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Introduction

Picard-Vessiot Theory is Galois Theory for linear differential equations;
see van der Put and Singer [12] (2003). There were recognized some analo-
gous theories in which a single differential operator is replaced by a family of
such operators or iterative differential operators, for example. Takeuchi [18]
(1989) reconstructed and unified those theories by characteristic-free, Hopf
algebraic approach. Amano and Masuoka [2] (2005) extended Takeuchi’s
theory, to absorb as well Picard-Vessiot Theory for difference equations such
as developed by van der Put and Singer [11] (1997); see also the expository
article [3] (2009) based on [18, 2]. Such a unification of differential and dif-
ference Picard-Vessiot Theories was done earlier by André [4] (2001) from
the different standpoint of non-commutative geometry. In the framework of
[2], (i) differential or difference operators, (ii) differential fields or difference
total rings, (iii) differential or difference equations, and (iv) linear algebraic
groups of differential or difference automorphisms, all in the classical situa-
tion are replaced by (i) actions by an appropriately chosen, cocommutative
pointed Hopf algebra D, (ii) artinian simple or AS D-module algebras R,
(iii) modules over the smash-product algebra R#D, and (iv) affine group
schemes (or equivalently, commutative Hopf algebras) of D-module algebra
automorphisms, respectively.

One feature of the Hopf-algebraic approach is first to define Picard-Vessiot
extensions abstractly, and then to characterize them as minimal splitting
fields or algebras of equations (or of module objects); recall that such fields
or algebras are chosen as the definition of Picard-Vessiot extensions by the
classical approach. As a benefit, the Galois correspondence turns to be

1



2 A. MASUOKA AND M. YANAGAWA

just “a dictionary between Hopf ideals and intermediate artinian simple D-
modules algebras,” as was expressed by Bertrand [5] (2011).

Hardouin [6] (2010) developed Picard-Vessiot Theory for iterative q-difference
operators, using not results, but ideas from Matzat and van der Put [9]
(2003), who developed, probably without knowing [18], the theory for it-
erative differential operators. In the introduction of the paper, Hardouin
says “This analogy between iterative differential Galois theory and iterative
difference Galois theory could perhaps be explained in a more theoretical
way, as it is done in the paper of Y. André [4] for classical theories.” The
objective of this paper is to realize this suggestion. In fact, we will show
that the main results of [6], which will be reproduced as Theorems 4.2–4.4,
follow from results of [2]; this is formulated as Claim 4.1. Suppose that R is
a commutative ring which includes the field C(t) of rational functions over a
field C. Given an element q ∈ C\{0, 1} and an automorphism σq on R which
extends the q-difference operator f(t) 7→ f(qt) on C(t), the ring R is called
an iterative q-difference ring if it is given an iterative q-difference operator,

i.e., an ∞-sequence δ
(0)
R = idR, δ

(1)
R , δ

(2)
R , . . . of operators which satisfy some

conditions that include

δ
(k)
R (xy) =

∑
i+j=k

σi
q ◦ δ

(j)
R (x) δ

(i)
R (y), x, y ∈ R.

This last condition is obviously equivalent to

δ
(k)
R (xy) =

∑
i+j=k

δ
(i)
R (x)σi

q ◦ δ
(j)
R (y), x, y ∈ R.

An essential point for us is to refine this equivalence into the cocommutativ-
ity of a certain ×R-bialgebra, say H; recall that the notion of ×R-bialgebras
was defined by Sweedler [17] (1974), as a generalization of bialgebras. The
module objects, i.e., iterative q-difference modules, over R are identified with
H-modules. Consequently, operations, such as tensor products and taking
duals, on iterative q-difference modules can be well controlled by structures,
such as the coproduct and an analogue of antipodes, on H. As a final step
of proving Claim 4.1 in characteristic zero, H-modules are identified with
R#D-modules for an appropriate cocommutative pointed Hopf algebra D.
In positive characteristic, the H-modules are embedded into the category of
R#D-modules for a distinct D.

The contents of this paper are as follows. Section 1 reproduces some
results from [2] that will be needed later, partially in reformulated form.
Section 2 is devoted to preliminaries on ×R-bialgebras. In Section 3, we as-
sociate to each iterative q-difference ring R, a cocommutative ×R-bialgebra
H such as explained above; see Theorem 3.15. This H is naturally char-
acterized in the endomorphism algebra End(R); see Proposition 3.19. In
Section 4, we prove the desired Claim 4.1. The argument will show that
some additional results on AS D-module algebras, such as given in [2, 1],
as well can apply to iterative q-difference rings in a generalized (and hope-
fully, more natural) situation; see Section 4.3. The final Section 5 gives the
remark that the results on iterative q-difference rings shown in Section 4
are directly generalized to rings given q-skew iterative σ-derivations such as
Heiderich [7] (2010) defines.
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As a remarkable new direction of relevant research, Saito and Umemura
[14] (preprint, 2012) explore a quantized world associated with non-linear
differential-difference equations including those defined by iterative q-difference
operators.

1. Quick review on Picard-Vessiot theory of
artinian simple module algebras

In this section we work over a fixed field k. Let D be a Hopf algebra with
coproduct ∆ : D → D ⊗D and counit ε : D → k. For this and any other
coproducts we use the sigma notation [16, Section 1.2]

∆(d) =
∑

d1 ⊗ d2.

We assume that D is cocommutative and pointed. Thus, D equals a smash
product D1#kG of a cocommutative irreducible Hopf algebra D1 by a group
Hopf algebra kG; see [16, Section 8.1]. If the characteristic chark of k is
zero, then D1 equals the universal envelope of the Lie algebra consisting of
all primitives in D. We assume in addition

(1.1) D1 is Birkhoff-Witt as a coalgebra.

This means that D1 is the tensor product of (possibly, infinitely many)
copies of the coalgebra spanned by an ∞-divided power sequence. This is
always satisfied if chark = 0. If chark = p > 0, the assumption is equivalent
to saying that the Verschiebung map D1 → D1 ⊗ k1/p is surjective.

Recall from [16, p.153] the definition of D-module algebras, by which we
mean left D-module algebras that are non-zero and commutative; the action
will be written as d ⇀, d ∈ D. An algebra given a family of differential
operators (in characteristic zero), iterative differential operators or/and a
family of inversive difference operators are presented as a D-module algebra
for an appropriate D; see [2, Introduction].

Given a D-module algebra A, the subalgebra of D-invariants in A is given
by

AD = {a ∈ A | d ⇀ a = ε(d)a, d ∈ D}.
If A is simple, i.e., contains no non-trivial D-stable ideal, then AD is a
field. A D-module algebra is said to be artinian simple or AS [2, Definition
2.6], if it is artinian (as a commutative ring) and simple. An AS D-module
algebra is the direct product of mutually isomorphic, finitely many fields
on which the group G in D acts transitively, whence it is total, i.e., every
non-zero divisor is invertible [2, Corollary 2.5]. In an AS D-module algebra,
a D-module subalgebra is AS if and only if it is total [2, Lemma 2.8].

An inclusion K ⊂ L of AS D-module algebras is said to be a Picard-
Vessiot or PV extension [2, Definition 3.3],

(i) if their D-invariants coincide, KD = LD, and
(ii) if there exists (necessarily, uniquely [2, Proposition 3.4(iii)]) an inter-

mediate D-module algebra K ⊂ A ⊂ L such that

(a) the D-invariants H := (A ⊗K A)D in A ⊗K A, on which D acts
diagonally, i.e., through ∆, generates the left (or right) A-module
A⊗K A, and
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(b) the total quotient ring Q(A) (i.e., the localization by all non-zero
divisors) of A coincides with L.

