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Time-dependent Hartree-Fock-Bogoliubov calculations using a Lagrange mesh
with the Gogny interaction
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A new numerical method of calculating the Hartree-Fock-Bogoliubov (HFB) and time-dependent HFB
(TDHFB) with the Gogny interaction is proposed. The three-dimensional harmonic-oscillator (3DHO) basis
functions are replaced by one-dimensional spatial grid points of Lagrange mesh plus two-dimensional
harmonic-oscillator basis functions in the perpendicular plane to the direction of the spatial grid points [Lagrange
mesh and harmonic oscillator (LMHO)]. By using the LMHO, the calculations of the HFB and TDHFB are
carried out in the typical nuclei of 20O and 34Mg as an illustration of the feasibility of the TDHFB formulation
with the LMHO. The strength functions of the quadrupole vibrations (K = 0) are obtained and are compared
with the ones calculated with the 3DHO.
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I. INTRODUCTION

The nuclear mean-field theories have been widely used to
investigate the static as well as the dynamical properties of
nuclei. Among the mean-field methods, the time-dependent
Hartree-Fock (TDHF) method has been playing the central
role to investigate and to simulate the nuclear dynamical
phenomena from the small-amplitude collective motions, such
as giant resonances to the large-amplitude motions, such as
fusion-fission processes [1–8].

Since the importance of the pairing correlations in the nuclei
is well known, several groups have proposed the practical
numerical methods of including the pairing effects to extend
the TDHF to the time-dependent Hartree-Fock Bogoliubov
(TDHFB) method [9–13]. In the numerical calculations of the
TDHF and TDHFB, the Skyrme interactions [14] have mainly
been used as the effective interactions in nuclei, and the wave
functions are expressed on the spatial grid points (mesh). The
spatial mesh is a useful basic tool to describe the particle
continuum states properly, which is an advantage in the study
of the dynamical role of the pairing correlations which couple
the weakly bound states and positive energy states around the
Fermi energy.

In the case of the Gogny interaction [15,16], the practical
cutoff of the energy range of the physical space is introduced
naturally from the two-body interactions with the Gaussian
functions. The harmonic-oscillator eigenfunctions are used
as the basis functions to express the wave functions and
matrix elements in the calculations with the Gogny interaction.
The elongated nuclear shapes which appear in the fission
process were described by adjusting the harmonic-oscillator
parameter, e.g., ωz and by introducing large spaces of basis
functions [17]. A time-dependent method was proposed to
describe the fissioning nucleus as well as the mass distributions
in the fission fragments where the Hartree-Fock-Bogoliubov
(HFB) solutions of the Gogny interaction with the constraints
of the nuclear shapes were combined with the generator
coordinate method [18].
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The possibility of the mean-field calculation with the Gogny
interaction by using the spatial grid points was proposed by
Matsuse [19]. Taking account of the advantageous points of the
spatial grid points in the study of the pairing correlations in the
unstable nuclei, it would be worthwhile to extend Matsuse’s
idea of calculating the mean fields with the Gogny interaction
on the spatial grid points to the realistic calculations of the
Hartree-Fock (HF), HFB, TDHF, and TDHFB methods.

In this article, we propose a formulation which is an
extension of the Gogny-TDHFB formulation with the ba-
sis functions of the three-dimensional harmonic-oscillator
(3DHO) eigenfunctions [13]. In the new formulation, the basis
functions along one of the three axes (z axis) are replaced
by the spatial grid points, which make use of the Lagrange
mesh (LM) [20]. This formulation is the first step toward the
Gogny-TDHFB calculations on the three-dimensional spatial
grid points with the aim at studying the dynamical role of the
pairing correlations in the large-amplitude collective motions
of the weakly bound nuclei. The formulation is expected to
be applied to the other types of effective interactions with the
finite ranges [21]. As the demonstration of the feasibility of
the new formulation, we report the results of the HFB and
TDHFB calculations of the linear responses of the typical
nuclei by using the new formulation.

