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ABSTRACT

Aims. To study the abundance and temperature of ammonia in the center of a nearby galaxy M 51 and to compare them with those in
other nearby galaxies, we observed its (J, K) = (1, 1), (2,2), (3,3), and (4, 4) inversion transitions at the wavelength of 1.3 cm.
Methods. The observations were carried out with the Effelsberg 100-m radio telescope.

Results. The (1, 1), (2,2), and (3, 3) transitions are clearly detected, but the (4, 4) transition is barely detected. The rotational tem-
perature obtained from the (1, 1) and (2, 2) transitions of para-ammonia is 25 +2 K, which is similar to those of M 82 and the Large
Magellanic Cloud (N 159 W), but significantly lower than those of IC 342 and NGC 1068 among the nearby galaxies. The column
density of ammonia is (8.1 +2.4) x 10" cm™2, and the abundance relative to H, is ~4.5 x 107°. The abundance in M 51 is about a factor
of 5 lower than those of NGC 253 and IC 342, but about one order of magnitude higher than those of M 82 and the Large Magellanic
Cloud. The addition of the data of M 51 further supports the exceptionally low abundances of ammonia reported previously in these
two galaxies. For understanding the abundance of ammonia in M 51 and other nearby galaxies, their temperatures were compared. As
a result, we found that the galaxies with low temperature tend to have low abundance of ammonia. In addition, the photodissociation
rate of ammonia was compared to those of related molecules detected in the nearby galaxies to discuss the effect of photodissociation.

We found that the low abundance of ammonia in some galaxies cannot be explained only by the effect of photodissociation.

Key words. local insterstellar matter — molecular processes — ISM: molecules — ISM: abundances

1. Introduction

So far, more than 40 molecular species have been detected in ex-
ternal galaxies, mainly through radioastronomical observations.
These molecules have been used to study the distributions and
kinematics of molecular gas, the physical conditions such as
temperature and density, and the chemical reactions.

Ammonia (NH3;) is a relatively abundant and useful
molecule for studying the nature of molecular clouds including
kinetic temperature (e.g. Ho & Townes 1983). It is well observed
in Galactic sources and also in several external galaxies.

Ammonia was first detected in external galaxies using the
(J,K) = (1, 1) inversion transition by Martin & Ho (1979)
in NGC253 and IC342. Subsequently, the (2,2), (3,3), and
(4,4) lines were detected in IC 342 (Martin et al. 1982; Martin
& Ho 1986). In addition, the spatial distributions of ammo-
nia in IC342 were mapped with the VLA by Ho & Martin
(1983) and Ho et al. (1990). Ammonia was also observed in the
Large Magellanic Cloud (LMC; Ott et al. 2010), other nearby
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galaxies Cen A, Maffei2, M 82, and NGC 1068 (Seaquist &
Bell 1990; Henkel et al. 2000; Takano et al. 2000, 2002; Weif3
et al. 2001; Ao et al. 2011), Arp 220 (Takano et al. 2005;
Ott et al. 2005, 2011), and more distant sources B0218+357
(Henkel et al. 2005) and PKS1830-211 (Henkel et al. 2008).
These data indicate large variations in ammonia abundance
among galaxies that are not yet well understood.

M 51 (NGC5194) is a nearby grand-design spiral galaxy at
a distance of 7-8 Mpc (Feldmeier et al. 1997; Takats & Vinké
2006) seen nearly face-on with a low-luminosity active galatic
nucleus (AGN; e.g. Fukazawa et al. 2001). Rich molecular gas
traced by carbon monoxide (CO) has been mapped in its J =
1-0 and 2—1 transitions with single-dish telescopes (e.g. Nakai
et al. 1994; Schuster et al. 2007). High-resolution images with
interferometers have also been obtained (e.g. Aalto et al. 1999;
Helfer et al. 2003). Recently Koda et al. (2009, 2011) revealed
the detailed distribution of CO (J = 1-0) with spatial resolution
of 4” by mosaicing and combining data obtained with Combined
Array for Research in Millimeter Astronomy (CARMA) and the
Nobeyama 45-m radio telescope.

