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Abstract 

Simultaneous sulfide and organics removals with electricity generation can be achieved in 

microbial fuel cells (MFCs). In present research, principles of sulfide removal as well as the 

involved bacteria in the MFCs with sulfide and glucose as the complex substrate are investigated. 

Results indicated that electrochemical and biological oxidations are the main effects for sulfide 

removal. Community analysis shows a great diversity of bacteria on the anode surface, including 

the exoelectrogenic bacteria and sulfur-related bacteria. They are present in greater abundance 

than those in the MFCs fed with only sulfide and responsible for the effective electricity 

generation and sulfide oxidation in our proposed MFCs. The results are conducive to reveal the 

interactions between the pollutants and microbes in aspects of pollutants removals and energy 

recovery in the MFCs for sulfide removal. 
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1. Introduction 

Dissolved sulfide and hydrogen sulfide are common pollutants found in petrochemical 

processing wastewater, hydrocarbon wastewater and digester effluent [1,2]. Several problems are 

related to sulfide buildup, including release of obnoxious odors, corrosion of concrete sewer pipes, 

toxicity to plants and animals, safety hazards to sewer workers due to the volatilization of sulfide 

gas and negative influences on the post wastewater treatment [3], thus it should be removed from 

the water streams.  

Of the available means for sulfide removal, biological oxidation is the most commonly used 

method due to its low cost and easy operation [4,5]. Microbial fuel cells (MFCs), devices that use 

bacteria as catalysts to oxidize organic or inorganic matters with current generation and convert 

chemical energy to electricity in mere one step [6-9], is demonstrated to be effective to oxidize 

sulfide to elemental sulfur by Rabaey et al. [10]. Additionally, their group also finds that sulfide 

could also be oxidized spontaneously in abiotic fuel cell (AFC) systems but with lower removal 

efficiency and less energy recovery [11]. These indicate that bacteria play an important role in 

sulfide removal and electricity generation, while little attention has been paid to these aspects in 

previous research [12-15]. Moreover, sulfide and its co-substrates such as degradable organics and 

nitrate have also been considered to be treated in MFCs by our research group and other 

researchers [16-18], while the mechanisms of sulfide removal and electricity generation should be 

further investigated. 

In present research, principles of sulfide removals in MFCs were investigated. The removal 
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effects were quantitatively determined. The involved bacteria as the most important key factor of 

electricity generation and pollutant removal in this system was also monitored and analyzed. The 

results were helpful to reveal the interactions between the pollutants and microbes in aspects of 

pollutants removals and energy recovery in the MFCs for sulfide removal.  

2. Materials and methods 

2.1 Construction of the MFCs and the electrolyte conditions 

Eight double-chamber MFCs built in cylindrical geometry chamber were constructed using 

plane Plexiglas. Four of them had been employed in our previous research [16]. The anode and 

cathode compartments were separated by a proton exchange membrane (Nafion117#. Dupont, 

USA), with the volume of electrolyte in each compartment of 250 mL. Both anode and cathode 

were 16 cm2-carbon fiber felt with specific surface area of 1050 m2/g (3 mm thickness, 4 cm 

length and width. Beijing Evergrow Resources CO., LTD, China). The two electrodes were 

connected to a data acquisition system (Measurement Inc, USA) through copper wires with the 

external resistance of 1000 Ω to record voltage at an interval of 5 min. The anode solution 

contained the following components (per L): 0.812 g of C6H12O6; 4.97 g of NaH2PO4•H2O; 2.75 

g of Na2HPO4•H2O; 0.31 g of NH4Cl; 0.13 g of KCl; 1.25 mL of vitamin solution; and 12.5 mL 

of trace mineral element solution [16]. Sulfide (100 mg/L) was added to the anode solution of the 

MFCs in the form of Na2S•9H2O. Vanadium (V) with concentration of 500 mg/L and pH of 2 was 

employed as the electron acceptors in the cathode compartment as it had been demonstrated to be 

promising electron acceptors in previous studies [16]. Two of the MFCs were inoculated with 25 

mL anaerobic granular sludge obtained from an up-flow anaerobic sludge blanket (UASB) reactor 
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treating high sulfate wastewater (Dept. of Environmental Engineering, Peking University). After 

they were well developed, the suspended sludge was removed from the anode compartment. Other 

six MFCs without inoculation (abiotic controls) were divided into three groups which served as 

control sets under respective conditions.  

