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Abstract

Glomerular nodular lesions, known as Kimmelstiel-Wilson nodules, are a pathological hallmark of progressive human
diabetic nephropathy. We have induced severe diabetes in pigs carrying a dominant-negative mutant hepatocyte nuclear
factor 1-alpha (HNF1a) P291fsinsC, a maturity-onset diabetes of the young type-3 (MODY3) gene in humans. In this model,
glomerular pathology revealed that formation of diffuse glomerular nodules commenced as young as 1 month of age and
increased in size and incidence until the age of 10 months, the end of the study period. Immunohistochemistry showed that
the nodules consisted of various collagen types (I, III, IV, V and VI) with advanced glycation end-product (AGE) and Ne-
carboxymethyl-lysine (CML) deposition, similar to those in human diabetic nodules, except for collagen type I. Transforming
growth factor-beta (TGF-b) was also expressed exclusively in the nodules. The ultrastructure of the nodules comprised
predominant interstitial-type collagen deposition arising from the mesangial matrices. Curiously, these nodules were found
predominantly in the deep cortex. However, diabetic pigs failed to show any of the features characteristic of human diabetic
nephropathy; e.g., proteinuria, glomerular basement membrane thickening, exudative lesions, mesangiolysis, tubular
atrophy, interstitial fibrosis, and vascular hyalinosis. The pigs showed only Armanni-Ebstein lesions, a characteristic tubular
manifestation in human diabetes. RT-PCR analysis showed that glomeruli in wild-type pigs did not express endogenous
HNF1a and HNF1b, indicating that mutant HNF1a did not directly contribute to glomerular nodular formation in diabetic
pigs. In conclusion, pigs harboring the dominant-negative mutant human MODY3 gene showed reproducible and distinct
glomerular nodules, possibly due to AGE- and CML-based collagen accumulation. Although the pathology differed in
several respects from that of human glomerular nodular lesions, the somewhat acute and constitutive formation of nodules
in this mammalian model might provide information facilitating identification of the principal mechanism underlying
diabetic nodular sclerosis.
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Introduction

Diabetic nephropathy is the leading cause of end-stage renal

disease [1,2]. Glomerular nodular lesions, known as Kimmelstiel-

Wilson nodules, are a pathological hallmark of human diabetic

nephropathy. In 1936 Kimmelstiel and Wilson first described

intercapillary glomerulosclerosis as a sign of advanced diabetic

glomerular changes [3]. The presence of glomerular nodular

lesions is known to be associated with poor renal outcome [4,5].

Although investigated extensively, the morphogenesis of dia-

betic glomerular nodules remains to be determined. One major

reason for this is a lack of animal models that accurately represent

the nodules typically present in humans. Some rodent models of

diabetes show segmental mesangial expansion and glomerular

basement membrane (GBM) thickening, but few exhibit distinct

glomerular nodular lesions [6]. To date, the four representative

diabetic rodent models with glomerular nodules are: endothelial

nitric oxide synthase (eNOS) knockout db/db mice [7], receptor for

advanced glycation end products (RAGE)/megsin/inducible nitric

oxide synthase (iNOS) overexpressing transgenic mice [8],

monocrotaline-treated Otsuka Long-Evans Tokushima Fatty

(OLETF) rats [9] and BTBR ob/ob mice [10]. eNOS knockout

db/db mice developed focal nodular glomerulosclerosis at 26 weeks

of age [7]. RAGE/megsin/iNOS overexpressing transgenic mice

also showed nodular-like lesions in 30–40% of glomeruli at 16

weeks of age [8]. Monocrotaline-treated OLETF rats showed a

few nodular-like lesions at 50 weeks of age [9]. BTBR ob/ob mice

showed diffuse but rare nodular mesangial sclerosis at 20 weeks of

age [10]. These rodent models suggest that diabetic conditions in

rodents do not lead to reproducible formation of diffuse
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glomerular nodular lesions. In addition, although two diabetic pig

models—streptozotocin-induced diabetic pigs and INSC94Y trans-

genic pigs—were created, both failed to reproduce diabetic kidney

manifestations [11,12,13]. Thus, it may be more appropriate to

create a diabetic mammalian model with the same genetic

mutations present in human diabetes that exhibits diabetic renal

complications similar to those in humans.

