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Abstract

Power efficiency and coverage preservation are two important performance metrics for a wireless
sensor network. However, there is scarcely any protocol to consider them at the same time. In
this paper, we propose aflow-balanced routing(FBR) protocol for multi-hop clustered wireless
sensor networks that attempts to achieve both power efficiency and coverage preservation. The
proposed protocol consists of four algorithms, one each fornetwork clustering, multi-hop backbone
construction, flow-balanced transmission, and rerouting.The proposed clustering algorithm groups
several sensors into one cluster on the basis of overlappingdegrees of sensors. The backbone
construction algorithm constructs a novel multi-level backbone, which is not necessarily a tree,
using the cluster heads and the sink. Furthermore, the flow-balanced routing algorithm assigns the
transferred data over multiple paths from the sensors to thesink in order to equalize the power
consumption of sensors. Lastly, the rerouting algorithm reconstructs the network topology only in
a place where a head drops out from the backbone due to the headrunning out of its energy. Two
metrics called thenetwork lifetimeand thecoverage lifetimeare used to evaluate the performance
of FBR protocol in comparison with previous ones. The simulation results show that FBR yields
both much longer lifetime and better coverage preservationthan previous protocols. For example,
FBR yields more than twice network lifetime and better coverage preservation than a previous
efficient protocol, called the coverage-preserving clustering protocol (CPCP) [18], when the first
sensor dies and the network coverage is kept at 100%, respectively.
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1. Introduction

Advances in miniaturization and low-power design have enabled the development of extremely
small and low-cost sensors that possess sensing, data processing and transmission capabilities.
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Wireless sensor networks (WSNs) are usually composed of a large number of sensors, which are
densely and randomly deployed over inaccessible terrains and are utilized in applications such as
environment surveillance and security monitoring [1]. In most applications, data sensed by the
sensors are sent to a central station, usually called thesink, directly (in single hop) or via multiple
intermediate sensors (in multi-hop).

One of the most critical constraints of WSNs is the power limitation, and therefore it is impor-
tant to design an energy-aware protocol to prolong the lifetime of a sensor network. Two metrics
are usually used to show the lifetime of a sensor network [2, 3]: network lifetimeandcoverage
lifetime. Those metrics indicate the durations from the beginning instant of the network operation
to the instant when a given percentage of sensors die and the ratio of the current coverage by the
active sensors to the initial coverage by all the sensors drops below a predefined threshold, respec-
tively. In this paper, we aim to design a new data aggregationprotocol that yields longer network
lifetime and better coverage preservation.

Techniques such as network clustering, sensor scheduling,and multi-hop transmission are
widely used to improve energy efficiency for WSNs [4–18]. Clustering is a technique to group
several sensors into a cluster with one as the head and the others as the members. Each member
sends data to the head and then the head conveys the aggregated data to the sink. Most previous
clustering approaches [4–7] mainly focus on the head selection and the cluster construction, rather
than the coverage preservation and the data routing after the cluster formation. Sensor scheduling
is a technique used in [18–21] to put some sensors into the sleep mode whose sensing areas are
totally covered by other sensors. This technique can be combined into the clustering process, and
it usually faces the challenges of network connectivity andcoverage preservation. Multi-hop trans-
mission has generally been considered an efficient energy-saving approach for large-scale sensor
networks[8–18], and the tree rooted at the sink is the most commonly used multi-hop topology.
However, the tree topology has an inherent drawback in that each sensor has only one path to
the sink, and therefore the data flow passing through each sensor may be imbalanced, resulting
in some sensors running out of their energy quickly. To balance the traffic flows to the sink and
equalize the residual energy among the sensors, most previous approaches periodically perform the
cluster formation and the network construction. Periodic re-clustering and network reconstruction
would shorten the lifetime since the overhead cost for transferring the control messages between
the sensors cannot be ignored.

In this paper, we propose a new flow-balanced routing (FBR) protocol to achieve power effi-
ciency and coverage preservation. In contrast with previous protocols, the whole network clustering
and construction are performed only once at the beginning ofthe network operation. The network
is reconfigured will be performed locally only in a place where any sensor runs out of its energy.
Furthermore, the network topology may not be a tree structure but a multi-level hierarchy, where
each sensor may have multiple paths to the sink. In FBR, we first propose a clustering algorithm to
determine the cluster formation on the basis of the overlapping degree of each sensor, which is de-
fined as the ratio of the overlapping area with other sensors to the whole sensing area of the sensor.
Then, we propose a hierarchical network construction algorithm that constructs a multi-level back-
bone with the sink at the top level and the cluster heads at lower levels. All the parents of a head
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should be at the same level which is one higher than the head. Ahead can transfer its data to the
sink through any path via its parents. We propose a flow-balanced routing algorithm that assigns
the data flow from a cluster head to the sink to equalize the residual energy of the head’s parents.
Furthermore, to reconfigure the network topology, we propose a local rerouting algorithm to recon-
figure the network topology when any head drops out of the backbone. The main contributions of
our work can be summarized as follows.

1. Our proposed protocol takes into account the overlappingdegrees of sensors in the clustering
decision, resulting in better coverage preservation.

2. By organizing the cluster heads into a hierarchical multi-level backbone, each cluster head
may have multiple paths to the sink, and by using our proposedflow-balanced routing algo-
rithm the flow from each head to the sink can be distributed to its parents, resulting in energy
balance between sensors.

