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PAPER

Fine-Grained Access Control Aware Multi-User Data Sharing with
Secure Keyword Search∗

Fangming ZHAO†,††a), Takashi NISHIDE†††, and Kouichi SAKURAI†, Members

SUMMARY We consider the problems of access control and encrypted
keyword search for cryptographic cloud storage in such a way that they
can be implemented for a multiple users setting. Our fine-grained access
control aware multi-user secure keyword search approach interdependently
harmonizes these two security notions, access control and encrypted key-
word search. Owing to the shrinkage of the cloud server’s search space to
the user’s decryptable subset, the proposed scheme both decreases infor-
mation leakage and is shown to be efficient by the results of our contrastive
performance simulation.
key words: cryptographic cloud storage, multiple users, access control,
encrypted keyword search

1. Introduction

To address users’ concerns about confidentiality and pri-
vacy when using the cloud storage service, one common
approach is adopting cryptographic techniques. Kamara et
al. [11] proposed an architecture that combines several latest
cryptographic primitives with the cloud storage, called cryp-
tographic cloud storage. Even if this model will ease user’s
concerns about data leakage, it also introduces some new
problems: because the encryption of data is not meaningful
to the cloud servers, many useful data processing operations
performed by cloud servers become infeasible.

In this paper, we consider a multi-user cryptographic
cloud storage model to conveniently satisfy users’ require-
ments of data confidentiality and privacy. A general use
case of the electrical medical record (EMR) [1] based on
this model is described as follows: a patient, Alice, wants to
subscribe her EMR to the medical data center. The service
allows Alice to share her health information and medical
record with doctors from different hospitals and staffs from
pharmacies or insurance companies. In order to protect her
privacy, Alice wants to encrypt all her information, ensuring
that even the employees of the data center or other unre-
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lated doctors and staffmembers cannot know what is inside.
Only authorized doctors are allowed to search and read her
prior encrypted EMR and some of them are also authorized
to update some items. These authorized doctors (perhaps
belonging to different hospitals/departments) need to update
related records in real time so that the latest EMR can be
shared with all relevant persons. The read/update privilege
management mechanism of the EMR must be independent
of the data owner, Alice, once she creates the EMR access
permission rule, because it is impossible to require a patient
to be always available online to manage each data access of
her EMR.

1.1 Challenging Issues

Even if many security protocols for cloud storage have been
proposed, we find that some significant characteristics are
still unsatisfied in the multi-user cloud storage environment.
Below, we summarize several challenging issues.

• Several existing works adopt traditional or the latest
cryptographic primitives for providing secure access
control to the cloud storage. However, because it is
difficult for a cloud server to differentiate writers and
readers of each encrypted file, most schemes only con-
sider a simple use case that the data owner creates the
encrypted file for sharing with multi-users who are al-
lowed to read but not to update the file, and only the
owner is allowed to update the file. We call it 1-write-
many-read. Providing both write and read access per-
missions to multiple users can realize a more flexible
access mechanism for cryptographic cloud storage. For
example, after the data owner creates an encrypted file
on the cloud, users who hold update access rights are
allowed to update that file at a later time without help
from the owner. We call such a mechanism the owner-
independent many-write-many-read (OI-MWMR). To
the best of our knowledge, no existing fine-grained ac-
cess control protocols achieve the OI-MWMR.

• Most of the existing encrypted keyword search
schemes ignore the access right of the user while per-
forming the search algorithm because in general, it is
difficult for the cloud server to distinguish the rela-
tionship between a user and numerous encrypted files
only through an encrypted keyword (or called a trap-
door) he/she generated. Such an issue further brings
two problems:
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– Usually, not all users are allowed to read (decrypt)
all the files on the cloud server. If each user is al-
lowed to search keywords through all the files and
obtains the result that includes those undecrypt-
able ones, privacy information leakage may hap-
pen: the result tells whether a keyword is (or, not)
related to any files, even if both the keyword and
the file are encrypted.

– Since a search algorithm is processed by the cloud
server, the performance of cloud server is an es-
sential issue. The performance can be improved
much more if the cloud server only searches each
keyword from a subset (e.g. decryptable files) but
not from the whole storage.

• If we want to apply some traditional encrypted key-
word search schemes (e.g. [7], [8]) to the multi-user
cryptographic cloud storage setting, a naive approach
is sharing the secret (search) key. However, sharing
keys is generally not a good idea because it increases
the risk of key exposure. Since a shared secret key must
be changed if any user is no longer qualified to access
the data, changing keys also results in re-generating all
secure indexes. For the cloud storage with numerous
users and files, this approach is not practical.

1.2 Our Contributions

In this paper, we study the access control and keyword
search scheme of cryptographic cloud storage. We summa-
rized main contributions of our work.

• We propose an access structure based reader/writer dif-
ferentiation mechanism. Based on this idea, the OI-
MWMR is successfully achieved and implemented to
both of the file body and its secure indexes.

• We present an encrypted keyword search approach that
we call fine-grained access control aware encrypted
keyword search: the cloud server is only allowed to
search an encrypted keyword over the user’s decrypt-
able data subset using the proposed access structure
computation. As an additional contribution, a binary
tree based file management approach is proposed to re-
duce the computation overhead and optimize the search
efficiency. Two advantages of our approach over most
existing works are shown by our security analysis and
performance simulation:

– Decreasing the information leakage from the key-
word search process which is executed between
users and the cloud server.

– Being more efficient than existing works since the
proposed method does not need to examine those
unreadable files.

• Since each user uses a distinct secret key for his key-
word search, the key update and the user revocation
can be easily achieved without complicated processes
of decryption and re-encryption of indexes.

• Several newly extended security requirements are de-
fined for the multi-user model. The security of our
scheme is successfully analyzed and proved based on
them.

• Attribute-based encryption (ABE) is widely applied to
the cloud for secure data sharing. However, few prac-
tical keyword search scheme is proposed for them be-
cause of the complex composition of its ciphertext. Our
work gives a simple and practical solution for ABE
based cloud storage.

2. System Models

We first introduce the entities involved in our scheme, then
we identify two important functional concepts.

2.1 Entities

• Cloud Server: The main responsibility of the cloud
server is to store and to process encrypted data accord-
ing to authorized users’ requests. The cloud server is
modeled as honest-but-curious in our scheme. Cloud
servers are assumed to be semi-trusted, which mean
servers are honest to save user’s file and to perform data
operations requested from authorized parties.

• Trusted Authority (TA): TA is a fully trusted third
party. Firstly, it is responsible for managing all at-
tributes and their related cryptographic keys. Secondly,
it manages user’s enrollment and revocation for the
proposed scheme. The setup process of keys for users
and the cloud storage server is operated by TA.

• Data Owner: A data owner first creates (encrypts) data
for sharing and secure indexes for keyword search, de-
fines the access privileges policies, and then set them
up to the cloud server.

• Users: There are multiple users with different access
privileges which map to numerous files on the cloud
server. Except for the data owner, we define two kinds
of users for each file, readers and writers. Readers
who have the decryption right and can read. Writ-
ers who have both decryption and encryption rights,
can read/update files (including update secure indexes).
Both readers and writers are able to require the cloud to
perform the keyword search to retrieve encrypted files.

2.2 Functionality Goals

• Fine-grained access control with OI-MWMR:
It facilitates specifying both read and write access
rights to each file for a set of users in terms of their at-
tribute set. The OI-MWMR (owner-independent many-
write-many-read) means that for each file on the cloud,
there may exist multiple writers and readers respec-
tively. Writers are allowed to update a file in a secure
manner without any help (e.g. a real-time authoriza-
tion) from the data owner.
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• Fine-grained access control aware keyword search:
Let n be the number of encrypted files on the cloud,
and a user, u, wants the server to search the files that
contain a keyword w. m (m ≤ n) is the file number on
the cloud that can be decrypted by u. This functional-
ity requires that the cloud executes the keyword search
after narrowing the search scope from n to m by being
aware of access privileges of u.

