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Abstract. The radiation dose generated from x-ray computed tomography (CT)

scans and its responsibility for increasing the risk of malignancy became a major

concern in the medical imaging community. Accordingly, investigating possible

approaches for image reconstruction from low-dose imaging protocols, that minimize

the patient radiation exposure without affecting image quality, has become an issue

of interest. Statistical reconstruction (SR) methods are known to achieve a superior

image quality compared with conventional analytical methods. Effective physical noise

modeling and possibilities to incorporate priors in the image reconstruction problem

are the main advantages of the SR methods. Nevertheless, the high computation

cost limits its wide use in clinical scanners. This article presents a framework for

SR in x-ray CT when the angular sampling rate of the projection data is low. The

proposed framework is based on the fact that, in many CT imaging applications, some

physical and anatomical structures and the corresponding attenuation information of

the scanned object can be a priori known. Therefore, the x-ray attenuation distribution

in some regions of the object can be expected prior to the reconstruction. Under this

assumption, the proposed method is developed by incorporate this prior information

into the image reconstruction objective function to suppress streak artifacts. We

limit the prior information to only a set of intensity values that represent the average

intensity of the normal and expected homogeneous regions within the scanned object.

This prior information can be easily computed in several x-ray CT applications.

Considering the theory of compressed sensing, the objective function is formulated

using `1 norm distance between the reconstructed image and the available intensity

priors. Experimental comparative studies applied to simulated data and real data,

are used to evaluate the proposed method. The comparison indicates a significant

improvement in image quality when the proposed method is used.
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1. Introduction

X-ray computed tomography (CT) imaging is generally used through the reconstruction

of an object function from its projection data. The projection data, measured by a

detector array, represents the internal structure through the attenuation map of the x-

ray photons. The sampling rate and data-acquisition orbit have a strong influence on the

exactness and stability of the image reconstruction process. It is well known that under-

sampling of projection views converts the image reconstruction inverse problem into

ill-posed one (Natterer 1986, Herman and Kuba 1999), where the reconstructed image

sufferers from different types of image artifacts that vary according to the availability

of projection data (Joseph and Schulz 1980 Rangayyan et al 1985). A common data

limitation problem in clinical and industrial applications is the limited view problem.

The term limited view, which is also called sparse projections, refers to the case where

the measured projection data is obtained over a small number of equally/unequally

distant angles less than what is traditionally required by the Nyquist sampling rule

(Natterer 1986). In medical imaging, as well as several industrial applications, it is

required to reconstruct an artifact-free image from a limited view projection data. When

the target object is presented in binary form (e.g. 0/1), exact reconstruction can be

achieved from small number of projections (Herman and Kuba 2007). Unfortunately,

this assumption is not valid in several real CT applications. The problem of image

reconstruction from small projections had been studied, and many reconstruction

algorithms are already proposed in the literature, see e.g. (Huesman 1977, Brooks

et al 1979, Nassi et al 1982, Payot et al 1997, Galigekere et al 1999, Li et al 2004, Sidky

et al 2006, Herman and Davidi 2008, Hansis et al 2008).

The wide spread of the x-ray CT scanners worldwide and their extensive usage

in medical diagnosis for many diseases has led to a significant dose increase to the

community. The minimization of radiation exposure in CT imaging had become a

key requirement in many imaging applications, especially for pediatric (Brenner and

Hall 2007, Yu et al 2009). For example, in image-guided radiation therapy (IGRT),

patients are usually subject to multiple scans that accumulate the dose to a risky

level. However, decreasing x-ray beam intensity usually increases the statistical noise in

the reconstructed images, which reduces the ability to extract useful information from

these images. One potential approach, that achieves the objective of ionizing radiation

reduction, while providing patients with more comfortable short time imaging, is to

under-sample the number of projection views.

Statistical reconstruction (SR) has been used for long time in emission tomography

for its ability to reduce statistical noise in reconstructed images. The correct noise

modeling and the ability to incorporate a priori information in the image reconstruction

objective function are the key reasons for being used in several in-duty PET and

SPECT imaging equipments. However, in x-ray CT, conventional methods derived

from analytical inversion formulae, such as the standard filtered backprojection (FBP),

are still the methods of choice in clinical scanners. The main reason is the expensive
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computation cost of SR methods when it is applied to relatively large photon counts used

in x-ray CT. Recently, the use of SR in transmission CT has taken much interest due

to the rapid growth of the computing power and the use of high-speed GPU processing

units in image reconstruction.

In CT imaging, we measure the attenuation of x-ray within the scanned object.

In this imaging modality, it is known that the variation of the attenuation coefficients,

it is also called intensity, within the same homogenous object is rather small. The

incorporation of a priori known information, to improve images reconstructed from

limited projection data in CT, have been extensively studied in the past two decades,

see e.g. (Sauer et al 1994, Kolehmainen et al 2003, Siltanen et al 2003, Chen et al

2008, Leng et al 2008, Rashed and Kudo 2011). The nature of the prior information

required for exact reconstruction is not clear yet. Thus, it is interesting to quantitatively

investigate how different types of prior information contribute to the image quality in

various data limitation problems. We can classify the possible prior information into

the following three categories: (1) full reference image (intensity value + pixel position),

(2) boundaries and support information (pixel position only), and (3) attenuation

information (intensity value only). The first category considers the case where a priori

information is obtained from a reference image generated prior to the reconstruction.