In humans, several forms of diabetes are associated with genetic

mutations. Maturity-onset diabetes of the young type-3 (MODY3)

is an early onset, non-insulin-dependent form of diabetes

characterized by autosomal-dominant inheritance [14]. Those

suffering from MODY3 have insufficient insulin secretion,

resulting in a similar pathophysiology to that seen in human

type-2 diabetes [14,15]. Hepatocyte nuclear factor 1-alpha

(HNF1a) is the transcription factor believed to be responsible for

MODY3 [14,15]. It is expressed in the liver, pancreas, proximal

tubules, stomach, and small intestine [15,16,17]. The most

common mutation in the HNF1a gene is the result of a cytosine

(C) nucleotide insertion into a poly-C tract around codon 291

(designated as P291fsinsC), which causes frameshift-mutation-

mediated deletion of the transactivation domain [14,15].

We have successfully created diabetic pigs carrying the

dominant-negative mutant HNF1aP291fsinsC gene that is re-

sponsible for severe hyperglycemia with decreasing numbers of

pancreatic beta cells [18]. Using these transgenic animals, in the

present study we investigated the sequence of morphological

events that leads to glomerular nodular lesions in diabetic

nephropathy based on the human MODY3 gene. We expected

the components and processes of glomerular nodular lesions in

diabetic pigs to resemble those in human diabetic nephropathy.

Materials and Methods

Animals
All animal experiments were approved by the Institutional

Animal Care and Use Committee of Meiji University (IACUC-09-

006). As described previously, focus was on the use of transgenic

pigs carrying a dominant-negative mutant HNF1a gene [18]. In

short, a transgenic pig carrying an expression vector for the

mutant human HNF1a cDNA (HNF1aP291fsinsC) was used. The

transgene construct consisted of the enhancer for an immediate-

early gene of human cytomegalovirus, followed by a porcine

insulin promoter, the human HNF1aP291fsinsC cDNA, a SV40

poly-adenylation signal and a chicken b-globin insulator. Trans-

genic pigs carrying this cDNA were produced as reported

elsewhere [19].

Study protocol
One transgenic and three wild-type pigs were used for

biochemical and histological analyses through kidney biopsy.

Tests were conducted at monthly intervals until the animals were

10 months of age. For histological analyses, autopsy of additional

three transgenic and three wild-type pigs was conducted at 19

weeks of age.

Biochemical analysis
Serum and urine were collected each month after birth until

completion of the study. The following biochemical parameters

were measured: blood urea nitrogen, creatinine, plasma glucose,

total protein, total cholesterol, triglycerides, aspartate aminotrans-

ferase, alanine aminotransferase and 1,5-anhydroglucitol. Urine

was also analyzed in terms of total protein/creatinine and

albumin/creatinine.

Histochemistry of renal sections
For kidney biopsy, the animals were anesthetized by an

intramuscular injection of ketamine (11 mg/kg, Fujita Pharma-

ceutical Co., Ltd., Tokyo, Japan), with isoflurane (DS Pharma

Animal Health Co., Ltd., Osaka, Japan) inhalation for mainte-

nance. After the kidney location was confirmed using an ultrasonic

pulse-echo technique, specimens were obtained using a Bard

Monopty disposable biopsy needle (18 G620 cm, Bard Biopsy

Systems, Tempe, AZ, USA). Kidney specimens were fixed with

4% paraformaldehyde for paraffin sections or 2% glutaraldehyde

for electron microscopy. For kidney autopsy, the animals were

anesthetized by an intramuscular injection of 1% mafoprazine

(0.5 mg/kg, DS Pharma animal Health Co., Ltd.) and intravenous

injection of pentobarbital (Kyoritsu Seiyaku Corporation, Tokyo,

Japan). After the animals were sacrificed by exsanguination

through cutting cervical artery under anesthesia, kidney tissues

were dissected and fixed with 4% paraformaldehyde for paraffin

sections.