On the other hand, other limited molecular species ex-
cept CO have been detected in M 51, though molecular gas is
abundant as mentioned above for the CO observations. HCN
and HCO* were observed including images with interferometers
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(Nguyen et al. 1992; Kohno et al. 1996; Sorai et al. 2002;
Schinnerer et al. 2005). CS, N,H", and HNC were detected at
the center (Sage et al. 1990; Sage & Ziurys 1995; Huettemeister
etal. 1995). However, the number of detected molecules is rather
small compared to other nearby gas-rich starburst galaxies, such
as NGC 253, M 82, and IC342. M 51 has not often been ob-
served to detect molecules, because starburst galaxies were usu-
ally observed owing to the relatively strong intensity of the lines.
In particular, ammonia has not yet been detected in M 51, al-
though it is fundamental for studying the temperature and the
abundance, including their relation to the physical conditions of
each galaxy. The temperature and the abundance of ammonia
in this spiral galaxy with a low-luminosity AGN will contribute
to understanding extragalactic ammonia and its relation to the
physical conditions in galaxies.

In this article we report the first detections of the ammonia
(1,1), (2,2), and (3,3) lines in M 51. From the present obser-
vations we derived the abundance, the rotational temperature,
and the ortho-to-para abundance ratio of ammonia. Based on the
present study and on knowledge of ammonia in the nearby galax-
ies studied so far, the temperature and the abundance of ammonia
are compared and discussed.

2. Observations

The observations were carried out with the 100-m radio tele-
scope of the MPIfR (Max-Planck-Institut fiir Radioastronomie)
at Effelsberg in June 2000 and March 2002. The receiver
was equipped with cooled high-electron-mobility transistors
(HEMT) for two orthogonal linear polarizations. The four inver-
sion transitions of (J, K) = (1, 1), (2,2), (3,3), and (4,4) at the
23.7-24.1 GHz region in both polarizations were observed si-
multaneously. The (3, 3) line (K multiple of 3) belongs to ortho-
ammonia, and the other lines to para-ammonia. The spectra were
obtained using eight digital spectrometers. The bandwidth of
each spectrometer was 40 MHz (512 channels), which corre-
sponds to a velocity coverage of ~506 kms~! at 23.7 GHz. The
corresponding velocity resolution is 0.99 kms~!.

The spatial resolution of the telescope was about 40"
(HPBW) measured at the pointing observations with 3C 286.
3C286 was also used to check the focus and to calibrate in-
tensity. This resolution corresponds to about 1.6 kpc at the
distance of 8 Mpc. The adopted central position of M 51 was
RA(B1950.0) = 13"27™46:3 and Dec(B1950.0) = 47°27'100,
and the systemic velocity was Vigg = 470 km s~! in the radio
definition (Nakai et al. 1994). The observations were made in
the dual-beam-switching mode. The off position was at 121" in
azimuth. The on and off positions were changed by using a ro-
tating horn at the receiver with a switching frequency of 1 Hz.

The data were reduced using the CLASS software!. Linear
baselines were subtracted from spectra assuming a velocity
range of the lines to be between 350 and 550 kms™'. In the final
spectra ten channels were binned to obtain reduced velocity res-
olution of 9.9 kms~! at 23.7 GHz and an rms noise of 0.6—1 mK.

