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WEIGHTED LOSS FUNCTIONS FOR SET ESTIMATION
- AND TESTING HYPOTHESES

Hirosuke Maihara* and Masafumi Akahira**

From the decision-theoretic viewpoint, using a weighted loss we compare the
risks of testing procedures in the location and scale parameter cases. We also get
numerically the minimax solution of Bayes testing procedures w.r.t. a parameter of
the prior distribution, under the weighted loss.
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1. Introduction

In the problem of testing hypotheses, we usually derive the conclusion whether
the hypothesis is accepted or not at the given level, but do not give the degree
of evidence to support the conclusion. On the other hand, from the viewpoint of
the decision theory, the probabilities of type I and II errors are represented as the
risk with respect to the 0-1 loss (see Lehmann (1986)). But, unfortunately the
concept like p-value, which is popular in the area of statistical application, can
not be described as a form of the risk. So, instead of the 0-1 loss, the quadratic
loss and weighted loss are considered as candidates when solving the problem
of testing hypotheses (see, e.g., Hwang et al. (1992) and Robert and Casella
(1994)). For a one-sided problem of testing the normal mean, the comparison
among the Neyman-Pearson (N-P) test, Bayes testing procedures and p-value
was made (see, Hwang et al. (1992)). ' '

Suppose that an n-dimensional random vector X is distributed according to
a density function f(x, ), where § € © C R!. Let ©g and ©; be disjoint subsets
of ©. Then we regard the problem of testing the hypothesis H: § € ©¢ against
the alternative K: 6 € © as that of estimating the indicator xe,(6) of Oy.

First we define the weighted loss function by

(1.1) x(0,d) := c(8)|xe,(0) —d|* (d € R A > 0),

where c is a nonnegative function on ©, and the decision procedure by a mea-
surable function ¢ satisfying 0 < p(x) < 1, x € R" (see also Robert and Casella
(1994)). We also define the risk of ¢ as

c(0)Ep [|1 — p(X)"] for 6 € ©p,
c(0)Ey [{¢(X)}*] for € ©,.
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In the one-sided problem of testing hypothesis on normal mean, Hwang et al.
(1992) compared the risks based on the quadratic loss among the N-P test, p-
value, and Bayes testing procedures, drawing figures of the behavior of those
risks.

In this paper, we also consider the one-sided problem of testing the hypothesis
H: 0 < 6y against the alternative K: 6 > 6y when 8 is a location parameter.
Since, in a neighborhood of the boundary € = 6y, both of the hypotheses would
be nearly acceptable, it is desirable for the loss to take small values. For a
moderately far area from 8 = 0, it is also desirable for the loss to make a
sensitive response. So, it is natural to choose as ¢(#) the function which takes a
minimum value at § = 6p and is increasing in | —8y|. Here, letting c(6) = |6 —6,|”
(y>0) and A =2 in (1.1), we have the loss function

(1.2) L9, d) := |6 — 60" {xe,(6) — d}* (v20),

where ©g = (—00, 6g]. Indeed, for the neighborhood, the loss (1.2) with v > 0 is
smaller under both of H and K than the quadratic loss L(%). For the moderately
far area from 6 = 6y, the loss (1.2) with v > 0 also gives a more sensitive response
than L9, Thus the loss (1.2) seems to be more natural than L(®). Then we have
as the risk of a decision procedure ¢

(1.3) RY(6,p) := Eg[L™ (8, ¢)] = 16 — 60|" Eo [{xe0(6) — ¢(X)}?] -

In the case when 6 (> 0) is a scale parameter, we consider the problem of
testing the hypothesis H: 6§ < 6, against the alternative K: 6 > 6y, where 65 > 0.
For a simple calculation, letting c(0) = (0/60)” (v > 0) and A = 2 in (1.1), we
have the loss function

(1.4) L9, d) := (6/60)"{xe0 () — d}* (v 20),
thus the risk of a decision procedure ¢ is given by
R, ) := Eo[L™(6,0)] = (8/60)"Es [{x0, () — (X)}] .

In this case, one may consider as other weights instead of the above ¢(9)

&7 (8) = (max{0/6o,60/6})" (v > 0),
c§(6) == (max{6/60,00/0} —1)" (y > 0).

In the one-sided problems of testing hypotheses, we numerically compare
the risks of the N-P test, p-value, and Bayes testing procedures, and obtain the
minimax solution of Bayes ones w.r.t. a parameter of the prior distribution.