Paraffin sections were processed for periodic acid–Schiff (PAS)

staining, periodic acid–methenamine-silver (PAM) staining, Mas-

son’s trichrome (MT) staining and immunostaining. Specific

primary antibodies were as follows: mouse anti-collagen I antibody

(1:50; Abcam, Cambridge, UK), rabbit anti-collagen III antibody

(1:400; Abcam), rabbit anti-collagen IV antibody (1:50; Abcam),

mouse anti-collagen V antibody (1:50; Abcam), rabbit anti-

collagen VI antibody (1:50; Abcam), rabbit anti-advanced

glycation end products (AGE) antibody (1:250; Abcam), mouse

anti-Ne-carboxymethyl-lysine (CML) antibody (1:500; TransGenic

Inc., Ltd., Kumamoto, Japan) and rabbit anti-transforming growth

factor beta-1 (TGF-b1) (V) antibody (1:100; Santa Cruz Biotech-

nology Inc., Santa Cruz, CA, USA). For immunostaining, antigen

retrieval was performed using a microwave (10 mM citrate buffer;

pH 6.0) (collagen I) or 100 mg/mL proteinase K (collagen III, IV,

V, and VI). Thereafter, primary antibodies were incubated in an

EnVision labeled polymer-HRP (Dako, Glostrup, Denmark) or

Histofine kit (Nichirei Bioscience Inc., Tokyo, Japan) followed by

reaction with peroxidase-conjugated streptavidin (Nichirei). Per-

oxidase activity was visualized using a liquid diaminobenzidine

substrate (Dako). Hematoxylin was used to stain nuclei.

Distribution of glomeruli with nodular lesions
To estimate the prevalence of glomeruli with nodular lesions

between the superficial and deep cortexes, sections representing

the entire depth of the cortex were subdivided into three zones of

equal width: the superficial, middle and deep cortex. The

proportion of glomeruli with nodules in each sample was

calculated and compared between the superficial and deep

cortexes in autopsy specimens of transgenic and wild-type pigs at

19 weeks of age (60–240 glomeruli per kidney per animal).

Measurement of glomerular tuft area
To estimate glomerular tuft area between the superficial and

deep cortexes, sections representing the entire depth of the cortex

were subdivided into three zones of equal width: the superficial,

middle and deep cortex. The glomerular tuft area in each sample

was calculated using NanoZoomer 2.0-RS (Hamamatsu Photonics

K.K., Hamamatsu, Japan) and compared between the superficial

and deep cortexes in autopsy specimens of transgenic and wild-

type pigs at 19 weeks of age (69–393 glomeruli per kidney per

animal).

Glomerular Nodular Lesions in Diabetic Pigs
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Thickness of the glomerular basement membrane
In biopsy specimens of pigs at 4 weeks and 5 months of age, 2%

glutaraldehyde-fixed kidney cortex tissue was visualized by

transmission electron microscopy. GBM thickness was estimated

by measurements at five random capillaries in one glomerulus per

animal. In each capillary, a series of five photographs were taken

at 12,0006magnification, a grid was overlaid on the photograph,

and GBM thickness was measured at the points intersecting the

grid, with the exception of paramesangial areas. This method is a

modified version of that of Hudkins, et al. [10].

Glomerular isolation, RNA isolation and reverse
transcription PCR (RT-PCR)

To evaluate HNF1a or HNF1b expression, RT-PCR was

performed using isolated glomeruli from one wild-type pig at 4

weeks of age. The animal was anesthetized using isoflurane (DS

Pharma Animal Health Co., Ltd.) and perfused with phosphate-

buffered saline (PBS). The kidneys, liver and heart were then

removed. Using the renal artery, the kidneys were perfused with a

1 mg/mL iron powder in PBS. They were then minced into 1-

mm3 pieces and passed through a 100-mm cell strainer. Finally,

glomeruli containing the iron powder were isolated using a

magnetic particle concentrator. Total RNA was extracted from

the isolated glomeruli, liver, and heart using the RNeasy Mini Kit

(Qiagen, Hilden, Germany). RNA was quantified using a

Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific

K.K., Rockford, IL). Total RNA (1 mg) was reverse-transcribed

using the Thermoscript RT-PCR System (Life Technologies

Corporation, Carlsbad, CA, USA) into first-strand cDNA. Then,

10 ng of cDNA template and 0.25 mmol/l of sequence-specific

primers were used to perform RT-PCR. Primer sequences (59 to

39) were as follows: HNF1a forward: CACAGTCTGCTGAG-

CACAGA

HNF1a reverse: TTGGTGGTGTCGGTGATGAG

HNF1b forward: AGAGGGAGGCCTTAGTGGAG

HNF1b reverse: GAGAGGGGCGTCATGATGAG

The liver and heart were used as positive and negative controls,

respectively.

