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A method for vibrational viscometers capable of high-viscosity measurements using self-excited

oscillations is proposed and assessed both theoretically and experimentally. Such viscometers are

well-known for their rapid response and miniaturization. Unlike conventional methods based on

Q-value estimations obtained experimentally from the frequency response or resonance curve, we

describe the use of self-excited oscillations in viscosity measurements using positive velocity

feedback control without relying on the frequency response curve. Such measurements become

possible even for high viscosities where the peak of the frequency response curve is ambiguous or

does not exist, i.e., the Q-value cannot be estimated from such curves. Furthermore, the validity of

the proposed method is experimentally tested using a prototype self-excited viscometer.

Downsized oscillators such as micro- or nanoscale cantilevers can be self-excited following a

straightforward application of the method. They are expected to enable not only localized

monitoring of changes in high viscosity with time but also spatial high-viscosity measurements by

the distributed arrangement of the devices. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896487]

I. INTRODUCTION

Vibrating-type viscometers1,2 are receiving increasing

attention for their rapid response, which allows for instanta-

neous and continuous measurements of changes in the vis-

cosity of the sample liquid occurring with time, i.e., on-line

monitoring. The methods of measurement based on

vibrations are easily miniaturized using such devices as

micro-cantilevers and micro-fibers.3–6 These devices enable

not only localized monitoring of the viscosity in a liquid

sample but also spatial measurements using a distributed

arrangement of the devices. The measurement procedure of

conventional vibrating-type viscometers is to use the fre-

quency response or resonance curve under external or forced

excitation. The frequency response curve of the viscometer

has different kurtosis at the resonance peak depending on the

amount of viscous force acting on the vibrational part

immersed in the liquid sample. Hence, using Q-values esti-

mated from the half band width of the experimentally

obtained frequency response curve, the viscosity can be

estimated (for example, see Ref. 7). However, in the high

viscosity range, it is very difficult to accurately estimate

differences in Q-values because of the widening of the half

band and the shifting of the resonance peak in the frequency

response curve.8 Moreover, for much higher viscosities

where resonance peaks do not appear in the frequency

response curves, methods involving external excitations are

not applicable in determining the viscosity. The use of

frequency-phase characteristics,9,10 the shift of the resonance

frequency,11 and nonlinear phenomena such as super-

harmonic resonance12 have been proposed, but these

methods encounter the same issue as conventional methods

based on the Q-value or may have low accuracy in the high-

viscosity regime.

Such phenomena as parametric resonance and self-

excited oscillation whose resonance mechanisms are essen-

tially different from that for harmonic resonance under

conventional external excitation, can be used to enhance the

performance of resonators used in atomic force micros-

copy,13,14 mechanical filters,15 and mass sensors.16

In the present paper, we propose a method based on

self-excited oscillations to make high viscosity measure-

ments without the need to obtain frequency response curves

of external excitations. A positive velocity feedback is

applied to produce the self-excited oscillation in the vibra-

tional part immersed in the liquid sample. The feedback

force can compensate for the energy dissipation17 in the

motion of a disk immersed in the liquid sample caused by

viscous action acting on the disk. When the feedback gain

exceeds a critical value, the feedback force changes the

damping characteristics of the disk motion from positive to

negative damping18 and the disk oscillates producing the

self-excitations in the liquid sample. The critical feedback

gain depends on the strength of the viscous damping force

acting on the disk and the viscosity of the sample liquid is

estimated from the critical feedback gain. Therefore, the pro-

posed method requires no frequency response curve and clar-

ification from theory shows that viscosity can be measured

irrespective of value. In this paper, experimental confirma-

tion is given of very high viscosity measurements using a

prototype self-excited viscometer.

0021-8979/2014/116(12)/124305/6/$30.00 VC 2014 AIP Publishing LLC116, 124305-1
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II. VISCOSITY MEASUREMENT BASED
ON SELF-EXCITED OSCILLATIONS

A. Mathematical model and equation of motion

We consider the analytical model shown in Fig. 1. As in

conventional vibrational viscometers, the thin rigid disk

suspended by the spring can laterally oscillate due to the

restoring force. The motion can be identified with that of a

mass-spring system with mass m and spring stiffness k.