3. Security Requirements and Assumption

3.1 Security Requirements and Definitions

We integrate and exploit several security properties from
[2], [6], [23], [25], [26] to summarize security requirements
for the proposed scheme under the multi-user cloud model.

• Impersonation Resistance. Traditionally, imperson-
ation resistance requires that an adversary cannot au-
thenticate itself as a legitimate user to any honest entity.
In our model, both readers and writers are legitimate
users. If a reader successfully impersonates a writer,
then he can modify the corresponding data on the cloud
server which includes: encrypted data, secure indexes,
and access policies. Here, this property is extended de-
fined as no readers can impersonate writers to illegally
update any data on the cloud server.

• Inaccessible Information Invisibility. Our work first
defines this security property for the encrypted key-
word search scheme. It requires no user is allowed to
access the data which is not decryptable for him ac-
cording to his access privilege. In our scheme, it re-
quires a user cannot get information (such as Search(w)
?
= φ: whether the search result for keyword w is null)
from search results over his undecryptable files.

• Query Privacy. Query privacy is a common security
requirement for all encrypted keyword search schemes.
This security notion mainly considers the amount of in-
formation leakage (i.e. information that directly relates
to plaintext of data and keywords, corresponding se-
cret keys) to the cloud server regarding user queries.
In other words, apart from the information that can
be acquired via observation and the information de-
rived from it, this notion requires no other information
should be exposed. Let {Q1,Q2, . . . ,Qt} be a sequence
of t queries, and Wt = {w1, w2, . . . , wt} be the corre-
sponding queried keywords. Let At = {a1, a2, . . . , at}
be the corresponding replies, where t ∈ N is polynomi-
ally bounded. We define the view Vt of an adversary
over the t queries as the transcript of the interactions
between the server and the involved query issuers. Vt

contains the ciphertext data CT and the secure indexes
I, queries Qt and the replies At. Let Tt be the infor-
mation that we allow the adversary to obtain, which
includes the results At of t queries, the identifying in-
formation (such as its hard disk position or its memory
location) of each data referred in At and the issuer of

Qt. Finally, a simulation based definition of query pri-
vacy is formally presented as follows:

Definition 1: Query Privacy. An encrypted keyword
search protocol achieves query privacy if for all data
D, t ∈ N, and all PPT algorithmsA, there exists a PPT
algorithm (simulator) A∗, such that for all Vt and Tt,
for any function f :
| Pr[A(Vt) = f(D, Wt)] - Pr[A∗(Tt) = f(D, Wt)] | < ν(k)

NOTE: k is the security parameter. A real-valued func-
tion ν(k) is negligible if for any polynomial p > 0 there
exists a kp > 0 such that ν(k) < 1/p(k) for all k > kp.

• Query Unforgeability. This property is only applica-
ble to the multiple users setting: it requires a dishonest
user cannot generate a legitimate query on behalf of
another (valid) user. For a user u from the valid user
set U (u ∈ U) and a keyword w, we define u’s legit-
imate query set as Q̂u= {Qu(w), S ig(Qu)}. S ig(Qu) is
the signature on Qu(w) if Qu(w) is indeed generated by
u’s secret key Ku, and S ig(Qu) is generated by u’s sign-
ing key S KS . Query unforgeability is defined based on
a game between an adversary and a challenger. Let û
be the target user of the adversary A. In A’s game,
the challenger simulates the protocol which allows A
to obtain queries on keywords of her choices with re-
spect to user û. Specifically, A first picks her target
user û and is given keys of the remaining users, say,
u ∈ U\û. Then A queries the oracle Φ which returns
a set {Q, Sig(Q)} at her will with the restriction that the
number of queries is polynomial-bounded. Let Q′û ={Q′û, S ig(Q′û)} denote the set of û’s queries and signa-
tures obtained by A. A wins the game if and only if
the generated (Q, Sig(Q)) ∈ Qû\Q′û. The advantage of
A against query unforgeability is defined as the proba-
bility of her winning the game.

Definition 2: Query Unforgeability. An encrypted
keyword search protocol achieves query unforgeabil-
ity if for any û ∈ U, and for all PPT algorithmsA:
Pr[(Q, Sig(Q)) ∈ Qû\Q′û: Q ← AΦ ({Ku | u ∈ U\û}) ∧
Sig(Q)← AΦ ({S Ku | u ∈ U\û})] < ν(κ)

• Revocability. Revocation is an indispensable property
for all multi-user schemes. TA is responsible for man-
aging users’ identities in our scheme. If a user is no
longer allowed to access files on the cloud, one of the
most important tasks of TA is revoking his search capa-
bility. Since the incapability of searching the indexes is
implied by the incapability of distinguishing them, we
define revocability based on the index indistinguisha-
bility.
An adversary’s advantage in attacking revocability is
defined as her winning probability in the following
game. The adversaryA runs in following two stages:

– A1. In the first stage, A1 acts as an authorized
user and is allowed to access the oracle Φ as de-
scribed in Definition 2. At the end of this stage,
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A1 chooses two new keywords w0 and w1 which
have never been queried thus far. Let state repre-
sent the knowledgeA1 gains during the first stage.

– A2. In the second stage, A2 is revoked and given
the index of wb where a coin b ∈ {0, 1} is tossed.
Finally,A2 outputs a bit b′ (as its guess for b).

A wins the game if and only if b′ = b.

Definition 3: Revocability. An encrypted keyword
search protocol achieves revocability if for all PPT al-
gorithmsA = (A1,A2):

| Pr[b′ = b: (state, w0, w1)←AΦ1 ;
Revoke(A);
b ∈ {0, 1}, I(wb)← BuildIndex(wb,CKUid );
b′ ← A2(state, I(wb), w0, w1);

] - 1/2 | < ν(κ)
Remark. This definition of revocability based on the in-

dex indistinguishability addresses the revocation of the key-
word search capability. The purpose of our definition is dif-
ferent from the attribute revocation (e.g. [12]) which aims to
deprive users’ read access privilege corresponding to those
revoked attributes. If attribute revocation happens in our
system, it requires the update of ciphertext and its signa-
ture, and (possibly) users’ secret keys. All these should be
executed together with TA, the cloud server, and data own-
ers, etc. The discussion of attribute revocation is out of the
scope of this paper. However, we argue that both (i) key-
word search capability and (ii) data access privilege will be
heavily influenced by the attribute revocation in our system,
and this problem is considered as one of our future research.

3.2 Assumption

We assume that the user-server collusion is not included in
our adversarial model. Although this assumption is quite
strong, it is a practically reasonable assumption which is
also utilized in [2], [23]. In our scheme, secret keys and the
plaintext of a trapdoor are still kept secure even if such an
active attack (user-server collusion) is launched. However,
from a technical perspective, the attack is able to comprise
most search schemes in another form: the server can always
compare the access patterns between a target user and the
colluding user. Furthermore, illegal file-updates (coming
from the malicious users) will be permitted. All communi-
cation between any two parties is also assumed secure under
TLS/SSL in the network/transport layer.

4. Technical Preliminaries

Our scheme builds on the work by Bethencourt et al.,
Ciphertext-policy attribute-based encryption (CP-ABE) [3],
and Maji et al., Attribute-based signature (ABS) [14]. Only
a conceptual introduction is given here, please refer to Ap-
pendix A for a more detailed algorithm description.