The term reference image usually refers to an image that includes basic and normal

structures of the scanned object. Reference image may be obtained through an earlier

scan of the patient, segmentation of neighboring slices, or blurred image reconstructed

from all measured projection data in gated-CT. The second category describes the use

of a priori information corresponding to the boundaries of uniform regions without

further spatial information. This includes the well-known quadratic smoothing penalty.

The third category corresponds to the case where a priori information is limited to

a set of intensity values representing uniform regions of the object without additional

knowledge about the pixel positions. In this work, we study the use of prior information

corresponding to the third category.

In this paper, we propose a Bayesian framework for SR from limited view projection

data. We assume that a small number of intensity values that represent average

value of expected homogenous regions (organs) are a priori known or estimated with

high accuracy. For convenience, we refer to this prior information as intensity prior

throughout the paper. We design the objective function such that it includes a distance

function based on `1 norm to the intensity prior. The resulting SR method is evaluated

using simulated data and real data with different settings for the prior.

This paper is organized as follows. In section 2, we briefly introduce the imaging

model for SR in transmission CT. The proposed approach is detailed, and the image

reconstruction algorithm is developed in section 3. The experimental data is presented

and analyzed in section 4 and followed by discussion and conclusion in section 5.
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2. Imaging model for statistical reconstruction

2.1. Statistical image reconstruction

In transmission CT, the x-ray beam is radiated to the target object where a portion of

the radiation is absorbed by the object while the remaining portion transmits through

it. The transmitted portion of the radiated photons is measured by an array of detectors

located on the opposite side of the x-ray tube. The attenuation map µ of the object can

be identified according to the Beer’s law of attenuation (Lange and Carson 1984):

I = I0 exp(−
∫
s
µds), (1)

where I and I0 are the photon counts, and the blank scan measured at a single detector

bin, respectively, with s represents the virtual ray path from the tube focal point to the

detector bin. Assuming that the attenuation value is constant within small size image

pixels, the transmission x-ray CT can be described in a discrete form using the following

statistical model:

yi ≈ Poisson

bi exp(−
n∑
j=1

aijµj)

 , (2)

where µ = (µ1, . . . , µn) is the image vector representing the attenuation coefficients of

the imaged object, y = (y1, . . . , ym) is a vector represent the raw detector measurements

with the corresponding blank scan b = (b1, . . . , bm) and A = {aij} is the m× n system

matrix that models the imaging system. In the statistical model in equation (2), we

consider the use of a monochromatic x-ray spectrum and ignore the effect of scattered

photons, for simplicity. The log-likelihood function for the observed photon counts, as

described in literature, is given by:

l(µ) = −L(µ) =
m∑
i=1

yi log(bi)− yi
n∑
j=1

aijµj − log(yi!)− bi exp(−
n∑
j=1

aijµj)

 . (3)

The solution of the image reconstruction problem is found through a maximization

of the log-likelihood function after ignoring the irrelevant terms. The maximum

likelihood solution of the statistical reconstruction problem is found by:

µ∗ = arg min
µ≥0

L(µ), L(µ) =
m∑
i=1

[bi exp(−〈ai, µ〉) + yi〈ai, µ〉] , (4)

where 〈ai, µ〉 =
∑n
j=1 aijµj is the inner product of the ith row of matrix A and

image vector µ. When the acquired data y are limited such that m � n, the

image reconstruction becomes an ill-posed problem and achieving a reliable and

feasible solution is challenging. To overcome this problem, the well-known Bayesian

methods, that include a priori information on the scanned object into account, are

used. The solution of the image reconstruction problem is found through maximizing

a posteriori (MAP) function:

P (µ|y) =
P (y|µ)P (µ)

P (y)
, (5)
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and the maximum a priori solution of the reconstruction problem is found by:

µ∗ = arg min
µ≥0

fβ(µ), fβ(µ) = L(µ) + βU(µ), (6)

where U(µ) is known as the penalty term or the regularization function that presents

prior knowledge of the image object and β is a hyper-parameter that controls the power

of the regulation term.

2.2. Compressed Sensing

Since the introduction of the compressed sensing (CS) principle (Candès and Tao 2006,

Donoho 2006), several approaches were presented to solve the inverse problem for image

reconstruction from a small number of projection views. The main approach is based

on the minimization of the objective function that includes `1/`0 norm of a sparse

representation of the target object. This formulation of the objective function can

effectively find the sparse solution from feasible ones. When the object is presented in

a sparse form, the number of projections required for a good estimation is significantly

less than that of the traditional Nyquest sampling criteria. This approach was presented

early and was used to develop an image reconstruction algorithm for blood vessel imaging

from a small number of projection views (Li et al 2002). When the target object

is originally sparse, the image reconstruction problem is formulated generally as the

minimization of N(µ) subject to data fidelity terms. Where N(.) is a norm function

such as `1/`0 norms. However, in many cases of x-ray CT applications, the target

object is non-sparse. The image reconstruction problem is then formulated to minimize

N(Φ(µ)), where Φ(.) is a sparsification transform such as general gradient, wavelets, or

total-variation (TV) norm. The TV norm was introduced for the first time by Rudin

et al (1992) as an effective tool for image denoise. The TV norm is known for its edge

preservation property providing that it is based on non-quadratic function and this

is the main reason that TV-based image reconstruction algorithms have gained much

attention recently. For example, it is used for SPECT imaging (Persson et al 2001),

Cone-beam CT (Sidky and Pan 2008) and cardiac gated micro-CT (Song et al 2007).

