may have some topological nature. On the other hand, in [37], the energy is interpreted to be
the winding number in string field theory. Our results may shed some light on the study of the topological
invariants of the space of string fields.

In this paper, we consider the solutions which have a singularity in K = 0. In [53], the author shows
there is a transformation which sends K — 1/K, and the energy is not changed under this transformation.
On the other hand, the gauge invariant observable on the right hand side of (6.2) does not have such a
symmetry. In [54], the author show that the relation (6.2) is modified to include the contribution from
the singularity in K = oo, which has a symmetry under the transformation.

This Doctorial thesis is based on the paper [55] which we have submitted in Journal of High Energy
Physics.
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A Derivations of (6.4), (6.6) and (6.8)

Since the quantities which appear in section 6.1 involve unusual combinations of operators, some explana-
tion is necessary about the definitions and the treatment of them. In this appendix, we present the details
of the definition of x,G and the derivation of (6.4)(6.6)(6.8).

Introducing @ such that £ = ¢, the contour integral on the right hand side of (6.5) is expressed as

IR=UGORN =G
:/62201:;2619]<¢9 6_19)_/522{&'( —zQ)j(iG —iG)' (A1)

In calculating the BRST variation of this quantity, it is useful to notice

a',

%j(@@ = ]igﬂ )V (&9, (A.2)
60 = L@V, 49

211

where V (5 , f) is the vertex operator defined in (6.1). Since V is BRST invariant, it is straightforward to
show
d¢ . dé ~
_ z de o0 de”’ 0 _—if
_/5 d0<d9 ( ) df 85 ( € ))

=V (i,—i) -V (eié, e—ié) . (A.4)
Assuming that there are no other operators around ¢ = 1, the OPE’s of ¢, ¢, X" imply
s —is) _ coc(1) _ c(1)
V(e e )_ SO0 =Q. T +0() (A.5)

for § ~ 0. The assumption is valid in the setup of this paper. Using (A.5), we obtain
{Q,x} =V (i,—1) .

It is possible to generalize our construction here to other closed string vertex operators. For any BRST

invariant closed string vertex operator V (f,f), one can define j,j as in (A.2)(A.3), and one can prove
(A4). If V (e, %) can be expressed as

V(%) = {QuI+0() , (A.6)
in the limit 6 — 0 as in (A.5), we obtain V (z —1) = {Q, x} with

et Eco |, Eiaa]

(A.6) holds if there exists no on-shell open string vertex operator V, such that

<V%>disk 7é 0.
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(6.6)

dh

Figure 15: C’
Substituting (6.7) into (6.3), we obtain

1 [1 1
Sno= —5 | (VIR + 5 (W W)+ h {IV (i) [¥)

h
—h(1xQ1w) - 5 (¥| (x —x') \‘If’>] )
where we have used

X = X'y,
(lx|w) = —(x'|v).

Since Q |I) =0,
(IIxQ[¥) = (I{Q,x} [¥) ,

and we may be able to use (6.4) to show (6.6). We should check if the @ in the open string field action
yields the BRST variation of x as an operator in the bulk. The BRST operator acting on a string field
|¥) = Oy (0) |0) is given as

d dé -
QIY) = </c/27§ij —/C/QFEZ,JB>O@(O)|O>,

where Jg, Jg are the BRST current and C’, C’ are depicted in the figure 15. Since Jg (¢) = Jp (f) for real
& the contour integral can be expressed as
7{ =
— J5,
0 27

on the doubled Riemann surface. (Qx (¢, —i) + x (¢, —i) Q) |¥) in the open string field theory is given as

de Q-
(%C// TMJB - f;’" 27T'ZJB> X (6,5) Oiﬁ ‘O> )

where the contours C”, C" are the one which surrounds Py P; as depicted in figure 16. Hence the contour
integral yields the BRST variation of x and we obtain V (i, —i) |¥).
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Figure 16: Contour which surrounds P;

Y
Y

{Q.6}=x—x
The contour integral on the right hand side of (6.9) is defined in the same way as in (A.1). It is straight-
forward to calculate the BRST variations of ge, gz as

Qe (€8] = 50%(O)+0 (2(X° (68 = X° (,—1)) cOX° (€))
+2¢0X°0X° (£,€) — 2 (c0X° (i) + e0X" (—i)) 0X° (¢) ,

Q0 (€8] = 50°0(8) +0 (2(X° (6,6 — X° (1, 1)) DX (£))
+2c0X°0X° (£,€) — 2 (c0X° (i) + e0X° (—i)) 0X° (€) ,

and we find (@, G] is equal to

P (86( ") de (=) —oe(e?) + e (e*“))
+ o < / déoe + / dgaf> 0(¢,€) — X° (i, —1)) c0X" (£))