CP-ABE is one of the latest public key cryptography
primitives for secure data sharing. A user’s private key

will be associated with an arbitrary number of attributes ex-
pressed as strings. When a party encrypts a message, they
first specify an associated access structure over attributes.
Users will be able to decrypt a ciphertext if their attributes
satisfy the ciphertext’s access structure.

ABS is a versatile primitive that allows a party to sign
a message with fine-grained control based on its attributes.
More specifically, the signer, who possesses a set of at-
tributes, can sign a message with a predicate that is satisfied
by his attributes. It ensures that only a signer can generate a
signature if her attributes satisfies the predefined predicate.
E.g. in a hospital, only a doctor who satisfies the Tsel f−sign

(Fig. 2) can issue an official certificate of heart diseases.

5. Concrete Construction

We introduce concrete construction of the proposed scheme
in this section. We consider such a scene: after the data
owner creates encrypted files on the cloud, other users (read-
ers/writers) can securely read/write, and retrieve interested
data using the keyword search scheme which is executed by
the cloud server while considering their access right. Note
that a novel and important characteristic of our scheme is
that both encrypted file body and their encrypted keyword
indexes support the many-write-many-read, which is a key
contribution compared to other existing schemes.

5.1 Design Concept

5.1.1 Fine-Grained Access Control with OI-MWMR

One of the most important access control characteristics
in the multi-user cryptographic cloud storage model is the
ability of separating readers and writers of a file. We first
propose an access structure based reader/writer differenti-
ation mechanism which achieves the OI-MWMR. The file
owner first decides two access structures Tdecrypt (used in
CP-ABE) and Tupdate−sign (used in ABS), see Fig. 1. Then
he sets (uploads) the Tupdate−sign with its encrypted file to
the cloud server. For other users (writers) who want to up-
date the file on the cloud server at a later time, they must
possess attribute sets described in Tupdate−sign. Note that
we do not need to differentiate writers and readers at the
individual-user level but at an attribute level. The latter
is much better optimized than the former whose manage-
ment complexities may increase linearly upon the number
of users, but the latter will not. As an example in Fig. 1,
a patient with heart disease creates his EMR access pol-
icy for sharing with others: users who satisfy attributes
tree “cardiologist”∨“nurse”∨“insurance staff” are allowed
to read (decrypt) his EMR; users who satisfy attributes struc-
ture “nurse”∧“insurance staff”∨“cardiologist” are not only
allowed to read but are also allowed to update.

Note that our scheme is different from another ABE
based solution, signcryption [19], [24], which integrates
ABE and ABS together (it only requires one single access
structure). Since the decryption and verification must be ex-
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Fig. 1 Access structure I (access tree).

ecuted simultaneously, it thwarts their scheme from differ-
entiating readers and writers.

5.1.2 Fine-Grained Data Access Control Aware Keyword
Search

Access control needs to be enforced before the cloud server
searches a keyword, and, a user is not allowed to search
through data which is not decryptable for him. We con-
struct our proposal based on the cloud infrastructure as de-
scribed in Sect. 5.1.1 and a query protocol of Bao et al. [2],
[23]. We stress that it is not sufficient to use these schemes
as-is to achieve functionality goals defined in Sect. 2 be-
cause it is difficult for the cloud server to distinguish the
relationship between a user and numerous encrypted files
only through an encrypted keyword (or called a trapdoor)
he/she generated. Our approach, access structure computa-
tion (Definition 4), successfully solved this challenge issue
and achieved the functionality goal.

To realize our idea, we take advantage of the access
structures of CP-ABE and ABS to (i) allow the cloud server
to focus on the user’s decryptable file group; (ii) make a user
prove to the cloud server that he really holds those attributes
for decryption before his query is executed. More specif-
ically, (i) is achieved by comparing the Tdecrypt of CP-ABE
with the Tsel f−sign of ABS which is generated by the user. (ii)
is achieved by generating an ABS using the AND of all his at-
tributes: Tsel f−sign = {Uid ∧ Att1 ∧ Att2 ∧ Att3 . . .} (Note, Uid

is the user’s ID and it is considered as a special attribute).
The result of signature verification shows whether the user
holds those attributes as he claims. An example is given in
Fig. 2: a doctor can prove the possession of his attributes
“cardiologist” ∧ “heart disease dept.” ∧ “Uid” by generat-
ing an ABS with the Tsel f−sign. If the verification succeeds,
the cloud storage server clarifies whether the user can de-
crypt a file by checking: Tsel f−sign |= Tdecrypt = 1 or 0, “|=”
is formally defined:

Definition 4: Let T1 (e.g. Tsel f−sign) and T2 (e.g. Tdecrypt)
be two access trees (also called access structure) in attribute-
based cryptosystems. T1 |= T2 is an access structure com-
putation that outputs 1 or 0, where 1 means that at least
one attribute (e.g. “cardiologist”) described in T1 meets the
requirement of T2. 0 means no such attributes exist in T1

which can satisfy T2
†.

Fig. 2 Access structure II (access tree).

The proposed revocation mechanism enables the sys-
tem administrator to dynamically and efficiently revoke the
future’s search capability of a malicious user. We consider
that such a countermeasure (revoking the search capability)
as a reasonable and cost-effective method against malicious
users in our system. First, a revoked user, who holds de-
cryption access privilege of some files, cannot get useful
data through a wiretapping because all the communication
is protected under TLS/SSL in the network/transport layer.
Second, a revoked user may indeed decrypt some files with
his old keys if he successfully intrudes into the cloud server.
Sahai et al. [18] proposed a solution of attribute revocation
which enables the “ciphertext delegation” instead of a sim-
ple “decrypt then re-encrypt” to prevent such a threat. Such
protocols would solve this threat where revoked users still
can access previously decryptable ciphertexts with their old
keys. This issue is out of the scope of this paper and could
be considered in our future work.

5.2 Proposed Scheme

The proposed scheme consists of a tuple of algorithms
{Setup(), Create(), Write(), Query(), Search(), Read(), Up-
date(), Revocation()}. Next, we give a detailed description.

1. Setup(): The initialization algorithm Setup() is run by
TA to set the key materials for processing both the file
and its query related data.

a. TA outputs cryptographic keys, (PKE , S KE , PKS ,
S KS ), for appropriate users according to their at-
tributes. (PKE , S KE) are public/private keys for
CP-ABE based file encryption. (PKS , S KS ) are
public/private keys for ABS based file signature
generation. Note: users who possess different at-
tributes set will hold different keys, please refer
Appendix A for the detail of key generation.

b. TA outputs keys to users for their encrypted key-
word search. TA takes as input the security param-
eter 1k and outputs its unique master secret key
Kmsk ∈ Zp and the key pair {KUid ∈ Zp,CKUid } for
each user whose user ID is Uid, where CKUid =

†In Sect. 7, we also propose a binary tree based file manage-
ment approach which can greatly reduce the server’s computation
overhead in the access structure computation.
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gKmsk/KUid is a complementary key for a user. KUid

is only distributed to the user as his secret key.
{Uid,CKUid } are only sent to the cloud server.

2. Create(): This algorithm includes two steps: Cre-
ateFile() creates an encrypted file with signature; and
BuildIndex() builds its indexes of selected keywords.

a. CreateFile(): The data owner first encrypts a file
for sharing with other users. The encryption is
based on CP-ABE. The decryption policy in the
CT is described by the access structure Tdecrypt.
The ciphertext CT of a file M is generated as:

CT = Enc(PKE ,M,Tdecrypt)

The owner then generates the signature of CT . He
hashes the CT and then signs it by the ABS. To
prevent the replay attack, we insert a version num-
ber tag n to the ABS. The server later only accepts
valid updates if the new version number tag n′ sat-
isfies n′ = n + 1. Later, the user will confirm the
latest n of the CT from the cloud server before she
generates the signature SG.

