
J. Japan Statist. Soc. 
Vol. 25 NO.2 1995 151-158 

INFORMATION INEQUALITIES FOR THE MINIMAX RISK 

Michikazu Sato* and Masafumi Akahira* 

This paper presents lower bounds for the minimax risk under quadratic 
loss, derived from information inequalities for the Bayes risk obtained by 
Borovkov and Sakhanienko, Brown and Gajek. In addition, admissibility 
of a minimax estimator is discussed, and we provide examples which illus­
trate that they are good bounds. 

1. Introduction 

Borovkov and Sakhanienko [2J and Brown and Gajek [3J presented lower 
bounds for the Bayes risk under scaled quadratic loss assuming some regularity 
conditions. In cases where the regularity conditions of Brown and Gajek [3J 
do not necessarily hold, Sato and Akahira [8J have also obtained lower bounds. 

The purpose of this paper is to obtain lower bounds for the minimax risk 
under quadratic loss. In Section 2, a lower bound for the minimax risk are 
given, using a family of prior distributions, which is an application of the 
results of Borovkov and Sakhanienko [2J and Brown and Gajek [3]. The 
result is shown to be useful in order to prove an estimator to be minimax, and 
its admissibility is also discussed. Since the assumptions in Section 2 are 
too strong to use in cases when the parameter space is bounded, we obtain 
lower bounds for the minimax risk under less restrictive assumptions in Sec­
tion 3, which are asymptotically good bounds as is shown in the examples. 

2. A lower bound for the minimax risk: fixed sample case 

In this section we obtain a lower bound for the minimax risk for a fixed 
sample case. 

Let X be an observable random variable with probability densities Po 
relative to some (T-finite measure v. Assume 8 E e, where eeR is a (possibly 
infinite) interval. It is desirable to estimate 8 by a E e under loss 

L(8, a) = (a-8)2 . 

Let R(f), T) =Eo[L(f}, T)] denote the risk of the non randomized estimator 
T=T(X). Define 

R*(T) :=supR(8, T) , 
o 

r*: =inf R*(T) , 
T 

then r* is called to be the minimax risk and also To is said to be minimax if 
R*(To) =r*<(X). Let eo denote the interior of e. Let e denote the closure 
of e. Let g(.) be a probability density with respect to the Lebesgue measure 
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on e. This is the prior density. For any estimator T, let B(g, T) = 

~R(8, T)g(8)d8 and let B(g) =infr B(g, T). B(g) is the Bayes .risk under g. 

When we have independently and identically distributed random variables 
Xl, ... , Xn instead of X, we say "the size of sample is n," and rewrite r* 
by r:. 

Let 81 = 80-0, 82 = 80+0 for 0>0 and define a prior density g by 

for 18-801 <0. 

We denote this prior distribution by COS2 (80, 0). We now make the following 
conditions (2a) to (2d). 
(2a) There exist 81,82 E g such that 81 <82 and, for a.e. 8 E (81, (2), the amount 

of Fisher information 

J(O) :=E{ 1 :0 log p,(X)l'] 
exists. Define V(8):=ljI(8) and assume 0<V(8)~oo for a.e. 8E 
(81, (2). 

(2b) The Bayes estimator under g 

~:: Op,(x)g(O)dO 
To(x)- )0 ' 

2 Po(x)g(8)d8 
°1 

can be extended to an absolutely continuous function on [81, 82]' 
(2c) For T g , the Cramer-Rao inequality (or the C-R inequality for short) 

Var, Tg:2. V(O) 1 to E,[Tg] l ' 
holds for a.e. 8 E (81, (2). 

(2d) A constant v* satisfies 0<v*~infol<o<o2V(8) and v*<oo. 
In the above, "a.e. 8" means almost all 8 with respect to the Lebesgue 
measure. 
Then it follows from Borovkov and Sakhanienko [2J and Brown and 
Gajek [3J that 

(2.1) 

The bound (2.1) is also a bound for r*, but in order to get a good bound 
for r*, we generally need to consider a family of prior distributions and a mani­
pulation of limit. Here we use 

v*: =sup V(8) , 

where the supremum is taken over all values 8 where V(8) is defined. 
We make the following conditions (2e) and (2£). 

(2e) There exists 80 such that (80, oo)ce and for a.e. 8>81, V(8) is defined 
as in (2a). 

-24-



INFORMATION INEQUALITIES FOR THE MINIMAX RISK 153 

(2f) For any bounded estimator T, el-1> Eo[TJ is absolutely continuous on any 
bounded closed interval in (eo, co) and the C-R inequality holds for a.e. 
e> eo. 