2.2 Operation of the MFCs and the analytical methods 

The experiments were carried out in 72 h fed-batch mode as most sulfide was removed within 

that time. Samples were taken at 12 h intervals to measure the sulfide concentration. Two of the 

control sets were first filled with the anolyte and catholyte mentioned above but with no electrodes 

to examine the influence of sulfide volatilization during the experiment (Control 1). Then another 

two control sets were also filled with fresh electrolyte and equipped with new anodic electrode to 

study the effects of volatilization and anode adsorption for sulfide removal (Control 2). After that, 

the last two abiotic controls without inoculation but with fresh electrodes were operated in the 

closed circuit mode to evaluate the spontaneously electrochemical oxidation as well as 

volatilization and anode adsorption for sulfide removal in AFC systems (Control 3). Afterwards, 

two well developed MFCs used in previous research were operated to investigate the multiple 

effects of volatilization, adsorption, electrochemical oxidation and biological oxidation for sulfide 

removal [16]. At last, microbes on the two anodic electrodes in these two well developed MFCs 

were tested and analyzed, compared with the initially inoculated sludge.  

Sulfide was determined according to the methylene blue method (n = 665 nm) [19]. The 

indication of “sulfide” described all species (H2S, HS-, and S2-). Sulfate was measured by standard 

barium chromate colorimetry (n = 420 nm). Measurement of COD was based on digestion with 

potassium dichromate in concentrated sulfuric acid for 2 h at 150 ºC [15]. pH was measured by a 
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pH-201 meter (Hanna, Italy). Polarization curves were employed to obtain the maximum power 

density by varying external resistances from 5000 Ω to 10 Ω using a resistor box and were run at 

least twice under each resistance to ensure the repeatability of power outputs. Current (I) was 

calculated at a resistance (R) from the voltage (V) by I = V/R. Power (P) was calculated by P = I × 

V and normalized by the cathode area. Coulombic efficiency (CE) was calculated as reported 

previously [9]. 

2.3 The microbiological analysis 

Molecular biology analysis was carried out to acquire characteristics of microbial population 

in the proposed MFC systems. The polymerase chain reaction (PCR) of 16S rDNA gene fragments 

of bacteria on the anode surface of the MFCs was performed with Applied Biosystem Gene Amp 

PCR system 9700, after the MFCs being operated for about half a year. Part of the anode electrode 

(3 cm × 1cm) was cut off by sterile scissors, and oscillated for 20 min by ultrasonic to collect the 

bacteria attached to the anode (Sample M). The extracted DNA was amplified by the universal 27F 

(50-AGA GTT TGA TCM TGG CTC AG-30, M=C or A) and 1492R (50-TAC GGY TAC CTT 

GTT ACG ACT T-30, Y=C or T) and the amplified products were then quantified by Nanodrop 

(Thermo, USA) and ligated into the pEASY-T1 easy vector (Promega, USA). The resulting 

plasmids were transformed into E. coli DH5 a cells following the manufacturer’s instructions [20]. 

Microbes in the anaerobic sludge for initial inoculation were also analyzed in the same way as 

described above (Sample S). 

The phylogenetic analysis was performed as follows: the clone sequences obtained were 

checked foe chimeric artifacts by the check-chimera program of the Ribosomal Database Project 

(RDP). And then were compared with the 16S rDNA gene sequences that deposited in public 
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database GenBank using the BLAST search program. The sequences obtained from the GenBank 

database were aligned with the new ones by BioEdit 7.0. Phylogenetic trees were constructed by 

the neighbor-joining method with robustness of 1,000 bootstrapping value in MEGA 4.0. 

Sequences reported in this paper have been submitted to GenBank with accession numbers from 

KC481401 to KC481511. 

3 Results and Discussion 

3.1 Effects of sulfide removals in proposed MFCs 

The voltage outputs of the MFCs were 250 - 800 mV during the total operating cycle (Fig. 1), 

with the external resistance of 1000 Ω, when the MFCs were initially filled with anolyte 

containing 100 mg/L of sulfide and 800 mg/L of glucose and catholyte with 500 mg/L of V(V), 

respectively. The highest power output obtained from the polarization curves was 572.4 ± 18.2 

mW/m2 at the current density of 1094.0 ± 50.6 mA/m2, showing advantage to air cathode MFCs 

only for organics removal [16,21]. At the end of the operating cycle (72 h), the sulfide and COD 

removal efficiencies reached 84.7 ± 2.8% and 54.0 ± 1.9%, respectively, with a CE of 12.4 ± 1.0%, 

demonstrating that MFC was promising for sulfide wastewater treatment [16]. 