SG = Sign(PKS, SKS, h(CT)‖n,Tupdate−sign)

b. BuildIndex(): The algorithm is run by the owner
and the cloud server interactively. This algorithm
outputs a secure index I(wi) for a keyword wi from
{w1, w2, . . .}. The data owner first uploads the
{Uid, h(wi)r} to the cloud server. h(): {0, 1}∗ → G0

is a collision resistant hash function and r ∈ Zp is
a random number. After receiving the request, the
cloud server calculates the Capw for each wi and
then sends it back to the data owner.

Capw = e(h(wi)
r,CKUid )

The data owner can build the index for each wi

as I(wi). k is the key for HMAC and R ∈ Zp is a
random number.

I(wi) = [R,HMACk(R)], k = h(Cap
KUid /r
w )

3. Write(): The owner writes (or uploads) both the
encrypted file (with signature) and its secure in-
dexes to the cloud server. Note the access struc-
ture of ABS , Tupdate−sign (which is transmitted sepa-
rately with the SG), allows the cloud server to differ-
entiate readers and writers at a later time. Finally,
{CT, S G, n, I(wi),Tupdate−sign} are written to the cloud
server.

4. Query(): For a specific keyword wi, the user first gen-
erates a trapdoor Q(wi), then he generates an ABS,
Sig(Q(wi)).

Q(wi)=h(wi)KUid ,
S ig(Q(wi))=S ign(PKS , S KS , h(Q(wi)),Tsel f−sign)

Note that the Tsel f−sign is made by all of the user’s at-
tributes including the user’s ID: Tsel f−sign = {Uid ∧

Att1 ∧ Att2 ∧ Att3 . . .}. The signature ABS shows that
the user certainly possesses a set of attributes from
the authority as he/she declared in the access tree
Tsel f−sign. The cloud server verifies the user’s attributes
by public keys from TA. In this step, the user sends
{Uid,Q(wi), S ig(Q(wi))} to the cloud server.

5. Search(): After receiving the query, the server first
checks the complementary key CKUid by the user ID,
Uid. If the Uid is valid, the server confirms the user’s
decryptable file group by: (i) Verify attribute set of the
user as described in Tsel f−sign by the ABS-verification,

Veri f y(PKS , h(Q(wi)), Tsel f−sign, Sig(Q(wi)))
?
= true

The verification key PKS is published by TA. If the
ABS verification result is true, the user’s attributes as
he/she declared in the Tsel f−sign are confirmed. (ii) Us-
ing Tdecrypt from CT , the cloud server can confirm the
search scope S as the following procedure:

S = Null;
f or(i = 0; i < n; i + +){
//i: index number; n: total number of files.

i f ((Tsel f−sign |= Tdecrypt[i])! = 0)
S = S ∪ i; }

return S ;
Then the cloud server performs the the keyword search
only over the scope S . It first computes k′ =
e(Q(wi),CKUid ), and then checks each index of the data

CT in the scope S as: HMACk(R)
?
= HMACk′ (R). Fi-

nally, the server sends the search result to the user.
6. Read(): Using the result of the Search() step, a valid

user can get the target files and read. The Read() algo-
rithm first verifies the S G with Tupdate−sign and corre-
sponding public keys PKS from TA.

Veri f y(PKS , h(CT )‖n,Tupdate−sign, S G)
?
= true

If the verification is successful and the user’s attributes
U satisfies Tdecrypt(U) = 1, then he can decrypt CT and
gets the plaintext of M.

M = Decrypt(CT , SKE)

7. Update(): If a user holds writer’s access right (at-
tributes), then he can update a file.

a. Encrypt M1 to CT1.

CT1 = Enc(PKE ,M1,Tdecrypt1 )

b. Make a new S G1 with a new version number
n′ = n + 1.

SG1=Sign(PKS, SKS, h(CT1)‖n′,Tupdate−sign)

c. Upload {CT1, S G1, n′, Tupdate−sign} to the cloud
server as the Write() phase. Cloud storage server
will first check the version number tag n′, then
verify the S G1 as depicted in the Write(). Finally,
the cloud server accepts or rejects the update re-
quest according to the ABS verification result.
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Remark. The differences between Update() and Cre-
ate() can be clarified as: (i) In each Update(), the cloud
server needs to check the ABS (e.g. S G1) using the
Tupdate−sign, where such a process is not required in
Create(). (ii) In Update(), the writer can update the
Tdecrypt (e.g. change the attribute set which is initial-
ized in Create()) to revoke/grant any attribute(s) at the
specific file-level. (iii) In Update(), the writer is able to
update the secure indexes which are initialized in Cre-
ate().

8. Revocation(): This algorithm remove a user’s search
ability. TA and the cloud server manage all users’ pair
{Uid,CKUid }. To revoke someone, TA just instructs the
cloud server to delete the entry from the user list L: L
= L \ {Uid,CKUid }, then that user is no longer able to
search the cloud storage.

6. Security Analysis

We analyze the security of our proposed scheme, and in par-
ticular we show that the proposed scheme satisfies general
security requirements described in Sect. 3.

Impersonation Resistance. Readers and writers have
different privileges. If a reader successfully impersonates a
writer, then he can illegally modify the corresponding data
on the cloud server which includes: encrypted data, secure
indexes, and access structures. The policy to differentiate
writer with readers is defined as Tupdate−sign. Cloud server
clarifies writers and readers based on the result of ABS ver-
ification. Both readers and other unauthorized users cannot
impersonate writers’ privileges because they cannot forge
the ABS of writers. Consequently, the unforgeability of ABS
ensures the impersonation resistance of our scheme.

Inaccessible Information Invisibility. Information
leakage from search results needs to be considered when
designing protocols for multi-user cryptographic cloud stor-
age. In our scheme, by implementing and exploiting ac-
cess structure from attribute-based cryptosystems, the cloud
server only performs the keyword search on the user’s acces-
sible file subset. The result of Tsel f−sign |= Tdecrypt shows the
cloud server whether a file is decryptable to the user without
exchanging any secret key beforehand. As a result, the out-
put of Search() will not involve redundant information (e.g.
Whether the cloud holds any files that contains the same
keyword). Our scheme achieves the property of inaccessible
information invisibility.

Query Privacy. Our protocol achieves Definition 1 in
the following theorem, the proof is given in Appendix B.

Theorem 1: The proposed encrypted keyword search
scheme achieves query privacy in Definition 1 if HMAC is
an unforgeable MAC, h() is a pseudorandom function, and
CP-ABE is secure.

Query Unforgeability. Our protocol achieves Defini-
tion 2 in the following theorem, the proof is given in Ap-
pendix B.

Theorem 2: The proposed encrypted keyword search

scheme achieves query unforgeability in Definition 2 if ABS
is an unforgeable signature scheme.

Revocability. Our protocol achieves Definition 3 in
the following theorem, the proof is given in Appendix B.

Theorem 3: Our protocol achieves revocability in Defini-
tion 3 if HMAC is a preimage resistant MAC scheme.

7. Discussion and Performance Analysis

We first give a discussion of our schemes by comparing with
several latest existing works. Then, we analyze the perfor-
mance of our scheme in terms of the computation overhead
and search efficiency.

7.1 Discussion

Several existing works close to ours have been proposed re-
cently. Works of [9], [12], [22] are related to the access con-
trol of cryptographic cloud storage, and [2], [4], [6], [13],
[20], [21], [23] are related to the multi-user encrypted key-
word search schemes.