Interesting comparison studies between the TV-based approaches and SR methods were

recently presented by Tang et al (2009) and Bian et al (2010).

However, the use of straight TV models for realistic image reconstruction has been

shown to produce artificial patches that reduce the image quality and their possibility

to be used in clinical equipment as well (Fahimian et al 2010). Furthermore, it

is known that TV-based methods may result in losing small size and low-contrast

structures during the reconstruction. Moreover, the TV-minimization is usually

implemented through iteration procedures, which considerably increase the computation

cost of the image reconstruction process, especially in 3D/4D reconstruction. In

general, when the projection data are highly under-sampled, the image reconstruction

becomes underdetermined problem and the achievement of exact reconstruction is not

theoretically possible (Herman and Davidi 2008). Additional terms, added to the
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Figure 1. The proposed penalty function in equation (8) corresponding to L = 3.

objective function, can lead to a more accurate reconstruction. Here, we introduce

a simple and easy-to-compute prior information which we call intensity prior. As it will

be shown later through the experimental studies, intensity prior can be easily estimated,

and it contributes effectively to the image quality without affecting the contrast.

2.3. MAP reconstruction and intensity prior

The penalty term U(µ) in equation (6) can be formulated using several approaches. It

is common in nuclear imaging to introduce a penalty term in the image reconstruction

objective function for the benefit of obtaining a data consistent image with less noise.

However, it is difficult to introduce a prior knowledge that fits with the imaging

applications. For example, a commonly used quadratic smoothing penalty is defined

as:

U(µ) =
∑
j,j′∈C

ωj,j′(µj − µj′)2, (7)

where C is a set of neighboring pixels and ωj,j′ is a weight assigned to each pair of pixels

(j, j′). Using the quadratic smoothing penalty can effectively suppress noise but on the

expense of preserving sharp edges.

In this paper, we introduce the penalty term as a distance function between the

reconstructed image µ and the available intensity values. In x-ray CT, the attenuation

coefficients within the same region (organ) are almost uniform and can be a priori

known within a specific range that slightly varies based on the imaging application. For

example, it is not difficult to estimate, with high accuracy, the attenuation coefficients

of normal organs appearing in a chest CT imaging of a mature patient. The distance

function can take various forms based on image properties and the nature of available

a priori information. Considering the intensity prior, the proposed distance function is

formulated as:

U(µ) ≡ D(µ, z) =
n∑
j=1

L
min
l=1

[ωl d(µj, zl)] , (8)

where z = (z1, . . . , zL) are the known intensity values arranged in ascending order

(i.e. z1 < z2 < . . . < zL), ω1, . . . , ωL is a set of empirically determined parameters



7

that quantitatively represent the corresponding intensity values, and d(., .) is a single-

variable distance function. This distance function should be carefully selected because

it has a strong influence on the quality of the reconstructed image. A possible useful

choice is the `1 norm distance such that:

d(a, b) = |a− b|. (9)

The most advantage feature, of the proposed penalty function in equation (8), is

that the required a priori information is limited to only a small number of intensity

values, which can be easily available in several clinical applications.

3. Methods

3.1. Reconstruction algorithm

The main difficulty in minimizing the objective function in equation (6) is that the

proposed penalty term in equation (8) is based on `1 norm, which is neither convex

nor differentiable. Therefore, it is not possible to use ordinary gradient-type iterative

method to optimize the objective function. Alternatively, the well-known majorizarion-

minimization (MM) strategy (Fessler and Hero 1995, Daubechies et al 2004) is used

to derive separable quadratic function. At each iteration k, the non-separable part of

the main objective function in equation (6) is approximated by a separable quadratic

function L̃(µ;µk) around µ = µk such that:

L̃(µk;µk) = L(µk), (10)

∂L̃(µ;µk)/∂µj|µ=µk = ∂L(µ)/∂µj|µ=µk . (11)

The approximate quadratic majorization to L(µ) is formulated as:

L̃(µ;µk) = L(µk) +∇L(µ)|µ=µk(µ− µk)> +
1

2
Q(µk)(µj − µkj )2 (12)

=
1

2

n∑
j=1

∑m
i=1 aij〈ai, µk〉bi exp(−〈ai, µk〉)

µkj
(µj − pj)2 + T (µk). (13)

where T (µk) is the term independent of µ,

Q(µk) =
n∑
j=1

∑m
i=1 aij〈ai, µk〉bi exp(−〈ai, µk〉)

µkj
, (14)

and

pj = µkj + µkj

∑m
i=1 aij

(
bi exp(−〈ai, µk〉)− yi

)
∑m
i=1 aij〈ai, µk〉bi exp(−〈ai, µk〉)

. (15)

The resulting separable objective function f̃β(µ;µk) = L̃(µ;µk) + βU(µ) is

minimized analytically to obtain the next iterate µk+1. This approximation is useful to

obtain a separable objective function when the penalty term is non-differentiable such

as the case of `1 norm distance. We consider the proposed penalty term of intensity
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information in equation (8), in which the separable objective function f̃β(µ;µk) can be

written as:

f̃β(µ;µk) =
n∑
j=1

βωh
[
cj,h(µj − pj)2 + d(µj, zh)

]
+ T (µk), (16)

h = {h ∈ {1, . . . , L} : d(µj, zh) =
L

min
l=1

d(µj, zl)},

cj,h =
1

2βωhµkj

m∑
i=1

aij〈ai, µk〉bi exp(−〈ai, µk〉). (17)

The proposed algorithm, which we called intensity-based MAP (iMAP), for

transmission tomography is implemented through the following steps:

(i) (Initialization step) Estimate the intensity prior z = (z1, . . . , zL), set the initial

image µ0 to a uniform positive value and set the iteration number k → 0.