THEOREM 2.l. Assume that the conditions (2e) and (2f) hold. Then 

(2.2) r*~lim inf V(e)= :Voo (say). 
0-+00 

PROOF. Without loss of generality we assume voo>O. Fix M with 0< 
M <co. For a sufficiently large kEN, let 

v*(k): =min{inf V(e), M} . 
O>k 

Then v* is monotone increasing in k and 

lim v*(k) =min{vcoJ M} . 
k->oo 

Let a prior distribution be Cos2(2k, k). From (2.1), we have 

r*>v* (k)( 1+ 1T
2

Vk,(k) r 
Letting k -1> co we obtain 

r* ~min{v*J M} . 

Since this holds for any O<M <co, we get r*~voo. 0 
REMARKS. (i) The bound (2.2) is useful when Vco = v* (see Example 2.1). 

In the case when the size of sample is n, (2.2) can be written as 

(2.3) nr:~vco . 

If vco<v* and the assumptions of Theorem 3.1 hold, however, the bound (2.3) 
is not sharp for a sufficiently large n (see also Theorem 2.3). 
(ii) If we let e-1>-CO instead of e-1>CO, then a similar result holds. 

Next, in order to consider admissibility, we make the following conditions 
(2g) to (2i). 
(2g) G=R and, for every e, V(e) in (2a) exists and o<V(e)<co. 
(2h) limo_oo V(e), limo __ co V(e) exist and are finite. 
(2i) For any estimator T which satisfies Eo[T2] < co for all e, Eo[T] is differ­

entiable with respect to e and the C-R inequality holds. 

THEOREM 2.2. Assume that the conditions (2g) to (2i) hold. If To is an 
unbiased esti1nator of e and the equality of the C-R inequality holds for all e, To 
is admissible. 

PROOF. Assume that To is improved by Tl and denote b(e) =Eo[Tl]-e. 
Then, from the assumption of To and (2i), we have 

(2.4) V(e)=R(e, To)~R(e, Tl)~b2(e)+ V(e){1+b'(e)}2, 
and by (2g) , we get b' (e) :::;;, 0, hence b is monotone, and by (2.4), it is bounded. 
Therefore, b( ± co) = limo_±oo b(e) exists and is finite, and by applying the 
mean value theorem for each i E Z, we get ei E (i, i+1) satisfying limi_±co b'(ei) 
=0. Substituting ti to (2.4) and taking limits, we have b(± co) =0. Since b 
is monotone, we have b=.O, hence (2.4) is an equality for all e. This is a con­
tradiction. 0 
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Note that this proof is similar to that of Problem 1 of Hodges and 
Lehmann [8J. 

THEOREM 2.3 Assume that the conditions (2g) to (2i) hold. If a minimax 
estimator exists and Vco = info V (8) and V (8) is not constant, then the bound (2.2) 
is not sharp. 

PROOF. Assume that the bound is sharp. Then, for a minimax estimator To, 

(2.5) R(8, To)~R*(To)=r*=vco~V(8) . 

On the other hand, by a similar way to the proof of Theorem 2.2, we have 
b(8):=Eo[ToJ-8=0, and R(8, To):2:V(8). Hence (2.5) becomes an equality 
for all 8 and it contradicts the assumption that V(8) is not constant. D 

EXAMPLE 2.1. If in Theorem 2.1, vco=v*<oo, and for an unbiased esti­
mator To the equality of the C-R inequality holds for all 8, then To is minimax. 
For example, if X is normally distributed as N(8, 1) and G = R, then X is 
minimax and from Theorem 6.2, X is admissible. In the case when G = (0, (0), 
although X is minimax it is not admissible since it can be improved by 
max{X,O}. 

3. Lower bounds for the minimax risk: asymptotic case 

In Section 2, we considered a fixed sample case. If G is bounded, how­
ever, this method does not work well for a fixed sample, as is illustrated in 
Example 3.1 and Example 3.2. In such cases, under some regularity condi­
tions, however, we can get an asymptotically good bound. 

Suppose that Tn=Tn(Xl, ... , Xn) is an estilnator when the size of sample 
is n. A sequence of estimators {Tn} ( or Tn for short) is said to be asymptoti­
cally minimax if 

. r: 
l~~ R*(Tn) =1, 

where % is defined by 1. 

THEOREM 3.1. Assume that the conditions (2a) to (2d) hold. Then 

(3.1) 

where 0=(82-81)/2. 