In Wang et al. [22], an owner’s data is encrypted block-
by-block using the symmetric key cryptography. A binary-
key tree is constructed over the block keys to reduce the
number of keys given to each user, and all binary-key trees
for all files must be managed by files’ owners. If owners
want to share their file with other users, they must distribute
the binary-key tree to all users individually. Users’ read and
write rights are not separable: valid users can only read (or
called decrypt) files but cannot update the original files. Ion
et al. [9] and Li et al. [12] adopted the ABE (CP-ABE or KP-
ABE) for data encryption to achieve the fine-grained access
control. Since their works and our work all try to realize
fine-grained cryptographic cloud storage by the help of at-
tribute based cryptosystems, we compare the computation
complexity of these three works, and the results are sum-
marized in Table 3. Ion et al. [9] describes a secure pub-
lish/subscribe framework in which publishers (owners) can
share encrypted information with subscribers (readers) with
the help of untrusted brokers (storage servers), a 1-write-
many-read scheme. The work of Li et al. [12] also describes
a fine-grained data access control protocol for sharing per-
sonal health records in the cloud storage. Multi-authority
KP-ABE of Chase et al. [5] is used for providing data confi-
dentiality and fine-grained data access control. Compared
with our scheme, Li et al. [12] considered a different set
of requirements of the write accesses to the cloud: a time-
limited write permission. To update a file, the user must first
contact the owner (who must be online to reply) for a one-
time individual authorization. The owner generates a signa-
ture with a specific valid period, and then encrypts the time-
limited signature and the time information by a public-key
encryption algorithm (Details of signature and public-key
encryption algorithms are not specified, and we use Csign

and Cenc to denote their computation cost for a comparison
in Table 3). Their update access control frequently requires
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Table 1 A security functional comparison with existing schemes (“-” means out of the protocol design scope).

Security Mechanisms Access Control Multi-User Encrypted Keyword Search
Security Fine-grained Many-Write Owner-indep. TA/Owner indep. Access right Revoc. without Multi-U. updatable

Characteristics -Many-Read file update trapdoor gen. aware search re-enc, re-index secure index

Ion et al. [9] yes no no - - - -
Li et al. [12] yes yes no - - - -

Wang et al. [22] no no no - - - -
Bao et al. [2], [23] - - - yes no yes no

Boneh et al. [4] - - - no no no no
Curtmola et al. [6] - - - yes no no no

Li et al. [13] - - - no no no no
Tomida et al. [20] no no no no no - no
C. Wang et al. [21] yes no no yes yes - no

Our Scheme yes yes yes yes yes yes yes

the owner’s help. Moreover, different from our scheme, [12]
discussed a different revocation, attribute revocation, which
revokes the read access privilege. Consequently, neither of
these schemes achieves the OI-MWMR for multi-user cryp-
tographic cloud storage.

Works of [2], [4], [6], [13], [20], [21], [23] considered
the multi-user encrypted keyword search scenario. Bao et
al. [2], [23] is one of the design bases of our scheme. Their
scheme allows each user to possess a distinct secret key for
generating the trapdoor respectively. The key advancement
of our scheme over theirs is that our scheme realize the fine-
grained access control aware search approach and the multi-
user updatable secure index. Boneh et al. [4] presented a
scheme for searching on encrypted data using a public key
system that allows mail gateways to handle email based on
whether certain keywords exist in the encrypted message. In
their work, asymmetric keys allow multiple users to encrypt
data using the public key, but only the user who has the pri-
vate key can search and decrypt the data. Sharing the unique
private key with multi-users is one solution, however, in this
case, the user revocation becomes prohibitively expensive
because all queries are generated from the same key, and
to revoke the key means not only to re-generate all the in-
dexes but also to re-distribute a new key to all non-revoked
users. Tomida et al. [20] proposed a searchable encryption
scheme based on the identity based encryption. This scheme
requires the owner generates a number of indexes for each
search respectively, and each index is only restricted to a
specific user’s ID. In other words, before searching a key-
word, a searcher needs to request the data owner to gen-
erate an individual index set on the cloud for his personal
use only. Obviously, the management cost of personal in-
dexes increase linearly with the number of searchers. Be-
cause their scheme searches a trapdoor through a predeter-
mined index set which is manually assigned by the owner
but not automatically determined by the searcher’s read ac-
cess right, it does not satisfy the requirement of access right
aware search. Also, revocation is not considered in their
scheme. Finally, [4], [20] are highly dependent on the exis-
tence of data owner, and users cannot execute the keyword
search without the help of the owner (e.g. when he is off-
line).

Curtmola et al. [6] partly solved the multi-user prob-

lem using broadcast encryption. The set of authorized users
share a secret key r (which is used in conjunction with a
trapdoor function). Only people who know r will be able
to access/query the data. A user can be revoked by chang-
ing r, and using broadcast encryption [15], [16] to send the
new key r′ to the set of authorized users. The revoked users
do not know r′, and hence cannot search. Li et al. [13]
proposed authorized private keyword search (APKS) over
encrypted data for multi-user cloud storage using the Hier-
archical Predicate Encryption (HPE). In their construction
of privacy aware search, capabilities (trapdoors) were dis-
tributed by a Trusted Authority (TA) or a Local TA (LTA).
So, the trapdoor distribution is obviously a cumbersome
task. C. Wang et al. [21] gave a keyword search encryp-
tion and some properties of their scheme appear similar to
ours. They integrate the symmetric key predicate encryp-
tion into KP-ABE, which provides the keyword search with
the property of fine-grained access control. Their scheme
allows an owner to share his data with authorized readers,
and these readers are also allowed to search the cloud ac-
cording to their access right. The shared data (including its
indexes) is not allowed to be updated by other users, and re-
vocation is not supported. Since indexes are integrated into
the ciphertext data, it is difficult to update the data or indexes
separately. If the owner wants to add/remove an index, the
only way is to reconstruct the whole ciphertext data. Con-
sequently, works of keyword search schemes [4], [6], [13],
[20], [21] do not support the (multi-user) update of indexes.

Table 1 gives a comparison between these existing
schemes and our scheme. The comparison is functionality-
classified in two folds: access control and encrypted key-
word search. Access control includes three security char-
acteristics, Fine-grained, Many-Write-Many-Read, Owner-
independent file update. Encrypted keyword search includes
TA/Owner independent trapdoor generation, Access right
aware search, Revocability without re-encryption and re-
index, Multi-user updatable secure index.

7.2 Performance Analysis

We first analyze the computational cost of the file body pro-
cessing on the client side in Sect. 7.2.1. Then, we give a
contrastive performance simulation to show the effective-
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Table 2 Notations.

Notation Description
E0 Cost of exponentiation operations in G0

E1 Cost of exponentiation operations in G1

L Cost of bilinear pairing
p Prime order of G0 and G1

U The attribute set in the access structure (tree)
l, t The matrix {l × t} of the monotone span

program which is converted from its corres
-ponding access structure

ness and efficiency of our fine-grained access control aware
approach in Sect. 7.

7.2.1 Performance Analysis of Access Control Mecha-
nism

As described in our proposal, the following steps, which
process the body of a file for access control, are fully pro-
cessed on the user’s client side: (i) CreateFile(), (ii) Read(),
(iii) Update(). For analyzing the computation complexities
of each process which includes several cryptographic oper-
ations such as CP-APE and ABS, we use the following nota-
tions in Table 2.

The computation overhead generated from processes
(i) and (iii), CreateFile()/Update(), are actually the same,
which include two operations, one operation of CP-ABE En-
cryption and one operation of ABS-Sign. In terms of the
computation details of CP-ABE and ABS that are described
in Sect. 4, the user’s computation costs of the CP-ABE En-
cryption and the ABS-Sign utilized in our proposed scheme
both grow linearly with the size of access structure’s matrix
{l × t}. These costs are mainly generated from the exponen-
tiation operations in G0 and G1.