(ii) (Majorization step) The objective function f(µ) is approximately majorized

around the current estimate µk using equation (13) to the separable function in

equation (16).

(iii) (Minimization) The separable objective function f̃(µ;µk) is minimized over µ ≥ 0

to obtain the image estimate µk+1 in the next iterate:

q = arg min
µ≥0

f̃β(µ;µk), µk+1
j = max(qj, ε), (18)

where ε is a small value to guarantee that µk+1
j > 0.

(iv) (Iterate condition) Set iteration number k → k + 1, repeat steps (i)-(iii) until

reaching to a stopping criterion.

The main theoretical framework for the derivation of the iMAP algorithm is

the same as that presented in the earlier work for anatomical-MAP-EM method for

PET/SPECT imaging (Mameuda and Kudo 2007). However, the present method

investigates a different imaging problem in transmission CT, where the essential target

of the previous work was to reconstruct PET/SPECT images with better noise/contrast

properties. Moreover, the intensity prior, which is more appropriate for the transmission

CT imaging, is an original contribution of this paper.

It is known that, in generic `1 norm prior, the convergence of the iterative algorithm

is guaranteed (Daubechies et al 2004, Loris 2009). In this paper, we have used the

MM strategy to generate approximate separable function for which the convergence

properties of the proposed algorithm are not clear. However, the same framework can

be used with exact surrogate function presented by Erdǒgan and Fessler (1999). In

this case, the algorithm monotonically decreases the objective function towards a local

minimum. Nevertheless, as the objective function is non-convex, there is no proof that

the algorithm will achieve the global convergence. Recently, it becomes interesting

to study the performance of similar algorithms and some papers have discussed the

convergence properties of iterative hard thresholding (e.g. Blumensath and Davies

2010).
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3.2. Intensity multi-thresholding

The minimization in equation (18) can now be implemented directly. It is easy to prove

that the optimization of the following simple separable objective function:

x∗ = arg min
x

α

2
(x− a)2 + β|x− b|, (19)

can be found through the following simple soft-thresholding function:

x∗ =


a+ β/α (a < b− β/α)

b (b− β/α ≤ a ≤ b+ β/α)

a− β/α (a > b+ β/α)

. (20)

In the same way, it is direct to estimate a multi-thresholding function corresponding

to the minimization of the objective function in equation (16). Therefore, the iterative

reconstruction algorithm is implemented through the following simple procedure. First,

we compute the term pj in equation (15) which is same as a single iteration of the

Convex algorithm (Lange and Fessler 1995). Then, the minimization is implemented

through the following multi-thresholding function:

qj =


pj + 1/(2cj,l) (sl−1 < pj < z−j,l)

zl (max(z−j,l, sl−1) ≤ pj ≤ min(z+j,l, sl))

pj − 1/(2cj,l) (z+j,l < pj ≤ sl)

, (l = 1, . . . , L). (21)

with z+j,l = zl + 1/(2cj,l), z
−
j,l = zl−1/(2cj,l), sl = (ωlzl +ωl+1zl+1)/(ωl +ωl+1), s0 = −∞

and sL =∞.

This multi-thresholding function, can be expressed as a combination of multiple

successive soft-thresholding functions, each is implemented around a single value of

the a priori known intensity values zl, l = 1, . . . , L. The practical interpretation of

this thresholding operation is as follows. If the computed pixel value pj is closed to

the intensity value zl (i.e. located inside the thresholding window controlled by the

parameter ωl), the pixel value is trimmed to zl. Otherwise, the pixel value pj is shifted

softly towards the closest value of zl. Illustration of the multi-thresholding functions is

in figure 2.

In MAP reconstruction algorithms, the hyper-parameter β in equation (6) is known

as the regularization parameter which handles the strength of the prior term. In

the iMAP algorithm, β controls the size of the thresholding window in the multi-

thresholding function in (21). Obviously, the value of β should be carefully selected. On

the one hand, if β is assigned to a rather large value, some low-frequency details in the

reconstructed image will be lost due to the strong thresholding. On the other hand, if β

is relatively small, the merit of thresholding is weak and the proposed method behaves

similar to the conventional reconstruction algorithm. We propose to use a dynamic

value for this parameter by starting with a relatively large value and then gradually

decrease it according to the following rule.

lim
k→∞

βk = δ and
∞∑
k=0

βk =∞. (22)
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Figure 2. The multi-thresholding function in equation (21) with L = 3.

where δ is a small value empirically defined to represent the noise magnitude, and equals

to zero for noise-free data. In the experimental studies presented in this paper, we have

used ordered subsets version of the proposed algorithm (OS-iMAP) to speed up the

reconstruction, and the under-relaxation parameter is implemented using the following

simple rule:

βk = (kmax + 1)β/(k + 1). (23)

The use of this dynamic hyper-parameter is useful to speed up the convergence in

the practical implementation. This approach is based on the observation that, in the

early iterations, a strong thresholding is required to remove acute streak artifacts, and a

weak thresholding is preferred later to retrieve missing small-size and low-contrast image

details. Moreover, it is known that the use of under-relaxation parameter improves the

convergence properties of ordered subsets reconstruction by removing the limit cycle

behavior (Kole 2005).