PROOF. From (2.1), when the size of sample is 1, we get 

r*>v*(l+ 7T;~* )-1 
\iVhen the size of sample is n, then r* and v* are replaced by r: and v*/n, respec­
tively, and we obtain (3.1). D 

EXAMPLE 3.1. If X/s are N(8, 0-2
) random variables and G=(80-00, 

80+00), then 
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This is the best bound of all bounds of the form 

for a sufficiently large n, 

where C and p are independent of n. Indeed we have 

nr: 7T
2

(T2 ( 1 ) -<)-=1--<)-+0 - . 
(T- oon n 

This follows from Bickel [1 J and the fact that X = 2::i=1 Xj/n is a sufficient 
statistic and distributed as N(fJ, (T2/n ). For a small n, the bound from Donoho, 
Liu and MacGibbon [5J 

with d ~ (1.247)-1 is an improvement (numerical comparison is given by Brown 
and Low [4J), but it is not a good bound for a sufficiently large n. 

Note that the bound (3.1) is not generally an asymptotically good bound. 
In order to get better bounds in the cases where V is not constant, we make 
the following conditions (3a) and (3b). 
(3a) There exist fJo and fJ1 such that - co -::;;,fJO<fJ1 < co, (fJo, fJl) c e and for a.e. 

fJ>fJo, V(fJ) is defined and v*=limo!oo V(fJ). 
(3b) For any bounded estimator Tn, fJl-+ Eo[TnJ is absolutely continuous on 

any bounded closed interval in (fJo, fJl) and the C-R inequality holds for 
a.e. fJ E (fJo, fJl). 

THEOREM 3.2. Assume that the conditions (3a) and (3b) hold. Then 

lim inf nr: ~ v* . 
n-+oo 

PROOF. If fJo = - co, we have, from Theorem 2.1 and its Remarks, 
nr:~v*. So we will only consider the other cases. Without loss of generali­
ty we assume that fJo=O and v*>O. Fix M with O<M <co and let 

V +(0): =min{ inf V(fJ), M} . 
0<0<0 

Then, from (3a), 

v +(0) -+ min{v*, M} as otO. 
So, for a sufficiently small 0>0, let COS2 (20, 0) be a prior distribution. Then, 
from (2.1), 

f 7T
2V (3°)l-1 

nr: > V +(30) (1 + o:n 

Hence the assertion follows from taking lim infn~oo of both sides of the above 
and letting 0 i 0 and M t co. 0 

REMARKS. (i) A similar result can be obtained in the case fJ t fJo instead 
of fJ i fJo in (3a). 

(ii) From the theorem above, it follows that (3.1) is not an asymptotically 
better bound in cases when v* < v*. But, for a fixed n, Theorem 3.2 is mean­
ingless. In Theorem 3.3, we obtain a bound which is meaningful for a fixed n 

and is asymptotically better in such cases. 
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THEOREM 3.3. 
hold. 

(I) Assume that the following conditions (3c) , (3d) and (3e) 

(3c) 

(3d) 

O<v*<oo . 

There exist 80 E fJO, 00, d, k>O such that (80-00, 80+00) C 8, and for a.e. 
8 E (-00,00), 

V(80+8)~v*-kI8Id . 

(3e) For any bounded estimator Tn, 81-+Eo[TnJ is absolutely continuous in any 
closed interval in (80-00,80+00) and the C-R inequality holds for a.e. 8 E 

(80-00,80+00). 
Then 

(3.2) * nrn >1-Cn-d/(d+2) 
v* 

holds for n>2(7Tv*)20od
-

2 (kd)-1, where 
C: = (21T2d-1 )d/(d+2) k 2/(d+2) (d/2+ 1 )(v*) (d-2)/(d+2) 

which is independent of n. In particular, if d=2, 

nr-:: Jk ->1-21T -
v* n 

holds for n> (7TV*)2 004 k-1. 

(II) Assume that (3c) and the following conditions (3f) and (3g) hold. 
(3 f) There exist 80 E e, 00, d, k >0 such that (80, 80+00) C 8, and for a.e. 8 E 

(0, 00) 

V(80+8)~v*-k8d . 

(3g) For any bounded estimator Tn, 81-+Eo[TnJ is absolutely continuous on any 
closed interval in (8o) 80 +00) and the C-R inequality holds for a.e. 8 E 
(80,80 +00)' 

Then 

(3.3) * nrn >l-Dn-d/cd+2) 
* v 

holds for n> 2d+3(7TV*)20od-2( kd)-l, where 
D : =23d/(d+2) (7T2d-1 )d/Cd+2) k 2/(d+2) (d/2 + 1) (v*) (d-2)/(d+2) 

which is independent of n. 