2. Risk with fespect to the loss L(): Location parameter case

In this section we consider the location parameter case. Suppose that a real
random variable X is distributed according to a density function f(z —8) (w.r.t.
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the Lebesgue measure), where § € © C R!. Let 7 be a prior density of 8 (w.r.t.
the Lebesgue measure). Then we consider the problem of testing the hypothesis
H: 6 < 0y against the alternative K: § > 6y. Letting ©¢ = (—o0, 6], from (1.2)
we obtain as the risk of a decision procedure ¢

R0, ) = Bo[L (8, 0)] = 16 — B0 Egl{x00(8) — 9(X)}?

and as its Bayes risk w.r.t. 7

rele) = EARVO,0)] = [ RO, )n(6)ds

Without loss of generality we assume that 8p = 0. Then the Bayes risk is given
by ‘

e D= [ 100 { [ (el - ey sa- 0)d | a

= [" [a- ey [ @i -

—00 —00

+ ©?*(x) /0 ” 077 (0) f(z — O)dé):l dz.
Put

A= /ZO 6]"7(0) f(z — 0)d0, B := /OOO 07 (0)f(z — 6)df.

The decision procedure ¢ minimizing the Bayes risk (2.1) is given by

0 1S ’
22) vie)=gig = [ 1rfe-om@a [ [~ orie- oo,

which is called the Bayes decision procedure. Since the posterior density of 6
given X = x is

p(0 | 2) = f(z — O)m(6) / / " f(z — 0)m(6)do,

it follows from (2.2) that

r0 00
(2.3) or@ = [ loree a8 ) [ joreo] z)as

(see also Robert and Casella (1994)).
Here, one of the competitors of the Bayes decision procedures is given as
follows. Let C(«) be a rejection region of a test of level a. For given X = z,

: ;= inf
])(83) a%§£§01)(I

is called the p-value.
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Ezample 2.1 (Normal distribution).  Suppose that X;,..., X, are inde-
pendent and identically distributed (i.i.d.) random variables with the normal dis-
tribution N(,1). Let 7, be a prior density of the normal distribution N(0,c?).
Since X = (1/n) > 1., X; is normally distributed as N(6,1/n), it follows that
the posterior distribution of 8 given X = Z is the normal one

N no’z ’ o? N
no2+1 no?2+1

(i) Case v = 0. In this case, the risk R is the expected quadratic loss, and
is treated by Hwang et al. (1992). Then, for a = 0.01, 0.05, 0.10, the risk of the
N-P test takes very small values on ©g and extremely large ones on ©;. This
seems to arise from the facts that the N-P test takes only two values 0 and 1
and the hypothesis H is protected by restricting the probability of type I error
to being less or equal to the level a. From the test-theoretic viewpoint, the UMP
or UMP unbiased (UMPU) tests derived from the fundamental lemma of N-P
are appropriate, but, in the set estimation problem treated here, the risk of the
N-P test is affected by its support for the hypothesis H. On the other hand, the
risks of the p-value and the Bayes procedure are symmetric about the boundary
point § = 0 between ©¢ and ©; and relatively small all over the domain © (see
Figure 2.1). Thus, the p-value and the Bayes procedure are fair with both of the
hypothesis H and the alternative K and seem to be preferable to the N-P test.
Note that the risk of the N-P test is symmetric around § = 0 for o = 0.50.

1.0 ¢ .
t ~. the N-P test
N N \
08 A\
0.6
0.4 .‘
the p-value..
025.@94111_111?‘@’? r_l.Sk ..... 3 by
0.2 e
t0(',6(1\lT 8
e BYS P =2

-1.0 -0.5

Figure 2.1. The risks of the Bayes procedures, the N-P tests and the p-value under the quadratic
loss L(®) when n = 10 (Hwang et al. (1992)). The solid line is the risk of the p-value. The
risks of the N-P tests also are given for a = 0.01 (the longest dashes), 0.05,0.10 (the shortest
dashes), 0.50 (dots). The risks of the Bayes procedures also are given for the prior variances
02 = 0.01 (the longest dashes), 0.03,0.10 (the shortest dashes). The constant risk 0.25 is the
risk of the minimax procedure o = 1/2 that is the limit of the Bayes procedures when ¢2 — 0.
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(ii) Case v = 2. From (2.3) we have the Bayes procedure
0 e o]
(2.4) or @ =1- [ oo |28 | [ 601 v,
0 ~00

where p(f | Z) is a posterior density of § given X = Z, i.e., a normal density with
a posterior mean uz = E(6 | Z) = no®z/(no® + 1) and variance v2 := V(0 |
%) = 0%/(no? + 1). Then we have