In the anode compartment, sulfide removal mainly depended on three effects, including physical, 

chemical actions and biological oxidation. The process related to sulfide removal included 

volatilization, anode electrode adsorption, chemical oxidation and biological oxidation. This study 

majored in the effect of the four processes in sulfide removal through experiment designing. 

The anolyte containing 100 mg/L of sulfide and 800 mg/L of glucose was added to the Control 

1. It was found that the concentration of sulfide declined with time (Fig. 2), due to the generated 
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hydrogen sulfide from sulfide vitalization because of the dissolving and ionizing balance of sulfide 

in the aqueous solution and gas phase (Equ. 1 and 2) [10]. The removal efficiency of sulfide 

approached 9.4% after 72 h due to sulfide volatilization from aqueous solution based on Equ. 1 

and 2.  

S2- + H2O → HS- + OH-                                     （1） 

HS- → H+ + H2S                                          （2） 

Then the fresh anode electrode without microbes and fresh anolyte was added to the Control 2 

and the sulfide concentration gradually decreased with time (Fig. 2). The observed sulfide removal 

efficiency approached 21.8% after 72 h operation. Omitting the volatilization effect mentioned 

above (9.4%), the effect of anode electrode adsorption on sulfide removal approached 12.4%, due 

to the high specific surface area (1050 m2/g) and strong adsorption ability of the electrode material 

[22]. Sulfide might be removed mainly by anode electrode adsorption first, and then chemical and 

biological oxidation.  

After that, fresh electrode and electrolyte were added into the Control 3 and they were operated 

in the closed circuit. 64.3% of sulfide was removed after 72 h, with a relatively obvious decreasing 

trend (Fig. 2), which depended on the co-effects of volatilization, anode electrode adsorption and 

electrochemical oxidation. The electrochemical oxidation was realized because of the natural 

electric potential difference between electrolytes in the anode and cathode compartments, 

respectively, which had been reported before [11] and verified in our previous research [16]. 

According to the above analysis, the contribution of electrochemical oxidation for sulfide removal 

was 42.5%.  

Depending on the above analysis of the other three effects, combined with the gradual removal 

of sulfide (Fig. 2) and the total removal efficiency in the present MFC system (84.7%), the effect 
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of biological oxidation for sulfide removal was 20.4% within the 72 h operation. 

In conclusion, 84.7% of sulfide was removed by the improved system in the total operating 

cycle. The contribution of volatilization was 9.4%, and 12.4% of sulfide was removed through the 

anode electrode adsorption, while 42.5% of sulfide was removed by electrochemical oxidation, 

and 20.4% of sulfide was removed through biological oxidation. The contribution proportion of 

these four effects for sulfide removal was shown in Fig. 3. It could be seen that electrochemical 

oxidation and biological oxidation were the main factors affecting sulfide removal. These two 

effects were combined in MFCs, resulting in a promising sulfide containing wastewater treatment 

method. 

It should be mentioned that the above mechanisms studies were carried out by subtracting the 

contribution of the former effects from the following controls. These effects for sulfide removal 

were also evaluated when they were simultaneously present. In the former test where total removal 

efficiency of 84.7% was obtained during the 72 h operation, the concentration of H2S in the gas 

phase was measured by collecting it with airbag and dissolving it into the water to evaluate the 

volatilization, while the extent of adsorption effect was estimated through measuring the 

concentration of sulfide on the anode by cleaning the electrode after the test. Results showed that 

the contributions of volatilization and adsorption were 8.7% and 10.4% respectively under this 

condition, which were lower than those obtained in the control experiments, with relatively small 

differences. These implied that physical effects were suppressed when oxidation effects worked 

together, again demonstrating that electrochemical and biological oxidations were the main effects 

for sulfide removal in the proposed system.  

In another aspect, sulfide was first oxidized to sulfur electrochemically and then sulfur was 
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further oxidized to sulfate quickly due to the sufficient electrons from electrode during the 

electrochemical oxidation process, while elemental sulfur was the main product for sulfide 

removal when the biological oxidation was performed in MFCs, due to  ([11,16]). Sulfur 

granules could be easily removed through separation methods. Moreover, sulfide is the most toxic 

among all the species of sulfur compounds, thus it is indicated that sulfide containing wastewater 

can be successfully treated along with simultaneous energy recovery based on MFC technology. 