Suppose that this is the case. According to traditional notation, the field
KD (= LD) will be denoted by C. Obviously, AD = C. As a D-module
algebra, A is simple [2, Corollary 3.12]. Moreover, it contains all primitive
idempotents in L, so that A is the direct product A1 × · · · ×Ar of mutually
isomorphic integral domains A1, . . . Ar, and L is the direct product L1×· · ·×
Lr, where Li is the quotient field of Ai. The map µ : A ⊗C H → A ⊗K A,
µ(a⊗ h) = (a⊗ 1)h is necessarily bijective. The commutative C-algebra H
has a unique C-Hopf algebra structure such that

θ : A → A⊗C H, θ(a) = µ−1(1⊗ a)

makes A into a right H-comodule (algebra) over C. We call A (resp., H) the
principal D-module algebra (resp., the Hopf algebra) for L/K, and often refer
to the triple (L/K,A,H) as a PV extension. We let G(L/K) = SpecCH
denote the affine group scheme over C which corresponds toH, and call it the
PV group scheme for L/K. This is naturally isomorphic to the group-valued
functor AutD,K-alg(A) which associates to each commutative C-algebra T ,
the group of all D-linear K ⊗C T -algebra automorphisms on A ⊗C T [2,
Remark 3.11]. The affine scheme SpecCA is a G(L/K)-torsor over SpecCK,
or in other words, A/K is an H-Galois extension. This means that the
A-algebra map Aθ : A ⊗K A → A ⊗C H, Aθ(a ⊗ b) = (a ⊗ 1)θ(b) is an
isomorphism [2, Proposition 3.4].

We remark that G(L/K) is not necessarily algebraic since we do not
assume that L is finitely generated over K; see Lemma 1.4 below.

Theorem 1.1 (Galois correspondence–[2], Theorem 3.9). Let (L/K,A,H)
be a PV extension of AS D-module algebras.

(1) If K ⊂ M ⊂ L is an intermediate AS (or equivalently, total) D-
module algebra, then L/M is a PV extension which has AM as its
principal D-module algebra. The correspondence M 7→ G(L/M)
gives a bijection from the set of all intermediate AS D-module al-
gebras K ⊂ M ⊂ L to the set of all closed subgroup schemes in
G(L/K).

(2) An intermediate AS D-module algebra M is a PV extension over
K if and only if the corresponding G(L/M) is normal in G(L/K).
In this case, G(M/K) is naturally isomorphic to the quotient group

sheaf G(L/K)
˜̃
/G(L/M) in the fpqf topology.

Remark 1.2. In the situation of the theorem above, let M be an interme-
diate AS D-module algebra in L/K. The closed subgroup scheme G(L/M)
of G(L/K) is of the form SpecC(H/a), where a is a Hopf ideal of H.

(1) (cf. [6, Lemma 4.18]) By [2, Theorem 3.9(1)], M recovers from a as
the set consisting of all elements x ∈ L such that

x⊗ 1 ≡ 1⊗ x mod a (L⊗K L) in L⊗K L.

Suppose that x = a/b, where a, b ∈ A with b a non-zero divisor.
Then one sees that the last condition is equivalent to

(a⊗ 1) θ(b) ≡ (b⊗ 1) θ(a) mod A⊗C a in A⊗C H.
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(2) Assume that M/K is a PV extension, or equivalently, G(L/M) is
normal in G(L/K). Then one sees from [2, p.756, line –12] that the
principal D-module algebra for M/K consists of all elements a ∈ A
such that

θ(a) ≡ a⊗ 1 mod A⊗C a in A⊗C H.

We will see that the theorem and the remark above imply Parts 1, 2 of
Theorem 4.20 of [6], which will be reproduced as Theorem 4.4. For the
remaining Part 3, we prove the following.

Proposition 1.3. Let (L/K,A,H) be a PV extension of AS D-module alge-
bras. Assume that K is a field, and the field C is perfect. Then the following
are equivalent:

(a) H is reduced;

(b) A⊗K K̃ is reduced for any field extension K̃/K;

(c) L⊗K K̃ is reduced for any field extension K̃/K.

Proof. The equivalence (a) ⇔ (b) follows from the A-algebra isomorphism

Aθ : A ⊗K A
≃−→ A ⊗C H. Obviously, (c) ⇒ (b). The converse holds true

since L⊗K K̃ is a localization of A⊗K K̃ by non-zero divisors. �
Lemma 1.4 ([2], Corollary 4.8). Given a PV extension (L/K,A,H) of AS
D-module algebras, the following are equivalent:

(a) L is the smallest AS D-module subalgebra in L that includes K and
some finitely many elements in L;

(b) L is the total quotient ring of some finitely generated K-subalgebra
of L;

(c) A is finitely generated as a K-algebra;
(d) H is finitely generated as a C-algebra, or in other words, G(L/K)

is algebraic.

If the equivalent conditions above are satisfied, we say that the PV ex-
tension is finitely generated.

Let K be a D-module algebra. Then one constructs the smash-product
algebra K#D; recall from [16, p. 153] that it is generated by K, D subject
to the relation dx =

∑
(d1 ⇀ x)d2, d ∈ D,x ∈ K. One sees that K is a left

K#D-module by

(1.2) (x#d) ⇀ y := x(d ⇀ y), d ∈ D, x, y ∈ K.

If V is a left K#D-module and if L is a D-module algebra including K,
then L⊗K V is naturally a left L#D-module, on which D acts diagonally.

Assume that K is AS. Then every left K#D-module V is free as a left
K-module [2, Corollary 2.5]. Assume that V has a finite K-free rank, say
n. Let L be an AS D-module algebra including K. We call L a splitting
algebra for V [2, Definition 4.1], if there is an isomorphism L ⊗K V ≃ Ln

of left L#D-modules, where Ln denotes the direct sum of n copies of L.
Choose a K-free basis v1, . . . , vn of V , and set v = t(v1, . . . , vn). Then the
D-module structure on V is represented uniquely by n× n matrices M(d),
d ∈ D, with entries in K, so that

(1.3) d ⇀ v = M(d)v, d ∈ D.
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The set HomK#D(V, L) of all K#D-linear maps V → L naturally forms

a vector space over the field LD, whose dimension is at most n. This is
embedded into Ln via f 7→ t(f(v1), . . . , f(vn)), where f ∈ HomK#D(V, L).
An element x = t(x1, . . . , xn) ∈ Ln is in HomK#D(V, L) if and only if x
is a solution of the equation (1.3), i.e., d ⇀ x = M(d)x, d ∈ D. Thus,
HomK#D(V, L) is the solution space for (1.3). By [2, Lemma 4.2], L is a

splitting algebra for V if and only if the LD-dimension of HomK#D(V, L) is
the largest possible, i.e., equals n. If this is the case, the splitting algebra
L for V is said to be minimal [2, Definition 4.3] provided L is the total
quotient ring of the D-module K-subalgebra generated by all f(V ), f ∈
HomK#D(V, L).

Theorem 1.5 (Characterization–[2], Theorem 4.6). Let K ⊂ L be an
inclusion of AS D-module algebras, and assume KD = LD. Then L/K be a
finitely generated PV extension if and only if L is a minimal splitting algebra
for some K#D-module with finite K-free rank.

Suppose that we are in the situation of the theorem above. As the proof
of the theorem shows, if L is a minimal splitting algebra for V as above, then
LD-linearly independent n solutions xj =

t(x1j , . . . , xnj), 1 ≤ j ≤ n, of (1.3)
in Ln give an invertible n×n matrix X = (xij) with entries in L, and the K-
subalgebra A of L generated by all entries xij in X together with 1/detX,
turns into the principal D-module algebra for the PV extension L/K. Thus,
in terminology of the standard Picard-Vessiot theories including Hardouin’s,
L/K is a Picard-Vessiot extension for V or for (1.3), with a fundamental
solution matrix X and a Picard-Vessiot ring A. Conversely, every Picard-
Vessiot extension or ring in the standard sense arises in this manner.

Theorem 1.6 (Unique existence–[2], Theorem 4.11). Let K be an AS
D-module algebra. Assume that the field KD is algebraically closed. Then
for every left K#D-module V with finite K-free rank, there exists uniquely
(up to D-module algebra isomorphism over K) a minimal splitting algebra
for V .