3. Results

The (J,K) = (1, 1), (2,2), and (3, 3) lines are detected, but the
(4,4) line is barely seen as shown in Fig. 1. The intensity of the
(3, 3) ortho line is stronger than that of the (2, 2) paraline as often
seen in other sources (e.g., in NGC 253 and NGC 1068, Takano
et al. 2002; Mauersberger et al. 2003; Ao et al. 2011). The
width of each line (FWHM) is about 120 kms~'. This is in good

! http://www.iram.fr/IRAMFR/GILDAS
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Fig. 1. Spectra of the ammonia (J,K) = (1, 1) to (4,4) transitions at
the wavelength of 1.3 cm in M 51. The horizontal axis is velocity with
respect to the local standard of rest, calculated from the rest frequency
of each transition. The vertical axis shows intensity in the main beam
brightness temperature. The spectral channels are binned to a velocity
resolution of 9.9 kms~! (see the section of observations).

agreement with the line width measured in HNC (115 km s~
Huettemeister et al. 1995), but slightly narrower than the aver-
age CO line profile over the same area (150 kms™', see below).
The line parameters are summarized in Table 1.

The obtained data were analyzed with the conventional ro-
tational diagram method (e.g. Turner 1991). The beam filling
factor was estimated as follows and was taken into account. The
size of the distribution of ammonia was estimated as ~75” X
70" (FWHM) based on the distribution of the CO J = 1-0 line
in the central region (Nakai et al. 1994). By using the well-
known formula (e.g. Burton et al. 1992) for the coupling between
a two-dimensional Gaussian distributed source and the telescope
beam, the beam-filling factor was calculated as 0.77. The parti-
tion function was calculated by numerical summation of popu-
lations in the metastable levels (J = K), where populations are
dominated.
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Table 1. Observed line parameters of ammonia in M 51.

Transition f T do’ Tob” Visr? AV rms noise N(J,K)?
(Kkms™) (mK) (kms™) (kms™) (mK) (cm™2)

(1,1 061+004 47 460 127 1 (1.0+0.1)x 10"

(2.2 027+003 26 468 107 0.6 (3.4+0.3)x 102

3,3) 0.56 +0.04 4.8 462 119 1 (6.3+0.5)x10'?

(4, 4) (0.16 + 0.03)* 0.6 <(17+03)x 102

Notes. ("’ Obtained by integrating the spectra between 350—550 km s™!. The error was estimated from the noise level of each spectrum. ® Obtained
from Gaussian fits to the spectra. ® Column density of each level. ® Barely detected.
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Fig. 2. Rotational diagram of ammonia in M 51. The horizontal axis
is the upper state energy, and the vertical axis corresponds to the abun-
dances (g, = 2Jypper + 1, g7 is the spin statistical weight). The (4, 4) line
is regarded as an upper limit, because it is barely detected. The error of
each data point was estimated based on the noise level of each spec-
trum. About the rotational diagram analysis, see the section of results
and references there.

The diagram is shown in Fig. 2. The rotational (kinetic)
temperature obtained is 25+2 K based on the detected para
lines, (1, 1) and (2,2). The (4, 4) line is barely detected as men-
tioned before. However, if the detection is real, the data point
will lie at a much higher position than the extrapolated dashed
line connecting the two data points of the (1, 1) and (2, 2) lines.
This would imply the existence of a hotter gas component than
25 K. (The temperature calculated using the (2,2) line and the
(4,4) upper limitis <104 + 16 K as shown in Fig. 2.) The temper-
ature obtained from the (1, 1) and (2, 2) lines is thought to repre-
sent relatively low-excitation gas. The data point of the (3, 3) or-
tho line also lies above the extrapolated dashed line, suggesting
a high ortho-to-para abundance ratio.

The column densities obtained are (1.4+0.2)x 103 cm™
for para-ammonia based on the (1,1) and (2,2) transi-
tions, and (6.7+2.4)x 10" cm™ for ortho-ammonia based
on the (3,3) transition, where the rotational temperature of
ortho-ammonia was assumed to be the same as that of
para-ammonia. The total column density (ortho + para) is
(8.1+2.4)x 10" cm™2. The abundance relative to the column
density of Hy is (4.5 +1.3) x 107, where the column density of

H, (1.8 x 10*2 cm™2) was estimated from the CO integrated in-
tensity (Ico; Nakai et al. 1994, beam size 16”) averaged within
the 40” beam of our observations and the conversion factor
(N(H,) =2 x 10%°Ico cm™?) in Nakai et al. (1994).