The proposed iMAP algorithm has various advantages. First, the penalty function

for intensity prior in equation (8) can be easily embedded in several famous transmission

SR algorithms, for example, the EM algorithm (Lange and Carson 1984), gradient

algorithm (Lange et al 1987) and its ordered subset version (Beekman and Kamphuis
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Table 1. Standard attenuation values of body structures and other objects, measured

in Hounsfield units (HU).

Anatomical structure HU range

air −1000

lung −900 : −800

fatty-tissue −100 : −50

water 0

blood 30 : 50

muscles 30 : 80

contrast enhanced blood 200 : 500

calcification 130 : 500

bone 500 : 1500

metal > 1000

2001). Second, the computation cost is almost same as the original method since the

cost of the multi-thresholding step can be ignored relative to the computation of a single

iteration of the original reconstruction algorithm. Third, the required intensity prior,

as we will present in next section, can be easily estimated with high accuracy in many

imaging situations.

3.3. Estimation of intensity prior

In the iMAP algorithm presented above, we assume that a set of intensity values z is

a priori known. In this section, we discuss possible approaches to compute the intensity

prior.

3.3.1. application-based estimation In many x-ray CT applications, the anatomical

structure as well as the attenuation coefficient of the target object can be estimated

with high accuracy. The knowledge of the tube current energy and the exposure time

used in the imaging equipment can provide an accurate limited range for the expected

intensity values corresponding to the anatomy of the scanned object. For example, the

standard intensity values, in Hounsfield units (HU), expected from average radiation

dose used in clinical CT scanners are shown in table 1 (Ohnesorge et al 2006). These

values can be simply used as intensity prior in several CT imaging applications with

weighting values ω that approximately represent the power of each intensity value.

3.3.2. image-based estimation In some CT applications, such as IGRT, the patient is

subject to multiple scans during a short time of treatment, which significantly increase

the patient dose to a risky level. A possible alternative imaging protocol, that minimizes

the dose and also reduces the scan time can be as follows. First, the patient is imaged

with a normal dose for a single time. The reconstructed image is used to estimate the

intensity values that represent different regions of interest. The later periodic scans
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Figure 3. Digital phantom used in the simulation studies. The arrow is pointing to

the column of seven resolution inserts used to compute the image contrast.

are then implemented through a low-dose or small views scan, which can be employed

using intensity prior with the proposed method. Furthermore, it is possible to estimate

the intensity values from a segmented image obtained from an earlier scan of the same

patient or another patient. Moreover, in multi-slice CT imaging, the patient dose can be

modulated by using hybrid scan, which alternates conventional scan in a single rotation

and low-dose scan in later few ones. Intensity values obtained from slices reconstructed

from normal dose data, can be used for the reconstruction of the neighbor slices using

data acquired from low-dose scans.

3.3.3. data-based estimation If the a priori information about the internal anatomy

of the scanned object is unknown, the intensity values can be estimated directly

from the projection data through a clustering of image estimate. As shown later in

the experimental studies, it is possible to estimate intensity values during the image

reconstruction.

4. Experimental results

In this section, the proposed method is evaluated. The experiments are implemented

using simulated phantom and real data obtained from different x-ray CT imaging

applications.

4.1. Assessment of image quality

Throughout the experimental data presented here, the image quality is measured using

several methods. Along with each reconstruction result, the corresponding true object in
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Table 2. Parameters of digital phantom shown in figure 3. Objects from number 4 to

10 are repeated with a=(-0.4, -0.2, 0.2, 0.4) and b=(0.0, 0.5, 1.5, 2.0), respectively.

Index Center coordinates Major axis Minor axis Density (cm−1)

1 (0.0, 0.0) 0.8 0.7 1.0

2 (0.0, 0.5) 0.1 0.1 0.5

3 (0.0, -0.5) 0.1 0.1 1.5

4 (a, -0.15) 0.016 0.016 b

5 (a, -0.10) 0.014 0.014 b

6 (a, -0.05) 0.012 0.012 b

7 (a, 0.00) 0.010 0.010 b

8 (a, 0.05) 0.008 0.008 b

9 (a, 0.10) 0.006 0.006 b

10 (a, 0.15) 0.004 0.004 b

simulated data or the FBP reconstruction from complete projection data, is illustrated

for visual evaluation. We also calculate the root mean square error (RMSE) for image

quality evaluation:

RMSE(µ) =

√√√√ n∑
j=1

(µj − µ̄j)2/
n∑
j=1

µ̄j (24)

where µ̄ represents the true object or the FBP image reconstructed from complete data.

We also measure the contrast of the reconstructed image using the following formula:

contrast(µ) =
|µs − µb|
µs + µb

(25)

where µs and µb are the average intensity values of selected resolution insert pixels and

background pixels, respectively.

4.2. Simulation studies

In the first simulation, we have used a digital phantom shown in figure 3. The phantom

size was 100 mm consisting of a uniform background with resolution inserts of different

size and contrast. The size of the inserts is ranged from 0.4 mm to 1.6 mm arranged

in four columns each of seven inserts. Two additional inserts of 10 mm are also added

to the phantom. The parameters of this phantom are shown in table 2. The image

grid was set to 500 × 500 pixels, and the noise-free projection data was measured

using a 500 bins detector over 180◦ with parallel-beam geometry and simple line-length

model. The projection data was measured using 20, 10 and 7 projection views and

image reconstruction was implemented using FBP, OS-Convex, ART-TV (Sidky et al

2006) and OS-iMAP methods. The image reconstruction using ART-TV method was

implemented through a data enforcement step using the well-known ART algorithm

followed by a TV-minimization step in an alternating manner. The parameters of the

ART-TV method were optimized to obtain the best image on RMSE scale. For iterative
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(a) FBP (b) OS-Convex (c) ART-TV (d) OS-iMAP

Figure 4. Images reconstructed using (a) standard FBP, (b) OS-Convex, (c) ART-TV

and (d) OS-iMAP methods from 20, 10, and 7 projections (from top to bottom).

methods, the iteration number was unified to 100 iterations with initial uniform image

computed from projection data. The number of subsets used for the OS-Convex and

OS-iMAP methods was set to 5, 5, and 7 subsets for reconstruction from 20, 10, and 7

view angles, respectively.