. </d§8§+/d§8£> 2 (X°(&¢€) - ,—1)) c0X° (€))

d€ 20 o0
5 40X0%0X° (¢, €
Pi+D, 2mi ( )

— 2(c0X° (i) + DX° (~1)) (/P 2% ) - /p diaX()@ﬂ

+Ps 2mi +P, 2mi

A€, 24050
—40X"c0X
* /];1+P2 2mi (g g)

The terms on the first line cancel with each other in the limit 6 — 0 because of the boundary conditions
of ¢,e. Those on the fifth vanish if Oy does not involve X°. The second and the third lines yield in the
limit § — 0

) (76_1-5,761'5
5 (K69 - X0 ) (X1 X (@)
— (68)=(e.e7)
c(=1) (1)
216 +%'
Thus we get
Q.91 =x—x*.
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B Laplace transformed form of the string field

We derive two formulas (B.1) (B.7) concerning the Laplace transform of the string field defined in section
6.2.

For two string fields Ay, As, which can be expressed as a sum of wedge states with insertions, it is easy
to show

LA A (L) = /0 ' AL/ XKL= A} (L — L) e VB L1 { A} (1)) . (B.1)

The right hand side can be regarded as an operator version of convolution.
For ¢ (L) in (6.23),

Qv (L) = QLT {U}(L)
= /dL1dL2dL35 (L—Ly— Ly — L3)
X [Cac (Lo + L3) Be(L3) — ¢ (LQ + L3) Kec (Lg) +c(La + L3) Beoc (L3)]

xf (L) f (L) f (L3) , (B-2)

which is not equal to

L7HQUY (L) = /dleLgdLgé (L — Ly — Ly — Ls)

X [{80 (LQ + Lg) Bc (Lg) +c (L2 + Lg) Bceoce (Lg)}

< f (L1) f (L2) f (Ls)
KQ
—c (Lo + Lg)c(Ls) f (L1) £71 {1_}72} (L2) f (L3)] : (B.3)

Therefore the BRST transformation and £~ do not commute with each other. Comparing (B.2) and
(B.3), assuming « (0) = a (00) = 0, we obtain

L7HQYY (L) = QLU (L) — eM¥ap (e M a(L)) | (B.4)
where %
_ -1
a(L)=L {FCI—FQCF} (L) . (B.5)
We expect « (00) = 0 for regular solutions. « (0) is related to the behavior of F' (K), % for K ~ oo

and may not vanish even if U is regular. For example, the Erler-Schnabl solution [12] has

1.
L) = L 2e 1,
Y
1 L _1 1
a(l) = el—-=— [ dl/(L-L')"2 L 2coc (L),
(F(é))2/0

and

a(0) =cdc(0) ,

With « (0) # 0, (B.4) cannot be valid for such solutions.
In order to get an identity similar to (B.4) for the solutions with « (c0) = 0, (0) # 0, we regularize

U and consider
BK

U, =F(K)e ™We——
=PI e e T

e MeF (K)e M

52



for n > 0. ¥, coincides with the original one in the limit 7 — 0 and
Ly (L) = /dleLQdLgé (L— Ly — Ly — L3)

x ¢(Ly + Ls) Be (Lg) L7 {F,} (Ly) £ {Fn} (Ls) L1 {F,} (Ls)

where
F,(K) = F(K)e ™™,
- K
= 777K
B0 = TTEme

LYF} (L), L7t {Fn} (L) vanish for L < n and we do not encounter any problem in deriving

L7HQU, (L) = QL™ {T,} (L) — "oy, (e M ey, (L)) (B.6)

where

oy (L) = £ FyefyeR, (L)
ay (L) ~ a (L) for L > n and oy, (L) = 0 for L < 3n. Therefore, in the limit 7 — 0,
day (L) — da (L) + 6 (L) (0)
and (B.6) becomes
L7HQUY (L) = QLU (L) — "oy (e M a (L)) =6 (L) a(0) (B.7)

which can be used for solutions with « (co) = 0, (0) # 0, provided « (0) is well-defined. One can check
that the Laplace transform of the right hand side yields QW.