This article consists of the following sections: In Sec. II, the
new formulation of the TDHFB with the LM is presented. In
Sec. III, the results of the HFB calculations of the oxygen 20O
and magnesium 34Mg are presented. In Sec. IV, the TDHFB
with the LM is applied to the linear responses of the quadrupole
(K = 0) vibrations in 20O and 34Mg in which the pairing
correlations are active among the neutrons. Section V is for
the summary and concluding remarks.

II. TDHFB EQUATIONS WITH THE LAGRANGE MESH

A. Basic equations

The nuclear Hamiltonian is assumed to take the form

H =
∑
αβ

TαβC†
αCβ + 1

4

∑
αβγ δ

Vαβγ δC
†
αC

†
βCδCγ , (1)
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where Tαβ is the kinetic-energy matrix element and Vαβγ δ

are antisymmetrized two-body matrix elements of the Gogny
interaction. The operator C†

α(Cα) is a nucleon creation (anni-
hilation) operator of a state labeled with α.

The Bogoliubov transformation from the particle operators
C†

α and Cα into the quasiparticles β
†
k and βk is

β
†
k =

∑
α

(UαkC
†
α + VαkCα), (2)

βk =
∑

α

(U ∗
αkCα + V ∗

αkC
†
α). (3)

In the TDHFB method, we write the equations of motion
for the matrices U and V in the Bogoliubov transformation (2)
and (3) in the form [9]

ih̄
∂

∂t

(
U (t)

V (t)

)
= H

(
U (t)

V (t)

)
, (4)

with the HFB Hamiltonian H,

H =
(

h �

−�∗ −h∗

)
. (5)

The mean-field Hamiltonian h and the pairing mean field
� are introduced through the relations [14],

hαβ = Tαβ + 	αβ, (6)

	αβ =
∑
γ δ

Vαγβδρδγ , �αβ = 1

2

∑
Vαβγ δκγ δ, (7)

where ρ and κ are the normal density matrix and pairing tensor,
respectively,

ραβ = (V ∗V T )αβ, καβ = (V ∗UT )αβ. (8)

B. Matrix elements with the Lagrange mesh

In Ref. [13], we used the 3DHO as the numerical basis
functions. The basic idea in the present formulation is to
replace the harmonic-oscillator eigenfunctions with the spatial
grid points, i.e., the LM [20] in one of the directions (z axis)
of the Cartesian coordinates.

In the present article, we make use of the LM with a set of
spatial grid points which are located with an equal distance s.
The basis functions fl(z) of the LM are [20]

fl(z) = 1

N

sin[π (z − zl)/s]

sin[π (z − zl)/L]
, (9)

with L = Ns and N is the total number of the grid points on
the z axis. The basis functions fl(z) and the grid points zl are
labeled by a set of index l (l = 1, . . . , N). We have simple
properties of the basis functions fl(z), such as fk(zk′) = δkk′ ,
the orthogonality relation [20],∫ L/2

−L/2
fl(z)fl′(z)dz = sδll′ , (10)

and quadrature formula,∫ L/2

−L/2
fl(z)W (z)fl′(z)dz = sW (zl)δll′ (11)

for a function W (z).

In the calculation of the Gaussian part VG(αβγ δ) of the
two-body matrix elements Vαβγ δ ,

VG(αβγ δ) =
∫ ∫


α(r1)∗
β(r2)∗ exp

(
− 1

μ2
(r1 − r2)2

)
×
γ (r1)
δ(r2)dr1dr2, (12)

with respect to the 3DHO basis functions 
α(r),


α(r) = φnx (α)(x)φny (α)(y)φnz(α)(z), (13)

we take into account the separable property of the Gaussian
function with a range parameter μ into x, y, and z directions,

VG(αβγ δ) =
∏

k=x,y,z

V
(k)
G (nk(α), nk(β), nk(γ ), nk(δ)), (14)

V
(k)
G (nk(α), nk(β), nk(γ ), nk(δ))