00 2 2 222 2
9 N 2_0’{’/’1,0'.’1_3 + (no +1)}
@5) [ w0 D= T

Letting ¢ be a standard normal density, we obtain z¢(z) = —¢'(z) and 22¢(z) =
¢"(z) + ¢(z). Hence

o) [Tepoimw= [Telo (B w= [T s watee

Yz —uz/vs

- /Oo {H28(2) — 2p5v:6' (2) + v2(¢"(2) + ¢(2)) } dz

—pz/vz

= (v +p3)® (‘lﬁ) + puzvzd <@>,
Vg Vg

T xr

where ® is the cumulative distribution function of the standard normal distri-
bution N(0,1). Since uzvz = no>z/(no? +1)3/2, it follows from (2.4) to (2.6)
that

nox ) nozvno? + 1 ( nox >

* 7) — 1 _ (I) —
r, (Z) ( ol + 1 n202z2 + (no?2 + 1) no? +1

The indicator of the acceptance region of the uniforrrily most powerful (UMP)
test is given by

1 for Z <wue/v/n

SONP(:?:) = X(—00,uq] (\/ﬁi) = {0 for & > "Uja/\/ﬁ,

from the fundamental lemma of N-P, where « is the significance level of the
UMP test and u, is the upper 100a percentage point of the standard normal
distribution N (0, 1). Here, note that the N-P test wnp is not the indicator of the
rejection region {x | /nZT < uq}¢ = {x | /nT > uy} which is usually called the
test function, but that of the acceptance region {x | v/nZ < uq}. The p-value
for the value \/nZ of the UMP test statistic /nX is given by

p(Z) = Py {V/nX > /nz} = ® (—/nz).

On t_he"other ha}nd? in this paper, we are concerned with the decision-theoretic
estimation problem of the indicator xe,(f) of the set ©¢ which specifies the
hypothesis H, and thus we require the estimators (decision procedures) to take
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the expected values close to 1 under the hypothesis H and the expected values
close to 0 under the alternative K. By reversing 0 and 1 in the test function, the
expected value of the N-P test ¢np under the hypothesis H will be more than
or equal to 1 — a and thus close to 1. On the other hand the risk of ¢} (Z) is
given as follows. Let Z be a normally distributed random variable with N(0,1).
For all § € R!,

(27)  R®(9,¢%,) = 6°E; H@ (ﬁo(i; ﬁwn)

Vio(Z = Ve + T, (ﬁo(z - \/ﬁ|9|)> }2

Vo2 — VAl + (no? + 1) no? 1

It is also shown that the risks of the N-P test ynp(Z) and the p-value p(Z) are
given by

R(9, onp) = 6°® ((ua — vnb) sgnb),
RO(0,p) = 0Bz @ (2 — val9))*],

for all § € R!, where sgnf is the sign of #. Note that R(®) (9, @y ) and R®)(9,p)
are symmetric about § = 0. The behavior of the risks is given in Figure 2.2.
Comparing the cases (i) and (ii), we see that the risks are not smooth at § = 0
in (i), but they are always smooth in (ii) (see Figures 2.1 and 2.2). In particular,
the risk of the N-P test is not continuous at § = 0 in the case (i). Since, in a
neighborhood of 8 = 0, both of the hypotheses would be nearly acceptable, it is
desirable for the risk to take a small value, and that for a moderately far area

! \
Foy \
/ / \ \
| / \
0.12 | . \
!
' [
III’ N \\Q\\ \O
0.08f 11/ o\ 1o 8
I/ VoS
0\
14 N \
»I/Il 6\\ \ \
0.04t L
Joa=050 NN
, /' \L NN \
f’/\ \\E\ \\‘\\t\.

: 0
-1.5 -1.0 -0.5 O 0.5 1.0 1.5

Figure 2.2. The risks of the Bayes procedures, the N-P tests and the p-value under the
weighted loss L) when n = 10. The risks of the N-P tests also are given for a = 0.01 (the
longest dashes), 0.05,0.10 (the shortest dashes), 0.50 (dots). The risks of the Bayes procedures
also are given for the prior variances 02 = 0.142 (the longest dashes), 0.162,0.30%,0.602 (the
shortest dashes).
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from § = 0 the risk has a sensitive response (see Figure 2.2). Indeed, in the sense,
as is seen in Figures 2.1 and 2.2, the weighted loss L(?) seems to be more suitable
than the quadratic loss L(®. In Figure 2.2 as well as in Figure 2.1, the risks of
¢y and the p-value are small as a whole, while the risk of pnp is smaller than
the others for 8 < 0, but is extremely larger than those for § > 0. The difference
between the risks R(?) and R(9 of the Bayes procedures w.r.t. the weighted loss
L) and the quadratic one L(O), respectively, is the behavior at the point 8 =0
where R is smooth and takes zero value, while R(® is not smooth and positive,
and R(® seems to be less than R as a whole (see Figures 2.1 and 2.2).
Next, since, for o = 0.3, 0.6,

sup R (8, p% ) < sup R? (8, p),
7] 7]

the Bayes procedures are better than the others (see also Figure 2.3). So, we
consider the minimax solution of o, that is, the prior variance o3 such that

inf sup R*(6, %) = sup R (0, ¢ ).
T 9 ’ 6 70

Since the risk R(? (6,5, ) of the Bayes procedure is symmetric about 6 = 0,
it is enough to restrict the value of parameter 6 to the interval [0, 00). But, it
is difficult to obtain analytically the minimax solution from (2.7). So, we get
a numerical solution as follows. For some given value of o, we get a numerical
solution § = #(c) of the equation
O R0, 1) =0