The computation overhead generated from the process
(ii), Read(), also includes two operations, CP-ABE Decryp-
tion and ABS-Verification. In terms of the computation de-
tails in Sect. 4, the user’s computation cost of the CP-ABE
Decryption grows linearly with the number of his attributes
which satisfy the access structure. More precisely, the cost
is mainly generated from the exponentiation operations in
G1 and paring computations. The user’s computation cost of
the ABS-Verification is also generated from the paring com-
putations and exponentiation operations in G0. This cost
also grows linearly with the size of access structure’s matrix
{l × t}. The computation complexities of cryptographic op-
erations which are included in the three main steps executed
on the user’s side are summarized in Table 3.

We make performance estimations for each process
step: CreateFile(), Read(), Update() to show the feasibility
of the proposed access control scheme. Basically, process-
ing time of CP-ABE and ABS is dependent on the compu-
tations of paring and exponentiation, so we make the esti-
mations based on the processing time of paring and expo-
nentiation. The criterion of our estimation is based on the
result of Guillevic [10], which implements the pairing over
a prime-order elliptic curves on a computer with 2.6 GHz
Celeron 64 bits CPU, 1 GB RAM and Ubuntu 10.04.4 LTS

OS. On their implementation, one pairing takes 5.05ms, and
one exponentiation takes 5.16ms. Assume N is the num-
ber of attributes in the access structure. From details of
cryptographic operations described in Sect. 4, the CP-ABE
Encryption is mainly composed of (2N+2) exponentiations;
the CP-ABE Decryption is composed of (2N+1) parings and
N exponentiations. In the other side, the processing of ABS
is a little complicated than the CP-ABE. The ABS-Sign is
composed of (5N+3) exponentiations; the ABS-Verification
process, in the maximum case, is composed of (N+2) par-
ings and (2N+1) exponentiations. As an example of N = 10,
let tcreate, tread and tupdate denote the processing time of Cre-
ateFile(), Read(), Update(). According to the criterion from
[10], the processing time will approximately be: tcreate =

387ms, tread = 327ms, tupdate = 387ms. Compared with files
download and upload time, we think the performance of the
proposed scheme is reasonable for cryptographic cloud stor-
age.

7.2.2 Performance Analysis of Access Control Aware
Keyword Search Scheme

We first give a binary tree based file management approach
for the proposed access structure computation which greatly
reduces the cloud server’s computation overhead. Then, we
give a theoretical simulation to show the effectiveness and
efficiency of our scheme.

The result of the access structure computation
Tsel f−sign |= Tdecrypt shows whether the encrypted file with
an access structure Tdecrypt can be decrypted by a user with
attributes described in her Tsel f−sign. Assume the number
of encrypted files on the cloud server is n, then in a naive
implementation, the cloud server must execute Tsel f−sign |=
Tdecrypt n times for each query. We can see such a naive
method takes too much computation overhead for the cloud
server. Here, we propose a binary tree based file manage-
ment method for the access structure computation which
greatly reduces the server’s computation overhead. As a
toy example shown in Fig. 3, let {A, B, C, D} be an en-
tire attributes set, then the pointer to a file with Tdecrypt =

{(A ∧ B) ∨ (C ∧ D)} can be located under the leaf nodes
of {1100} and {0011} of the binary tree. We assume such
a file locating process is done by the server when each en-
crypted file is uploaded to the cloud. Then, if a query con-
structed by a user with Tsel f−sign = {(A ∧ B)} (which is ex-
pressed as {1100}) is sent to the server, with the binary tree
based method (Fig. 3), the cloud server can easily identify
the corresponding pointers to all decryptabled files (or says,
identify the search cope) under the nodes of {0000}, {0100},
{1000}, {1100}. Under such a binary tree based file manage-
ment, for a user whose number of attributes is k, the cloud
server can identify his decryptabled files by collecting file
pointers under 2k leaf nodes. We say the computation over-
head of such execution is much smaller compared with a
naive method.

Next, we theoretically simulated the performance of
the proposed scheme. To show the key feature of our
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Table 3 Computation complexity (file processing on the user client side).

Operations Protocols Computation Complexity

Create a file Ion et al. [9] O(E1 × log p) + O(|U | × E0 × log p)
(CreateFile()) Li et al. [12] O(E1 × log p) + O(|U | × E0 × log p)

Our Scheme O(E1 × log p) + O(l × E0 × log p)
Read a file Ion et al. [9] O(|U | × L) + O(|U | × E0 × log p)
(Read()) Li et al. [12] O(|U | × L) + O(|U | × E1 × log p)

Our O(l × L) + O(|U | × E1 × log p)+
Scheme O(l × E0 × log p)

Update a file Ion et al. [9] Not supported
(Update()) Li et al. [12] O(E1 × log p) + O(|U | × E0 × log p) +Csign +Cenc

Our Scheme O(E1 × log p) + O(l × E0 × log p)

Fig. 3 Binary tree based file management of attribute set.

scheme, we adopt a contrastive simulation between an ex-
isting multi-user search scheme and ours:

(i) An existing search protocol proposed by Bao et al. [2],
[23], which is an encrypted keyword search scheme
without considering access right.

(ii) Our scheme. Cloud server performs the keyword
search while being aware of the user’s access right.

Our theoretical performance simulation is based on the
following settings. The number of encrypted files on the
cloud server: Nf ile = 500 (Fig. 4) and Nf ile = 1000 (Fig. 5),
the average number of keywords for each encrypted file:
Nkeyword = 10, the number of attributes in the access structure
Tsel f−sign for generating the ABS: Nattribute = 10, let Ndecrypt

be the decryptable files number of the user who generates
the query. Recalling the Search() phase in Sect. 5.2, we
note that to execute the S earch() without considering the
ABS based scope narrowing, the cloud server computes one
paring and one HMAC for each index attached to the en-
crypted file. We measured the time of HMAC using the
OpenSSL toolkit 1.0.1 under a VMware environment with
the similar benchmark setting of Sect. 7.2.1, and it costs
thmac = 0.0041ms†. Then, we implemented the access struc-
ture computation, Tsel f−sign |= Tdecrypt, using C language.
The maximum attribute number of an access structure is
set as Nattribute = 10. To obtain the average computation
time tbinary, we measured the time of Tsel f−sign |= Tdecrypt

†HMAC algorithm takes a 16[bytes] random number as its in-
put, and we choose a secret key of 256[bits].

Fig. 4 Simulation of runtime comparison for Search() of cases (i) and
(ii) based on the parameter setting: N f ile = 500.

Fig. 5 Simulation of runtime comparison for Search() of cases (i) and
(ii) based on the parameter setting: N f ile = 1000.

within the range 1 ≤ n ≤ Nattribute
††, the result is tbinary =

0.00027ms. Following the criterion of Sect. 7.2.1, an ABS-
Verification approximately costs tveri f y−abs = 169ms.

Finally, we conclude the time for both cases (i) and (ii)
as we described above.

(i) Tsearch−all = Nf ile × Nkeyword × (tparing + thmac)
(ii) Tsearch−partial = tveri f y−abs + Nf ile × tbinary+

Ndecrypt × Nkeyword × (tparing + thmac)

We simulate both cases by taking a sample of Ndecrypt

from the following two sets: {25, 50, 75, 150, 250} and
††Each attribute in the access structure is 32[bytes] in our im-

plementation.
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{50, 100, 150, 300, 500}. It means that the number of
decryptable files is assumed to vary separately from 25
to 250 for Nf ile = 500, and from 50 to 500 for Nf ile =

1000. Figures 4, 5 contrastively show the simulation re-
sults for both cases: the execution time Tsearch−partial of case
(ii) for searching a keyword through the user’s decryptable
file group is obviously improved than the execution time
Tsearch−all of case (i) for searching through all files on the
cloud server. Our scheme is shown quite efficient because it
narrows the search scope and minimize those extra compu-
tation (e.g. paring and HMAC in the S earch() phase) from
unreadable files.