Statistical analysis
Mann-Whitney U tests using StatView-J 5.0 (Adept Scientific,

Acton, MA, USA) were performed for comparison of the

glomerular nodular distribution and glomerular tuft area. Data

are shown as means 6 standard errors (SE). P-values were

calculated from the data. Statistical significance was considered at

p-values , 0.05.

Results

Transgenic pigs carrying a dominant-negative mutant
HNF1a gene showed severe diabetic mellitus

The biochemical parameters of a single transgenic pig were

compared with those of three wild-type pigs over a 10-month

period (Table 1). Body weight was lower in transgenic pigs than in

wild-type pigs (Figure S1A). In transgenic pigs, the plasma glucose

levels were elevated to 22.2–33.3 mmol/L as early as 11 days after

birth. This hyperglycemia persisted until 10 months of age (Figure

S1B). 1,5-Anhydroglucitol, which reflects the increase in plasma

glucose levels during the past several days, was at low levels,

indicating severe diabetes mellitus (Figure S1C). In 1-month-old

pigs, total cholesterol was high, but decreased after 2 months of

age. In contrast, triglycerides were elevated throughout the

lifespan of the pigs, which is a symptom also observed in humans

with diabetic mellitus. However, serum creatinine levels were

within the normal range and no proteinuria was detected in

transgenic pigs until 10 months of age.

Transgenic pigs exhibited characteristic diffuse
glomerular nodular lesions

Kidney autopsy revealed distinct glomerular nodular lesions at

age 19 weeks in all three transgenic pigs (Figure 1A). These

nodules were diffuse and acellular, consisting of abnormal

matrices. Matrices were slightly evident by PAS staining, strongly

by PAM staining, and appeared as a distinct blue color by MT

staining. This staining pattern points to the abundance of collagen

fibers in the nodules. Numerous nodules formed within an

individual glomerulus and were distributed throughout with no

discernible pattern. However, more were present in the deep

cortex than in the superficial cortex (86.667.73 vs. 30.6612.2%)

(p = 0.0495; Figure 1B). Additionally, the glomerular tuft area in

Table 1. Analysis of biochemical parameters in transgenic (Tg) and wild-type (WT) pigs at age 1, 5 and 10 months.

1 month old 5 months old 10 months old

Tg (n = 1) WT (n = 3) Tg (n = 1) WT (n = 3) Tg (n = 1) WT (n = 1)

Blood urea nitrogen (mmol/l) 13.6 2.7160.43 10.8 5.0760.43 9.35 4.53

Plasma glucose (mmol/l) 33.3 6.1160.03 .33.3 5.8760.40 26.0 5.51

Creatinine (mmol/l) 53.0 61.960.0 35.4 88.468.8 26.5 115

Total protein (g/l) 54.0 48.061.0 63.0 62.060.0 72.0 68.0

Total cholesterol (mmol/l) 11.6 2.9560.18 1.86 2.0060.05 1.09 1.66

Triglycerides (mmol/l) 1.69 0.2660.03 .5.60 0.5060.10 4.35 0.17

Asperate aminotransferase (IU/l) 23.0 43.066.4 128 21.761.0 51.0 21.0

Alanine aminotransferase (IU/l) 38.0 31.062.3 68.0 33.360.7 62.0 32.0

1,5-anhydroglucitol (mg/ml) 2.8 8.860.3 1.1 9.660.7 2.5 6.7

Urinary protein/creatinine (g/gCr) ,0.20 0.24* 0.72 0.4760.31 0.45 ,0.20

Urinary albumin/creatinine (g/gCr) ,0.10 0.16* 1.41 0.7760.59 0.23 ,0.1

Aberrations: Tg = transgenic pigs; WT = wild-type pigs; *: n = 1.
doi:10.1371/journal.pone.0092219.t001
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the deep cortex was significantly larger in transgenic pigs than in