2. Preliminaries on ×R-bialgebras

We continue to work over a fixed field k. Let R ̸= 0 be a commutative
algebra. By an R-ring we mean an algebra given an algebra map from R. We
recall from [17] the definition of ×R-bialgebras with some mild restriction.
Let A be an R-ring. Regard A as a left (resp., right) R-module by the left
(resp., right) multiplication by R. Let A⊗R A denote the tensor product of
the left R-module A with itself, and let

A×R A =

{ ∑
i

ai ⊗ bi ∈ A⊗R A
∣∣∣∣ ∑

i

aix⊗ bi =
∑
i

ai ⊗ bix, ∀x ∈ R

}
denote the R-centralizers of the two right R-module structures on A⊗R A.
Then A×RA is naturally an R-ring [17, p. 101] with respect to the product(∑

i

ai ⊗ bi

)(∑
j

cj ⊗ dj

)
=

∑
i,j

aicj ⊗ bidj
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and the map x 7→ x⊗ 1 (= 1 ⊗ x) from R. As our mild restriction we pose
the assumption that A is projective as a left R-module, which ensures the
associativity

(2.1) (A×R A)×R A ≃ A×R (A×R A)

in the sense of [17, Definition 2.6, p. 94]. Suppose that the left R-module A
has an R-coalgebra structure ∆ : A → A⊗R A, ε : A → R.

Definition 2.1 (Sweedler [17]). We say that A is a ×R-bialgebra if the
following are satisfied.

(a) ∆(A) ⊂ A×R A;
(b) ∆ : A → A×R A is an algebra map;
(c) ε(1) = 1;
(d) ε(ab) = ε(aε(b)) for all a, b ∈ A.

Let A be a ×R-bialgebra. Given left A-modules M , N , the action

a ⇀ (m⊗ n) =
∑

(a1 ⇀ m)⊗ (a2 ⇀ n), a ∈ A,m ∈ M,n ∈ N

by A on the tensor product M ⊗R N over R is well defined by Condition
(a) above. By (b), M ⊗R N is a left A-module with respect to this action.
It follows by (c), (d) that R is a left A-module by

a ⇀ x = ε(ax), a ∈ A, x ∈ R.

Notice that the corresponding representation

(2.2) α : A → End(R), α(a)(x) = a ⇀ x

coincides with the I map in [17].

Proposition 2.2. The left A-modules form a tensor category, A-Mod, with
respect the tensor product M ⊗R N , the unit object R as above, and the
obvious associativity and unit-constraints. If A is cocommutative as an
R-coalgebra, this tensor category is symmetric with respect to the obvious
symmetry.

Proof. This follows if one notices that the associativity (2.1) ensures that
the obvious R-linear isomorphism (M ⊗R N) ⊗R P ≃ M ⊗R (N ⊗R P ) is
A-linear. �

To give examples of ×R-bialgebras, let H be a bialgebra (over k), and let
R be an H-module algebra; this last does and will mean a left H-module
algebra which is non-zero and commutative, as before. Then we have the
smash-product algebra R#H [16, p. 153]. Regard this R#H as an R-ring
by the natural embedding R = R ⊗ k → R#H, and as an R-coalgebra by
base extension of the k-coalgebra H along k → R.

Lemma 2.3. Let I ⊂ R#H be an ideal and coideal, and set A = R#H/ I;
this is an R-ring and R-coalgebra. If A is projective as a left R-module and
is cocommutative as an R-coalgebra, then it is a ×R-bialgebra.

Proof. The cocommutativity assumption implies that if h ∈ H, x ∈ R, then

(1#h)x =
∑

ε(h1x)#h2 ≡
∑

ε(h2x)#h1 =
∑

(h2 ⇀ x)#h1
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modulo I in R#H. It follows that∑
(1#h1)x⊗ (1#h2) ≡

∑
((h2 ⇀ x)#h1)⊗ (1#h3)

=
∑

(1#h1)⊗ ((h2 ⇀ x)#h3) =
∑

(1#h1)⊗ (1#h2)x

modulo I ⊗R (R#H) + (R#H) ⊗R I in (R#H) ⊗R (R#H). This ensures
Condition (a) of Definition 2.1. The remaining conditions are easily verified.

�
Corollary 2.4 ([17], p. 117). If the bialgebra H is cocommutative, R#H is
a ×R-bialgebra.

The following example will be used in the proofs of Proposition 3.19 and
of Lemma 5.2. Suppose that R (̸= 0) is a commutative algebra.

Example 2.5. Regard Re := R⊗kR as a (commutative) R-algebra by x 7→
x⊗1, R → R⊗R. The R-linear dual of Re is naturally identified with the R-
module End(R) consisting of all k-linear endomorphisms on R. Assume that
R is a field. Then we have the dual (cocommutative) R-coalgebra (Re)◦ of
Re, which is now supposed to be included in End(R); see [16, Section 6.0].
Note that End(R) is an algebra, and is, moreover, an R-ring, given the
algebra map from R which sends each x ∈ R to the multiplication by x.
It is known that the R-coalgebra (Re)◦ is an R-subring of End(R), and is
indeed a cocommutative ×R-bialgebra.

3. Iterative q-difference rings and associated ×R-bialgebras

3.1. We let N = {0, 1, 2, ...} be the set of non-negative integers.
Throughout in this section, C denotes a field, and C(t) denotes the field

of rational functions over C. Choose arbitrarily an element q ∈ C r {0, 1}.
Let k0 denote the prime field included in C, and set k = k0(q), the subfield
of C generated by q over k0. Following [6] we denote the q-integer, the
q-factorial and the q-binomial, respectively by

[k]q =
qk − 1

q − 1
, [0]q = 1,

[k]q! = [k]q[k − 1]q...[1]q, [0]q! = 1,(
r

s

)
q

=
[r]q!

[s]q![r − s]q!
,

where k, r, s ∈ N with k > 0, r ≥ s.
In what follows we fix a commutative ring R including C(t), and such an

automorphism σq : R
≃−→ R that extends the q-difference operator f(t) 7→

f(qt) on C(t).

Definition 3.1 (Hardouin [6], Definition 2.4). An iterative q-difference op-

erator on R is a sequence δ∗R = (δ
(k)
R )k∈N of maps δ

(k)
R : R → R such that

(1) δ
(0)
R = idR, the identity map on R,

(2) δ
(1)
R =

1

(q − 1)t
(σq − idR),

(3) δ
(k)
R (x+ y) = δ

(k)
R (x) + δ

(k)
R (y), x, y ∈ R,
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(4) δ
(k)
R (xy) =

∑
i+j=k σ

i
q ◦ δ

(j)
R (x) δ

(i)
R (y), x, y ∈ R,

(5) δ
(i)
R ◦ δ(j)R =

(
i+ j

i

)
q

δ
(i+j)
R .

An iterative q-difference ring is a commutative ring R ⊃ C(t) given σq, δ
∗
R

such as above.

Assume that q is not a root of unity. Then, [k]q ̸= 0 for all k. If δ∗R =

(δ
(k)
R )k∈N is an iterative q-difference operator on R, Conditions (1), (2) and

(5) above require

(3.1) δ
(1)
R =

1

(q − 1)t
(σq − idR), δ

(k)
R =

1

[k]q!
(δ

(1)
R )k, k ∈ N.

Conversely, if we define δ
(k)
R by (3.1), then δ∗R = (δ

(k)
R )k∈N forms an iterative

q-difference operator on R; especially, Condition (4) is satisfied since one

sees δ
(1)
R ◦ σq = q σq ◦ δ

(1)
R . Therefore under the assumption, an iterative

q-difference ring is nothing but such a pair (R, σq) as above. In this case the
results obtained by Hardouin [6] are specialized from the difference Picard-
Vessiot Theory as developed in [11].

In what follows we assume that q is a root of unity, and let N (> 1) denote
its order, i.e., the least positive integer such that qN = 1.

Lemma 3.2. Let δ∗R = (δ
(k)
R )k∈N be an iterative q-difference operator on R.

(a) σN
q = idR.

(b) Each δ
(k)
R is k-linear.

(c) δ
(1)
R (t) = 1.

(d) δ
(k)
R (t) = 0, 1 < k ∈ N.

(e) [6, Lemma 2.6] δ
(k)
R ◦ σq = qk σq ◦ δ(k)R , k ∈ N.