Hence, first we take the values of o at suitable intervals, and plot the maximum
value of R (8(c), ¢} ) over them on graph (see Figure 2.4). Second we find the
value o1 of ¢ minimizing the maximum value of R®(6(0), ¢y_). Third, for the
values around o = o3 at shorter intervals than the first ones, we repeat the above
procedure. Finally we obtain the approximate value of the minimax solution (see

— — 0=0.14
/~ N\ T2 o6
//4 0.012 \\\ —————— 0.3
//{' W\ T N 0.6 :
// 4, §\ \\ the p-value
h h
//1 oloos} W\
/ /’/’{/ \\}\\ \
/1] W\
/] 0.0p4f RN
/ 4 \ \
) | N
g% N .
= Z \\\} S~
1.5  -1.0  -05 o) 0.5 1.0 1.5

Figure 2.3. The risks of the Bayes procedures and the p-value when n = 10:
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0.011990 .\\‘\‘—?’/'/ ” ) "\,4—4/"'
, : 0119879953 : g
O 03 0% o3 00 o0&’ 0.375 0.3750 0.3755
Figure 24. The maximum risk Figure 2.5. The minimax solution
supg R(?)(8, ¢y, ) of the Bayes procedure oo = 0375 and the minimax risk
for given values of o (o 0.32 (0.01) R(2)(0.388,<p;ao) ~ 0.01199 (¢ = 0.3745

0.42, n = 10).

Table 2.1.

procedure and the maximum risk of the p-value.

(0.0001) 0.3755,n = 10).

The minimax solution and comparison between the minimax risk of the Bayes

n oo The minimax risk of the Bayes The maxi-risk of the p-value
1 | 1.186 R(2)(1.228, Pr,,) ~ 0.11988 < R(2)(1.333,p) =~ 0.12569
3 | 0685 | R(3(0.709,¢; )~003996 < R()(0.770, p) ~ 0.04190
5 | 0530 | R(2)(0.549, P, ) ~ 0.02398 < R(2)(0.596, p) ~ 0.02514
7 | 0448 | R(®)(0.464,¢7 )~001713 < R(2)(0.504, p) ~ 0.01796
10 | 0.375 R(2)(0.388, ¢, ) ~ 0.01199 < R(2)(0.422, p) ~ 0.01257
15 | 0.306 | R(?(0.317, P, ) ~ 0.00799 < R(2)(0.344, p) ~ 0.00838
20 | 0.265 | R(3)(0.275,¢; )~ 0.00599 < R(2)(0.298, p) ~ 0.00628

Figure 2.5), and can compare the values between the maximum risk of the Bayes
procedure and the maximum risk of the p-value (see Table 2.1).
(iii) Case v = 1. In a similar way to the case (ii), we have the Bayes procedure

(@) =1~ nos () + Viot 16 (%)
O fow (gt 1} 210 ()

Then we obtain the risks of the Bayes procedure ¢y (Z), the N-P test pnp(Z)
and the p-value p(z) as follows. For § € R!,

R, ¢7,) = 16|

Vno?+1

B (Vo A (FE) 1 i (i) )
(viotz v om (Bgom) 1)

o/ T g () V]

R (8, onp) = 10|19 ((ue —

V)sgnd),

RN (6,p) =

01Ez[{2(Z — v/nl0])}?).
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AN »
0.3 \o 0.0369455625
I o~e "
/// \\\\o \
0.2 //,//,"\\Q\\\\%
/// \\Q \
" o\ 0.0369455624
0.1f fa=050
I\ e A 0.0369455623 : o
-1.0  -0.5 0 0.5 1.0 0 - 0.26695 0.26700 0.26704
Figure 2.6. The risks of the Bayes proce-
dures, the N-P tests and the p-value when Figure 2.7. The minimax solution
n = 10. The risks of the N-P tests also 0o =~ 0.267 and the minimax risk R(}
are given for a = 0.01 (the longest dashes), (0.259, 7, ,6,) = 0.03695 (¢ = 0.26695
0.05,0.10 (the shortest dashes), 0.50 (dots). (0.00001) 0.26704,n = 10).
The risks of the Bayes procedures also are
given for the prior variances o2 = 0.182

(the longest dashes), 0.262,1.502,3.002 (the
shortest dashes).