=
∫ ∫

φnk(α)(rk1)∗φnk (β)(rk2)∗

× exp

(
− 1

μ2
(rk1 − rk2)2

)
×φnk (γ )(rk1)φnk(δ)(rk2)drk1drk2, (15)

where notations rx ≡ x, ry ≡ y, and rz ≡ z are used. The
notations α, β, γ , and δ are the labels of the 3DHO basis
functions 
α(r), which is a product of the one-dimensional
harmonic-oscillator eigenfunctions φnk(α)(x). The notation
nk(α) denotes the number of quanta in the direction of
k (k = x, y, z) of the basis state α. We have neglected the
spin-isospin degrees of freedom in Eq. (14) for simplicity.

In the representation of the matrix elements where the basis
functions {fl(z); l = 1, . . . , N} of the LM are introduced with
respect to the direction of the z axis, we replace the one-
dimensional harmonic-oscillator eigenfunction φnz(α)(z) with
the basis function fl(z) and get a new set of the basis functions
[Lagrange mesh and harmonic-oscillator (LMHO) basis],


L
αL

(r) = φnx (αL)(x)φny (αL)(y)fl(αL)(z), (16)

where αL is an index of the set of the labels {nx(αL),
ny(αL), l(αL)}. The indices βL, γL, and δL are defined in a
similar way.

Then, the matrix elements of the Gaussian part in Eq. (14)
are changed into

VGL(αLβLγLδL)

=
{ ∏

k=x,y

V
(k)
G (nk(αL), nk(βL), nk(γL), nk(δL))

}

×V L
G (l(αL), l(βL), l(γL), l(δL)) , (17)

where the quantity V L
G (l(αL), l(βL), l(γL), l(δL)) is the matrix

element of the Gaussian function in the direction of the z axis,

V L
G (l(αL), l(βL), l(γL), l(δL))

=
∫ ∫

fl(αL)(z1)∗fl(βL)(z2)∗ exp

(
− 1

μ2
(z1 − z2)2

)
× fl(γL)(z1)fl(δL)(z2)dz1dz2

= s2 exp

(
− 1

μ2
(zl(αL) − zl(βL))

2

)
δl(αL),l(γL)δl(βL),l(δL). (18)

In Eq. (18), the quadrature (11) is used.
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The matrix elements of the terms that include the δ function
δ(r1 − r2) instead of the Gaussian function are evaluated in a
similar way as in the case of the Gaussian function.

In evaluating the matrix elements of the Coulomb poten-
tial VC(r1 − r2) = 1

|r1−r2| , we followed the method given in
Ref. [22] where VC(r1 − r2) is transformed into an integral
form

1

|r1 − r2| = 2√
π

∫ ∞

0

dμ

μ2
exp

(
− 1

μ2
(r1 − r2)2

)
, (19)

with the Gaussian function exp(− 1
μ2 (r1 − r2)2). We make

use of the matrix elements in (17) in calculating the matrix
elements of the Coulomb part,

VCL(αLβLγLδL) =
∫ ∫


L
αL

(r1)∗
L
βL

(r2)∗
1

|r1 − r2|
×
L

γL
(r1)
L

δL
(r2)dr1dr2

= 2√
π

∫ ∞

0

dμ

μ2
VGL(αLβLγLδL; μ), (20)

where the dependence of the matrix elements
VGL(αLβLγLδL; μ) on the integral variable μ is explicitly
expressed. By a variable transformation, the integral (20)
with an infinite range of integration is changed into another
integral form with a finite range of integration [0, 1]. Then,
the integral is calculated by applying the Gauss-Legendre
quadrature formula [23].

C. HFB equations

By using the matrix elements with the LMHO in the
previous subsection, we make the mean-field Hamiltonian
hαLβL

and pairing mean field �αLβL
. The HFB equations [14],(

h − λ �

−�∗ −h∗ + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
(21)

are solved to get the columns Uk = (UαLk) and Vk = (VαLk)
together with the eigenvalues Ek for the quasiparticle orbitals
k. Here, λ is the chemical potential to fix the number of protons
or neutrons.