PROOF. \Vithout loss of generality we assume 80 = O. 

(I) For 0<0<00, let COS2(0, 0) be the prior distribution. If the size of sample 
is 1, from (2.1) we have, for v*> kOd, 

1 
1T2 l-1 r* > (v*-kod

) 1 +Tz(v*- kod) , 

hence, by using l/(l+x»l-x for x>O, we get 

r* kod 7T 2V* 
->1-----v* v* 02 ' 

This holds even if V*SkOd. If the size of sample is n then, by replacing r*, v* 
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and k with r;, v* /n and k In, respectively, we obtain 

nr; kod rr2v* ->1-----v* v* 02n' 

Letting 0=cn- 1 fot c, A>O, we have 0<0<00 for a sufficiently large n. In 
particular, let A=1/(d+2), c={2(rrv*)2(kdt1}1/Cd+2). These values are chosen 
here in order to get the asymptotically best bound of all A's and c's. Then we 
get (3.2) and the range of n by solving 0<00 for n. 

(II) Let COS2 (1+6)0/2, (1-6)0/2 be the prior distribution, where 0<0<00 
and 6 be a sufficiently small positive number. Since 

r* > (v*- kod) 11+ {(1-:;oI2}' (v*- kod)} -1 

letting 6 t ° and by a similar way to (I), we get 

r* 2d k ( O)d rr2v* 
7>1-0 2 - (0/2)2 . 

Hence we obtain (3.3) by replacing 0 and k with 0/2 and 2d k, respectively, in 
(I), and the range of n by replacing 00 with 00/2 in (I). 0 

In this theorem, the larger we take d which satisfies the assumption, the 
better we get the bound asymptotically. If we fix d, then the smaller we 
take k which satisfies the assumption, the better we get the bound asymptoti­
cally. We also see that 00 disappears in (3.2) and (3.3), but appears in the 
range of n. If we fix d and k, then the larger we take 00 which satisfies the 
assumption, the wider the range of n will be. Generally however, the smaller 
we take 00, the better we can get the bound asymptotically by changing k. 

If V(e) takes its maximum value at e=eo and is Cd for even d in [eo-oo, 
eo+oo] and V'(eo)=v"(eo)= ... = V Cd

-l) (eo) =0, VCd)(eo);t:o, then, for each 
lei <00, there exists 0<1]<1 such that 

V(eo+e) =v*+ VCd)(1]e)ed~v*-kleld 

where k:= -inf I81 <oo VCd)(eo+e»o. If we let 00 to, then k--+- VCd)(eo). Hence we 
get 

lim inf nd/Cd+2) (1- (nr; /v*)) ~ (2rr 2d-1 )d/Cd+2) I VCd) (eo) Id/Cd+2) (d/2+ 1) (v*) Cd-2)/Cd+2). 
n->co 

In particular, if d=2, we have 

lim sup,.Jn(l- nr! ) ~2rr"j1 V" (eo) I . 
n->co V 

This is meaningless, however, for a fixed n. 

EXAMPLE 3.2. We consider the case of the Bernoulli trials, that is, Xl, 
X2, ... is a sequence of i.i.d. random variables with a binomial distribution 
B(l, e), where o<e<1. Then we have 

V(B)=B(l-B) , V( ~ +B) = ~ -B' . 

Letting v*=1/4, eo=oo=1/2, d=2, k=l in Theorem 3.3 (I), we get 

nr; 1 2rr ->--v* ,.In 
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This is a non-trivial bound (that is, the right-hand side of the above is posi­
tive), however, if and only if n:2::40. Since, for an unbiased estimator Un: = 
2::j=1 Xj/n of 8, the equality of the C-R inequality holds, it follows from 
Theorem 3.3 (or 3.2) that Un is asymptotically mInImax. But Un is not 
minimax. I n this case, 

is minimax and 

r:=R*(Tn)=R(8, Tn) 
1 

(see Hodges and Lehmann [6J). Then we get 

nr: =1- 2-Jn +1 
v* n+2-J n +1 

I-an, 

where an--2/-Jn. When the assumptions of Theorem 3.3 (I) for d=2 hold, 
then by considering a bound of the form 

nr* -n->I-Cn-P * -V 
for a sufficiently large n , 

where C and p are independent of n, then,· although the value p = 1/2 In 
Theorem 3.3 cannot be improved, C may be improved. 
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