Remark. From the simulation results we can see that
the performance of the Search() execution is roughly pro-
portional to the performance of the paring computation. For
cloud servers equipped with high-performance CPUs and
the parallel processing architecture, the runtime for paring
computations can be improved, and moreover, multiple par-
ing computations can be parallelly-processed in less time.

8. Conclusion and Future Work

In this paper, we interdependently harmonized the access
control approach to the encrypted keyword search, and pro-
posed the fine-grained access control aware keyword search.
The security of the proposed scheme is proved based on
several newly extended or defined security requirements.
Contributions of our work is clearly shown by a compar-
ison study with several latest existing works. Finally, an
efficient implementation method of the proposed scheme
is given for reducing computation overhead. As the con-
trastive performance simulation results, owing to narrowing
the server’s search scope to the user’s decryptable subset,
our scheme decreases information leakage from the key-
word search progress, and is shown to be efficient.

Among the discussion of Sect. 5.1.2 and Sect. 3 (Def-
inition 3), we argued that the following problem, where
a revoked user can still read (decrypt) his previously de-
cryptable ciphertexts with old keys because his attributes
are not revoked, is one of our next research directions. We
would like to discuss the solution and try to give an ex-
tended scheme that protects the proposed cloud system from
such a scenario. Exploiting the attribute-based encryption
of Sahai et al. [18] (which provides attribute revocation) to-
gether with our scheme would be the most promising and
could be considered in future work.
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Appendix A: Detail Algorithms of CP-ABE and ABS

A.1 Bilinear Map

Bilinear map is the basis to understand both CP-ABE and
ABS.

Let G0 and G1 be two bilinear groups of prime order p.
Let e : G0 × G0 → G1 denote the bilinear map. Let g be a
generator of G0. Bilinear map e has following properties:

• Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab

• Non-degeneracy: e(g, g) � 1.
• Computable: e(u, v) can be efficiently computed for

any u, v ∈ G0.

A.2 CP-ABE

The construction of our scheme is partially built on
the Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) [3] of Bethencourt et al. We describe the detailed al-
gorithms in this section. At a mathematical level, access
structures in CP-ABE are described by a monotone access
structure (or access tree) Tdecrypt [3]. If a set of attributes U
satisfies the access tree Tdecrypt, we denote it as Tdecrypt(U) =
1. The function attr(x) denotes the attribute associated with
the leaf node x in the tree. The concept of access tree and
satisfying an access tree are used in the whole paper:

Definition 5: Access Tree. Let T be a tree representing an
access structure. Each non-leaf node of the tree represents
a threshold gate, described by its children and a threshold
value. If numx is the number of children of a node x and kx

is its threshold value, then 0 < kx ≤ numx. When kx = 1, the
threshold gate is an OR gate and when kx = numx, it is an
AND gate. Each leaf node of the tree simply represents an
attribute.

Definition 6: Satisfying an Access Tree. Let T be an access
tree with root r. Denote by Tx the subtree of T rooted at the
node x. Hence T is the same as Tr. If a set of attributes γ
satisfies the access tree Tx, we denote it as Tx(γ) = 1. We
compute Tx(γ) recursively: if x is a non-leaf node, evaluate
Tx′ (γ) for all children x′ of node x. Tx(γ) returns 1 if and
only if at least kx children return 1. If x is a leaf node, then
Tx(γ) returns 1 if and only if att(x) ∈ γ.

CP-ABE algorithms are described as following steps:
Setup is probabilistic and run by TA. A master key MK

and a public key PK are generated in this step.
Let G0 and G1 be two bilinear groups of prime order p.

Let e : G0 × G0 → G1 denote the bilinear map. Let g be a
generator of G0. Next it will choose two random exponents
α, β ∈ Zp, and computes:

h := gβ, f := g1/β,Y := e(g, g)α

H is the hash function: H : {0, 1}∗ → G0. So the public
key is: PK := (g, h, f ,Y,H), and the master key is MK :=
(β, gα).

Encryption(PK,m,Tdecrypt) is probabilistic and run by
a user who wants to encrypt a plaintext message m for a
user with a set of attributes in the access structure Tdecrypt,
this algorithm generates a ciphertext CT .

It first converts Tdecrypt to its corresponding mono-
tone span program M ∈ (Zl×t

p ). Then it randomly chooses

s, u2, . . . , ut ∈ Zp and sets −→u := (s, u2, . . . , ut), (s1, . . . , sl) :=
M · t−→u . The function ρ(i) denotes the attribute associated
with ith row of n. Then it computes:

c0 := m · Y s, c′ := hs,
{
ci := gsi , c′i := H(ρ(i))si

}
i=1,...,l

The ciphertext is CT := (M, c0, c′,
{
ci, c′i

}
i=1,...,l

).
Key-Generation(MK,U) is probabilistic and run by

TA: on input the master key MK and a set of attributes U
belonging to a user, a secret key S K for these attributes is
generated.

With inputs MK and U, it first chooses r, r j ∈ Zp ( j ∈
U), then computes:

D := g
α+r
β ,

{
Dj := grH( j)r j

}
j∈U ,

{
D′j := gr j

}
j∈U

Then the key is set as S K := (D,
{
Dj,D′j

}
j∈U). Collusion

attack will not work since the blinding value r is used to
randomize each user’s private key.

Decryption(CT, S K) is deterministic and run by a user
with a set of attributes U. On input CT and S K, this algo-
rithm outputs the underlying plaintext m, if CT is a valid
encryption of m and U satisfies the access structure Tdecrypt

specified in the computation of CT . Otherwise an error will

be returned. There exist λi’s that satisfy
∑l

i=1 λi · −→Mi =
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(1, 0, . . . , 0) where
−→
Mi denotes the i-th row vector of M.

Then, it computes:

m′ = c0 · e(c′,D)−1 ·
∏
ρ(i)∈U

⎛⎜⎜⎜⎜⎜⎝ e(Dρ(i), ci)

e(D′ρ(i), c
′
i)

⎞⎟⎟⎟⎟⎟⎠
λi

= c0 · e(c′,D)−1 ·
∏
ρ(i)∈U

(
e(grH(ρ(i))ri , gsi )
e(gri ,H(ρ(i))si )

)λi

= c0 · e(c′,D)−1 ·
∏
ρ(i)∈U

e(g, g)r·si·λi

= c0 · e(hs, g
α+r
β )−1 · e(g, g)r·∑ρ(i)∈S si·λi

= m · e(g, g)αs · e(g, g)−αs−rs · e(g, g)rs

= m

A.3 ABS

Our scheme is also based on the Attribute-Based Signature
(ABS) [14] of Maji et al. We describe the detailed algo-
rithms of ABS in this section. There are two entities exist
in ABS: a central trusted authority (TA) and users. The au-
thority is in charge of the users’ cryptographic keys. Denote
the universe of attributes as U, As the access structure in
the CP-ABE, there is a monotone boolean claim-predicate
(access structure) Tsign over U whose inputs are associated
with attributes of U. We say that an attribute set U satisfies a
predicate Tsign if Tsign(U) =1. The algorithms are described
as follows.

Setup The authority obtains a key pair (PK,MK) and
outputs public parameters PK and keeps a private master
key MK.