When the disk is immersed in the liquid sample, the fluid

force acting on the disk affects the motion of the disk. An

actuator is also attached for lateral excitations; in this study,

an applied force is used to produce self-excited oscillations

in accordance with a method described below.

In the derivation of the equation of motion for the disk,

the conventional expression19 for the viscous fluid force, Ff,

acting on the disk from the sample liquid is used. However,

the resulting equation of motion for the proposed viscometer

is significantly different from that for conventional vibra-

tional viscometers because of differences in their excitation

mechanisms. The equation of motion for conventional

methods based on external sinusoidal excitations is non-

homogeneous, whereas for our proposed method based on

positive-velocity feedback it is homogeneous. Also in the

theoretical analysis for the equation of motion, a different

approach, i.e., stability analysis of the trivial steady state,

has to be used in the proposed method.

First, the fluid velocity in the x-direction, vx(y, t), is

governed by

@vx

@t
¼ g

q
@2vx

@y2
; (1)

where the origin of the Cartesian coordinate system x–y is

set at a point on the surface of the disk in the static equilib-

rium state; the x-axis aligns with the applied forces, as

depicted in Fig. 1, with the y-axis directed outward from the

page. The coefficients g and q are the respective dynamic

viscosity and fluid density of the liquid. The boundary condi-

tions at y¼1 and y¼ 0 are, respectively, vx(1, t)¼ 0 and

vxð0; tÞ ¼ va expðjxtÞ; (2)

where j2¼�1, and va and x are, respectively, the complex

amplitude and the frequency of the velocity of the disk.

Unlike conventional methods, x is unknown at this stage

and is determined later from the balance of the total forces

acting on the disk.

Setting

vxðy; tÞ ¼ gðyÞ expðjxtÞ (3)

yields

d2g

dy2
� j

qx
g

g ¼ 0: (4)

With the above boundary conditions, vx is expressed as

vx y; tð Þ ¼ va exp �
ffiffiffiffiffiffiffi
qx
2g

r
1þ jð Þy

( )
exp jxtð Þ: (5)

Then, the fluid force Ff along the x-axis is

Ff ¼ Sg
@vx

@y
jy¼0 ¼ �S

ffiffiffiffiffiffiffiffiffi
qgx

2

r
va 1þ jð Þexp jxtð Þ; (6)

where S is the area of the vibrational disk immersed in the liq-

uid. This equation is derived from the fluid force, which acts

per unit area on a plate of finite extent, and does not include

the additional fluid force induced at the edges.19 The influence

of these edges on the proposed viscosity measurement method

is discussed in relation to experimental data in Sec. III C.

Invoking Newton’s second law, we obtain the equation

of motion for the disk

m
d2x

dt2
þ kx ¼ Ff þ Fact; (7)

where the left-hand side is the sum of the inertial and above-

mentioned spring forces, and the right-hand side is the sum

of the fluid force Ff received from the sample liquid and the

force Fact applied by an actuator to produce the self-excited

oscillations.

B. Self-excited oscillation under positive velocity
feedback and high-viscosity measurement

To move the disk through the self-excitation, we set the

applied force using feedback determined by the disk’s veloc-

ity vx(0, t)

Fact ¼ Cvxð0; tÞ; (8)

where C (>0) is the positive feedback gain. Because the fre-

quency component in the solution for x, i.e., the response fre-

quency of the disk, is equal to that in Fact due to the linearity

of Eq. (7) under this feedback, the displacement of the disk

assumes the following form:

x ¼ aðtÞ expðjxtÞ; (9)

where a and x are, respectively, the real-valued response

amplitude and the real-valued response frequency equal to

FIG. 1. Analytical model of self-excited vibrational viscometer for high-

viscosity measurement corresponding to the experimental apparatus shown

in Fig. 2, where (1) is a rigid vibrational disk immersed in a liquid sample

and (2) is a linear motor for positive velocity feedback control to produce

the self-excited oscillation. The stiffness with respect to the motion of the

disk along the x-axis is denoted k.