Starting from an initial guess of the set of the columns Uk

and Vk , i.e., the Bogoliubov transformation matrices U and
V , we follow the gradient method with the constraints of the
particle numbers [14]. The total number of the quasiparticles
which are taken into account as the physical space is restricted
to be of the size in which the iterations of the gradient method
in the HFB as well as the iterations of the time integration in
the TDHFB are carried out within a practical CPU time.

D. TDHFB equations

By taking account of the unitarity property ww† = w†w =
1 of the matrix w = ( U V ∗

V U∗ ) [14], we rewrite the equations of
motion of the matrices U and V in Eq. (4),

ih̄
∂

∂t
Uαk =

∑
β

(hαβUβk + �αβVβk), (22)

ih̄
∂

∂t
Vαk = −

∑
β

(�∗
αβUβk + h∗

αβVβk), (23)

into the following set of equations:

i
∂

∂t
Uαk =

∑
l

{UαlH11(lk) − V ∗
αlH

∗
20(lk)}, (24)

i
∂

∂t
V ∗

αk =
∑

l

{UαlH20(lk) − V ∗
αlH

∗
11(lk)}, (25)

where H11 and H20 are defined as [14]

H11(kl) =
∑
αβ

U ∗
αk(hαβUβl + �αβVβl)

−
∑
αβ

V ∗
αk(h∗

αβVβl + �∗
αβUβl), (26)

H20(kl) =
∑
αβ

U ∗
αk(hαβV ∗

βl + �αβU ∗
βl)

−
∑
αβ

V ∗
αk(h∗

αβU ∗
βl + �∗

αβV ∗
βl). (27)

Here, the labels α and β in Eqs. (24)–(27) are taken as the
labels αL and βL when the LMHO is used.

The integration of the set of Eqs. (24) and (25) is carried out
in a similar way as used in the integration of Eqs. (22) and (23)
[13]. The time is discretized into t = n�t (n = 0, 1, 2, . . .)
with a time step �t . We get the (n + 1)th solution from the
nth one by the following relations:

(
U V ∗ )(n+1) = (

U V ∗ )(n)
exp

(
−i

�t

h̄
H̄HFB

)
, (28)

where the intermediate Hamiltonian H̄HFB is given by

H̄HFB =
(

H̄11 H̄20

−H̄ ∗
20 −H̄ ∗

11

)
, (29)

and the matrices H̄11 and H̄20 are constructed by using
Eqs. (26) and (27) in the procedure of the predictor-corrector
method [13].

The former set of Eqs. (22) and (23) is equivalent to the
latter [(24) and (25)] as long as the unitarity property ww† =
w†w = 1 holds true. In the practical numerical calculations,
however, we take a restricted number of quasiparticle orbitals
k. We get more favorable results for the conservation of the
energy and particle numbers by using the set of Eqs. (24) and
(25) than the set of Eqs. (22) and (23) in the case of the TDHFB
with the LMHO.

III. HARTREE-FOCK-BOGOLIUBOV CALCULATIONS
WITH THE LMHO

The HFB formulation with the LMHO presented in the
previous section was applied to 20O in which the pairing
correlation is active on the neutron side and the protons are
in the normal state. The parameter set D1S of the Gogny
interaction was used, and the parameters of the harmonic-
oscillator basis functions were h̄ωx = h̄ωy = 14.6 MeV.

In the calculations in this and the next section, the space of
the harmonic-oscillator basis functions with respect to the x
and y directions was taken to be nx + ny � 4. The space with
respect to the z axis was −10 fm � z � 10 fm.
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FIG. 1. HFB energy of oxygen 20O with respect to mesh size s.
The broken line is the HFB energy calculated with the 3DHO. Crosses
(×) denote the mesh sizes s = 0.67, 0.71, 0.77, 0.83, 0.91, and 1.0 fm
at which the HFB ground states are calculated.

The center-of-mass corrections were taken into account
only in the mean-field Hamiltonian, and the pairing potentials
were made from the Gaussian and LS parts of the Gogny
interaction.