Proof. (a) It follows from Conditions (2), (5) above that (δ
(1)
R )N = 0, and so(

1
t (σq − idR)

)N
= 0. This implies the desired result, since we see by using(

1
qi
σq − idR

)
1
t = 1

t

(
1

qi+1σq − idR
)
that(1

t
(σq − idR)

)N
=

1

tN

N−1∏
i=0

( 1

qi
σq − idR

)
=

1

tN
(σN

q − idR).

(b) By using Condition (4), one sees by induction on k

(3.2) δ
(k)
R (1) = 0, 0 < k ∈ N.

By (3), this proves the desired result ifN = 2 or q = −1. So, we may suppose

N > 2. Compute δ
(k)
R ◦ δ(1)R ◦ δ(1)R in two ways, using (5). Then one sees by

using (3.2) that δ
(k)
R (q) δ

(2)
R = 0. Since δ

(2)
R (t2) =

1

[2]q
δ
(1)
R ◦ δ(1)R (t2) = 1, we

have
δ
(k)
R (q) = 0, 0 < k ∈ N.

By (3) and (4), this together with (3.2) implies the desired result.
(c) This follows immediately from (2).

(d) By Condition (5), the operators δ
(k)
R , k ∈ N, commute with each other.
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Let k > 0. One sees from (3.2) and (c) above that

(3.3) δ
(1)
R ◦ δ(k)R (t) = δ

(k)
R ◦ δ(1)R (t) = 0,

which together with (2) proves

(3.4) σq ◦ δ(k)R (t) = δ
(k)
R (t).

By (2), we have

(3.5) (q + 1)δ
(k)
R (t) = δ

(k)
R ◦ δ(1)R (t2) = δ

(1)
R ◦ δ(k)R (t2).

We prove the desired equation by induction on k > 1. Suppose k = 2.
By using (3.3), (3.4) and Condition (4), one deduces from (3.5)

(q + 1)δ
(2)
R (t) = δ

(1)
R (2tδ

(2)
R (t) + 1) = 2δ

(2)
R (t),

which implies the desired equation for k = 2, since q ̸= 1. If k > 2, one
deduces from (3.5) and the desired equations for smaller k

(q + 1)δ
(k)
R (t) = δ

(1)
R (2tδ

(k)
R (t)) = 2δ

(k)
R (t),

which implies the desired equation for k. �

It seems that (d) above is implicitly used in the proof of [6, Lemma 2.6],
to prove Eq. (5) on Page 106, line 4; the lemma is reproduced above as (e).

Corollary 3.3. Let δ∗R = (δ
(k)
R )k∈N be an iterative q-difference operator on

R. Then each δ
(k)
R as well as σq stabilizes k(t). The restricted operators

δ
(k)
R |k(t), k ∈ N, give the unique iterative q-difference operator on k(t), as
defined by Definition 3.1 when C = k, R = k(t), and they extend the k-linear
operators on k[t] determined by

(3.6) δ
(k)
R (tn) =


(
n

k

)
q

tn−k, n ≥ k,

0, 0 ≤ n < k.

Proof. The first assertion on stability follows from Lemma 3.2 (b)–(d). By
inductions first on n and then on k, we see that Condition (4) uniquely

determines the values δ
(k)
R (tn) in k[t]. By the same condition the extension

of the operators to k(t) is unique. As is essentially shown by [6, Proposition
2.9], the k-linear operators on k[t] defined by (3.6) uniquely extend to an
iterative q-difference operator on k(t). This proves the second assertion. �

Remark 3.4. Let δ∗R = (δ
(k)
R )k∈N be an iterative q-difference operator on

R. Assume that

(3.7) δ∗R is constant on C, or δ
(k)
R (c) = 0, c ∈ C, k > 1.

Then one sees as proving the last corollary that δ
(k)
R , k ∈ N, stabilize C(t),

and the restricted operators δ
(k)
R |C(t), k ∈ N, give the unique iterative q-

difference operator on C(t) that consists of C-linear operators. They extend
the C-linear operators on C[t] determined by (3.6), and coincide with those
given by [6, Proposition 2.10] as a main example of iterative q-difference
operators. Since δ∗R may not stabilize C(t) in general, the tensor products
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in [6, Lemma 2.12, Proposition 2.12] should be taken over k(t), not over
C(t), as far as the authors understand.

3.2. We are going to construct a Hopf algebra H over k = k0(q) which
is closely related with iterative q-difference operators. In what follows we
suppose that k = k0(q) is our ground field, and let ⊗ denote the tensor
product over k. Vector spaces and (Hopf) algebras mean those over k.

Let G = ⟨σ | σN = 1⟩ denote the cyclic group of order N generated by
an element σ. As usual, the group algebra kG is regarded as a Hopf algebra
with σ grouplike, i.e., ∆(σ) = σ ⊗ σ, ε(σ) = 1. Let

B =

∞⊕
i=0

kδ(i)

denote a vector space with basis δ(i), i ∈ N.
Recall the definition of braided tensor category YDkG

kG of the Yetter-
Drinfeld modules over kG; see [10, Section 10.6]. The Yetter-Drinfeld mod-
ules with which we shall treat here are, as the opposite-sided version of
those defined by [10, Definition 10.6.10], supposed to be right kG-modules
and right kG-comodules. The following is directly verified.

Lemma 3.5. B is an object in YDkG
kG with respect to the structure

δ(i) ↼ σ = qi δ(i),

δ(i) 7→ δ(i) ⊗ σi, B → B ⊗ kG,

where i ∈ N. Moreover, B is a braided Hopf algebra in YDkG
kG with respect

to the algebra structure

(3.8) δ(i) δ(j) =

(
i+ j

i

)
q

δ(i+j), δ(0) = 1,

and the coalgebra structure

∆(δ(k)) =
∑

i+j=k

δ(i) ⊗ δ(j), ε(δ(k)) = δk,0,

where i, j, k ∈ N.

Radford’s biproduct (or bozonization) [13] constructs from B a Hopf al-
gebra, kG ⋆ B. Let

H = (kG ⋆ B)cop

denote the Hopf algebra obtained from kG ⋆ B by replacing the coproduct
with its opposite. We see easily the following.

Proposition 3.6. The Hopf algebra H is characterized by the following
properties:

(a) H includes kG as a Hopf subalgebra;

(b) H =
⊕∞

i=0 (kG)δ(i), a free left kG-module with basis δ(i), i ∈ N;
(c) The algebra structure on H is determined by (3.8) and

δ(i) σ = qi σ δ(i), i ∈ N;
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(d) The coalgebra structure on H is determined by

∆(δ(k)) =
∑

i+j=k

σj δ(i) ⊗ δ(j), ε(δ(k)) = δk,0, k ∈ N.

Remark 3.7. As a braided Hopf algebra, B =
⊕∞

i=0 B(i) is strictly graded

if we set B(i) = kδ(i), i ∈ N. It follows that as a Hopf algebra, H =⊕∞
i=0 H(i) is coradically graded if we set H(i) = (kG)δ(i), i ∈ N. In par-

ticular, H is a pointed Hopf algebra, which is neither commutative nor
cocommutative, as is easily seen.

We set δ = δ(1). Since for every 0 ≤ i < N , δ(i) is a multiple of δi by
[i]−1

q ̸= 0, and δN = 0, it follows that

J :=
⊕

0≤i<N

(kG)δ(i) ⊂ H

is a Hopf subalgebra which is generated by G, δ. Set

dn = δ(nN), n ∈ N.

Then it follows by

(
rN

sN

)
q

=

(
r

s

)
(see [6, Eq. (1)]) that

dm dn =

(
m+ n

m

)
dm+n, m, n ∈ N.

Since for every 0 ≤ i < N , δ(nN+i) is a multiple of δ(i)dn by

(
n+ i

i

)−1

q

̸= 0,

one sees that H is a free left (and right) J-module with basis dn, n ∈ N.
Thus,

H =

∞⊕
n=0

Jdn.