124305-2 Yabuno et al. J. Appl. Phys. 116, 124305 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

130.158.56.100 On: Fri, 21 Nov 2014 01:52:12



the frequency of the velocity of the disk assumed in advance

in Eq. (2). The velocity and acceleration of the disk are

expressed using the dimensionless amplitude a* (¼a/D,

where D is the diameter of the disk) and the dimensionless

time t* (¼t/(1/X)) as

d2x

dt2
¼ DX2 d2a�

dt�2
þ 2jx�

da�

dt�
� x�2a�

� �
exp jx�t�ð Þ; (10)

dx

dt
¼ DX

da�

dt�
þ jx�a�

� �
exp jx�t�ð Þ; (11)

where D and 1=X ¼
ffiffiffiffiffiffiffiffiffi
m=k

p
are the representative length and

time, respectively, and x*¼x/X. Also, the complex ampli-

tude of the velocity is

va ¼ DX
da�

dt�
þ jx�a�

� �
: (12)

We substitute Eqs. (10) and (11) into Eq. (7), and take into

account Eq. (12). Then, separating Eq. (7) into real and

imaginary parts yields

d2a�

dt�2
þ Q� � C�ð Þ da�

dt�
þ ð1� x�2 � x�Q�Þa� ¼ 0; (13)

da�

dt�
þ x�

2x� þ Q�
Q� � C�ð Þa� ¼ 0; (14)

where C* and Q* are dimensionless parameters defined as

C� ¼ C

mX
; Q� ¼ S

mX

ffiffiffiffiffiffiffiffiffi
qgx

2

r
:

Note C* is the dimensionless feedback gain. The

imaginary part Eq. (14) of the equation of motion con-

sists of viscous damping and velocity feedback terms

because these terms include the first time derivative and

their phase leads p/2 to the displacement. Therefore, the

time variation of the amplitude governed by these terms

is calculated from the imaginary part Eq. (14). In con-

trast, the real part Eq. (13) of the equation of motion

consists of the inertia terms, whose phase yields a p shift,

and the stiffness term giving no phase shift to the

displacement and determines the response frequency as

simple spring-mass systems.

Here, we consider the case when the dimensionless

feedback gain C* is set near Q*. We explicitly express the

near equality using the order parameter �ðj�j � 1Þ as

follows:

P ¼ C� � Q� ¼ �P̂ ðP̂ ¼ Oð1ÞÞ: (15)

Then, using the slow time scale t1(¼�t*),20 Eq. (14)

leads to

da�

dt1

� x�P̂
2x� þ Q�

a� ¼ 0: (16)

As a result, a* is a function of t1 and its time variation

can be regarded to be very slow. Thus, considering a* is a

function of t1, we can rewrite Eq. (13) as

�2 d2a�

dt21
þ �2P̂

da�

dt1

þ 1� x�2 � x�Q�
� �

a� ¼ 0:

Neglecting the terms in O(�2) and considering a* 6¼ 0

yields

1� x�2 � x�Q� ¼ 0: (17)

Let us examine the stability of the disk plate motion

using the time variation of the amplitude. The solution to

Eq. (14) or (16) is

a� t�ð Þ ¼ a�0 exp
x�P

2x� þ Q�
t�

� �
; (18)

where a�0 is a dimensionless constant determined by the ini-

tial displacement. The solution can be written in the dimen-

sional form as

a tð Þ ¼ a0 exp

x C� S
ffiffiffiffiffiffi
qgx

2

q� �

2mxþ S
ffiffiffiffiffiffi
qgx

2

q t

8>><
>>:

9>>=
>>;; (19)

where a0 ¼ Da�0. The change in stability occurs when the

feedback gain C is Ccr, where

Ccr ¼ S

ffiffiffiffiffiffiffiffiffi
qgx

2

r
; (20)

and Ccr is hereafter called the critical feedback gain. Hence,

the so-called Hopf bifurcation21 occurs at C¼Ccr. If

C<Ccr, the disk is stable and applying the initial disturb-

ance, the response amplitude decays with time because the

feedback control force is less than the damping force due to

the fluid force acting on the disk, i.e., S
ffiffiffiffiffiffi
qgx

2

q
va. In contrast,

for C>Ccr, because the feedback control force is higher

than the damping force, the disk undergoes a self-excited

oscillation through Hopf bifurcation and the response ampli-

tude grows with time.

We propose using the sudden change in stability, which

depends on the relationship between the feedback gain C and

the viscosity of the liquid sample. Rearranging Eq. (20), the

viscosity g is written

g ¼ 2

qx
Ccr

S

� �2

; (21)

where the values of S and q are known in advance and the

critical feedback gain Ccr and x are experimentally deter-

mined as described in the following. In the experiment, we

gradually increase the feedback gain C from a low value.

The occurrence of the self-excited oscillation means that C
exceeds Ccr. The experimentally obtained value C at the

stability boundary corresponds to Ccr.

From the above discussion, the response frequency x is

found by Eq. (17). The dimensional form is expressed as

mx2 � k þ Sx

ffiffiffiffiffiffiffiffiffi
qgx

2

r
¼ 0: (22)

124305-3 Yabuno et al. J. Appl. Phys. 116, 124305 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

130.158.56.100 On: Fri, 21 Nov 2014 01:52:12



Therefore, if the feedback gain C is slightly above Ccr,

i.e., 0<P � 1 in Eq. (15), theory clarifies that the response

frequency x is independent of the time-dependent response

amplitude in the self-excited oscillation. The response fre-

quency obtained from the experimental time history of the

self-excited disk can be used as x in Eq. (21). A more practi-

cal measurement strategy will be given later together with

experimental results.

III. EXPERIMENTS

A. Measurement method

To confirm the validity of our method for high-viscosity

measurements, we conducted experiments using a prototype

self-excited viscometer (Fig. 2); the mass, consisting mainly

of the disk and the mover of the linear motor, is m¼ 1.6 kg,

and the diameter and width of the disk are 80 mm and 1 mm,

respectively. The block diagram of the practical measure-

ment system is shown in Fig. 3.

The displacement of the disk is measured by a laser dis-

placement sensor (Keyence Corp.: LB-300) whose gain is

GS[V/m]. The signal is differentiated by an analog differen-

tiator whose gain is GD[1/s] and is multiplied by the variable

control gain G in an analog circuit. Furthermore, the current

proportional to the resulting voltage is produced by a bipolar

power supply (Kikusui Corp.: PBX40–10) whose gain is

GP[A/V]. The current to the linear motor (Showa Densen

Corp.: R26, the thrust constant is GA¼ 2 N/A) supplies a

thrust proportional to the current in the disk. The gains,

except for G, are constant and their actual values are not

used in subsequent viscosity measurements because the

viscosity of the reference or calibration liquid is employed.

The theoretical feedback gain C in Eq. (8) corresponds to

GSGPGAG/GD; C is experimentally changed by setting the

variable gain G in the analog circuit. The value of G corre-

sponding to the critical feedback gain Ccr is expressed as

G¼CcrGD/(GSGPGA) � Gcr.

By gradually increasing G above Gcr, the disk destabil-

izes and oscillates in the liquid sample through

self-excitation. Therefore, by the experimentally obtained

value G¼Gcr at the stability boundary and response fre-

quency x, g in Eq. (21) can be expressed as

g ¼ 2

qx
GSGPGAGcr

SGD

� �2

: (23)

We tried high-viscosity measurements using samples of

a standard liquid made of hydrocarbon to calibrate the visc-

ometers (Nippon Grease Corp.: JS160000), the accuracy of

which comply with Japanese Industrial Standard (JIS Z

8809); labeling the samples by (i)–(vii), the viscosity g of

each depends on temperature, as listed in Table I, and were

determined by setting the thermostat of the chamber to tem-

perature T of the standard liquid.