3.2 Identification of the involved microbes 

3.2.1 Acquirement of the microbes information 

Microbes in the anode compartment, especially on the anode surface, play an important role in 

sulfide removal and electricity generation in MFCs, thus they were examined attentively in present 

study. With operation, the electricity output was enhanced through the microbial enrichment, 

suggesting that an active bacterial consortium capable of electricity production from sulfide and 

glucose oxidation was established in the MFCs, thus PCR and 16S rDNA gene sequences analysis 

were performed to obtain the strains information and their effects on sulfide removal and energy 

recovery. In this study, 150 and 120 white colonies with inserted small-subunit ribosomal genes 

were randomly chosen to construct bacterial libraries, respectively. The results of the in situ PCR 

indicated that there were 56 genotypes covered in Sample S (the anaerobic sludge for inoculation) 

and 40 in Sample M (the microbes attached on anode). The 16S rDNA gene sequences of the 

Sample S bacterial library fell into mainly nine phylogenetic divisions (Fig. 4a): Firmicutes 

(occupying 43% of total bacterial clones), Chlorobi (27%), Alphaproteobacteria (1%), 

Betaproteobacteria (1%), Gammaproteobacteria (3%), Deltaproteobacteria (4%), 
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Epsilonproteobacteria (2%), Bacteroidetes (11%) and uncultured (5%). There were ten 

phylogenetic divisions of the Sample M bacterial library, while its colony structure had obviously 

altered over domestication time (Fig. 4b). Firstly, the Firmicutes which comprised the largest 

portion of the Sample S gene library had decreased to 35%. Secondly, the Chlorobi with few 

bacteria reported with electrogenesis activity, the second predominant bacteria in Sample S, had 

disappeared after six months domestication. In the meantime, two kinds of newly electricigens, 

namely Lentisphaerae (10%) and Armatimonadetes (2%) appeared on the anode of the MFCs 

[23,24]. Moreover, with the MFCs’ functions of electricity generation and sulfide removal 

enhancing, plenty of bacteria with electrochemical activity were domesticated, such as the 

Geobacter sulfurreducens and Bacteroides sp. which are classified as the Deltaproteobacteria and 

Bacteroidetes. Besides, microbes involved in sulfide removal also multiplied, namely the 

Rhodobacter sp. and Pseudomonas sp. in Alphaproteobacteria and Gammaproteobacteria. These 

indicated that structures of the bacteria community had evolved as adapting to the new conditions 

during the operation of the MFCs. Some specific species might be responsible for the high 

performance of the MFCs and thus should be further investigated. 

3.2.2 Deduction of the microbes effects 

To know more about how those bacteria played specific roles in generating electricity and 

removing sulfide in the MFCs, a neighbor-joining tree was constructed with these and related 

sequences from the GenBank database (Fig. 5). Some critical species responsible for the electricity 

generation and sulfide removal were discovered, which also exhibited specific characteristics in 

our proposed MFCs. Moreover, most of these bacteria related to electricity generation and sulfide 

removal were not found in Sample S, signaling the great alteration in the abundance of microbial 
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biodiversity due to the domestication of bacteria in the developed MFCs in this study 

Electrochemically activated bacteria were conducive to sustainable electricity generation in 

MFCs. In our system, Bacteroidetes was the most frequently founded in the anode biofilms (11%), 

involving in generating electricity in the MFCs, which had also been indicated in early MFCs 

studies [25,26]. Besides, Pseudomonas sp. which was found in the employed MFCs and belonged 

to Gammaproteobacteria (11%), had also been widely studied in MFCs [27], owing to its fast 

electron collection efficiencies in reaction processes. Moreover, Geobacter species, one of the 

observed Deltaproteobacteria, were often the predominant organisms when extracellular electron 

transfer was an important bioremediation process in various environments. Typically, Geobacter 

sulfurreducens was one of the most widely studied electricigens in MFCs. For it could attach to 

the electrode and remain viable for long periods of time as to completely oxidize organic 

substrates with quantitative transfer of electrons to the electrode. In addition, Lentisphaerae（10%）

and Armatimonadetes (2%) were new electricigens appeared on the anode, demonstrating more 

electrochemically activated bacteria in our system than those reported by Sun et al. [14], probably 

due to the complex substrate (sulfide and glucose) employed in our study. 