To check the validity of using the CO line for the purpose
above, we investigated the CO linewidth (Nakai et al. 1994;
Kuno & Nakai 1997) by direct comparison and by convolving
their CO map with the beam size of our observations. As a re-
sult, the maximum linewidth in the central region is 155 km st
(FWHM), and the linewidth from the convolved image is about
150 kms™' (FWHM). These widths are about 1.2—1.4 times
larger than those of ammonia suggesting that CO is also prob-
ing kinematics of lower density regions. However, the difference
in the linewidth above is not so large as to lead to a significant
effect on the abundance of ammonia averaged within the beam.

The ortho-to-para abundance ratio is found to be 4.8 + 1.0.
This value is based on only one ortho line (3, 3), and thus it is
not possible to determine the rotational temperature of ortho-
ammonia. Future observations of another ortho line (6,6) and
para lines (4,4) and (5,5) will be useful to obtain an accurate
ratio. The ratio is much higher than the value of one at a high-
temperature limit, but similar to what is found in NGC 253 (ve-
locity range: 100—400 km s™1) (Takano et al. 2002).

4. Discussion
4.1. Rotational temperature of ammonia

The rotational temperature obtained in M 51 (25 +2 K from the
(1, 1) and (2,2) para lines) is compared to those obtained in other
nearby galaxies and the central molecular zone (CMZ) of our
Galaxy. The temperatures mainly obtained from the (1, 1) and
(2,2) para lines are listed in Table 2. As shown in this table, the
temperature in M 51 is similar to those in M 82 and the CMZ, but
significantly lower than those in IC 342 and NGC 1068. These
results indicate that the gas in M 51 averaged over the beam is
less heated than in IC 342 and NGC 1068. To interpret this situ-
ation, two factors can be pointed out.

(1) The gas may actually be less heated than in IC342 and
NGC 1068. This should come from star formation and/or
AGN activities. The star formation rate (SFR) of some
nearby galaxies are listed in Smith & Wilson (2003), and
as a result, the SFR of M 51 (0.9 M, yr™') is about a factor
of 5 lower than that of NGC 1068 (5.0 M yr™!). It is prob-
able that this difference is related to the lower temperature
in M51.

The dust temperature in M 51 (34.8 K) is relatively low
among nearby galaxies (e.g. 46.3 K in NGC 1068), but it is
also low in IC 342 (34.9 K) (Young et al. 1989). In addition,
infrared luminosity in M 51 (5x 10° Ly) is relatively low
among nearby galaxies (e.g. 3.2 x 10'! Ly, in NGC 1068), but
it is also low in IC 342 (3.8 x 10° L) (Thronson et al. 1987).
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Table 2. Ammonia abundance and temperature in nearby galaxies and the Galactic center.

Galaxy Temperature! Abundance Spatial resolution Reference
X (arcsec and kpc)
M5l 25+2 4.5+13)x107° 40", 1.6 (Eftelsberg) this work
NGC253 29 (+7,-5),50 (+17,-10)>  (2.7+1.1)x1078 717, 1.0 (NRO) Takano et al. (2002)
... 2.0x 1078 40", 0.48 (Effelsberg)® Mauersberger et al. (2003)
M 82 29+5 5% 10710 407, 0.75 (Effelsberg)®* WeiB et al. (2001)
IC342 57 +1 1.9x 1078 40", 0.34 (Effelsberg)®* Takano et al. (2002)
53+1 1.3x1078 40", 0.34 (Effelsberg)® Mauersberger et al. (2003)
Maffei 2 30 (+3,-2) 1x1077 707, 1.7 (NRO) Takano et al. (2000)
48 + 15 2.0x1078 40", 0.48 (Effelsberg)® Mauersberger et al. (2003)
NGC 1068 44 (+6,—4) (2.9+0.6)x 1078 31”,2.3 (GBT) Aoetal. (2011)
LMC (N 159 W) ~16 4x10710 1876 x 1577, ~0.004 (ATCA) Ott et al. (2010)
Galactic center (CMZ) ~20-40° 1 x 107° (fixed) 570", 0.024 (Kagoshima) Nagayama et al. (2007)
Notes. (V' Rotational temperature obtained mainly from the (1,1) and (2,2) para-ammonia transitions. ® At the velocity component of