Before starting the HFB iterations, we solved the BCS
equations, which were expressed by using the 3DHO ba-
sis functions. The isotropic harmonic-oscillator parameters
h̄ωx = h̄ωy = h̄ωz = 14.6 MeV were used. Then, the uv coef-
ficients of the BCS solution were mapped on the Bogoliubov
transformation matrices U0 and V0 expressed with the LMHO
in (16). By starting from the matrices U0 and V0 as the initial
trial matrices, the gradient method with the nucleon number
constraints [14] was used to solve the HFB equations.

In Fig. 1, we show the total energies of the HFB solutions
with respect to the mesh sizes s = 0.67, 0.71, 0.77, 0.83, 0.91,
and 1.0 fm. In the figure, the HFB energy changes smoothly
when the mesh size s decreases. The HFB energy with s =
0.67 fm is −151.55 MeV, which is 0.11 MeV lower than the
HFB energy calculated with the 3DHO.

In Fig. 2, the variations in the energies of the components
(kinetic-energy part, Gaussian mean-field part, LS part,
density-dependent part, Coulomb part, and Gaussian pairing
part) in the total energy are shown with respect to the mesh
size s. The variations in the energies are measured from the
values at s = 1.0 fm.

From the left panel in Fig. 2, we see that the total energy is
mainly determined by the kinetic energy, Gaussian mean-field
energy, and density-dependent part energy. The dependence
of the kinetic energy on the mesh size s is rather moderate.
Then, the tendency for the change in the density-dependent
part energy is proportional to that for the Gaussian mean-field
energy with an opposite sign: As the mesh size s decreases
from s = 1.0 to 0.67 fm, the Gaussian part energy increases
by 18 MeV, whereas, the energy of the density-dependent part
decreases by 10 MeV. The changes in the kinetic energies
are small compared with the Gaussian mean-field part and
density-dependent part, and the decrease in the total kinetic
energy is around 3 MeV when the mesh size s is changed from
1.0 to 0.67 fm. The change in the Gaussian pairing part is
within 1 MeV, and the changes in the energies of the LS part
and Coulomb part are 0.5 and 0.1 MeV, respectively.
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FIG. 2. Variations in the contributions of the components in
the total energy of 20O with respect to the mesh size s. The
proton (neutron) kinetic energy E

(p)
kin (E(n)

kin), proton (neutron) Gaussian
mean-field energy E

(p)
G (E(n)

G ), density-dependent part energy Edd, LS

part energy ELS , Coulomb mean-field energy ECl, and neutron pairing
energy E(n)

pair are displayed. Every quantity is measured from the value
at s = 1.0 fm.

In Table I, several quantities (the HFB energy, neutron
pairing energy, chemical potentials, and expectation values
of the squared axis lengths) of the HFB ground state of 20O
calculated with the LMHO at s = 0.67 fm are compared with
those calculated with the 3DHO. The difference between the
HFB energy with the LMHO and the one with the 3DHO
is 0.11 MeV. The magnitude of the neutron pairing energy
is larger by 0.06 MeV than the one with the 3DHO. The
differences in the chemical potentials are within 0.01 MeV on
both the proton and the neutron sides. The shape of the density
distribution with the LMHO is not exactly spherical but is
slightly oblate with the deformation parameter β = −0.0002.

We took 34Mg as an example of the ground state of the
deformed nucleus with nonzero pairing energy. The parameters
of the harmonic-oscillator basis functions with respect to the x
and y axes were h̄ωx = h̄ωy = 12.55 MeV. The BCS solution
was made by using the 3DHO with the parameters h̄ωx =
h̄ωy = 12.55 and h̄ωz = 9.65 MeV.

In Fig. 3, we show the total energies of the HFB solutions
with respect to the mesh sizes s = 0.63, 0.67, 0.71, 0.77, 0.83,

TABLE I. HFB ground-state quantities of 20O calculated by using
the LMHO and 3DHO. HFB energy (Etotal), neutron pairing energy
[Epair(n)], chemical potentials [λ(p) and λ(n)], and expectation values
of x2 (〈x2〉), y2 (〈y2〉), and z2 (〈z2〉) are displayed. The mesh size s

is s = 0.67 fm.