3.3. Keep R, σq as above. We see the following from Lemma 3.2 and Propo-
sition 3.6.

Proposition 3.8. There is a one-to-one correspondence between

• the set of iterative q-difference operators δ∗R on R, and
• the set of left H-module structures ⇀: H ⊗R → R on R such that

(i) h ⇀ xy =
∑

(h1 ⇀ x)(h2 ⇀ y), h ⇀ 1 = ε(h)1, h ∈ H,
x, y ∈ R,

(ii) σ ⇀ x = σq(x), x ∈ R, and

(iii) δ ⇀ x =
1

(q − 1)t
(σq(x)− x), x ∈ R.

Given a left H-module structure ⇀ from the second set, the corresponding

iterative q-difference operator δ∗R = (δ
(k)
R ) is given by

δ
(k)
R (x) = δ(k) ⇀ x, x ∈ R.

Assume that we are given a left H-module structure ⇀: H ⊗ R → R
on R which satisfies Conditions (i)–(iii) above. By (i), R is an H-module
algebra so that we can construct the smash-product algebra R#H; this is
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regarded as before, as an R-ring and R-coalgebra. Given an element h ∈ H,
we denote the element 1#h in R#H simply by h. Let

I =

(
δ − 1

(q − 1)t
(σ − 1)

)
denote the ideal of R#H generated by the one element, and define

(3.9) H = R#H/ I.

The semi-direct product RoG (= R#kG) arises from the restricted action
by G on R, and we have natural R-ring maps RoG ↪→ R#H → H.

Lemma 3.9. We have the following.

(1) I is a coideal of R#H, so that H is an R-coalgebra.
(2) The natural images of dn, n ∈ N, form a left RoG-free basis in H.

Proof. Set

u :=
1

(q − 1)t
∈ R, ξ := δ − u(σ − 1) ∈ R#H.

Then I is generated by ξ. Note that the coproduct ∆(ξ) on R#H is given
by

(3.10) ∆(ξ) = σ ⊗ ξ + ξ ⊗ 1 .

Note that σ ⇀ u = 1
qu, δ ⇀ u = − q−1

q u2, and ξ ⇀ x = 0 for all x ∈ R.

Then we compute in R#H,

(3.11) ξ σ = q σ ξ , ξ δ = δ ξ +
q − 1

q
u ξ , ξ x = (σ ⇀ x)ξ, x ∈ R.

With the action by H restricted to J , R is a J-module algebra. The
associated smash product R#J is an R-subring and R-subcoalgebra of R#H
which contains ξ. Let I0 denote the ideal of R#J generated by ξ. We see
from (3.11) that I0 = RξJ . This together with (3.10) proves that I0 is a
coideal. The natural embedding composed with the canonical projection

(3.12) RoG ↪→ R#J → R#J/I0

is an isomorphism, since we see that the R-ring map R#J → R o G well
defined by σ 7→ σ, δ 7→ u(σ − 1) induces an inverse.

We see that

I =

∞⊕
n=0

I0 dn ,

since the direct sum on the right-hand side is an ideal of R#H, as is seen
from the fact that each dn commutes with ξ. The last equation together
with the isomorphism given in (3.12) concludes the proof. �

We denote still by dn its natural image in H. Then we have

(3.13) H =

∞⊕
n=0

RGdn =

∞⊕
n=0

RdnG

by Part 2 above, and since each dn commutes with σ. Since by the right
multiplication, G acts on H as R-coalgebra automorphisms, H is a module
R-coalgebra over the group R-Hopf algebra RG. Here, we emphasize that
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each element in R (⊂ RG) is supposed to act on H by the left multiplication.
Let (RG)+ denote the augmentation ideal of RG, i.e., the kernel of the counit
ε : RG → R, and set

Z = H/H(RG)+.

This is a quotient R-coalgebra of H. Let π : H → Z denote the quotient
map, and set dn = π(dn), n ∈ N.

Lemma 3.10. Z is free as an R-module,

Z =
∞⊕
n=0

Rdn,

with basis dn, n ∈ N. The R-coalgebra structure on Z is determined by

(3.14) ∆(dn) =
∑

l+m=n

dl ⊗ dm, ε(dn) = δn,0.

Proof. This is verified directly. �
Let

γ : H =

∞⊕
n=0

RdnG → RG

denote the projection onto the 0-th component.

Lemma 3.11. γ is RG-linear, and is invertible with respect to the convo-
lution product.

Proof. Obviously, γ is RG-linear. Note that for every n ∈ N,

(3.15) Hn :=
⊕
k≤n

RdkG

is an R-subcoalgebra of H, and H is a union of all Hn. To see that γ is
invertible, it suffices to show that the restriction γ|Hn is invertible in the
R-algebra HomR(Hn, RG) of all R-linear maps Hn → RG. Since the R-
coalgebra H =

∪
n Hn is filtered so that ∆(Hn) ⊂

∑
l+m=n Hl ⊗R Hm (see

Remark 3.7), we see that the kernel of the restriction map HomR(Hn, RG) →
HomR(H0, RG) is a nilpotent ideal. The desired invertibility follows since
γ|Hn is restricted to the invertible, identity map on H0 = RG. �

By the dual result of [10, Theorem 7.2.2], it follows from the lemma
above that the right RG-module R-coalgebra H is isomorphic to the crossed
coproduct which is constructed on Z ⊗RG by the coaction

ρ : Z → RG⊗R Z, ρ(dn) = (γ ⊗ π) ◦∆(dn)

and the (dual) cocycle

τ : Z → RG⊗R RG, τ(dn) = (γ ⊗ γ) ◦∆(dn),

where ∆(dn) denotes the coproduct on H. We see from σN = 1 that ρ is
trivial, i.e., ρ(dn) = 1⊗dn, n ∈ N; this is equivalent to saying that π : H → Z
is co-central. By definition each τ(dn) is contained in k(t)G⊗k(t) k(t)G. Let
G act on H, RG and H⊗R H by the conjugations

x 7→ gxg−1, x⊗ y 7→ gxg−1 ⊗ gyg−1.
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Since ∆, γ are G-equivariant (or preserve the conjugation), and each dn is
G-invariant, it follows that τ(dn) is G-invariant. If we denote the field of
G-invariants in k(t) by

K = k(tN ),

it follows that τ(dn) ∈ KG⊗K KG, n ∈ N. Let

ZK =
∞⊕
n=0

Kdn

denote the obvious K-form of Z. Let

1 → Reg(ZK ,K) → Reg(ZK ,KG) → Reg(ZK ,KG⊗K KG) → ...

denote the complex for computing the dual Sweedler cohomology (see [15]) of
the K-Hopf algebra KG with coefficients in the KG-comodule K-coalgebra
ZK , where the KG-comodule structure on ZK is trivial. Here, Reg(ZK , A)
denote the the abelian group of all convolution-invertible K-linear maps
f : ZK → A, where A = (KG)⊗n; it is identified with the group A[[T ]]×

of all invertible power series over A, via f 7→
∑∞

n=0 f(dn)T
n. We may

suppose that τ is a 2-cocycle in the last complex. Note that the restriction
τ |Kd0

is trivial. Since the K-Hopf algebra KG is cosemisimple, and the

K-coalgebra ZK includes Kd0 as a unique simple K-subcoalgebra, it follows
by [8, Theorem 4.1] that τ is the coboundary ∂ν of some 1-cochain ν ∈
Reg(ZK ,KG), i.e.,

τ(dn) =
∑

k+l+m=n

(ν(dk)⊗ 1)∆(ν−1(dl))(1⊗ ν(dm)), n ∈ N.

Since (ε ⊗ ε) ◦ τ = ε, we have ε ◦ ν = ε. Since τ(d0) = 1 ⊗ 1, we have
ν(d0) ∈ G. By replacing ν with

dn 7→ ν(dn) ν(d0)
−1, n ∈ N,

we may suppose ν(d0) = 1. Define elements d′n in H by

d′n =
∑

l+m=n

ν(dl) dm, n ∈ N.

Proposition 3.12. Keep the notation as above.

(1) We have

H =

∞⊕
n=0

Rd′nG =

∞⊕
n=0

RGd′n.

(2) The following hold in H:

d′0 = 1, d′nσ = σd′n, n ∈ N.
(3) We have

∆(d′n) =
∑

l+m=n

d′l ⊗ d′m, ε(d′n) = δn,0, n ∈ N

on H. It follows that the R-coalgebra H is cocommutative.