Choose suitable cyclic groups G and H of prime order
p, equipped with a bilinear pairing e : G×H→ GT . Choose
a hash function H : {0, 1}∗ → Z∗p. We treat A = Z∗p as the
universe of attributes, where p is the size of the cyclic group.
tmax means the claim-predicate whose monotone span pro-
gram has width at most tmax. Choose random generators:

g,C ← G; h0, . . . , htmax ← H
Choose random a0, a, b← Z∗p and set:

A0 = ha0

0 ; Aj = ha
j and Bj = hb

j (∀ j ∈ tmax)

The master key is MK = (a0, a, b). The public key PK
is a description of the groupsG,H and their pairing function,
as well as:

(H , g, h0, . . . , htmax , A0, . . . , Atmax , B0, . . . , Btmax ,C)

Key-Generation(MK,U) To assign a set of attributes
U to a user, the authority computes a signing key S KU and
gives it to the user.

On input MK as above and attribute set U ⊆ A, Choose
random generator Kbase ∈ G. Then Set: K0 = K1/a0

base ; Ku =

K1/(a+bu)
base , (∀u ∈ U).

S KU = (Kbase,K0, {Ku|u ∈ U})

Sign(PK, S KU ,m,Tsign) To sign a message m with
a claim-predicate Tsign, and a set of attributes U such
that Tsign(U) = 1, the user computes a signature σ by
(PK, S KU ,m,Tsign).

First, convert Tsign to its corresponding monotone span
program M ∈ (Zp)l×t, with row labeling u : [l] → A. Also
compute the vector �v that corresponds to the satisfying as-
signment U. Compute μ = H(m‖Tsign), then pick random
r0, r1, . . . , rl and compute:

Y = Kr0

base; S i = (Kviu(i))
r0 · (Cgμ)ri , (∀i ∈ l);

W = Kr0

0 ; Pj =

l∏
i=1

(AjB
u(i)
j )Mi j·ri , (∀ j ∈ t).

Here, the signer may not have Ku(i) for every attribute u(i)
mentioned in the claim-predicate. But when this is the case
vi = 0, and so the value is not needed. The signature is
σ = (Y,W, S 1, . . . , S l, P1, . . . , Pl)

Verify(PK,m,Tsign, σ) To verify a signature σ on
a message m with a claim-predicate Tsign, a user runs
Verify(PK,m,Tsign, σ), which outputs a boolean value, ac-
cept or reject.

First, convert Tsign to its corresponding monotone span
program M ∈ (Zp)l×t, and compute μ = H(m‖Tsign), if Y =
1, then re ject. Otherwise check the following constraints:

e(W, A0)
?
= e(Y, h0);

l∏
i=1

e(S i, (AjB
u(i)
j )Mi j )

?
=

⎧⎪⎪⎨⎪⎪⎩
e(Y, h1)e(Cgμ, P1), ( j = 1);

e(Cgμ, Pj), ( j > 1);

for 1 ≤ j ≤ t. Returns accept if all the above checks suc-
ceed, and re ject otherwise.

Appendix B: Security Proofs

Proof of Theorem 1. It suffices for us to construct a PPT
simulatorA∗ such that for all t ∈ N, for all PPT adversaries
A, all functions f , given the Tt,A∗ can simulateA(Vt) with
non-negligible probability. More specifically, we show that
A∗ with Tt can generate a view V∗t which is computationally
indistinguishable from Vt, the actual view of A. Next we
discuss both t = 0 and t > 0.

If t = 0, then Qt = ∅, At = ∅, Sig(Qt) = ∅. A∗ builds
V∗t = {CT ∗, I(w)∗} from random elements. It is easy to
check that V∗t and Vt are computationally indistinguishable
if HMAC is unforgeable (for generating I(w) in the Capw)
and the CT based on the CP-ABE [3] is secure. Recall that
the generation of I(w) contains a random number genera-
tion and a HMAC computation on that random number each
time, so all I(w) generated from the same keyword are dif-
ferent from each other and the HMAC is also infeasible to
be forged.

If t > 0, A∗ builds V∗t = {CT ∗, I(w)∗,Q∗t , S ig(Qt)∗, A∗t }.
To be general, we suppose that all queries q in Qt are from
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distinct users, but some of them may query the same key-
words. (i) Discussion of CT ∗ and I(w)∗ are almost the same
as the case of t = 0. (ii) For Q∗t and Qt, recall that the
generation of Qt is decided by both h(w) and KUid : Q(w)
= h(w)KUid . A∗ first generates a simulated complementary
key set {x∗1, . . . , x∗u} for all entries which x∗u ∈ Z∗p. A∗ se-
lects a simulated complementary key element from the set
{x∗1, . . . , x∗u}, say x∗i for u∗i . Then, A∗ selects a random ele-
ment element rg ∈ G0, and it can generate a simulated Q∗i
= r

x∗i
g . We can see an actual query Q(w) = h(w)KUid and a

simulated query Q∗u = rx∗u
g are computationally indistinguish-

able if h() is a pseudorandom function. (iii) For S ig(Qt)∗
and S ig(Qt), recall that Sig(Qt) is generated from the Qt as
S ig(Qt) = S ign{PKS , S KS , h(Qt),Tsel f−sign}. A∗ selects a
simulated S K∗ ∈ G, together with the simulated Q∗ = rx∗

g as
we described in (ii), and he generates h(Q∗) and S ig(Qt)∗. It
is easy to see an an actual S ig(Qt) and a simulated S ig(Qt)∗
are computationally indistinguishable if h() is a pseudoran-
dom function. (iv) Finally, for A∗t and At, given the above
indistinguishability results, the indistinguishability between
A∗t and At is straightforward. �

Proof of Theorem 2. To prove this theorem, it suf-
fices for us to state that if there exists a PPT adversary A
that breaks the query unforgeability of our protocol defined
in Definition 2 with an advantage ε, then there exists a PPT
adversaryB that can first forge a query Q(w) for a target key-
word w, and moreover, B can succeed in forging the digital
signature, ABS, for the forged Q(w) with the same amount
of advantage. We briefly provide the proof of this theorem
which is based on the security proof of ABS’s unforgeability
in Maji et al. [14] (Detailed proof is omitted here).

The detailed proof contains two parts: (i) The first part
is straightforward: A valid query is generated as Q(w) =
h(w)KUid . An adversary is infeasible to retrieve KUid without
Kmsk according to CKUid = g

Kmsk/KUid , because the master
secret key Kmsk is assumed to be securely managed by TA.
(ii) Based on the result of ABS’s unforgeability of Maji et
al. [14], an adversary B, without accessing the secret sign-
ing key of the target user, B’s probability of successfully
generating Sig(Q) from Q, which satisfies Verify(PKS , Q,
Tsel f−sign, Sig(Q)) = True, is negligible. Concluding both
parts,B’s total advantage for generating the legitimate query
set {Q, S ig(Q)}must be negligible. This proves the theorem.

�
Proof of Theorem 3. The proof is quite straight-

forward, and we only state the intuition behind the proof.
The indexes of the two keywords w1 and w2 are I(w1) =
[R1,HMACkw1

(R1)], and I(w2) = [R2,HMACkw2
(R2)], where

R1 and R2 are random, kw1 and kw2 denote the secret keys
generated from w1 and w2, respectively. Since the comple-
mentary key CKUid of a revoked user is deleted from the user
list L, the revoked user can never get kw1 and kw2 from the
keywords and the query key KUid it has. Finally, the only
way that the revoked user can guess the correct bit of b is
trying to reverse the HMACkw1

(R1) or HMACkw2
(R2) to get

information about w1 and w2. Based on the preimage resis-

tance security property of HMAC [17], we can conclude that
I(w1) and I(w2) are independent of w1 and w2, respectively,
from the perspective of the revoked user. So the advantage
of the adversary guessing the correct bit cannot be signifi-
cantly different from 1/2. �
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