LMHO 3DHO

Etotal (MeV) −151.56 −151.45
Epair(n) (MeV) −6.84 −6.78
λ(p) (MeV) −15.24 −15.23
λ(n) (MeV) −5.35 −5.35
〈x2〉(= 〈y2〉) (fm2) 53.22 53.18
〈z2〉 (fm2) 53.20 53.18
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FIG. 3. HFB energy of magnesium 34Mg with respect to mesh
size s. The broken line is the HFB energy calculated with the 3DHO.
Crosses (×) denote the mesh sizes s = 0.63, 0.67, 0.71, 0.77, 0.83,
0.91, and 1.0 fm at which the HFB ground states are calculated.

0.91, and 1.0 fm. When the mesh size s is shifted to the smaller
values, the HFB energy comes to a maximum value around s =
0.8 fm. Then, the HFB energy changes smoothly with respect
to the mesh size s, which is smaller than 0.77 fm. We note
that there are cases of the mean-field calculations with the LM
in which the dependence of the calculated mean-field energy
on the mesh size is not necessarily monotonous but is like the
damped oscillation about a converged value [24]. Since the
dependence of the HFB energy on the mesh size is nonlinear
and complicated, we need further studies to understand the
convergence property with respect to the mesh size.

In Table II, the same quantities as in Table I are shown in
the case with s = 0.67 fm. The HFB energy with the LMHO
is deeper by 0.34 MeV than that with the 3DHO, and the
magnitude of the neutron pairing energy is larger by 0.05 MeV.
The proton chemical potential is deeper by 0.1 MeV than the
one with the 3DHO, whereas, the neutron chemical potentials
coincide. The deformation of the density distribution with the
LMHO is β = 0.435, which is a little smaller than the value
β = 0.438 calculated with the 3DHO.

IV. LINEAR-RESPONSE CALCULATIONS
WITH THE LMHO

We applied the TDHFB equations (24) and (25) with the
LMHO to the quadrupole (K = 0) vibrations of 20O and 34Mg
of which the properties of the HFB ground states were given in
Sec. III. The parameters used in the TDHFB calculations were
as follows: mesh size s = 0.91 fm, time step c �t = 0.3 fm
with light speed c, and the number of lattice points N = 23.
The number of the quasiparticle orbitals was kmax = 70, which

TABLE II. The same as Table I but for 34Mg.

LMHO 3DHO

Etotal (MeV) −250.15 −249.81
Epair(n) (MeV) −4.65 −4.60
λ(p) (MeV) −19.88 −19.78
λ(n) (MeV) −2.67 −2.67
〈x2〉(= 〈y2〉) (fm2) 99.33 99.06
〈z2〉 (fm2) 185.23 185.64
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FIG. 4. Isoscalar quadrupole (K = 0) vibrations of (a) 20O and
(b) 34Mg by using the TDHFB with the LMHO. In each of the panels,
the values of Q20(t) are measured from the initial value Q20(t = 0).

was just the number of the BCS orbitals used as the input
of the HFB equations with the 3DHO in the space of the
harmonic-oscillator quantum numbers nx + ny + nz � 4.
The initial condition was the impulse type with the strength
parameter ε = 0.001 [13], which corresponds to the excitation
energy of 20 keV (76 keV) in 20O (34Mg), respectively.

In Fig. 4, the variations in the quadrupole moment Q20 with
respect to the time are displayed. In the figure, the quadrupole
moment Q20 at every time step is measured from the initial
value Q20(t = 0) in each case of 20O and 34Mg.