wild-type pigs (16,5666983 vs. 9,6946224 mm2; p = 0.0495), but

was not significantly different in the superficial cortex (6,6166588

vs. 6,166680 mm2; p = 0.8273; Figure 1C). This unique distribu-

tion of nodules and glomerular tuft size suggested that glomerular

Figure 1. Renal pathological findings at age 4 and 19 weeks in transgenic pigs. A) In transgenic pigs, mesangial expansion commenced as
early as 4 weeks. At 19 weeks, distinct glomerular nodules had formed. Magnification: 4006. B) The number of glomeruli with nodules as a fraction of
the total number was compared between the superficial cortex and deep cortex. C) Glomerular tuft area in superficial and deep cortexes was
compared between wild-type pigs and transgenic pigs. Transgenic pigs; n = 3, wild-type pigs; n = 3. *P,0.05. WT = wild-type pigs; Tg = transgenic
pigs.
doi:10.1371/journal.pone.0092219.g001
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hyperfiltration might contribute to formation of nodules in

transgenic pigs.

Immunostaining revealed that the nodules consisted of various

types of collagen, including types I, III, IV, V and VI (Figure 2).

Collagen types III, IV and VI were present at high concentrations,

whereas collagen types I and V were relatively less abundant.

AGE, CML and TGF-b1 were also detected in the nodules

(Figure 3). AGE tended to be found at the margins of the nodule.

CML and TGF-b1 were localized in the nodules in the same

patterns as seen in human diabetic nephropathy [20,21,22].

To monitor the sequence of nodular formation, monthly kidney

biopsies were performed until the age of 10 months. Mesangial

expansions were formed as early as 4 weeks of age and contained

the abnormal matrices similar to those seen in transgenic pigs at 19

weeks of age (Figure 1A). Thereafter, the matrices expanded

gradually with age. Collagen fibers and AGE deposition were

exclusively associated from the early evolution to the end of the

study period (Figures 2 and 3). Glomerular nodular lesions did not

lead to segmental glomerulosclerosis or active adhesion.

Another major histological development was the vacuolization

of the cytoplasm of epithelial cells in the proximal tubules,

resembling Armanni-Ebstein lesions (Figure S2) [23]. The

frequency of mesangiolysis and exudative lesions was low (,1

per 200 glomeruli). Other diabetic changes normally seen in

Figure 2. Immunostaining for collagen types I, III, IV, V and VI at age 4 weeks (left) and 19 weeks (middle) in transgenic pigs, and 19
weeks in wild-type pigs (right). In transgenic pigs, collagen types I, III, IV, V and VI were accumulated in the nodules as early as 4 weeks. Collagen
types III, IV and VI were strongly positive. Magnification: 4006.
doi:10.1371/journal.pone.0092219.g002
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humans were absent from the pig models, including tubular

atrophy, interstitial fibrosis and arteriolar hyalinosis.

Glomerular nodular lesions consisted of interstitial forms
of fibril collagen

To determine whether glomerular nodular lesions were

associated with the typical diabetic changes found in humans,

biopsy specimens from animals at 4 weeks and 5 months of age

were visualized by electron microscopy. At 4 weeks, bright fibers

began to appear in the mesangial matrices (Figure 4A and B),

accompanied by lipid particles and cell debris. At a high

magnification, the fibers were seen to closely resemble interstitial

types of collagen, being of 46-nm diameter with a 50-nm cross-

striation cycle (Figure 4E). These collagens were found predom-

inantly around mesangial cells, suggesting that this was their point

of origin (Figure 4A). Within 5 months the fibers had accumulated

in the mesangium and had expanded to nodular formations

(Figure 4C). This nodule expansion encroached upon capillary

lumens and caused them to become occluded. A subendothelial

widening, accompanied by a loss of endothelial fenestration and

occasional mesangial interposition, was also noted (Figure 4D).

The GBM thickness of the transgenic pigs was not different from

that of wild-type pigs at both 4 weeks and 5 months of age (4

weeks: 163 nm in transgenic pigs vs. 186610.3 nm in wild-type

pigs, 5 months: 194 nm in transgenic pigs vs. 18165.2 nm in wild-

type pigs) (Figure 4F).

Endogenous HNF1a and HNF1b were absent from the
glomeruli of wild-type pigs

RT-PCR for HNF1a and HNF1b in the glomeruli of wild-type

pigs at 4 weeks of age was performed to determine whether

insertion of the dominant-negative mutant HNF1aP291fsinsC

gene contributed to the development of glomerular nodular lesions

by inhibiting endogenous HNF1a or HNF1b function in

glomerular cells. Both HNF1a and HNF1b were absent from

the isolated glomeruli, but were expressed in the positive control

liver tissue (Figure 5A and B). Therefore, the dominant-negative

mutant HNF1aP291fsinsC gene insertion did not contribute

directly to the glomerular nodular formation in transgenic pigs.