Sulfur-oxidizing and sulfate-reducing bacteria were two groups of bacteria participating in the 

global sulfur cycle. Sulfur-oxidizing bacteria could oxidize hydrogen sulfide, sulfur, sulfite, 

thiosulfate, and various polythionates under acidic, neutral or alkaline conditions. After the 

domestication in present research, the abundance of Alphaproteobacteria had increased to 12% of 

the 16S rDNA gene library, owing to the rapid growth of electricigens and sulfide related microbes, 

such as Rhodobacter sp. and Rhodopseudomonas palustris [28,29]. Clone type M-80 shared a high 

gene sequence identity (100%) with Rhodobacter sp.. Rhodobacter was a genus of the 
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Rhodobacteraceae in taxonomy, a widely studied bacterium in MFCs oxidating S2- to S0, thus 

helping to get sulfide removed and elemental sulfur generated in MFCs [30]. Furthermore, the 

observed Gammaproteobacteria comprised several most widely studied groups of bacteria in 

MFCs, such as the Enterobacteriaceae, Vibrionaceae and Pseudomonadaceae. Members of 

Citrobacter sp. (99% similarity with M-5 and M-10) belonged to Chromatium were 

photosynthetic and oxidized hydrogen sulfide instead of water, producing sulfur as excrement, 

which was the desired way to remove sulfide and recover sulfur [31]. The Deltaproteobacteria 

comprised a branch of predominantly aerobic genera, which contained most of the known sulfate 

(Desulfovibrio, Desulfobacter, etc) and sulfur (Desulfuromonas spp.) reducing bacteria alongside 

several others with different physiology. Desulfovibrio sp. (in 100% similarity) was not restricted 

to sulfate reduction and many species of them could also produce sulfide by reduction of sulfite 

and thiosulfate [12]. Besides, M-100 showed as high as 100% similarity value with the 

Thiobacillus sp., obligate autotrophic organisms that required inorganic molecules as an electron 

donor and inorganic carbon as a source. Therefore, it was able to oxidize a variety of sulfur 

compounds, namely sulfide, sulfur, thiosulfate, sulfite, dithionite with oxygen as the electron 

acceptor [32]. As to Epsilonproteobacteria in our study, they mainly contained Sulfurospirillum 

cavolei and Sulfurospirillum deleyianum, which were able to utilize elemental sulfur, thiosulfate, 

sulfite, dithionite and etc as electron acceptors with organics as the electron donors as well as the 

energy and carbon source [33,34].  
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In another aspect, the Firmicutes group accounted for the largest portion (26%) of the Sample 

M 16S rDNA gene libarary, mainly due to its domestication of the inoculated anaerobic sludge 

(Sample S). Many Firmicutes produce endospores, which were resistant to desiccation and help 
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them survive in various conditions. Meanwhile, those who could not adapt in the MFCs died out 

finally, and others had mutated to ones with electricigensis activity to involve in electricity 

generations. Meanwhile, this group was not observed in Sun et al. [14], which employed sulfide as 

the sole electron donor. Firmicutes took the greatest proportion in Sample S due to high 

concentration of organic matters in anaerobic sludge. In present MFCs, glucose was also added, 

thus this group still appeared. Specially, the sequence type M-2 showed 100% similarity value 

with Clostridium sp., which was able to reduce sulfate to lower valencies [35].  

4 Conclusions 

It was found that electrochemical oxidation and biological oxidation were the main effects for 

sulfide removal in MFCs with sulfide and glucose as the complex substrate. Community analysis 

showed a great diversity of bacteria on the anode surface, including the exoelectrogenic bacteria 

and sulfur-related bacteria, responsible for the effective electricity generation and sulfide oxidation 

in the MFCs. Moreover, the exoelectrogenic bacteria and sulfur-related bacteria were present in 

greater abundance than those in the MFCs fed with only sulfide. The results were helpful to reveal 

the interactions between the pollutants and microbes in the MFCs. 
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Figure 1. Voltage outputs of the MFCs with 1000 Ω external resistance during four operating 

cycles (arrows indicating the replacement of the electrolytes). 

Figure 2. Variations of sulfide concentration with time in proposed MFCs during the four different 

processes. 

Figure 3. Proportions of different effects for sulfide removal in the proposed MFCs during the 72 

h operation. 

Figure 4. Proportions of each phylotype in Sample S (a) and Sample M (b) clone library. 

Figure 5. Phylogenetic tree of bacteria in Sample S libraries based on 16S rDNA sequences data 

(Numbers in parentheses are the GenBank accession numbers; The numbers at the nodes indicate 

the levels of bootstrap support based on neighbor-joining analysis of 1000 re-sampled datasets). 
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