In the course of the time integration of the TDHFB
equations, the deviation in the TDHFB energy ETDHFB from the
initial value E0 in 20O is displayed in panel (a) of Fig. 5. After
integration up to ct = 1500 fm, the difference in the TDHFB
energy from the initial value is on the order of 0.2 keV. Likely,
the deviation in the expectation value of the neutron number
Nneut from the accurate value 12 with respect to the time is

~
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FIG. 5. (a) Deviation Ẽ = ETDHFB − E0 of the TDHFB energy
ETDHFB from the initial value E0 and (b) the neutron number Ñneut =
|Nneut − 12| from the accurate value 12 with respect to the time in the
isoscalar quadrupole vibrations of 20O in Fig. 4.
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FIG. 6. Strength functions S(E) of the isoscalar quadrupole
(K = 0) vibrations of (a) 20O and (b) 34Mg in Fig. 4 with respect
to the excitation energy E. The solid (broken) curves are the results
with the LMHO (3DHO), respectively. Artificial widths are 1.0 MeV
in both panels (a) and (b).

displayed in panel (b) of Fig. 5. The expectation value of the
neutron number is kept within the order of 10−5.

In the present calculations, the number of iterations of the
predictor-corrector method in the course of the time integration
is fixed at two. More accuracy in the conservation of the
neutron number and the TDHFB energy is expected when
the number of iterations of the predictor-corrector method is
increased, although more CPU time is needed.

The strength functions of the quadrupole vibrations in
Fig. 4 are shown in Fig. 6 together with the strength functions
calculated with the 3DHO.

In the case of 20O, the positions of the peaks of the strength
function with the LMHO and those with the 3DHO are alike.
We note that the position of the low-energy peak around
2.5 MeV of the strength function with the LMHO is located
on the larger energy side by 0.4 MeV of the strength function
with the 3DHO. Likely, in the case of 34Mg, the shape of
the strength function with the LMHO is similar to the one
with the 3DHO. The position of the low-energy peak around
2 MeV of the strength function with the LMHO is 2.3 MeV,
which corresponds to the one with the 3DHO at 1.9 MeV. The
position of the high-energy peak around 18 MeV of the strength
function with the LMHO is 18.1 MeV, which corresponds to
the one with the 3DHO at 18.3 MeV.

The detailed features of the strength functions are closely
related with the ground-state properties of the nuclei. In order
to obtain more accurate strength functions with the LMHO,
we need further studies of the optimization of the parameters
used in the LMHO, i.e., the harmonic-oscillator frequencies
ωx and ωy , the size N⊥ of the space of the harmonic-oscillator
quantum numbers nx + ny � N⊥, the maximum number kmax

of the quasiparticles, the mesh size s, and the total number of
the lattice points N .

V. SUMMARY AND CONCLUDING REMARKS

In this article, we proposed a formulation in which the
spatial grid points of the Lagrange mesh was introduced

instead of the harmonic-oscillator basis functions with the aim
at studying the role of the pairing correlations in the collective
motions in the unstable nuclei with the Gogny interaction.

As the demonstration of the feasibility of the new formu-
lation, we carried out: (1) the HFB calculations of the ground
states of a spherical nucleus 20O and an axially deformed
nucleus 34Mg and (2) the TDHFB calculations of the linear
responses [quadrupole (K = 0) type] of 20O and 34Mg.

The calculations were carried out under a restricted condi-
tion of the parameters: The spatial grids were set in the section
of z from −10 to 10 fm. The space of the harmonic-oscillator
basis functions were nx + ny + nz � 4, and the frequency
parameters ωx, ωy , and ωz were not the optimized ones.

We showed the dependence of the HFB ground-state
energies on the mesh size s. The HFB energies were compara-
tively stable with respect to the change in the mesh size s
when it was smaller than s ∼ 0.8 fm. Among the components
of the Gogny interaction, the changes in the energies of the
Gaussian mean-field part and the density-dependent part were
the largest in the section from s = 0.67 to 1.0 fm in 20O.
The energies of the other components were rather moderate
in the dependence on s. The chemical potentials and pairing
energies in the HFB ground states with the LMHO were
similar to those calculated with the 3DHO when the mesh
size s was smaller than s ∼ 0.8 fm.