B. Self-excited oscillation in high-viscosity liquid

We began with the conventional measurement method

applying an external excitation to the high-viscosity liquid

(i), setting Fact ¼ Fa cos �t without feedback (see Eq. (7)).

Figure 4 shows the experimentally obtained frequency

response curve under Fa¼ 0.8 N, where xamp is the response

amplitude depending on the excitation frequency �. Because

there is no peak due to the high viscosity of the liquid, con-

ventional methods do not apply as these are based on the Q
factor estimated from the half band width of the frequency

response curve.

Using liquid (ii), we investigated the validity of the

proposed method by the dynamic responses under an initial

disturbance. Without feedback, G¼ 0, the dynamic response

falls within the over-damped regime (Fig. 5(a)). By increas-

ing the gain of G, the disk undergoes damped oscillatory

motion (Fig. 5(b)) because the energy dissipation in the

motion due to the liquid’s high viscosity decreases by the

positive velocity feedback-control force. Increasing the gain

further, we observe the self-excited oscillation of the disk

(Fig. 5(c)). These oscillations indicate that the feedback

FIG. 2. Experimental setup of a self-excited vibrating-type viscometer for

high-viscosity measurements. The oscillator consists of a spring, linear

motor, and a bar connected to the disk immersed in the liquid sample. The

linear motor produces the positive velocity feedback force in accordance

with the theoretically proposed model; the corresponding block diagram is

shown in Fig. 3.

FIG. 3. Feedback loop producing the self-excited oscillations (x: displace-

ment of disk, Fact: feedback control force). Fact is applied to the disk in

accordance with the proposed positive velocity feedback. Increasing the

variable gain G and exceeding the critical gain Gcr produces self-excited

oscillations.

TABLE I. Properties of the liquid samples and measured viscosities.

Label of liquids (i) (ii) (iii) (iv) (v) (vi) (vii)

T (�C) 20.2 21.0 21.6 22.3 22.8 24 24.7

q (�102 kg/m3) 8.95 8.95 8.95 8.94 8.94 8.93 8.93

g (Pa s) 141 130 122 114 109 96.8 90.5

ga (Pa s) NA 134 118 110 100 87.6 72.9

gr (Pa s) NA 2.9 2.8 2.7 1.1 2.1 0.9

Error (%) NA 2.9 3.6 3.8 8.1 9.5 19
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control force with sufficient gain of G compensates the

energy dissipation and changes the damped system from pos-

itive to negative. In each experiment, we applied an initial

single square wave-shaped disturbance of magnitude and du-

ration 2 N and 0.1 s, respectively. Note that, if the artificial

disturbance is not applied, self-excited oscillations cannot be

produced because of inherent Coulomb friction in the

mechanical moving parts, which is not taken into account in

the analysis of Eq. (7); this effect on the self-excited oscilla-

tion is theoretically and experimentally clarified in detail in

the study.22

C. High-viscosity measurements

Furthermore, to investigate the quantitative validity of

the proposed method, we estimate the viscosities of some

liquids (ii)–(vii) using liquid (i) as a reference liquid. Then,

the nominal value for the viscosity of liquid (i) in Table I is

used as an a priori reference; gref¼ 141 Pa s. The experimen-

tally obtained Gcr¼ 2.30 and x/(2p)¼ 4.21 Hz are also used

as reference values of critical gain Gcr�ref and response fre-

quency xref/(2p). Then, by taking into account Eq. (23), the

viscosities g of liquids (ii)–(vii) can be estimated by

gident ¼
Gcr

Gcr�ref

� �2 qref xref

qx
gref ; (24)