3. Since the network reconfiguration is performed only when acluster head runs out of its
energy and only in a place where the exhausted head drops out of the backbone, the energy
needed for network construction is reduced greatly.

The remainder of this paper is organized as follows. Section2 briefly introduces some impor-
tant related works. Section 3 describes the network model. Section 4 presents our four algorithms
used to construct network and route data over the network. Section 5 shows the performance eval-
uation by simulation, and Section 6 gives our conclusions.

2. Related Work

A number of energy-based data aggregation protocols have been proposed [1, 3]. In this section,
we summarize the related works regarding the network clustering, the power scheduling, and the
multi-hop transmission, respectively, and say how our protocol differs from them.

Most clustering approaches attempt to achieve the energy efficiency for data aggregation in
WSNs [1]. Low-energy adaptive clustering hierarchy (LEACH) [4] is a well-known and simple
distributed clustering approach wherein each sensor elects itself as a cluster head with a certain
probability, and then the cluster heads act as routers aggregating and transferring sensing data to
the sink directly. A centralized version of LEACH, called LEACH-centralized (LEACH-C) [5],
was proposed wherein each sensor sends its location information along its residual energy to the
sink, and then the sink computes the average energy of all thesensors. Then, the sink decides the
incapable nodes whose residual energies are below the average energy. Another extension, called
the hybrid energy-efficient distributed clustering (HEED) approach [6], considers the residual en-
ergy of each sensor and attempts to obtain a well distribution of the cluster heads in the service
area. The computation time of HEED is extremely long since the probability of becoming a head is
computed iteratively depending on the residual energy of each sensor. Recently, a coverage-based
clustering approach was proposed [18]. The coverage cost ofa sensor is defined to be inversely
proportion to either the total energy of neighboring sensors or the overlapping redundant degree
with neighboring sensors. The basic idea of our proposed clustering approach is similar to that of
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CPCP, but our proposed approach only calculate the ratio of the area of each sensor that overlaps
with other sensors, resulting in a simpler mechanism.

Power scheduling is a technique to switch some sensors off to save power while keeping the
network connectivity to satisfy a given coverage preservation requirement [10, 18–21]. An ap-
proach called SPAN [19] was proposed to save power consumption by putting some nodes into
sleep mode for ad hoc wireless networks. SPAN attempts to switch off such nodes that do not
affect the network connectivity by maintaining the information of the two hop neighbors in real
time. However, it is not given how to turn a sleeping node on again if the network connectivity is
damaged since some active nodes run out of their energy. Furthermore, as pointed out by Zhang
and Hou in [27], the power saving for a wireless ad hoc networkand a wireless sensor network is
generally different from each other. It may be difficult to apply SPAN directly for a sensor network.
A coverage configuration protocol (CCP) [20] tries to achieve a given coverage goal by turning off
as many sensors as possible while keeping the network connectivity. In a coverage-aware protocol
[18], called CPCP, two kinds of coverage preservation approaches were proposed. One is based
on the coverage redundancy defined by the number of sensors ateach point, and therefore if the
sensing area of a sensor is covered by more sensors, the sensor will have a higher priority to be a
cluster head. The other is based on the the coverage energy defined by the total residual energy that
can be used to monitor a location, and therefore if there are more total residual energy that can be
used to monitor sensing area of a sensor, the sensor will havea higher priority to be a cluster head.
The drawback of this protocol is that it may take much time to calculate the two parameters. On
the other hand, in our proposed approach, only the sensing area of a sensor and the area where the
sensor and its neighboring sensors overlap are needed in computation.

Multi-hop transmission is generally more efficient to reduce power consumption than the single-
hop transmission [28]. Multi-hop transmission can be achieved for intra-cluster or inter-cluster data
transmission. In the former, members of a cluster can transfer the sensed data to the cluster head
through multiple intermediate members [9–11], while in thelatter [8, 12], a backbone network is
constructed with the cluster heads. Inter-cluster transmission has been widely used in previous re-
search. In an inter-cluster transmission approach, a cluster head sends the aggregated data from its
members to the sink via multiple intermediate cluster heads. An example of a multi-hop transmis-
sion mechanism can be found in the IEEE 802.15.4 standard [13], wherein a personal area network
(PAN) coordinator triggers the formation of a cluster-treeand works as the root of the cluster-tree.
It broadcasts a beacon message to its neighboring coordinators. A coordinator receiving the beacon
decides whether to join the tree and, if it does, it also broadcasts the beacon to its neighbors. The
standard does not give the details of how to determine the route from each coordinator to the root.

Some recursive approaches are used to construct hierarchical clustering networks [15–17]. The
distributed hierarchical agglomerative clustering (DHAC) approach [17] is a bottom-up network
construction scheme wherein some nearby sensors are first grouped into a cluster and a sensor
with the smallest identification number is elected as the head. Then, the neighboring clusters are
grouped into a larger cluster also with the smallest identification number as the head. This process
is repeated until the cluster size reaches a given threshold. The energy-efficient multi-level cluster-
ing (EEMC) approach [16] is a centralized and top-down clustering scheme wherein the network
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topology is constructed from the sink. The sink first collects the location and energy information
of all the sensors and then determines the heads on the level next to it and the members of each
head. Each head then collects the information of its membersand determines the heads on the level
next to it again. This process is repeated until the number oflevels equals the optimal expected
value. Some approaches proposed for single hop transmission such as HEED [6] can be extended
to construct a multi-level network by using a recursive approach similar to [15]. We implemented
the hierarchical version of HEED, named M-HEED, for comparison. The main problems in those
recursive approaches are that they converge very slowly as the head selection and cluster formation
has to be done recursively in each level.