In the TDHFB calculations, the deviations in the TDHFB
energies from the initial values were around 1% of the initial
excitation energies after 5000 steps of iterations. The devia-
tions in the neutron number were on the order of 10−5. The
shapes of the strength functions were similar to those calcu-
lated with the 3DHO as a whole, although there were some dif-
ferences on a small scale. The optimization of the parameters,
which were used in the present calculations, is necessary for
us to study the detailed properties of the HFB ground states as
well as the excited states through the TDHFB with the LMHO.

In the calculations of the HFB and TDHFB, a large part
of the CPU time was used in making the matrix elements of
the mean-field Hamiltonian by taking the traces of the two-
body matrix elements with the density matrices and pairing
tensors. The typical CPU time of one iteration in the TDHFB
calculation of the linear response in 34Mg (which includes one
predictor loop plus two corrector loops) in the previous section
was 170 s with 512 processors on a HITACHI SR16000M1.

The present formulation with the Gogny interaction in
which the basis functions in the z direction are the spatial grid
points of the Lagrange mesh and the harmonic-oscillator basis
functions are used in the x and y directions will be applied to
the head-on collisions of the nuclei whose ground states are
described by the HFB. Furthermore, the formulation will be
extended into the one with the 3D spatial mesh. To realize the
Gogny-TDHFB on the 3D spatial mesh and to apply it to
the fusion-fission processes, it is essentially important to cut
the CPU time. Improvements of the formulation and numerical
methods into more efficient ones are now in progress.
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[16] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[17] W. Younes and D. Gogny, Phys. Rev. C 80, 054313 (2009).
[18] H. Goutte, J. F. Berger, P. Casoli, and D. Gogny, Phys. Rev. C

71, 024316 (2005).
[19] T. Matsuse, RIKEN Rev. 19, 18 (1998).
[20] D. Baye and P. Heenen, J. Phys. A 19, 2041 (1986).
[21] H. Nakada, Phys. Rev. C 68, 014316 (2003).
[22] M. Girod and B. Grammaticos, Phys. Rev. C 27, 2317 (1983).
[23] J. Dobaczewski et al., Comput. Phys. Commun. 180, 2361

(2009).
[24] H. Imagawa and Y. Hashimoto, Phys. Rev. C 67, 037302

(2003).

034307-7

http://dx.doi.org/10.1103/PhysRevC.13.1226
http://dx.doi.org/10.1103/PhysRevC.13.1226
http://dx.doi.org/10.1103/RevModPhys.54.913
http://dx.doi.org/10.1103/PhysRevC.31.1289
http://dx.doi.org/10.1103/PhysRevC.31.1289
http://dx.doi.org/10.1103/PhysRevC.32.172
http://dx.doi.org/10.1103/PhysRevC.71.024301
http://dx.doi.org/10.1103/PhysRevC.74.021601
http://dx.doi.org/10.1103/PhysRevC.74.021601
http://dx.doi.org/10.1140/epja/i2009-10851-1
http://dx.doi.org/10.1140/epja/i2009-10851-1
http://dx.doi.org/10.1103/PhysRevC.81.044613
http://arXiv.org/abs/arXiv:0707.3083
http://dx.doi.org/10.1103/PhysRevC.78.044318
http://dx.doi.org/10.1103/PhysRevC.78.044318
http://dx.doi.org/10.1103/PhysRevC.82.034306
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://dx.doi.org/10.1140/epja/i2012-12055-0
http://dx.doi.org/10.1016/0375-9474(75)90407-8
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.80.054313
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1088/0305-4470/19/11/013
http://dx.doi.org/10.1103/PhysRevC.68.014316
http://dx.doi.org/10.1103/PhysRevC.27.2317
http://dx.doi.org/10.1016/j.cpc.2009.08.009
http://dx.doi.org/10.1016/j.cpc.2009.08.009
http://dx.doi.org/10.1103/PhysRevC.67.037302
http://dx.doi.org/10.1103/PhysRevC.67.037302