Discussion and Conclusions

Our pig model carrying a dominant-negative human MODY3

gene is the first to show reproducible diffuse glomerular nodular

lesions in a mammalian model of diabetes. The ability to perform

repeat kidney biopsies was a great advantage in terms of

understanding the in vivo morphological events involved in

glomerular nodular formation.

Glomerular nodular lesions in our diabetic pigs were charac-

terized by monotonous accumulation of interstitial forms of

collagen fibrils in the mesangium. Initially, small nodules were

detected as early as 1 month of age and developed diffusely until

10 months of age. Notably, these were basically acellular round

nodules without mesangial proliferation, inflammatory infiltrates

or mesangiolysis, (cold nodule); this differs from human diabetic

nodules. Immunostaining for various collagens revealed predom-

inantly collagen type III, IV, V and VI in our model, similar to in

Figure 3. Immunostaining for AGE, CML and TGF-b at age 4 weeks (left) and 19 weeks (middle) in transgenic pigs, and 19 weeks in
wild-type pigs (right). In transgenic pigs, AGE, CML and TGF-b accumulated in the glomerular nodules as early as 4 weeks. Magnification: 4006.
AGE = advanced glycation end product; CML = Ne-carboxymethyl-lysine; TGF-b = transforming growth factor-beta.
doi:10.1371/journal.pone.0092219.g003
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human diabetic nodules [24,25]. However, our diabetic nodules

also exhibited collagen type I deposition, which is unusual in

human diabetic nephropathy [24,25,26]. Electron microscopy

showed a distinct interstitial collagen type, which appeared to be a

mixture of types I, III and V collagen, as the main component.

This was synthesized in the mesangial cells in the early stage, and

tended to expand toward the corresponding capillary lumina,

finally resulting in nodular sclerosis.

Although the detailed sequence of events leading to nodular

formation, and the structure of the nodules, in this model may not

be identical to that in humans with type-2 diabetes, the nodules

expressed AGEs from a young age. AGEs are produced by non-

enzymatic glycation under hyperglycemia, and glomerular AGE

deposition is an important characteristic of nodular morphogenesis

in human diabetes [21,27,28]. Specifically, CML is the major

AGE accumulated in nodular lesions [20,21]. Glomerular AGEs

stimulate extracellular matrix production by mesangial cells

through reactive oxygen species (ROS)-promoted TGF-b expres-

sion [27,28,29,30]. Glomerular ROS production was caused by

AGE-mediated RAGE upregulation or glucose metabolism

[27,28,30,31]. In this regard, early onset exclusive AGE deposition

and TGF-b1 expression in the nodules of diabetic pigs suggest

AGE-mediated collagen synthesis in mesangial cells under a

persistent hyperglycemic condition. The differences in nodular

morphogenesis and its collagen composition between our model

and human diabetic nephropathy suggest that the mesangial

Figure 4. Transmission electron microscopy at age 4 weeks (A,B,E) and 5 months (C,D) in transgenic pigs. A) In 4-week-old transgenic
pigs, mesangial widening is associated with fiber deposition in the mesangial matrices. Magnification: 2,0006. B) Fibers accumulated at mesangial
areas, forming early lesion. Magnification: 5006. C) At 5 months, established glomerular nodules showed that mesangial areas and capillary lumens
are filled with bright fibers (arrows). Vacuolations of proximal tubules were also seen (arrowheads). Magnification: 3006. D) Subendothelial widening
with loss of endothelial fenestration and mesangial interposition are shown. Note that collagen is also found in the subendothelial spaces (arrows).
Magnification: 1,5006. E) The nodules consist of fibril collagens with cross striation, indicating interstitial-type forms of collagen fibrils. Magnification:
10,0006. F) Thickness of glomerular basement membranes in transgenic pigs was no different from those in wild-type pigs at 4 weeks and 5 months
old. Transgenic pigs; n = 1, wild-type pigs; n = 3. Tg = transgenic pigs; WT = wild-type pigs; GBM = glomerular basement membrane.
doi:10.1371/journal.pone.0092219.g004
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cellular response in these species is different under diabetic

conditions. Several reports of nodular sclerosis in the diabetic

rodent model support this explanation.