Since most multi-hop transmission approaches are based on atree topology, the traffic flow
passing through the sensors may be unbalanced [22]. To alleviate the flow imbalance problem,
some approaches [24–26] try to find and use alternative tree structures for data transmission. How-
ever, they face the problem of how to find and when to use the alternative trees and most impor-
tantly they cannot resolve the problem of the flow imbalance.In our initial work [33], we proposed
a flow-balanced protocol that constructs the network in multiple levels and in which the network
topology may not be a tree structure. Therefore, each head may have multiple paths to the sink
and, by balancing the traffic flow on each path, can equalize the energy consumption of each head.
Furthermore, we propose a new cluster formation approach that preserves the network coverage
in a simple but efficient way. In cluster formation, a sensor with a larger overlapping degree is
selected as a cluster head with a higher priority. An efficient scheme is also proposed to reduce the
power consumption of a sensor in sleep mode.

3. Network Model

In this paper, we consider only one sink and a set of homogeneous sensors, denoted byS, that
are deployed randomly over the target field. The target field is indicated asM×N square units. It is
assumed that the sink can reach all the sensors in the target field and has no energy limitation. Each
sensor has a given unique identification number and a limitedsensing range, denoted byr, which
covers a disk area centered at this sensor with radiusr as shown in Figure 1. The data sensed by
a sensor can be transferred to the sink directly in single hopor via multiple intermediate sensors.
The transmission range of a sensor, denoted byd, can only be tuned to one of the discrete distances
kR(k = 1, 2, . . .), i.e., d = kR whereR denotes a given fixed distance called thecluster rangein
this paper. Generally,R is larger than or equal tor and the transmission ranged is shorter than the
distance from a sensor to the sink.

The sensors within the cluster range of sensori, R, are called theneighborsof sensori, denoted
by Ni. On the other hand, the sensors located in the area with the distance less than 2r from sensor
i are called thefriendsof sensori, denoted byFi , and the sensing areas of sensori’s friends may
overlap with that of sensori. Since sensors are densely deployed in the target field, the sensing
area of a sensor may commonly overlap with other sensors. Theoverlapping degreeof sensori,
denoted byρi , is defined as the ratio of the overlapping area of sensori with its friends to its whole
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Figure 1: The sensing and the transmission areas of sensori (R= 2r, k = 1).

sensing area as follows.

ρi =
1
Ai

⋃

j∈Fi

Ai ∩ A j , (1)

whereAi denotes the sensing area of sensori andAi ∩ A j denotes the area sensori overlaps with
its friend j. Obviously, we have 0≤ ρi ≤ 1, and whenρi = 1 it means that the sensing area of
sensori is totally covered by its friends. Figure 2 illustrates an example in which sensori has two
friends, j andk, and the area sensori overlaps with sensorsj andk is colored gray. Some methods
to calculate the overlapping area of multiple sensors are detailed elsewhere [10, 20, 21, 26, 29? ].

i!

j! k!

2r!

overlapping area!

Figure 2: Overlapping area of sensori with its friends j andk.

The data aggregation is usually run periodically, i.e., once in a regular interval called a round.
The cluster formation in most previous approaches [4, 6, 16–18] is performed in each round. How-
ever, in our proposed protocol, the cluster formation is performed only once on the basis of the
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Figure 3: Network model.

overlapping degrees of sensors at the beginning of the network operation. Each sensor tries to
become a cluster head in accordance with the value of its overlapping degree i.e., the larger the
overlapping degree of a sensor, the higher priority to be a head. A head withρ = 1 is used only
for data aggregation and transmission but not for sensing since its coverage area totally overlaps
with those of its friends. Furthermore, a sensor withρ = 1 other than a head is put into the sleep
mode and called awaiting node. A waiting node does nothing but wait for theHELP message to
replace an exhausted nearby head. If a sensor withρ < 1 receives a HEAD message from one of
its friends, it becomes the member of the head.

The cluster heads along with the sink are used to construct a network topology as shown in
Figure 3, called thebackbone network, so that each cluster head can send the aggregated data to the
sink. The network topology is not changed unless any cluster-head is dying or loses the connection
to the existing network. From Figure 3, we can see that the backbone is not a simple tree but a
multi-level hierarchical network in which each node may have multiple parents belonging to the
same level. Each node on the backbone can send data to the sinkonly via its parent(s), and multiple
paths may exist from a node to the sink.

4. Proposed Algorithms

Data are aggregated from sensors to the sink in two phases:route constructionanddata trans-
mission. In the route construction phase, the sensors are grouped into clusters on the basis of their
overlapping degrees,ρi , and then a hierarchical backbone is constructed using the cluster heads
along with the sink at the top. In the data transmission phase, the sensors send their sensed data
to their cluster heads and then the heads forward the data to the sink probably via multiple paths.
When a head runs out of its energy or its residual energy becomes lower than a predefined threshold,
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it drops out of the backbone and the backbone is reconfigured.For the sake of simplicity, neither
the message transmission delay between the sensors nor the computation time at the sensors is
taken into account.

4.1. Cluster Formation Algorithm

Unlike previous approaches, our proposed clustering algorithm performs the cluster formation
only once at the beginning of network operation so that the overhead for clustering is greatly
reduced. Furthermore, a sensor with the largest overlapping degree is selected to be the cluster
head to minimize the effect of the death of the sensor. As a result, both the network lifetime and
the coverage lifetime can be extended.