Proof. The first equation of Part 2 holds since ν(d0) = 1, while the second
holds since σ commutes with each element in K. The remaining parts follow
from well-known results on crossed coproducts. �
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Recall that R is naturally a left R#H-module; see (1.2). Since I annihi-
lates R, there is induced a left H-module structure on R.

Proposition 3.13. We have the following.

(1) The induced structure satisfies

σ ⇀ x = σq(x), d′n ⇀ xy =
∑

l+m=n

(d′l ⇀ x)(d′m ⇀ y), n ∈ N

for all x, y ∈ R.
(2) The following relations hold in H:

σx = (σ ⇀ x)σ, d′nx =
∑

l+m=n

(d′l ⇀ x) d′m

for all x ∈ R,n ∈ N.

Proof. This follows easily from Part 3 of Proposition 3.12. �
Remark 3.14. By direct computations we see that the following hold in
H.

(1) For every n ∈ N, ⊕
k≤n

RdkG =
⊕
k≤n

Rd′kG.

(2) For every l,m ∈ N,

d′l d
′
m ≡

(
l +m

l

)
d′l+m modulo

⊕
n<l+m

Rd′nG.

Now, Lemma 2.3 and Proposition 3.12(3) prove the first assertion of the
following key result of ours.

Theorem 3.15. H is a cocommutative ×R-bialgebra, whence the left H-
modules H-Mod = (H-Mod,⊗R, R) form a symmetric tensor category. An
object in H-Mod has its dual, if it is finitely generated projective as an R-
module.

Note that the H-module structure on R given by (2.2) coincides with
the action corresponding to the initially given σq and iterative q-difference
operator δ∗R on R; see the paragraph following Proposition 3.8.

To prove the remaining assertion on duality, we translate the argument
by Hardouin [6, p.119] into the language of ×R-bialgebras, constructing a
variation, Φ, of the Ess map in [17]; see Lemma 3.16(3) below. Let E =
H ⊗R H denote the tensor product of the right R-module H and the left
R-module H, in which we thus have ax⊗ b = a⊗xb, where x ∈ R, a, b ∈ H.
The vector space

ER =

{ ∑
i

ai ⊗ bi ∈ E
∣∣∣∣ ∑

i

xai ⊗ bi =
∑
i

ai ⊗ bix, ∀x ∈ R

}
of all R-centralizers in E forms an R-ring with respect to the product(∑

i

ai ⊗ bi

)(∑
j

cj ⊗ dj

)
=

∑
i,j

aicj ⊗ djbi
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and the map x 7→ x⊗ 1 (= 1⊗ x) from R.
Recall from (3.9) the Hopf algebra H and the smash product R#H which

define H. Let S denote the antipode of H.

Lemma 3.16. We have the following.

(1) Given h ∈ H, the natural image of
∑

(1#h1)⊗ (1#S(h2)) in E lies
in ER.

(2) h 7→
∑

(1#h1)⊗(1#S(h2)) gives rise to an R-ring map R#H → ER.
(3) The map just obtained factors through H, so that we have an R-ring

map,
Φ : H → ER.

Proof. Let h ∈ H, x ∈ R. We write h for 1#h, as before. Set φ(h) =∑
h1 ⊗ S(h2) in E .
(1) By the cocommutativity of H, we have hx =

∑
(h2 ⇀ x)h1 in H.

Using this twice we have

φ(h)x =
∑

h1(S(h2) ⇀ x)⊗ S(h3) = xφ(h)

in E , which proves Part 1.
(2) One sees that h 7→ φ(h) gives an algebra map H → ER. This extends

to an R-ring map from R#H, since we have φ(h)(x ⊗ 1) =
∑

((h1 ⇀ x) ⊗
1)φ(h2) in ER.

(3) Indeed, one sees that the R-ring map annihilates δ− 1
(q−1)t(σ−1). �

Proof of Theorem 3.15. Let M,N ∈ H-Mod. The R-module HomR(M,N)
of all R-linear maps M → N turns into a left ER-module by defining(∑

i

ai ⊗ bi

)
⇀ f : m 7→

∑
i

ai ⇀ f(bi ⇀ m),

where
∑

i ai ⊗ bi ∈ ER, f ∈ HomR(M,N). This turns, moreover, into
a left H-module through the R-ring map Φ. Suppose that M is finitely
generated projective as an R-module and N = R. Then the left H-module
HomR(M,R) together with the canonical evaluation and co-evaluation maps
give a dual object of M , as is easily seen. �

Hardouin [6, Definition 3.1] defines the notion of iterative q-difference
modules.

Proposition 3.17. An iterative q-difference module over R, as defined by
[6, Definition 3.1], is precisely such a left H-module that is finitely generated
free as an R-module. An extension S ⊃ R of iterative q-difference rings is
precisely a commutative algebra object S in H-Mod such that the canonical
map R → S is injective.

Proof. This is easy to see. We only remark that σN
q acts on any iterative

q-difference module as zero, as is seen just as proving Lemma 3.2(a). �
Remark 3.18. Note that C plays a very minor role, which we may, and
we do in this remark, assume to be k. Notice from Corollary 3.3 that
k(t) is uniquely an iterative q-difference ring. We denote the associated
cocommutative ×k(t)-bialgebra by Hk(t). The authors prefer to define an
iterative q-difference ring to be a commutative algebra object in Hk(t)-Mod,
though the original definition requires in addition the object to include C(t).
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3.4. We return to the situation before the last remark. Recall that the
iterative q-difference ring R is naturally a left H-module.

Proposition 3.19. The corresponding representation α : H → End(R)

is an injection, and its image is generated by σq, δ
(k)
R , k ∈ N, and the

multiplications by all elements in R.

Proof. The assertion on the image follows since the R-ring H is generated
by σ, δ(k), k ∈ N.

To prove the injectivity of α, we use Hk(t) given in Remark 3.18. We see
from (3.13) thatH = R⊗k(t)Hk(t). Moreover, the compositeH → End(R) →
Hom(k(t), R) of α with the restriction map coincides with the composite
R ⊗k(t) Hk(t) → R ⊗k(t) End(k(t)) ↪→ Hom(k(t), R) of the base extension of
the representation αk(t) : Hk(t) → End(k(t)) with the natural embedding. It
follows that the desired injectivity will follow from the injectivity of αk(t).
Therefore, by replacing R with k(t), we may suppose that R is a field. In
that case we have the cocommutative ×R-bialgebra (Re)◦ (⊂ End(R)) given

in Example 2.5. We see from [16, Proposition 6.0.3] that σq and all δ
(k)
R are

contained in (Re)◦. Moreover, α gives an R-coalgebra map H → (Re)◦; this
is indeed a ×R-bialgebra map.

Notice from Proposition 3.12 that the first term H1 of the coradical fil-
tration [16, p.185] on H is given by

H1 = RG⊕Rd′1G =
⊕

0≤i<N

H(i)
1 ,

where we have setH(i)
1 = Rσi⊕Rd′1σ

i, 0 ≤ i < N ; these are R-subcoalgebras
of H1. (Moreover, by Remark 3.14(1), the n-th term coincides with the Hn

given by (3.15).) By [10, Theorem 5.3.1], the desired injectivity will follow
if we prove that the restriction α|H1 : H1 → (Re)◦ is injective. This last
injectivity is equivalent to

(i) for every 0 ≤ i < N , α|H(i)
1

is injective, and

(ii) if i ̸= j, then α(H(i)
1 ) ∩ α(H(j)

1 ) = 0.

To prove (i), we may suppose i = 0, since the result in i = 0 implies
the result in the remaining cases, as is easily seen. Since α(d′1) is primitive,
the desired result is equivalent to α(d′1) ̸= 0; this will follow by definition

of d′1, if one sees (α(d1) =) δ
(N)
R /∈

∑
0≤i<N Rσi

q. On the contrary, suppose

δ
(N)
R ∈

∑
0≤i<N Rσi

q. Then δ
(N)
R (tN ) = δ

(N)
R (1)tN , which contradicts (3.6).