Table 2.2. The minimax solution and comparison between the minimax risk of the Bayes
procedure and the maximum risk of the p-value.

n oo The minimax risk of the Bayes The maxi-risk of the p-value
1 | 0.844 | R(M(0.818, Pry,) & 0.116832 R(1)(0.813,p) ~ 0.116880
5 | 0378 | R(1(0.366, ¢r,,) & 0.052249 R(1)(0.363, p) &~ 0.052271
10 | 0.267 | R(1(0.259, 5, ) ~ 0.036946 R(1(0.257, p) ~ 0.036961
15 | 0.218 | R(M(0.211, Pr,,) ~ 0.030166 R(1)(0.210, p) ~ 0.030178
20 | 0.189 | R(1)(0.183,¢; )~ 0.026124 R(1)(0.182, p) ~ 0.026135
25 | 0.169 | R(1(0.164, 7 ) ~ 0.023366 R(1)(0.163,p) ~ 0.023376

AIANIAIAIATA

Note that R((6,¢% ) and RM(6,p) are symmetric about § = 0. The risks
RM(8, 1), RN (9, pnp) and R (6, p) are continuous in 6§, but they are not
differentiable at 8 = 0 (see Figure 2.6). The tendency of the risks are similar to
that in the case (ii). In a similar way to the case (ii), we also get the approximate
value of the minimax solution of the Bayes procedure (see Figure 2.7), and can
compare the values between the minimax risk of the Bayes procedure and the
maximum risk of the p-value (see Table 2.2).

Ezample 2.2 (Exponential distribution). Suppose that Xi,...,X, are
i.i.d. random variables according to the exponential distribution with the den-
sity p(z,0) = e=@=9 (2 > ;0 € R!). Let n, be a prior density of the uniform
distribution U(—7, 7). Since the joint density of X := (X1,...,X,) is given by

fx(z,0) = e_n(j—e)x(&oo)(f”(l)) x en"’x(_oo,m(l))(ﬁ)

~where z = (z1,...,2,) and z(;) := minj<i<, T, it follows that the posterior
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density of 8, given X(1) = x(y), is

enOX( —00,Z(1)) (6) Q’lq'-X(—T,T) (0) _ 6m9X(—'r,‘r/\ac(1)) (0)

p(0]z) = S
7 e oo (O x(—rir) (0)d8 — [T750) enogg

where T A (1) = min{7, z(;)}. If 7 is a non-negative integer, it follows from (2.2)
that the Bayes procedure is given by

mln{O T.’Z‘(l)} |6|,\/en0d0

2.8 x
( ) 8071' (.’L'(]_)) f'r/\x(l) ]6|’Ye"9d9

]. for $(1) S 07
L(y+ 1;n7)
fi <
= J L(y + 1;n7) + T*(y + 1;nz(1)) or0<zms<T
F(7+ LinT) for x> T
r b]
([(y + 1;n7) + T*(v + 1; n1) M

where

I'(z;a) = /Oa t*le7tdt = (x — 1)! — _“Z (w(ai:i 1)‘ ot

VF*(QUCL) = ‘/Oa t*etdt = (—1)%(z — 1)! +e“;(—l)i___(x(i;i)i)!az—i—l

(z=1,2,...;a>0).

(i) Case v = 0. From (2.8) we have the Bayes procedure

1 for (1) < O,

b—1
(29) SO:I'(:E(l)) = be’nl'(l) _ 1 for O < :1:(1) S T’
1

m for SL’(I) > T,

where b := b(n,7) = €™". The N-P test is the indicator of the acceptance region
of the uniformly powerful test of level a given by

(z01)) = 1 forzg < ;Ll—log—é
PNPLED) 0 for () > %logé,

and also the p-value is

00 1 ' for x <0
z)) = Po{Xn) >z =/ ne "Mdt = ="
p(z()) 01X w} ovz(y) {e—mm for z;) >0,
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where 0V z(;y = max{0,z(;)}. The risks of the Bayes procedure, the N-P test
and the p-value are given by :

(2.10) ROY(8, ¢z

( b 262 + b — 2
b?e™ {2(b—1)log [ —— | + ———— <
e.{( )og(b+1>+ b+1)? } for 6 <0,
b —1 b(2b2 — 3)
—e™ 2b(b—1)21
_ e { ( ) Og<b2_be_n9)+ (b—}—l)?}
2be™ — 1
1y - <
+(b—-1) be0 — 1 for0 <6<,
1 v
L (b+1)2 for 6 > T,
ae™ for § <0,
(2.11) RO (,onp) =1 —ae™ for0<0<llogl,
0 for9>%logé,

e for 6 <0,

2.12) RO (g,p) =
( ) (6,p) {6_2"9 for 8 > 0.

Wl Qofrs

From (2.10) to (2.12), the risks of the Bayes procedure ¢} (z(1)), the N-P test
@Np(2(1)) and the p-value p(z(;)) are illustrated as Figures 2.8 and 2.9. As is
seen in them, the tendency of their risks is similar to the case v = 0 in testing
hypothesis on the normal mean (see Figure 2.1).