260-320 kms~'. @ The original linear scale in Table 4 in Mauersberger et al. (2003) corresponds to the angular resolution of 35”. The linear
scale here was converted for 40”. ¥ Taken from Mauersberger et al. (2003). © ~75% of the total flux of ammonia corresponds to this temperature

range.

These facts indicate that the direct comparisons among these
values are not appropriate. Observations with higher spatial
resolution and comparisons with similar angular resolution
are desirable for better understanding the temperature.

(2) The ratio of cold gas relative to hot gas in the beam (1.6 kpc
at D = 8 Mpc) may be higher in M 51. Devereux & Young
(1992) reported that the ~90—94% of the dust mass in M 51
is in cold temperatures of ~14—16 K, based on the observa-
tional data at 170 um. This result supports this second point.

The rotational temperatures obtained from the ammonia inver-
sion lines correspond to the kinetic temperatures, but gener-
ally they underestimate the kinetic temperatures, in particular at
higher temperatures (Walmsley & Ungerechts 1983; Danby et al.
1988). The obtained rotational temperature of 25 +2 K for M 51
corresponds to about 33 K in kinetic temperature according to
the Fig. 1 in Danby et al. (1988).

4.2. Abundance of ammonia

The abundances of ammonia in nearby galaxies are also summa-
rized in Table 2 and Fig. 3. The abundance in M 51 is about
a factor of 5 lower than those in NGC253 and IC 342, but
about one order of magnitude higher than those in M 82 and the
LMC (N 159 W). The significantly low abundances of ammonia
in M 82 (Weil} et al. 2001; Takano et al. 2002) and in the LMC
(Ott et al. 2010) have already been pointed out.

In the present study, the addition of the data of M 51 fur-
ther supports the exceptionally low abundances of ammonia in
M 82 and the LMC. In addition, the data of M 51 may indicate
similar characteristics to M 82 and the LMC, since the abun-
dance in M 51 is halfway between the ammonia-rich galaxies
and the ammonia-poor galaxies. A possible common character-
istic of galaxies (including M 51) with low ammonia abundance
is to have relatively low temperature (<29 K, Table 2). The abun-
dance of ammonia in gas phase is thought to increase in active
regions (see compilation and references in Takano et al. 2002).
If it is produced in gas phase with ion-molecule reactions, a low
activation energy must be overcome. If it is produced on a grain
surface (e.g. recent experiment, Hidaka et al. 2011), it must be
subsequently evaporated to gas phase. The above common char-
acteristic is consistent with these formation mechanisms, be-
cause the ion-molecule formation reaction and the evaporation
of ammonia are both not efficient at low temperatures. In the case
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Fig. 3. Abundance of ammonia relative to H, in nearby galaxies. The
data were taken from the references as follows (see also Table 2):
NGC 253 Takano et al. (2002), M 82 WeiB et al. (2001), IC 342 Takano
et al. (2002), Maffei 2 Mauersberger et al. (2003), NGC 1068 Ao et al.
(2011), and LMC (N 159 W) Ott et al. (2010).

of the LMC, the low metallicity (~10% of the solar abundance
for nitrogen, Hunter et al. 2007) should also make the abundance
of ammonia lower (Ott et al. 2010).

On the other hand, the reason for the low abundances of am-
monia in M 82 and the LMC has been discussed as being due
to the efficient photodissociation of ammonia, in particular in
M 82 (Weill et al. 2001). In addition, we suggested previously
that the formation process of ammonia on grain surfaces in M 82
is not very efficient based on the list of molecules deficient in
M 82 (SiO, NH3, HNCO, CH3CN, and CH30H) among nearby
galaxies (Takano et al. 2002). Recently, Aladro et al. (2011) have
reported results of a molecular line survey of M 82 at the wave-
lengths of 1.3 and 2 mm, and compared the molecular abun-
dances in M 82 and NGC 253 in detail. Based on this compari-
son they also point out the existence of a larger amount of gas
affected by photodissociation in M 82.