We see that (ii) holds, since if i ̸= j, the coradicals Rσi
q, Rσj

q of α(H(i)
1 ),

α(H(j)
1 ) trivially intersect, or σi

q ̸= σj
q . �

4. How cocommutative pointed Hopf algebras come in

The main objective of this paper is to show the following.

Claim 4.1. The main theorems of Hardouin [6], given below (with notation
partially changed), follow from our results in Section 1 that are reproduced
from [2].
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Theorem 4.2 (Hardouin [6], Theorem 4.7). Let K be an iterative q-difference
field such that the field C(K) of constants in K is algebraically closed. Let
V be an iterative q-difference module over K. Then there exists an iterative
q-difference Picard-Vessiot ring for V , which is unique up to isomorphism
of iterative q-difference rings.

Theorem 4.3 (Hardouin [6], Theorem 4.12). Let K be as above, and set
C = C(K). Let A be an iterative q-difference Picard-Vessiot ring over K.
Then the group-valued functor Aut(A/K), which associates to each commu-
tative C-algebra T , the group of all iterative q-difference K ⊗C T -algebra
automorphisms on A⊗C T , is an affine algebraic group scheme over C, and
is represented by the C-algebra C(A⊗K A) of constants in A⊗K A which is
indeed finitely generated.

Following the traditional notation we have set C = C(K), but this over-
laps with the symbol used to denote the field with which we started at the
beginning of Section 3.1. An excuse is that we may replace this last field
with C(K), as is seen from Remark 3.18.

Theorem 4.4 (Hardouin [6], Theorem 4.20). Let K, A be as above. Let
G = Aut(A/K) be the affine algebraic group scheme as given above. Let L
denote the total quotient ring of A; then it uniquely turns into an iterative
q-difference ring extension of A, and is called the total iterative q-difference
Picard-Vessiot extension of A.

(1) Given an intermediate total iterative q-difference ring K ⊂ M ⊂ L,
AM is an iterative q-difference Picard-Vessiot ring over M . The
correspondence M 7→ Aut(AM/M) gives an inclusion-reversing bi-
jection from the set of all intermediate total iterative q-difference
rings K ⊂ M ⊂ L to the set of all closed subgroup schemes H in
G. The inverse is given by H 7→ LH, where LH consists of the
H-invariants in L as defined in [6, p.134, lines 18–20].

(2) If H ⊂ G is a normal closed subgroup scheme, then the H-invariants
AH in A form an iterative q-difference Picard-Vessiot ring over K,
and LH is its total iterative q-difference Picard-Vessiot extension.

Moreover, Aut(AH/K) is naturally isomorphic to G
˜̃
/H.

(3) Let H ⊂ G is a closed subgroup scheme. Then the ring extension
L/LH is separable if and only if H is reduced.

To prove Claim 4.1, we work in the same situation as in the last sec-
tion, using the same notation. Thus, R denotes an iterative q-difference
ring, where q is a root of unity of order N (> 1), and H denotes the as-
sociated cocommutative ×R-bialgebra. Our main task is to present R as a
module algebra over an appropriate cocommutative pointed Hopf algebra
D which satisfies the assumption (1.1). Because this D is distinct accord-
ing to whether chark is zero or positive, we will discuss in the two cases,
separately.

4.1. Case in characteristic zero. Assume chark = 0, or in other words,
k0 = Q. In this case we define a Hopf algebra D over k by

D = k[d′1]⊗ kG.
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This is the tensor product of the polynomial Hopf algebra k[d′1] and the group
Hopf algebra kG, where d′1 is primitive, i.e., ∆(d′1) = 1⊗d′1+d′1⊗1, ε(d′1) = 0,
and G = ⟨σ | σN = 1⟩, as before. This D is a cocommutative pointed Hopf
algebra, which necessarily satisfies the assumption (1.1) since chark = 0.
The left H-module action on R given before, restricted to σ, d′1, makes
R into a D-module algebra by Proposition 3.13(1). The associated smash
product R#D is a cocommutative ×R-bialgebra by Corollary 2.4.

Proposition 4.5. The R-ring map R#D → H well defined by σ 7→ σ, d′1 7→
d′1 is an isomorphism of ×R-bialgebras. It follows that H-Mod coincides with
the symmetric tensor category R#D-Mod of left R#D-modules.

Proof. One sees from Proposition 3.12(2), (3) and Proposition 3.13(2) that
the map is a well-defined ×R-bialgebra map. It follows from Remark 3.14
that for every n ∈ N,

d′n ≡ (d′1)
n

n!
modulo

⊕
k<n

Rd′kG ,

whence H =
⊕∞

n=0 R(d′1)
nG. This proves that the map is an isomorphism.

�
Recall the results and the notation from Section 1.

Proof of Claim 4.1 (in characteristic zero). LetK be an iterative q-difference
field [6, p.107]; this is the same as an ASD-module algebra that is connected,
i.e., contains no non-trivial idempotent. Assume that the field C(K) of
constants [6, p.105] (or equivalently, of D-invariants) in K is algebraically
closed. Let V be an iterative q-difference module over K; this is the same
as a left K#D-module of finite K-dimension, see Proposition 3.17. By
Theorem 1.6, there exists uniquely (up to isomorphism) a minimal splitting
algebra L for V . By Theorem 1.5, L/K is a finitely generated PV extension
of AS D-module algebras. As is seen from the paragraph following Theorem
1.5, the principal D-module algebra A for L/K is an iterative q-difference
Picard-Vessiot ring for V , as Hardouin [6, p.128] defines, and conversely,
the total quotient ring of such a ring is a minimal splitting algebra for V
including the ring as a principal D-module algebra. Such a ring is unique
(up to isomorphism) as for V , as follows from our uniqueness of L/K as for
V , and of A as for L/K. Thus obtained is Theorem 4.2.

The group-valued functor Aut(A/K) given in Theorem 4.3 is the same as
our AutD,K-alg(A), which we know is represented by the Hopf algebra H for
L/K; this H is now finitely generated by Lemma 1.4. Theorem 4.3 follows
since C(A⊗K A) coincides with our H = (A⊗K A)D.

Our Theorem 1.1 together with Remark 1.2 are now specialized to Parts
1, 2 of Theorem 4.4. (Part 1 refers to “an iterative q-difference Picard-
Vessiot extension AM over M ,” where M may not be a field. But Hardouin
[6, Definition 4.3] defines the notion only over an iterative q-difference field.
Therefore, to justify the statement of Part 1, one has to re-define the notion
over such an iterative q-difference ring that is artinian and simple, just as
we worked over an AS D-module algebra to define the notion of principal D-
module algebras.) Our Proposition 1.3 is specialized to Part 3 of Theorem
4.4. �
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4.2. Case in positive characteristic. We start with proving the follow-
ing for later use.

Proposition 4.6 (cf. [6], Proposition 2.20). Suppose that chark is arbi-
trary. Given a multiplicative set S in R such that

(4.1) for every s ∈ S, σq ⇀ s is invertible in S−1R,

the localization S−1R uniquely turns into an iterative q-difference ring so
that R → S−1R preserves the structure.

Proof. The R-linear maps H → S−1R form an R-algebra HomR(H, S−1R)
with respect to the convolution product. We see analogously to the proof of
[2, Lemma 2.7] that the k-algebra map

R → HomR(H, S−1R), x 7→ [h 7→ (h ⇀ x)]

is localized by S, which proves the proposition. In fact, the image of each
element of S is invertible in HomR(H, S−1R), since its restriction to the R-
subcoalgebra H0 ⊂ H is invertible by (4.1), and so is the restriction to each
Hn, n ≥ 0; here, recall from the proof of Lemma 3.11, the filtration H =∪

n Hn, and note that the kernel of HomR(Hn, S
−1R) → HomR(H0, S

−1R)
is nilpotent, here too. �

Now, assume chark = p > 0, or k0 = Fp. Let

Zk =
∞⊕
n=0

kd′n

denote the obvious k-form of the R-coalgebra Z; thus, ∆(d′n) =
∑

l+m=n d′l⊗
d′m, ε(d′n) = δn,0 on Zk. The tensor algebra T (Zk)/(d

′
0 − 1) of Zk divided

by the relation d′0 = 1 has a unique Hopf algebra structure that extends the
coalgebra structure on Zk. We remark that the thus obtained Hopf algebra is
Birkhoff-Witt; see (1.1). For the Verschiebung map on it is surjective since
the map on the coalgebra Zk, which is spanned by an ∞-divided power
sequence, is so; see [18, Page 504]. In the present case we define D by the
tensor product

(4.2) D = T (Zk)/(d
′
0 − 1)⊗ kG

of the two Hopf algebras, where G = ⟨σ | σN = 1⟩, as before. This D is
a cocommutative pointed Hopf algebra which satisfies (1.1) by the remark
above. By extending uniquely the actions by σ, d′n in H on R, we can
define a left D-module structure on R. With the thus defined structure, R
is in fact a D-module algebra, and the associated smash product R#D is a
cocommutative ×R-bialgebra by Corollary 2.4.