C Correlation functions of X variables

In the calculations in section 6.2, we need the correlation functions of X variables, which are described
by the free worldsheet theory with the Neumann boundary condition, on C. A conformal transformation
which maps C, to the upper half plane is given as

C;, — UHP
— fztanﬂ—z
z 7
From the correlation functions
_lnwf
X () OX” (€)yyyp = 2
_ 1w
AvV (¢! _ 277
<8X,U <£) aX (£)>UHP - (5_5—,)2’
we can get
v !/ _ 1 v ™ 2 ]‘
(X" (2)0X" (), = —51 (F) e
L
vy (= _ 1 v ™ 2 1
(0XH (2) 0X (z)>CL = —577“ (f) 2 7] W(ZL_E/). (C.1)
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We are interested in the correlation function of the form ((X°(z,z) — X% (29, Z)) 9X° (2))

the difference X (2,2) — X (20, Zp) for some 29, Zg can be written as

o Since

X% (2,2) = X% (20, 2) = / dZ0X" () + / dz'0X° (7') ,

20 20

is well-defined. Here it is

using 0X°,0X0, the correlation function {((X° (2,2) — X° (29, %)) 0X° (2
g ; cy

assumed that the operators are normal ordered as

: X99X0: (2,2) = lim [XO (2,2) 0X" () L1 } . (C.2)

2=z 272 —z
From (C.1) we obtain

<(XO (2,2) — X (20, 20)) 9Xx"° (z)>

Cr
o 7 (z — 2) 7 (2 — 20) 7 (z — Z0)
=57 [cot 7 cot 7 cot 7 . (C.3)
If one chooses the reference point zg to be ioco, we get
0/, = 0/ . 0 oo (2 —2)
(XY (z,2) — X" (ico, —ic0)) OX (z)>CL =57 cot — 71

D Derivation of (6.35)(6.36)

We would like to calculate the second and the third terms on the right hand side of (6.34) in the limit
€ — 0. These can be calculated basically using the s-z trick [16, 15].
Using

LHry () = /OOO dLidLs6 (L -3 LZ-) c(La)c(0) L H{F2} (Ly)L™t {Kg 6} (La),
and

(¢(L2)c(0)c(2))c,
-5 (2 ’ sin %Z 2sin2”LL2—<sin<7r£2>>2sinT ,
;(2) | (5)

<c (Ls) ¢ (0) < / "z X0 () eaxO (2) / T Z 550 (2) e x0 (z)) >

5 2mi _is 2mi

1L 2 2nl,

— | — ] sin ,
(6,A)—(0,00) 4m \ L

(c(L2) c(0) K (id, —id))c;, — 0,
6—0

Cr
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P 100

Y

—200

Figure 17: contour P

(I x |T'¢) becomes

I x|l = 47T3/ dss/ dLMLg(S(S—ZL)

K 2
X E_l {GE} (L1)£_1 { G+ 6} (LQ) sin ?ﬂ-LQ

B 100 dz ( ZL)
= 47‘(‘3 / dSS / dleLQ /ioo 27”

K 2
x LGN (L) L1 { G+ 6} (L) sin %L2

@00 dz z+e
— e5% A
87r3 / dss/ Gc(2) <Ge>
s Z+e€
= 8713 / dss? % G( ( a )

Here P is contour on the z plane shown in figure 17 and A is defined as [16, 15]

AF(z):F(z—QS”)—F<z+2;”>.

For the Murata-Schnabl solution (5.1), (D.1) is evaluated as

<I|X|FE> = RN+O()
Rv = { 5% 2okt W <(27”)k+2 (— 27T2)k+2) , (N>1),
N =

55 Lilo | RETICN—Ty ((QWZ)k+2 (- 27Tl)k+2) , (N<0),

for e <« 1.
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The third term on the right hand side of (6.34) becomes

/dleLg
:e/ dstLé(s—ZL) L+ Ly

« Ty [e—LlK.c—l (G} (L) eBe— 2K =1 {K + 6} (L)

<€L2Kﬁ_1 {e} (Ly) e P28 LTS (L2))

CLi+Lsg

Ge

e LK L= (G Y (Ls) ce B L1 {KG“} (Ly) c] .

Using
LLTH (L) = L7 {ofy (L),
and eq.(2.5) in [15], we obtain

L _ _ _
/dL1dL2L J:L (et {‘I’ }(Ly) e R LTS (La)) oy,

d SZ
87r3 / ssj{ omi

zZ+e€ z+e€e , z+e) zZ+€
(e ,Ge} (Y el

[F1, Fy, F3,Fy] = [~FIAFRF3F+ FIA (FoFy) Fy + FIA (FoF3) Fy — FIFy FsAF,
+F A (FsFy) + PR A (F3Fy) — FLA (FyF3Fy) — Fy (FsAF3Fy)'] .

where

The contribution of O (60) is given by the following replacements
G'(z) = —(N-1)G(2),
G"(z) - N(N-1)=G(2),

(2) @) = NeT),

and one can see

Ly LoK p—1 —LsK p—1
/dL1dL2L1+L2<e KL {0} (L) e 2K 71D (L)), g, ~ O(6) |
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