The intensity prior for the OS-iMAP method was selected to be the intensity

values corresponding to air (region outside the object) and the uniform background

of the phantom. We assumed that the inserts are unknown structures. This assumption

would probably fit with many diagnostic CT applications, where the intensity value of a

uniform background is known while lesions are commonly unknown. The reconstruction

was implemented with L = 2, β = 0.008, z = (0.0, 1.0) cm−1 and ω = (0.01, 0.06). From

only 7 projections, the detectability of the inserts are significantly improved by using the

proposed method. This can be confirmed by the visibility of the small size inserts shown

in figure 4 and the corresponding profile plots in figure 5. Unlike the ART-TV method,

it is observed that, the large size inserts at 12 and 6 o’clock positions of the phantom

still suffer from weak streak artifacts by using the proposed method. This behavior is

expected and the reasons are: (1) we did not include any intensity prior corresponding
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Figure 5. Horizontal and vertical profile plots across the inserts of some results

presented in figure 4. Comparison is between images reconstructed from 7 projections.
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Figure 6. Measured contrast (right vertical axis) of seven inserts, marked by the arrow

in figure 3, and RMSE (left vertical axis) for images reconstructed using ART-TV and

OS-iMAP methods from 7 (left) and 20 (right) projections.

to the inserts and (2) the objective function does not include any uniformity enforcing

term (e.g. smoothing penalty). Including smoothing penalty, however, would probably

profit image uniformity in the cost of contrast especially for the small size inserts.

The RMSE and the contrast of the seven inserts, marked by the arrow in figure 3,

were computed for the images reconstructed from ART-TV and OS-iMAP methods.

Results obtained from 7 and 20 projections are shown in figure 6. From these results, it

can be observed that the proposed method achieves a significant improvement in contrast

with acceptable RMSE value, especially when the number of projections is highly under-

sampled. The true contrast of the seven inserts is 0.2. The same experiment was

repeated with added Poisson noise corresponding to 105 photon counts and reconstructed

images from 25 projections are shown in figure 7.

In another experiment, we investigate the proposed method when the intensity
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(a) FBP (b) OS-Convex (c) ART-TV (d) OS-iMAP

Figure 7. Images reconstructed from 25 projections with added Poisson noise.
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Figure 8. Measured RMSE (left vertical axis) and estimated intensity value (right

vertical axis) of the uniform background computed from OS-iMAP reconstruction from

7 (left) and 20 (right) projections.

prior is unavailable and estimated during the reconstruction. The intensity prior were

estimated initially from the FBP image and then updated at every iteration using the

current image estimate. For simplicity, we limited the estimated intensity prior to only

the value corresponding to the uniform background. This value was computed as the

median intensity value of the current image estimate. We have used the same experiment

settings used in the previous study. The estimated intensity value corresponding to the

uniform background and the RMSE of the reconstructed image were calculated for the

case of reconstruction from 7 and 20 projections along 500 iterations, and the results

are shown in figure 8. These results indicate that the estimated intensity value is

approaching to the accurate one as the iteration proceeds. However, more iterations

were required to reach the exact intensity value and, therefore, the same image quality.

The effect of under-relaxation parameter introduced in (22) was evaluated in

another experimental study. A noise-free data measured over 20 projection views were

used for a reconstruction using different values of the hyper-parameter β. We have used

a static values of 0.1, 0.01 and 0.001 and compare it with the dynamic value used in the

above experiment with β = 0.008. Reconstructed images from 100 iterations are shown
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(a) Dynamic, β = 0.008 (b) β = 0.1 (c) β = 0.01 (d) β = 0.001

Figure 9. Image reconstructed using OS-iMAP algorithm from 20 projections with

(a) dynamic parameter computed using (23) with β = 0.008 and with static values of

(b) β = 0.1 (c) β = 0.01 and (d) β = 0.001.
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Figure 10. RMSE and contrast computed from images shown in figure 9.

in figure 9 and the measured RMSE and contrast are shown in figure 10. It is observed

that, when β was set to relatively large value, small size and low-contrast inserts were

almost lost. On the other hand, when β is relatively small, streak artifacts were not

effectively removed. Moreover, even with intermediate optimized value of β = 0.01, the

image quality measurements are behind the case where the under-relaxation parameter

is used as shown in figure 10.