Proposition 4.7. The R-ring map R#D → H well defined by σ 7→ σ,
d′n 7→ d′n, 0 < n ∈ N, is a surjection of ×R-bialgebras. It follows that
H-Mod is a tensor full subcategory of R#D-Mod.

Proof. Similar to the first half of the proof of Proposition 4.5. The surjec-
tivity follows by Proposition 3.12(1). �
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Proof of Claim 4.1 (in positive characteristic). We choose D as above. Let
K be an iterative q-difference field with an algebraically closed field of con-
stants. Choose this K as the R above. Then H is a ×K-bialgebra, and
K ∈ H-Mod. By Proposition 4.7, the objects in H-Mod are precisely those
objects in K#D-Mod which are annihilated by the kernel of K#D → H.
A K#D-submodule of an object in H-Mod is again in H-Mod. There-
fore, working in K#D-Mod, we can discuss as in the proof in the zero-
characteristic case, except as for the existence of a minimal splitting algebra
L for V over K, where V ∈ H-Mod with dimK V < ∞. The question is
whether the L, constructed in K#D-Mod, is indeed in H-Mod.

As is seen from the proof of [2, Theorem 4.11], L is the total quotient ring
of a simple D-module algebra A including K with the following property: A
is a commutativeK-algebraK[xij ]detX generated by all entries inX = (xij),
and then localized at the determinant detX, where X is a square matrix
which is a solution of the equation, such as (1.3), associated with V . We
see that K[xij ] is in H-Mod. Since one sees that σq ⇀ detX is a multiply
of detX by some invertible element in K, it follows by Proposition 4.6 that
A and so L are in H-Mod, as desired. �

4.3. The proofs in the preceding two subsections are valid in the general-
ized situation that the iterative q-difference field K over which everything
is constructed is replaced by a simple iterative q-difference ring which is
artinian as a ring. This generalization seems natural, amending the failure
that given an intermediate iterated q-difference total ring M in a Picard-
Vessiot extension L/K, one cannot call L/M a PV extension according to
the definition given in [6, Proposition 4.16(2)]; see also the last paragraph
of the proof of Claim 4.1 in characteristic zero.

As further results on AS D-module algebras K, where D is as in Section
1, let us recall the following:

• Tannaka-Type Theorem [2, Theorem 4.10]; it gives an equivalence
of symmetric tensor categories, {{V }} ≈ G(L/K)-mod, between
the abelian rigid tensor category {{V }} generated by a finite K-free
object V in K#D-Mod and the category G(L/K)-mod of finite-
dimensional modules over the PV group scheme G(L/K), where
L/K is a minimal splitting algebra for V ;

• Solvability Criteria [1, Theorem 2.10]; it formulates and characterizes
the solvability of such V as above, in terms of G(L/K).

By the same observations as in the preceding two subsections, we see
that these results hold true for finitely generated PV extensions L/K of
simple iterative q-difference rings which are artinian. For that variation
of the Tannaka-Type Theorem in positive characteristic, one should notice
from the uniqueness of dual objects that the dual object of V constructed
in K#D-Mod, where D is as in (4.2), is necessarily an iterative q-difference
module dual to V , if V is such a module.

5. Generalization

Suppose that k is an arbitrary field over which we will work, and let
R ̸= 0 be a commutative algebra (over k). Fix an element q ∈ k\0, and an
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endomorphism σ : R → R. Heiderich [7] defines a notion which generalizes
iterative q-difference operators, as follows.

Definition 5.1 (Heiderich [7], Definition 2.3.13). A q-skew iterative σ-

derivation on R is a sequence δ∗R = (δ
(k)
R )k∈N of maps δ

(k)
R : R → R such

that

(1) δ
(0)
R = idR,

(2) δ
(k)
R ◦ σ = qk σ ◦ δ(k)R , k ∈ N,

(3) each δ
(k)
R is k-linear,

(4) δ
(k)
R (xy) =

∑
i+j=k σ

i ◦ δ(j)R (x) δ
(i)
R (y), x, y ∈ R,

(5) δ
(i)
R ◦ δ(j)R =

(
i+ j

i

)
q

δ
(i+j)
R .

Let δ∗R = (δ
(k)
R )k∈N be such as defined above. A main difference from

iterative q-difference operators is that one does not assume that δ
(1)
R is a

multiple of σ − idR by some element in R; cf. Condition (2) in Definition
3.1. But we have the following, which is probably known.

Lemma 5.2. Assume σ ̸= idR and that R is a field. Then there exists an
element u ∈ R such that

δ
(1)
R = u (σ − idR).

Proof. Here is a coalgebraic proof, which is hopefully new. Recall from Ex-
ample 2.5 the cocommutative ×R-bialgebra Re (⊂ End(R)). One sees from

[16, Proposition 6.0.3] that idR, σ, δ
(1)
R (and all δ

(k)
R , k > 1) are contained

in (Re)◦. Moreover, idR and σ are distinct grouplikes, and δ
(1)
R is (idR, σ)-

primitive, i.e., ∆(δ
(1)
R ) = σ⊗δ

(1)
R +δ

(1)
R ⊗ idR. Since (R

e)◦ is cocommutative,
every (idR, σ)-primitive element is necessarily of the form u (σ − idR) for
some u ∈ R. �

Keep σ, δ∗R = (δ
(k)
R )k∈N as above. Assume σ ̸= idR and that R is a field.

Let u ∈ R be as in the last lemma.
Either if q = 1 and chark = 0, or if q is not a root of unity, then just as

in Section 3, δ
(k)
R are all determined by σ and u; they are included in the

R-subring generated by σ, and may be ignored.

Assume δ
(1)
R ̸= 0, σ ̸= σ ◦ σ and that q is a root of unity of order N > 1.

Then Condition (2) in k = 1 implies that σ(u) = 1
qu. Since Condition (5)

implies (δ
(1)
R )N = 0, one sees as proving Lemma 3.2(a) that σN = idR. We

can construct a cocommutative ×R-bialgebra H, just as in Section 3. We
can also generalize the argument in Section 4 to this H. Consequently, all
the results on iterative q-difference rings and modules that we have referred
to in the section are generalized to commutative algebra objects and their
module objects in H-Mod.

Acknowledgments

The work was supported by Grant-in-Aid for Scientific Research (C)
23540039, Japan Society of the Promotion of Science. The main results



24 A. MASUOKA AND M. YANAGAWA

of this paper were announced by the first-named author at the AMS–AWM
Special Session “Hopf Algebras and Their Representations” of Joint Mathe-
matics Meetings, New Orleans, January 6–9, 2011. He thanks the organizers
of the special session, Susan Montgomery, Richard Ng and Sarah Wither-
spoon.

References

[1] K. Amano, Liouville extensions of artinian simple module algebras, Comm. Algebra
34 (2006), 1811–1823.

[2] K. Amano, A. Masuoka, Picard-Vessiot extensions of artinian simple module algebras,
J. Algebra 285 (2005), 743–767.

[3] K. Amano, A. Masuoka, M. Takeuchi, Hopf algebraic approach to Picard-Vessiot the-
ory,in: M. Hazewinkel (ed.), Handbook of Algebra, Vol. 6, Elsevier, North-Holland,
2009, pp. 127–171.
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