1.0 —
—  _the N-Ptest LOr— —  __ theN-Prest

S~ ~_a=0.01 -~ - ~a =0.01
0.8 SN =008 ~ N N ™ =005 ~
NN N 08 .. e
a=0.10 | AN
0.6 N \
\ \
\\ \
\ \
S e\
N the Bases peeture _ 001
; M __ Voo
= - — =010
0.10 0.05 o] 0.05 0.10 015 0
Figure 2.8. The risks of the Bayes proce- Figure 2.9. The risks of the Bayes proce-
dures, the N-P tests and the p-value when dures, the N-P tests and the p-value when
n = 10. n = 20.
(ii) Case 7= 1. From (2.8) we have the Bayes procedure
(
1 for z) <0,

. . 1 — e—TLT(nT + 1)

Pr(z) = { 2+ e (nzqy— 1) — e (nT + 1)
l1—e™(nr+1)

(24 eV (nt—1)—e™(nT + 1)

for0 <z <,

for (1) > 7,

which yields its risk
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(2.13)
( 2
g 1+ €™ (nT — 1) o—n(7=0)
2+ e (nt—1)—e " (n7 + 1)
1+e’(v—1) 2
-6 [ vtnfdy for # <0
Jo [2+e”(v—1)—e‘m(m"+l)} ¢ voerr=s
— 2
9 l1—e nT(’I’LT + 1) e_n(.,._g)
RW@G,px)={" |2+ e (nr — 1) — e (nT + 1)

1—e™™(nr+1)
0 nT
+ fn@ [2 +e(v—1)—e ™ (nr+1

2
) .| e—v+n0d,v

for0 < 4 <,

for 6 > 7.

0 1—e™(nt+1) 2
L (2+ e (nT—1)—e ™ (nT + 1)

Both of the risks of the N-P test and the p-value are equal to (2.11) and (2.12)
multiplied by |6|. As is seen in Figures 2.10 and 2.11, the behavior of the risks
of the Bayes procedures, the N-P tests and the p-value are similar to the normal
case (iii) in Example 2.1 (see Figure 2.6).

the N-P test
;7 N a=02 -
0.04 \ MBS — s =018
/ \ P - 022
/ \ Z--3 WAL Tt 030
= PN i ANRA -
/- e=08 ZEREEN LU AN 0.48
/! \ \ A C/’/:” \\\\‘ u';l \! N\ the p-value
a=05 0.02 / \ \ 2o 9 / L
.. \ 72 R AV
=2 2t Toum & ///,E";_::\ \\ \ 0"‘
B O VNt N \
\'> . =~ Q\\* -
015 -0.10 -005 O 005 010 015 0

-0.2 -0.1 o 0.1 02 9

Figure 2.10. The risks of the Bayes proce-
dures, the N-P tests and the p-value when
n = 10.

Figure 2.11. The risks of the Bayes proce-
dures and the p-value when n = 10.

(iii) Case v = 2. From (2.8) we have the Bayes procedure

(2.14) |
1 for z(;y <0,
2 — e""T{(n'r)2 + 2n1 + 2}
e {(nz))? — 2nz 1) + 2} — e " {(n7)? + 2n7 + 2}
for 0 < xay ST,

r(z)) =

2 — e " {(n7)? + 2nT + 2}
LenT{(nT)? — 2n7 + 2} — e {(n7)? + 2n7 + 2}

for z(yy > 7,

which yields its risk

(2.15) R0, 0%) =
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(2 e {(n7)? = 2n7 + 2} — 2 g
e"™{(n7)? — 2n7 + 2} — e " {(n71)? + 2n7 + 2}
e¥(v? —2v+2) -2
02 nrT € (U —v+n0d
o [e“(v2 —2v+2) —e " {(n7)? 4 2n7 + 2} © v
for 6 <0,
! g2 2 — e~ {(n7)? + 2n7 + 2} 2 S |
e"™{(n71)? - 2n7 + 2} — e " {(n7)2 + 2n7 + 2}
2 — e " {(n7)% + 2n7 + 2}
2 [n7 -—v+n0d
0% Jng [e”(v2 —2v+42) — e " {(n7)2 + 2n7 + 2} © v
for0< 8 <,
2 — e " {(n7)? + 2nT + 2} 2
62 for 6 > 1.
{ [e’”{('nfr)2 —2n7 4+ 2} — e {(n7)? + 2n7 + 2} ore>T

Both of the risks of the N-P test and the p-value are equal to (2.11) and (2.12)
multiplied by 2. As is illustrated in Figures 2.12 and 2.13, the behavior of the
risks of the Bayes procedures, the N-P tests and the p-value are similar to the
normal case (ii) in Example 2.1 (see Figure 2.2).

the N-P test
P

a=0.2, \ — - 1=025
" 0.004 ;o -- 035
\ . 0.45
/ \ \ 0.65
K §0.5 / . \\\\“‘\ —— the p-value
' ) =03 | v
0.002 /A | \ W
AT
NN
Ay *\
AN .
S, T 0
0.1 0.2 0.3
Figure 2.12. The risks of the Bayes proce- Figure 2.13. The risks of the Bayes proce-
dures, the N-P tests and the p-value when dures and the p-value when n = 10.

n = 10.