At the beginning, the sink broadcasts aCLS FORM(T0) message to inform all the sensors to
start the cluster formation, whereT0 is a time limit for all the sensors to finish the cluster formation.
After receiving theCLS FORM(T0) message, each sensor setsDi = (1−ρi )T0 and runs Algorithm
1 to determine its own state, i.e., head, waiting node, or member. When the timert expires, the
sensor bids for the head with its neighbors. If there is more than one sensor bidding for the head
at the same time, the sensor with the smallest identificationnumber is selected to be the head and
it broadcasts aHEAD message to its neighbors. If a sensor withρ = 1 receives aHEAD message
from one of its neighbors, it tries to become a waiting node. Once a sensor becomes a waiting node,
it broadcasts aSLEEPmessage to its friends. If a sensor receives aHEAD message from a head
who is one of its neighbors before its timer expires, it becomes a member of the head. On the other
hand, if a sensor receives aSLEEPmessage from a waiting node, it recalculates its overlapping
degree without considering the waiting nodes in its friends.

Our cluster formation algorithm is a distributed algorithm. Each sensor, say, sensori, exchanges
its identification number, location information, and statewith its neighbors and friends. Therefore,
the number of messages transferred between sensori and its neighbors/friends ismax(O(|Ni |),O(|Fi |)).
In the worst case where all the sensors in a cluster are located in the same position, the overlapping
degrees need to be recalculated for|Ni | − 2 times, and the computational complexity of our clus-
tering algorithm isO(|Ni |

2). Furthermore, in the worst case where all the sensors in thenetwork
are located in the same position, the computational complexity is bound byO(|S|2). However, in
a general case where the sensors are well distributed in the network, we have|Ni | ≪ |S| and the
number of clusters and the cluster size should be relativelysmall and the computational complex-
ity is similar to that of previous works like LEACH [4]. Our cluster formation algorithm yields a
well cluster distribution similar to the HEED but in a different sense. In HEED, a cluster head is
determined on basis of the residual energy levels of the sensors and there should exist one cluster
head within the cluster range of a sensor. On the other hand, in our proposed protocol, there ex-
ists a cluster head within the cluster range but the cluster head should be the one with the largest
overlapping degree among the sensors in the cluster.

4.2. Backbone Construction Algorithm

The backbone is constructed by using the cluster heads alongwith the sink at the top. The
sink initially broadcasts aBN CONSTmessage with a transmission distance ofd = R and with
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Algorithm 1 Cluster Formation Algorithm.
Initialization

1: receiveCLS FORM from the sink
2: find friends and neighbors
3: calculateρi according to eq. (1)
4: set a timert for the head determination delayDi , and then doState Determination

State Determination
1: while t < Di do
2: if receiveHEADmessage from neighborj then
3: become member ofj, and thenexit
4: end if
5: if receiveSLEEPmessage from friendk then
6: recalculateρi without considering the waiting friends
7: end if
8: end while
9: if t ≥ Di then

10: bid for the head
11: if ρi = ρk (i < k, k ∈ Ni) or there is no other bidding sensorthen
12: become the head, broadcastHEADmessage to neighbors, and thenexit
13: else
14: receiveHEAD from neighborj
15: while ρi = 1 do
16: if i < k (ρk = 1, k ∈ Ni) or there is no such a neighborj then
17: become waiting node, broadcastSLEEPmessage to friends, and thenexit
18: else
19: receiveSLEEPmessage from friendk and recalculateρi without considering the waiting

friends
20: end if
21: end while
22: become member of nodej and thenexit
23: end if
24: end if
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a parameter tuple (k = 1, l = 0, id = sinkid) wherek denotes the parameter used for tuning the
transmission distance,d (= kR), l and id denote the level and the identification number of the
message sender, respectively.

When a cluster head, e.g., nodei, receives theBN CONSTmessage from its neighbors the first
time, it joins the backbone and takes those neighbors as its parents, whose levels are higher than
those of others. After joining the backbone, nodei updates its level,l, to be one lower than its
parent(s). Then, nodei broadcasts theBN CONSTmessage with the transmission distanced, and
with a parameter tuple (k = 1, l, id = i), and then sends the sink anON BN message to inform the
sink of its existence on the backbone. Therefore, the sink knows whether any cluster head is still
not on the backbone. If a cluster head is not on the backbone, the sink increments the value ofk
and then asks the backbone nodes to broadcast theBN CONSTmessage again. The value ofk is
increased until theBN CONSTmessage reaches a new head that is still not on the backbone. Note
that a backbone node may have multiple parents and once it connects to the backbone, its parent(s)
is(are) not changed.

The backbone construction algorithm is given in Algorithm 2. The backbone construction
process of a sample network using Algorithm 2 is shown in Figure 4. The sink initially setk =
1, l = 0, id = sink, and asked the nodes on the backbone to search for new heads. Nodei received
the BN CONSTmessage from nodes 2, 3, and 4 (Figure 4(a)) and then determined its parents to
be nodes 2 and 3 (Figure 4(b)). Thereafter, nodei setk = 1, l = 2, id = i, and broadcasted the
BN CONSTmessage withd(= R) but no new head could be found. The sink incrementedk and
asked the backbone nodes to do the search again, and nodej receivedBN CONSTmessages from
nodes 2, 4, andi as shown in Figure 4(c).