In addition to the mesangial changes under hyperglycemia, our

model suggests the involvement of unique hemodynamic factors in

nodular morphogenesis. Glomerular hyperfiltration or hypertro-

phy promotes diabetic nephropathy; however, whether glomerular

hemodynamic effects accelerate the formation of diabetic nodules

in humans remains controversial. Accordingly, the present study

showed that glomerular nodular lesions in diabetic pigs were

localized predominantly in the deep cortex. Notably, glomeruli

were significantly larger in the deep cortex of diabetic pigs

compared to in that of wild-type pigs, but were unchanged in the

superficial cortex of both groups. These observations suggest that

glomerular hemodynamic effects also promote formation of

glomerular nodular lesions in diabetic pigs. Similarly, diabetic

nephropathy was accelerated in eNOS-knockout mice, attenuated

by improvement of eNOS activity in db/db mice [32,33], and

antihypertensive therapy alone significantly suppressed the devel-

opment of nodular lesions and mesangiolysis in diabetic eNOS-

knockout mice [34]. Based on these reports and our current

findings, our results suggest the involvement of glomerular

hypertension in nodular lesion formation in diabetes. Therefore,

prominent glomerular hyperfiltration and hypertrophy may be the

basis of glomerular nodule development in our diabetic pig model.

The inserted dominant-negative human MODY gene might

have stimulated mesangial matrix synthesis by inhibiting endog-

enous HNF1a or HNF1b function, regardless of the diabetic

milieu. Typically, HNF1a functions as a homodimer or a

heterodimer with the structurally related protein HNF1b
[14,15,35]. Thus, a dominant-negative mutant HNF1aP291fsinsC

should inhibit HNF1a or HNF1b by forming an inactive

heterodimer at the site of endogenous HNF1a or HNF1b

expression. The RT-PCR study confirmed that mutant

HNF1aP291fsinsC could not interact with endogenous HNF1a
and HNF1b in the glomeruli of transgenic pigs. This supports the

notion that the diabetic milieu, but not the genetic alteration,

promotes glomerular nodular formation in the pig model.

Our diabetic pig model lacks several diabetic renal features

characteristic of human diabetic nephropathy; e.g., proteinuria,

GBM thickening, exudative lesions, tubular atrophy, interstitial

fibrosis and arteriolar hyalinosis. Furthermore, the glomeruli did

not undergo glomerulosclerosis. These results suggest that our

model does not accurately reproduce human diabetic nephropa-

thy, even in pigs carrying the human MODY3 gene. In addition to

the species difference in the cellular response to hyperglycemia, a

possible explanation for this discrepancy is that we were unable to

monitor the histology for a sufficiently long period because due to

the relatively short lifespan of the pigs. In addition, the mechanism

of nodular formation is considered to be different from that of

other diabetic kidney lesions. Nevertheless, this pig model

indicated that glomerular nodules could form independently of

diabetic complications.

In conclusion, this was the first report of distinct and

reproducible glomerular nodular lesions in transgenic pigs

carrying a dominant-negative HNF1a mutation of the human

MODY3 gene. Although there were several differences compared

to the pathology of human glomerular nodular lesions, the

somewhat acute and constitutive formation of nodules in the

mammalian models might provide information that will facilitate

identification of the principal mechanism underlying glomerular

nodular formation.

Supporting Information

Figure S1 Body weight and diabetic parameter changes
over time. A) Body weight was lower in transgenic pigs than in

wild-type pigs. B) Plasma glucose was at a high level in transgenic

pigs. C) 1,5-Anhydroglucitol was at a low level in transgenic pigs.

Tg = transgenic pigs (n = 1); WT = wild-type pigs (up to 6

months of age, n = 3; 6–10 months of age, n = 1).

(TIF)

Figure S2 Armanni-Ebstein lesions in diabetic pigs at 19
weeks of age. Transgenic pigs revealed vacuolation of proximal

tubules known as Armanni-Ebstein lesions. Note that distal tubules

and the collecting duct are intact. A) Magnification: 1006. B)

Magnification: 4006.

(TIF)
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