3. Risk with respect to the loss LM: Scale parameter casé

In this section we consider the scale parameter case. Suppose that a real
random variable X is distributed according to a density function (1/6)f(t/6)
(w.r.t. the Lebesgue measure), where § > 0. Let 7 be a prior density of § (w.r.t.
the Lebesgue measure). Then we consider the problem of testing the hypothesis
H: 0 < 6 against the alternative K: 6 > . Letting ©g = (0, 6], from (1.4) we
obtain as the risk of a decision procedure ¢

. - 0\"
B8, ) = B[ (8, ¢)] = (0—0) Eol{xe0(6) — 0(X))?]

and as its Bayes risk w.r.t. 7

10 (0) = B[RV 0,)) = | B0, o)m(6)ds
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Without loss of generality we assume that 8y = 1. In a similar way to the location
parameter case, we have the Bayes procedure

(3.1) o (z) = / orl 6)do // 9‘/ (8)d6.

9
Since the posterior density of 6, given X = z, is also given by

1

w610 =51 (5)70) [ [ 5¢(5) m@)a.
it follows from (3.1) that
1 : oo

(3.2) on(z) =/ 67p(6 | x)do // 67p(0 | z)db.

0 0

Ezample 3.1 (Normal standard deviation).  Suppose that X;,..., X, are

i.i.d. random variables with the normal distribution N(0,0?). Let 7 := 1/(202).
Suppose that the prior density 7, is the gamma density

To(T) = 027%™ /T(a) (7>0; b=2a—2>0)

whose distribution is denoted by G(a,b). Then the prior density of o is

B a1 /(02
Wa(a)sz 2 16 b/(2%) (0'>0).

Put Y := Y 1, X2. Since Y/o? is distributed according to the chi-square dis-
tribution with n degrees of freedom, the posterior density of o, given Y = y, is
given by
o—(n+2a+1) o—(b+y)/(20?)
ploly) = & o2t e~ 649/ (20 g

Then it follows from (3.2) that the Bayes procedure is given by

Jo o7p(e | y)do _ . _ o a"p(o ] y)do
fooo o'p(o | y)do fooo op(o | y)do
floo 0.—(n+2a—’y+1)e—(b+y)/(202)da_
fooo o—(n+2a—v+1) o= (b4+y)/(202) 45

(3.3) Ora(Y) =

=1-

f(§>+y t(n+2a—7)/2-1-t/2 44
[ tlh+2a—m/2=1¢=t/24t
=1-F(b+y;(n+2a—7)/21/2)
=Q(b+y;(n+2a-17)/2,1/2),

where F(-;(n+2a—+)/2,1/2) and Q(-; (n+ 2a —v)/2,1/2) are the cumulative
distribution function (c.d.f.) and the upper probability of the gamma distribution

=1
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G((n+2a—7)/2,1/2), respectively. If we take a and y such that n +2a — v is
a natural number, we rewrite from (3.3)

‘P:ra (y) =1~ Fn+2a—’y(b +y) = Qn+2a—’y(b + v),

since G((n+ 2a —+)/2,1/2) is equal to the chi-square distribution X?L—l—Qa—'y with
n + 2a — vy degrees of freedom, where Fy 42, and Q24— are its c.d.f. and its
upper probability, respectively.

Now we consider the problem of testing the hypothesis H: o < gp against
the alternative K: o > 0p. Then the N-P test and the p-value are given by

(3-4) NP (Y) = X(0.x2 ()] (V)5
(3.5) p(y) = PI{Y >y} =1— Fo(y) = Qn(y),
respectively, where x2(n) is the upper 100 percentage point of the chi-square

distribution x2, and F,, and Q, are its c.d.f. and its upper probability, respec-
tively.