BN_CONST(1,1,3)

BN_CONST(1,2,4)

j

sink

1
2

3

4

i

BN_CONST(1,1,2)

(a)

BN_CONST(1,2,i)

sink

BN_CONST(1,2,4)

j

1
2

3

4

i

BN_CONST(1,1,2)

(b)

BN_CONST(2,2,4)

j

1
2

3

4

i

sink

BN_CONST(2,1,2)

BN_CONST(2,2,i)

(c)

Figure 4: An example of a backbone construction.

In backbone construction, if theBN CONSTmessage cannot reach nodei with the current value
of k, the sink incrementsk. By assuming that the distance between nodei and the sink to bedis, we
havek ≤ ⌈dis

R ⌉. For a network with high density, a node can easily find a neighbor and sok should
typically be small. For example, in our simulation model with a 150× 150m2 target field, 1000
sensors, and the sink at (150, 150), when we setR= 10, we havek ≤ 3.
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Algorithm 2 Backbone Construction Algorithm.
Procedures executed by sink

1: broadcastBN CONST(k = 1, l = 0, sinkid) with d (= kR)
2: if not receive theON BN message from all the cluster headsthen
3: k← k+ 1 and broadcastUPDATE(k) to all the backbone nodes
4: go to step 2
5: end if

Procedures executed by a head
1: if receiveBN CONST(k, l, id) at the first timethen
2: select backbone node(s)j with the lowest level (lmin) as parent(s) and put it(them) inPi

3: l i ← lmin+ 1, ki ← k
4: sendON BNmessage to sink
5: broadcastBN CONSTwith a tuple (k, l i , i) and distanced (= kR)
6: end if
7: if already on backboneand receiveUPDATE(k) from sinkthen
8: broadcastBN CONSTwith a tuple (k, l i , i) and distanced (= kR)
9: end if

4.3. Flow-Balanced Routing Algorithm

Each backbone node, i.e., cluster head, collects the senseddata from its members and then
conveys the collected data to the sink. A backbone node may have multiple parents and therefore
may have multiple paths to the sink as shown in Figure 5. Our goal is to balance the residual
energy of each backbone node in order to prolong the network lifetime, that is, to equalize the
residual energy levels of the parents of a sensor after sending the collected data. For example,
assuming that a backbone node, say, nodei, had I -bit data to the sink and three parents whose
current energy magnitudes were 0.1J, 0.3J, and 0.4J, respectively. After transferring the data, the
residual energy magnitudes of the parents were equalized; e.g., they would become 0.1J, 0.2J, and
0.2J, respectively.

i
i1I

i2I
I i|P|i

2
1 |p|i

Figure 5: Multiple paths from nodei to the sink.

The energy needed to send one bit data from one sensor to another can be calculated by using
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the 1/sn path loss model [30] as follows.

Prelay(s) = (α1 + α2sn)γ, (2)

wheres is the transmission distance,α1 is the total energy per bit consumed by the transmitter and
the receiver electronics,α2 accounts for energy dissipated in the transmit op-amp,γ is the number
of bits relayed per second,n is the path loss exponent, and typicallyn takes a value between 2 and
5. Similar to Heizelman et al. [4], we calculate the transmission energy by using the free space (s2

power loss) and the multi-path fading (s4 power loss) channel models as follows.

Et =

{

(Ee+ ǫ f s2)I , if s< s0,

(Ee+ ǫms4)I , if s≥ s0,
(3)

wheres0 =

√

ǫ f
ǫm, andEe is equivalent toα1 in (2) and we set it to 50nJ/bit. Since the power control

can be used to invert this loss by appropriately setting the power amplifier, if the distance is less than
a thresholds0, the free space (fs) model is used, that is,n = 2 andα2 is set toǫ f = 10pJ/bit/m2.
Otherwise, the multipath (mp) model is used, that is,n = 4 andα2 is set toǫm= 0.0013pJ/bit/m4.
The energy needed to receiveI -bit data can be calculated by

Er = EeI . (4)

Since each backbone node may have multiple parents, the energy needed to send a given size
message to each of its parents needs to be estimated. LetE j ( j ∈ Pi) to denote the residual energy
of nodei’s parent j. Assuming that nodei hasI -bit data, denoted byI i , to the sink and that the flow
from nodei to its parentj is denoted byI i j , then we have

I i =
∑

j∈Pi

I i j . (5)

Therefore, we can write the energy/bit consumption for conveying dataI i j at nodej as

∆Ei j = (α1 + α2(k jR)n)I i j = ε j I i j , (6)

whereε j = (α1+α2(k jR)n). Therefore, the residual energy of nodei’s parentj, denoted byX j , after
conveying dataI i j can be written as

X j = E j − ∆Ei j = E j − ε j I i j . (7)

Here, we attempt to let the following relation hold.

X j = Ē =
1
|P′i |

∑

l∈P′i

X j , j ∈ P′i , (8)
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whereP′i (P′i ⊆ Pi) denotes the set of nodei’s parents to which the flow from nodei is greater than
0, i.e., forE j > Ē ( j ∈ P′i ), I i j > 0. According to Eqs. (5), (6), (7), and (8), we can determineI i j .
On the other hand, forE j ≤ Ē ( j ∈ Pi \P′i ), the flow from nodei to node j should be 0, i.e.,I i j = 0.
Therefore, we have forj ∈ Pi

I i j =



























































0, if E j ≤ Ē,

I i+E j

∑

l∈P′i

1
εl
−
∑

l∈P′i

El

εl

ε j

∑

l∈P′i

1
εl

, if E j > Ē.
(9)

The proposed routing algorithm is executed by each node to determine the flow to each of its
parents that satisfies Eq. (9).