4.3. Real data (head CT)

This experiment was performed using real head CT data obtained from a third-

generation scanner. The sampling of the acquired fan-beam data consists of 512(bins) ×
600(views) over 360◦ which rebinned into a parallel-beam data of 512(bins) × 600(views)

and then manually down-sampled into 75 projection views over 180◦. As the blank scan

measurements are unavailable, it is estimated from the raw data measurements and

a uniform value of 104 was used. This study aims to qualitatively compare the OS-

iMAP method with the ART-TV method and the conventional FBP. We have limited

the number of iterations in both iterative methods to 50 iterations. For the OS-iMAP
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(a) FBP-600 (b) ART-TV-75 (c) OS-iMAP-75

(d) FBP-75 (e) ART-TV-75 (Error) (f) OS-iMAP-75 (Error)

Figure 11. (a) FBP image reconstructed from complete data and images

reconstructed from 75 projections using (b) ART-TV, (c) OS-iMAP, and (d) FBP

algorithms. Error images in (e) and (f) are computed as the difference between (a),

(b) and (a), (c), respectively. Display gray scale is (0.85, 1.15) cm−1 except for (e)

and (f), it is (-0.1, 0.1) cm−1. Displayed images are trimmed to 400 × 400 pixels for

display magnification.

method, we used L = 3, β = 0.02, z = (0.0, 0.94, 1.044) cm−1 and ω = (0.02, 0.02, 0.02)

with 5 subsets. Reconstructed images are shown in figure 11. The proposed method can

significantly reduce streak artifacts using a simple and easy-to-compute intensity prior,

which were estimated as the histogram peaks of the FBP image shown in figure 11(d).

Image reconstructed using ART-TV method yields almost no streak artifacts. However,

it is clear from the error image shown in figure 11(e) that a large portion of image

contrast in some regions, especially bone, was lost. On the other hand, the image

reconstructed from the OS-iMAP method contains weak artifacts, but image contrast

is highly preserved as shown by the error image in figure 11(f).

4.4. Pseudo-real data (chest CT)

In the pseudo-real data experiment, we used previously reconstructed CT volume to

evaluate the proposed method. The original data were scanned using x-ray power of

120KeV and reconstructed in a volume grid of 512 × 512 × 77 with 0.63mm pixel size
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(a) FBP-original (b) FBP-100 (c) ART-TV-100 (d) OS-iMAP-100

Figure 12. Image reconstruction of the chest CT data. (a) Original slice image and

reconstructions from 100 projections using (b) FBP, (c) ART-TV and (d) OS-iMAP

methods. A magnification of the cardiac region is shown in the bottom row. Display

gray scale is (0.85, 1.3) cm−1.

and slice size of 1.0mm. A single slice was re-projected into 100 projection views over

180◦ and reconstruction was implemented using FBP, ART-TV and OS-iMAP methods.

The histogram of the FBP image was used to estimate the intensity prior to be used

in the OS-iMAP method. We selected four histogram peaks that correspond to the

average intensity values of air, lung, soft-tissue and blood. The experiment settings for

the OS-iMAP method were L = 4, β = 0.02, z = (0.0, 0.104, 1.015, 1.05) cm−1 and

ω = (0.04, 0.1, 0.03, 0.02) with 5 subsets. A uniform value of 105 was used as the blank

scan measurement. The reconstruction was implemented using 50 iterations and the

results are shown in figure 12. It is observed that the FBP image suffers from sever

streak artifacts, which are significantly reduced in the ART-TV and OS-iMAP images.

However, the well-known carton-like effect of the TV-minimization is avoided in the

image reconstructed using the proposed method. Although, the OS-iMAP image still

suffer from weak artifacts especially in peripheral regions, we expect that these artifacts

can be effectively removed with further iterations.

4.5. Real data (high-resolution CT)

In this experiment, we have used a three-dimensional high-resolution CT data obtained

from SPring-8 BL20XU beam line. SPring-8 is a third-generation synchrotron radiation

source located in Hyogo, Japan (http://www.spring8.or.jp). The imaged object is a

micro sample of aluminum alloy (Al − 4.4%Cu). In this application, it is desirable to

obtain high-quality images from a small number of projection views as the acquired
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Figure 13. Central slice of the micro metal alloy reconstructed from 1500 projection

views using FBP algorithm.

projection data are huge and 3D reconstruction is computationally expensive. The

sample of 1mm diameter was fully scanned with x-ray energy of 35KeV. The projection

data were obtained using a charge-coupled device (CCD) camera of 4000 × 2624 bins

with 2×2 binning mode an 5.9×5.9µm pixel size. The original parallel-beam projection

data used in this experiment were acquired over uniformly spaced 1500 view angles over

180◦ with exposure time of 300ms/view. Two blank scans were obtained through pre-

and post- data measurements. The detector array was resampled into 500 × 328 bins

to reduce the computation cost for image reconstruction. The target of this imaging

application is to investigate the fine structures of cracks and air holes inside the metal

sample, as well as, the distribution of different components of the alloy. A central slice,

reconstructed from 1500 projection views using FBP algorithm, is shown in figure 13.

The projection data was manually down-sampled to 150, 100 and 50 projection

views and reconstruction was implemented using FBP, ART-TV and OS-iMAP methods.

We have used 8, 12 and 16 iterations for the OS-iMAP algorithm to reconstruct images

from 150, 100 and 50 projections, respectively. Almost the same number of iterations

was used to obtain the ART-TV image with highest image quality. We have used

average intensity values of the homogenous background (Aluminum) and air as the

known intensity values. The parameters for the OS-iMAP method were set to L = 2,

β = 0.06, z = (0.0, 2.7) cm−1 and ω = (0.01, 0.06). The reconstruction from 150 and

100 projection views are shown in figure 14 and 3D reconstructions of the whole object

from 50 projections are shown in figure 15. These results indicate that the image quality

is significantly improved by employ the proposed method. Air holes and high contrast

metals are clearly observed even by using highly under-sampled projection data.
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(a) FBP-150 (b) ART-TV-150 (c) OS-iMAP-150

(d) FBP-100 (e) ART-TV-100 (f) OS-iMAP-100

Figure 14. Reconstructed images of the micro metal alloy using FBP (left), ART-TV

(middle) and OS-iMAP (right) from 150 (top) and 100 (bottom) projection views.