We compared the photodissociation rates of related
molecules in the standard interstellar radiation field
(van Dishoeck et al. 2006). The rate of ammonia of 1.2 X
107 s7! is a relatively high value and is similar to those
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of molecules deficient in M 82 (1.6 x 10™ s~ for SiO and
1.4x10™° s7! for CH3;OH). However, the photodissociation
rates of some molecules with comparable or higher abun-
dances in M 82 than in NGC 253 (SO, HCO, H,S, H,CO, and
cyclic-C3H,) (Aladro et al. 2011) are similary high (4.2 x 1072,
1.1x107%, 3.1x107%, 1.0x107%, and 1.9x 1077 s7!, respec-
tively). These results indicate that the effect of photodissociation
in M82 is not always dominant for molecules with high
photodissociation rates, though photodissociation is one of
the important destruction mechanisms. As usual, balances of
both formation and destruction (including photodissociation)
mechanisms are important for understanding the molecular
abundances. Such considerations are also needed to understand
the abundance of ammonia in nearby galaxies. As a formation
mechanism in this case, we already mentioned above the
possibility of inefficiency of grain surface reactions (Takano
et al. 2002) and evaporation to gas phase.

4.3. Ortho-to-para abundance ratio of ammonia

If the present value of 4.8 + 1.0 is regarded as fixed at the time
of evaporation from grain mantles, the corresponding temper-
ature is ~9 K (e.g. Takano et al. 2002). We note that the or-
tho (0, 0) level is situated at the lowest energy, so that the large
amount of ortho-ammonia is populated there. The population
of this (0,0) level is calculated by extrapolating the (3, 3) data
using the rotational temperature. We assumed the same rota-
tional temperature for ortho-ammonia as for para-ammonia. If
the rotational temperature of ortho-ammonia is higher than for
para-ammonia, the present column density of ortho-ammonia
is overestimated. The column density of ortho-ammonia and
the corresponding ortho-to-para abundance ratio are calculated
for possible higher rotational temperatures of ortho-ammonia:
3.5x 10" em™2 and 2.5 at 30 K, 1.6x 10" ¢cm™2 and 1.2 at
40K, and 1.2 x 103 cm2 and 0.8 at 50 K. The ratio is, therefore,
largely affected by the variation in rotational temperature.

5. Concluding remarks

We reported our detections of the ammonia (J,K) = (1, 1),
(2,2), and (3, 3) lines in the center of a nearby galaxy M 51. The
rotational temperature obtained from the para-ammonia lines
is 25+2 K, which is relatively low among the nearby galax-
ies. The abundance of ammonia in M 51 is halfway between
the ammonia-rich galaxies (e.g. NGC 253 and IC342) and the
ammonia-poor galaxies (M 82 and the LMC). A possible com-
mon characteristic of galaxies (including M 51) with low am-
monia abundance is relatively low temperature, which can cause
inefficient formation of ammonia in the gas phase and/or ineffi-
cient evaporation from the grain surface.

The photodissociation rate of ammonia is relatively high.
Therefore, it has been suggested that the low abundance of am-
monia in M 82 and the LMC is due to efficient photodissocia-
tion by ultraviolet radiation. However, we mentioned that con-
siderations of both the formation and destruction mechanisms
are needed, as usual, to understand the abundance of ammonia.
This is based on comparing the photodissociation rates of related
molecules in nearby galaxies.

Further observations of the high-(J, K) lines will be useful
for precise determinations of the temperature, the abundance,
and the ortho-to-para ratio. In addition, observations with high
spatial resolution will also be useful for understanding spatial
variations of the excitation and the abundance.
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