Algorithm 3 Data Aggregation Algorithm.
1: get residual energy of parentsE j( j ∈ Pi)
2: P′i ← Pi

3: calculateI i j

4: if there is any parentj, I i j < 0 then
5: setI i j = 0 and removej from P′i
6: goto step 3
7: end if
8: send flowI i j to parentj ( j ∈ Pi) that satisfy eq. (9)

In flow-balanced routing, attempts are made to equalize the residual energy of nodei’s parents
after data transmission. The calculation ofI i j (line 3 in Algorithm 3) plays a key role in deter-
mining the capable parents to which nodei can send some data. First, nodei calculates the total
energy needed to convey dataI i and estimates the average energy of its capable parents by ignoring
those parents with energy lower than the average. This process is repeated until all the capable
parents have energy equal to or more than the average energy.The computational complexity of
this process is bound byO(|Pi |

2). Note that only the total residual energy of nodei’s parents are
considered here, and if nodei’s parents do not have enough energy to convey the collected data,
nodei is regarded as an isolated node with no capable parent. Then,the isolated node reconnection
mechanism described in Section 4.4 is triggered.

4.4. Rerouting Algorithm

Instead of reconstructing the whole backbone in each round,we propose a local rerouting al-
gorithm to do the backbone reconfiguration only if the topological change occurs in any place; i.e.,
if a node drops out of the backbone due to its energy exhaustion. If the residual energy of a back-
bone node becomes lower than a predefined threshold, e.g., a given percentage, denoted byrth, of
sensor’s initial energy, the node’s energy is exhausted andthe rerouting algorithm is triggered. The
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exhausted head tries to find a new head in its neighbors to replace itself. Otherwise, its descendants
including the members in its cluster and the children on the backbone lose the connection to the
sink, and have to try to repair the connection to the network by themselves. Our proposed rerouting
algorithm contains two phases:head replacementandisolated node reconnection.

In thehead replacementphase, the exhausted head, e.g., nodei, broadcasts aHELPmessage to
its neighbors to find a capable node to replace itself. A waiting node has a higher priority to become
the new head. To detect the HELP message, the waiting node maykeep the radio receiver on in
each round. Considering that overhearing is not energy efficient [31], we can borrow the beacon
scheduling way from [32] by setting the radio receiver on only at the beginning of each round to
save energy. In this paper, we also propose a new scheme for the waiting node to detect HELP
message. When the data aggregation begins, a waiting node checks the residual energy of each
head in its neighbors at the beginning of the first and the second rounds to estimate the remaining
lifetime of the head, denoted bytr , i.e., tr ≈ ⌊

E2−E1rth
E1−E2

⌋ whereE1 andE2 denote the residual energy
at the beginnings of the first and the second rounds, respectively. To prevent a waiting node from
oversleeping, we can use a parameterβ (0 < β < 1) and determinetr as follows.

tr = ⌊β
E2 − E1rth

E1 − E2
⌋. (10)

Since there may be more than one waiting node in the exhaustednode’s neighbors, the waiting
node with the smallestid number is selected as the new head. However, if no waiting node can be
found, the node that has the most residual energy and the ratio of the residual energy to the initial
energy is higher thanrth is selected as the new head. After the new head has been determined,
the exhausted head, say, nodei, informs its members and children of the result. If the new head,
say, nodej, is not a backbone node, nodei sends aREQ HD(ki , l i , i) message toj so that j can
determine its level and data transmission distance. In the worst case, if nodei cannot find any
candidate node to replace itself, it involuntarily throws away its descendant(s), and just transfers its
own sensed data to its parent node(s) until its death. The abandoned members and children become
isolated orphans, and they have to find their new head or parent(s) by themselves.

In the isolated node reconnectionphase, a member of the exhausted head who realizes its
cluster head has gone will try to find a new head. If it can successfully find a backbone node in its
neighbors, it becomes its member immediately. However, if it cannot find any backbone node, but
has more energy than its neighbors, it becomes the new head and setsk = 1. Otherwise, it invites
the neighbor with the most energy to become the new head, say,node j, and setk j = 1.

An isolated head, say, nodej, broadcasts aRECON(k j , l j , j) message to connect to the back-
bone. If no backbone node responds, it incrementsk j and then broadcasts theRECONmessage
again until it finds a backbone node. The rerouting algorithmis illustrated in Algorithm 4.
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Algorithm 4 Rerouting Algorithm.
Head Replacement executed by exhausted headi

1: broadcastHELPmessage to neighbors
2: if receive response(s) from neighbor(s)then
3: select the best node, denoted byj, as new head
4: if node j is not a backbone nodethen
5: sendREQ HD(ki , l i , i) message to nodej
6: end if
7: become a member of nodej, and inform members and children to connect to nodej
8: else
9: ask members and children doReconnection

10: end if
Reconnection executed by an isolated memberi

1: if find a backbone nodej in neighborsthen
2: become member of nodej
3: else
4: if find a node,j ( j = arg max(Ek), k ∈ Ni ,Ek/E0 > rth,Ek > Ei) then
5: sendREQ HD(ki , l i , i) message to nodej, and become member of nodej
6: else
7: become new head and broadcastRECON(ki , l i , i) within d (= kiR)
8: while cannot find a backbone nodel within d (= kiR) whose level is higher thanl i do
9: ki = ki + 1