5. Discussion and Conclusion

In this paper, we present a framework for SR from a small number of projection views

in x-ray CT. The main contribution is the use of intensity prior as a penalty term

in the objective function for image reconstruction. The required intensity prior is

represented by a small number of intensity values that associated to the homogenous

regions expected in the scanned object. The proposed iMAP algorithm can be easily

implemented through a single step of conventional reconstruction followed by a multi-

thresholding step in an alternating manner. Moreover, several possible reconstruction

algorithms can be derived using the same approach presented here.

The efficiency of the iMAP algorithm is compared to recently developed image

reconstruction method based on TV-minimization, which is used to solve the problem

of image reconstruction from a small number of projections. Both approaches, the iMAP

and the ART-TV methods, outperform conventional analytical methods such as FBP in

terms of streak artifacts reduction. However, small size and/or low contrast structures

tend to be lost when the TV-minimization is employed, especially when the number of

projection views is highly under-sampled, e.g. less than 10 projections. It is also known

that, in some cases, the TV-minimization may lead to the loss of considerable fraction
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(a) FBP-50 (b) ART-TV-50 (c) OS-iMAP-50

Figure 15. 3D Reconstruction of micro metal alloy using FBP (left), ART-TV

(middle) and OS-iMAP (right) from 50 projection views. Central transverse, coronal

and sagittal slices are shown from up to bottom, respectively.

of the object contrast. Experimental results indicate that iMAP method effectively

preserves small size and/or low contrast image details while achieving high image

contrast. Even with real data, where the measured intensity values within the same

region is not strictly uniform; the proposed approach outperforms TV-minimization in

terms of image quality. In addition, the resulting image does not include the carton-like

image effect known for the TV-minimization methods.

An important factor in the proposed approach is how to control the hyper-parameter

β. During the preliminary experimental studies, we have found that if β is used as a

fixed value during iterative reconstruction, the quality of reconstructed image becomes

sensitive to the value of β. For example, if β is selected as a relatively large value, some

fine image details would probably lost. On the other hand, if β is selected as a relatively

small value, the effect of multi-thresholding is weakened and the proposed method

behaves similar to conventional methods. The use of under-relaxation approach, such

that we start with a relatively large value that gradually decrease with iteration, provides

a useful and effective choice. A strong thresholding is required in early iterations to
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remove streak artifacts and weak thresholding is required later to enforce the data

fidelity term to retrieve any possible missing structures.

The proposed method has a large possibility to be used in several low-dose x-ray

CT imaging applications. Moreover, the proposed framework is general in such a way,

it has a potential to be used in the other data limitation problems. It is interesting

to investigate these problems in future work. However, we expect that its validity and

power strongly depend on the type of image artifacts to be eliminated using intensity

prior.
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Appendix A. Derivation of equation (21)

For simplicity, let us consider that L = 1. Following equations (19) and (20), the

minimization of the f̃β(µ;µk) in equation (18) is given as:

qj =


pj + 1/(2cj,1) (pj < z1 − 1/(2cj,1))

z1 (z1 − 1/(2cj,1) ≤ pj ≤ z1 + 1/(2cj,1))

pj − 1/(2cj,1) (pj > z1 + 1/(2cj,1))

(A.1)

=


pj + 1/(2cj,1) (pj < z−j,1)

z1 (z−j,1 ≤ pj ≤ z+j,1)

pj − 1/(2cj,1) (pj > z+j,1)

(A.2)

with z+j,1 = z1 + 1/(2cj,1), z
−
j,1 = z1− 1/(2cj,1). Similarly, the general multi-thresholding

function for l = (1, . . . , L) is given as:

qj =



pj + 1/(2cj,1) (pj < z−j,1)

z1 (z−j,1 ≤ pj ≤ min(z+j,1, s1))

pj − 1/(2cj,1) (z+j,1 < pj ≤ s1)
...

...

pj + 1/(2cj,l) (sl−1 < pj < z−j,l)

zl (max(z−j,l, sl−1) ≤ pj ≤ min(z+j,l, sl))

pj − 1/(2cj,l) (z+j,l < pj ≤ sl)
...

...

pj + 1/(2cj,L) (sL−1 < pj < z−j,L)

zL (max(z−j,L, sL−1) ≤ pj ≤ z+j,L)

pj − 1/(2cj,L) (z+j,L < pj)

, (l = 2, . . . , L− 1) (A.3)
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where sl, l = (1, . . . , L − 1) is the intersection point between the successive `1 norms

around intensity values zl and zl+1 and is given by:

sl = (ωlzl + wl+1zl+1)/(ωl + ωl+1). (A.4)

Therefore, the multi-thresholding function in equation (A.3) can be written in the

following simple form:

qj =


pj + 1/(2cj,l) (sl−1 < pj < z−j,l)

zl (max(z−j,l, sl−1) ≤ pj ≤ min(z+j,l, sl))

pj − 1/(2cj,l) (z+j,l < pj ≤ sl)

, (l = 1, . . . , L), (A.5)

with s0 = −∞ and sL =∞.
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