where x and Gcr are experimentally obtained for each liquid

sample and for q, the known values in Table I are used. As

seen from Eq. (24), the values of the constant gains of the

circuit, GS, GP, and GA, are not needed in the estimation of

gident. Figure 6 shows the relationship between the experi-

mentally determined values of the liquids gident and their

nominal values g listed in Table I. The measurement for

each liquid sample is performed 20 times; the plot points and

vertical bar denote average ga and one standard deviation gr

from the average. If for a given temperature the data point

falls on the line of gradient unity, then the average of the

estimated value at the temperature is in complete agreement

with the nominal value at that temperature. As seen from

Table I, the deviations of the average of the experimentally

estimated values from the nominal values for liquids (ii)–(vi)

are below 10%. We conclude that the proposed method has

also quantitative validity as a high-viscosity measurement

method.

Finally, we discuss the influence of the additional fluid

force caused from edge effects, which were neglected in Eq.

(6). Similar to the case of the half plane,19 and also in the

case of the disk, the additional fluid friction force caused by

an edge depends on the depth of penetration. A modified

area S0 reflecting the effect should be used instead of the real

area of the plate S in Eq. (21). In this study, because a refer-

ence liquid is used, then if the modified area S
0

of the mea-

surement liquid is approximately equal to the modified area

S0ref of the reference liquid, the effective modification, i.e.,

the additional friction force, does not appear in Eq. (24).

FIG. 4. Experimental frequency response curve obtained by the conven-

tional method based on external excitation Fact ¼ Fa cos �t; Fa¼ 0.8 N. No

peak appears as the test liquid has high viscosity (1.41� 102 Pa s), and hence

viscosity cannot be experimentally estimated.

FIG. 5. Experimental time histories of the disk as a function of feedback

gain G: (a) without feedback (G¼ 0); due to high viscosity, the free oscilla-

tion is overdamped. (b) With feedback gain below the critical value

(G<Gcr); because the feedback control force affords compensation for

energy losses through dissipation under high viscosity, the response is oscil-

latory, but because of insufficient compensation, the response decays with

time. (c) With feedback gain above the critical value (G>Gcr); a sufficient

feedback force provides compensation for energy losses due to dissipation

and produces a growing oscillation by self-excitation.
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Nevertheless, a significant deviation between S0 and S0ref may

cause inaccuracy in Eq. (24). Using S0 and S0ref , Eq. (24) can

be rewritten from Eq. (23) as

gident ¼
Gcr

Gcr�ref

� �2 qref xref

qx

S0ref

S0

� �2

gref : (25)

S0 may decrease as the kinetic viscosity decreases, as men-

tioned for the half-plane in Ref. 19. Therefore, the frictional

force from edge effects, which were neglected in the estima-

tion by Eq. (24), can be regarded as one of the reasons for

the underestimation of liquid viscosities in Fig. 6.

IV. CONCLUSIONS

In conclusion, we have proposed using the self-excited

oscillations for high-viscosity measurements. Unlike the

conventional methods based on external or forced excitation,

the frequency response curve, in addition to the high Q fac-

tor, is unnecessary in the proposed method in determining

high-valued viscosities of liquid samples. A macroscale

oscillator as a spring-mass system is used in the experimental

investigation. Miniaturized oscillators of micro- or nanoscale

cantilevers can also be self-excited in a straightforward

application of the proposed method. They are expected to

enable not only localized monitoring of changes with time of

high-valued viscosities but also spatial measurements of

such viscosities using a distributed arrangement of devices.
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FIG. 6. Measurement results for the liquid samples listed in Table I; liquid

(i) is used for calibration. The abscissa and ordinate denote, respectively, the

nominal value shown in Table I and the experimentally obtained value using

the proposed method. The measurement for each sample liquid is performed

20 times; plot points and vertical bars denote average and one standard devi-

ation from the average. When data points fall on the straight line of gradient

1, the average of the estimated viscosity is in complete agreement with the

nominal value.
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