10: end while
11: become child of nodel
12: end if
13: end if
Reconnection executed by an isolated headj

1: broadcastRECON(k j , l i , j) within d (= k jR)
2: while cannot find a backbone nodel within d (= k jR) whose level is higher thanl j do
3: k j = k j + 1
4: end while
5: become a child of nodel
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Table 1: Parameters used in simulation
Parameter name Symbol Value

Field size 150× 150 m2

Sink location (150,150)
Number of sensors S 1000

Sensing range r 5m
Cluster range R 10m

Transmission tuning parameter k ≥ 1
Initial energy E0 0.5J

Transmission energy/bit Ee 50nJ/bit
Amplifier energy(fs) ǫ f 10pJ/bit/m2

Amplifier energy(mp) ǫm 0.0013pJ/bit/m4

Data size I 2000bits
Control message size msg 100 bits

Data compression ratio rdc 30%
Energy threshold ratio rth 30%

Head percentage (LEACH) p 5%
Head percentage (HEED) Cprob 5%

Energy threshold (HEED,CPCP) Pmin 10−4J
Transmission range(broadcast) (CPCP) Rbc 20m

5. Simulation

We compared the performance of our proposed HFB with those ofLEACH, HEED, M-HEED,
CPCP, and HEED-FBR using simulation. Two performance metrics, network lifetimeandcover-
age lifetime, are used for comparison. The network lifetime is defined as the duration from the
beginning instant of the network operation to the instant when any or a given percentage of the
sensors die. On the other hand, the coverage lifetime is defined as the duration from the beginning
instant of the network operation to the instant when the ratio of the coverage of the current alive
sensors to the coverage of the whole sensors drops below a predefined threshold. The M-HEED
approach is a multi-hop hierarchical version of HEED developed in this paper wherein the cluster
heads are constructed hierarchically using the recursive approach proposed in HEED. Furthermore,
HEED-FBR is a modified version of FBR wherein the cluster formation algorithm is replaced by
HEED.

Our simulation program was developed using Java. The parameter values used in the simulation
experiments are shown in Table 1, and the performance metrics were also examined with various
parameter values. A network model with a 150× 150 m2 square area was used. The sensors were
randomly deployed in the network but the sink was located at the position (150, 150). All sensors
had an initial energy of 0.5J. We assumed that each sensor was assigned a unique identification
number. In practice, a method [11] can be used to assign distinct identification numbers to the
sensors. The data from each sensor to the sink were assumed tobe 2000 bits, and the sizes of the
control messages exchanged between sensors and between a sensor and the sink were assumed to
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be all the same and were 100 bits. Time in the experiments was proceeded in rounds similar to
previous protocols [4, 6]. At the beginning of each round, the cluster formation is performed in
previous protocols but in our proposed protocol it is performed only once at the beginning of the
network operation.

5.1. Lifetime Comparison

To avoid any unfair treatment over previous approaches, we simulated those protocols with a
wide range of parameter settings and chose the best parameter combinations for the comparison.
The parameter values used in the experiments are shown in Table 1. The simulation experiment
was repeated 10 times in order to calculate the confidence intervals of the results. One example of
the network topology obtained using our FBR protocol is shown in Figure 6. From this figure, we
see that the backbone topology is a novel multi-level structure, rather than a simple tree, and some
nodes have multiple paths to the sink.

Figure 7 compares the network lifetime of our FBR protocol with those of LEACH, HEED,
M-HEED, CPCP, and HEED-FBR. The results shown in the figure were obtained as the sample
means of 10 experiments with 95% confidence intervals. Sincethe half widths of the confidence
intervals are all less than 2% of the sample means, they are not shown in the figures. We see from
this figure that CPCP outperforms other conventional approaches and FBR yields a much longer
lifetime than the others. The lifetime of FBR when the first sensor died is near 10 times longer than
that of CPCP and is around 5 times longer when 10 percent of thesensors have died. Furthermore,
we can see that HEED-FBR also provides a long lifetime. The difference between the lifetimes of
FBR and HEED-FBR shows the usability of the proposed clusterformation approach. Similarly,
by comparing HEED-FBR and HEED, we see that the flow-balancedrouting algorithm plays a key
role in data aggregation and that balancing flows between nodes yields a long lifetime.

Figure 8 shows the coverage lifetimes of FBR along with HEED,CPCP, and HEED-FBR. We
selected these previous protocols for comparison because both HEED and CPCP are coverage-
aware protocols [18]. From this figure, we see that both FBR and HEED-FBR yield much longer
coverage lifetimes than others.

The main reasons for the above results can be summarized as follows.
1) The backbone constructed in FBR is not a simple tree but a multi-level structure with the sink

at the top. Each head may have multiple paths to the sink and therefore balancing the flow from
a sensor to the sink over multiple paths can equalize the energy consumption among the heads,
resulting in a longer lifetime. On the other hand, in the multi-level protocols extended on the basis
of HEED, attempts are made for the cluster heads at each levelto be distributed uniformly in the
network, resulting in some higher level heads far away from the sink. Those heads have to spend
more energy to send data to the sink and die fast. Furthermore, in CPCP the cluster heads are
simply constructed as a shortest path tree rooted at the sink. A head near to the sink and with more
offspring should die quickly.