(i) Case v = 0. It follows from (3.3) to (3.5) that the risks of the Bayes
procedure % (y), the N-P test onp(y) and the p-value p(y) are

Ez, [{F(b +0%Z,;(n+ 2a)/2,1/2)}?] for o <1,
Ez {Q(b+02Zy;(n+2a)/2,1/2)}?] for o > 1,
Es[{x(x2 (n)00) (¥)}?] = @n(xa(n)/0?) foro <1,
Eo[{Xx(0,2m) Y)Yl = Fa(xa(n)/0?)  foro>1,

E[{F.(0%2Z,)}?] foro <1,
E[{Qn(c%Z,)}?] for o > 1,

R0, ¢} ) = {
(3.6) RO(o,onp) = {

(3.7) R@wm={

where Z, is a random variable according to the chi-square distribution x2. The
behavior of the risks of ¢} _(y), ¥np(y) and p(y) are given in Figures 3.1 and 3.2.
As is seen in them, the tendency of their risks is similar to the case v = 0 in
testing hypothesis about normal mean (see Figure 2.1), and the behavior of the
risk of the Bayes procedure seems to be stable. |

1.00 — — a=001 0.50

S a=2
NN - — — a=0.05 . -
° L
0.80 AT a=0.10 0.40 N _ 150
NN a =050 \ —— T
‘N . the p-value \‘\ 30
0.60 \\ v\ 0.30 \\
AN 025+ — - — - — - R L
oI \ the minimax risk
0.40 N N 0.20
: /
= ol A7 -
7 the p-value
0 0 5// ===
0.5 0.5 1.0 LS 2.0 o
Figure 3.1. The risks of the N-P tests and Figure 3.2. The risks of the Bayes proce-
the p-value when n = 10. dures and the p-value when n = 10.
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(ii) Case v = 2. In a similar way to the case (i), it follows from (3.3) that

or (y) =1-F(b+y;(n+2a~-2)/2,1/2)
=Q(b+y;(n+2a—2)/2,1/2),

and its risk is

02Ez, [{F(b+ 02Zn; (n + 20 — 2)/2,1/2)}?] for o < 1,

R (o, 0% ) =
(9, ¢r.) 0?Ez [{Q(b+ 0%Zp; (n+2a —2)/2,1/2)}?] foro > 1.
1.5 e - a=0.01
- — - a=005
s - — — - =010
12 / N a=0.50
‘//_ - ~ N the p-value

Figure 3.4. The risks of the Bayes pro-

Figure 3.3. The risks of the N-P tests and cedure and the p-value when n = 10
the p-value when n = 10. (a =2,3,4,5,10, 20, 40, 60, 100, 150).

0.3733101 + a=21.75

0.3733099 t &v a=21.85

0.3733097 [ I \

I
0.3733005 1 I \
N / . ) \ ag
0.3733093 1.372 1.373 1!374 1.375 1.376

Figure 3.5.° The minimax risk of the Bayes procedure R(?(1.37,¢%, ) ~ 0.37331
(n = 5,a = 21.50 (0.01) 21.85).

030275046 | a=73.05 a=73.15 a=2T1.15
\ / 0274547855 |
SN

0.30275045 f— — )"

I 0.274547854 1
030275041 | a=271.05
0.30275043 ! 0.274547653 | |

! !
0.30275042 | N |

274547852 . .
1.1469 11471 11473 1.1475 1.1477 ol e A L 5

a

Figure 3.6. The minimax risk of the Bayes Figure 3.7. The minimax risk of the Bayes

procedure R(?)(1.15, Ph.a,) ~ 0.30275 procedure R(?)(1.07, $rar.) = 0.27455
(n =10, a = 73.05 (0.01) 73.15). (n =20, a = 271.05 (0.01) 271.15).
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The risks of the N-P test and the p-value are equal to (3.6) and (3.7) multiplied by
o2, respectively. The behavior of the risks of or.(¥), onp(y) and p(y) are given
in Figures 3.3 and 3.4, which are seen to be a little bit different from Figures 3.1
and 3.2. ' |

In a similar way to the location parameter case, we can obtain numerically
the minimax solution. If n = 5, then

inf sup R? (0, p% ) = R (1.37, 7, ) ~ 0.37331
a o °

> 0.33333 = sup R(Q)(a, p) = R(z)(l,p),

which means that the maximum risk of the minimax Bayes procedure is bigger
than that of the p-value (see Figure 3.5). But, for large n, it is not so (see Figure
3.6 for n = 10 and Figure 3.7 for n = 20). '

4. Remarks

In the previous sections we discuss the risk of testing procedures under the
weighted loss from the viewpoint of set estimation. In the cases of the normal
distribution N(6,1) and the exponential distribution with a location parameter
0, we consider the one-sided problem of testing the hypothesis H : 8 < 6, against’
the alternative K : § > 6y. Without loss of generality we assume that 6y = 0. As
is stated in Example 2.1, the weighted loss L?) seems to be more suitable than
the quadratic loss L(9. Indeed, for example, the risks of the Bayes procedures
are smooth and take zero value at 8 = 0, which means that, in a neighborhood
of 8 = 0, both of the hypotheses would be nearly acceptable, and the risks are
comparatively sensitive for a moderately far area from 6 = 0.
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