2) A local rerouting approach is used in FBR (and HEED-FBR) torepair the backbone topology
only at the location where the topological changes occur. Inthe previous algorithms, on the other
hand, the network construction is repeatedly executed at the beginning of each round.
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Figure 6: An example of the hierarchical network topology constructed in FBR.
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Figure 7: Network lifetimes of various protocols.
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Figure 8: Coverage lifetimes of various protocols.
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3) In large-scale sensor networks, a large number of sensorsare usually deployed randomly in
the target field. The coverage areas of some sensors may totally overlap those of others. Taking out
the overlapped sensors does not degrade the usability of thenetwork at all. In FBR, the overlapping
sensors are taken aswaiting nodes, that is, those sensors are put into the sleep mode to reduce
energy consumption.

5.2. Parameter Examination

To further examine the effects of the system parameters on the performance of our proposed
protocol, we simulated FBR and also the main previous protocols with various parameter settings
as follows. In these experiments, the parameter being examined is changed while all others are
fixed. The initial energy of each sensor was set to 0.05J in order to speed up the experiments,
and the others are shown in Table 1. Due to space limitations,the figures show only the network
lifetimes of the protocols under consideration when the first sensor or ten percent of the sensors
died.

• The numbers of sensors were set to 100, 300, 500, 800, 1000, 1500, and 2000.

• The values of sensing ranger were set to 2, 5, 8, 10, and 15.

• The cluster rangesR were set to 5, 10, 15 and 20.

• The energy threshold ratiosrth were set to 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.8, and
0.9. This indicates the ratio of the current residual energyof a head to its initial energy and
works similarly to parameterpmin in HEED and CPCP, but is different in the sense thatrth

can be adjusted to adapt to various conditions.

• The data compression ratiosrdc were set to 0.2, 0.3, 0.4, 0.5, and 0.6. This indicates the ratio
of the size of the aggregated data at a head to the total size ofthe original data received from
its members along with its own sensed data. If a head receivesnI-bit data from its children
and generatesI -bit data to send, then the total data sent to the sink arerdc(n + 1)I bits. In
the experiments, we also simulated a special case, similar to LEACH, HEED, and CPCP,
wherein the data collected at a cluster head are aggregated into one packet no matter how
many packets the head receives. The result of this case is shown byη in Figure13.

Figure 9 illustrates the lifetimes of the algorithms under consideration when changing the num-
ber of sensors. We see that when the number of sensors increases FBR outperforms others, because
more nodes are treated as waiting nodes and the number of paths from each node to the sink may
increase, resulting in better flow balancing. Even though CPCP puts some sensors into sleep mode
whose sensing areas are totally covered by other sensors, this is decided after the cluster forma-
tion phase, but there is no need to consider the sleep nodes incluster formation. Furthermore,
when the number of sensors increases, the network construction overhead in each round also in-
creases, wasting scarce resources, so rerouting locally would obviously work more efficiently than
reconstructing the network.
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Figure 9: Lifetimes for various network sizes.
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Figure 10: Lifetimes for various sensing ranges.
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Figure 11: Lifetimes for various cluster ranges.

Figure 10 shows the lifetimes of the algorithms for various sensing ranges. We see that FBR
outperforms other protocols as the sensing range increases, because when the coverage area of each
sensor increases, the number of nodes that can become waiting nodes also increases. Furthermore,
a sensor can find more friends in its widened sensing area and may also choose a better head.
Figure 11 shows the lifetimes of the algorithms for different cluster ranges. We see that the cluster
range, also used in HEED, M-HEED, and CPCP, affects the performance more because the cluster
range determines the size of clusters and the number of network levels.

Figure 12 shows the lifetimes for different head energy threshold ratios, we find that therth

is a sensitive parameter for FBR, while in other algorithms the effect of this parameter can be
negligible. From Figure12, we see that FBR performs best when rth is around 0.25-0.4. Sincerth

is a tunable parameter, we can adjust its value depending on the network configuration. Figure
13 shows the lifetimes of the algorithms when changing data compression ratios. In this figure,η
denotes an extreme case: no matter how many data packets a node receives it will aggregate them
into one packet. We see from this figure that FBR outperforms the others and that the network
lifetime decreases when the compression ratio becomes low.

6. Conclusion

In this paper, we have proposed a new flow-balanced routing (FBR) protocol for multi-hop
clustered wireless sensor networks. In FBR, the cluster formation is performed only once at the
beginning of the network operation and is determined on the basis of the the overlapping degrees
of sensors. Some sensors whose sensing areas are covered by others are put into sleep mode in
order to save energy. The cluster heads are constructed in a multi-level architecture with the sink
at the top and there may be multiple paths from each head to thesink. On the basis of this novel
network architecture, a flow-balanced routing algorithm isproposed to assign the flow from a head
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Figure 12: Lifetimes for various head energy thresholds.
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Figure 13: Lifetimes for various data compression ratios.
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to the sink over multiple paths to equalize the power consumption of sensors. Furthermore, a local
rerouting algorithm is proposed to reconfigure the network topology only at the location where any
topological change occurs due to the dropouts of exhausted sensors.

The proposed protocol, FBR, has been evaluated in comparison with previous protocols, LEACH,
HEED, CPCP, and also two modified versions of HEED, i.e., M-HEED and HEED-FBR, using
simulation. The results show that FBR yields longer networklifetime and also longer coverage
lifetime than other protocols. The network lifetime of FBR can be more than five times longer than
that of CPCP, the best among the previous protocols under consideration, and at the same time the
coverage lifetime can be two times longer. Furthermore, theeffects of the parameters have been
examined with a wide range of parameter settings, and FBR always outperforms the others.
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