
A practical but rigorous approach to
sum-of-ratios optimization in geometric applications

Takahito Kuno∗ and Toshiyuki Masaki

Graduate School of Systems and Information Engineering

University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

April 13, 2012

Abstract

In this paper, we develop an algorithm for minimizing the Lq norm of a vector whose

components are linear fractional functions, where q is an arbitrary positive integer. The

problem is a kind of sum-of-ratios optimization problem, and often occurs in computer

vision. In that case, it is characterized by a large number of ratios and a small number of

variables. The algorithm we propose here exploits this feature and generates a globally

optimal solution in a practical amount of computational time.

Key words: Global optimization, sum-of-ratios optimization, branch-and-bound, com-

puter vision, multiple-view geometry.

1 Introduction

Fractional optimization problems have been studied in order to achieve optimal economic

performance, as evidenced by the fact that many of economic indicators such as rate of re-

turn and productivity are represented by fractional functions. Sum-of-ratios optimization, i.e.,

optimization of a sum of fractional functions, arises in problems of stochastic nature, where

the objective is to maximize the expectation of economic performance (see e.g., [1, 14, 15]).

Recently, in spite of its theoretical difficulty [9, 20], sum-of-ratios optimization has attracted

much attention in multiple-view geometry of computer vision, without any direct relation to

economic performance. Since multiple-view geometry is developed in projective spaces, frac-

tional functions play an essential role as mediator between Euclidean and projective spaces.

∗The author was partially supported by a Grant-in-Aid for Challenging Exploratory Research (22651057)
from the Japan Society for the Promotion of Sciences. E-mail: takahito@cs.tsukuba.ac.jp

1

A variety of problems, e.g., triangulation, camera resectioning, homography estimation, and

so forth (see e.g., [11, 13]), can be formulated into a class of sum-of-ratios optimization prob-

lems, where the objective is to minimize a norm of a vector of linear fractional functions.

Problems of this class are characterized by a small number of variables but a large number of

ratios, and also occur in other applications of geometric optimization such as layered manufac-

turing and material layout [2, 7, 18]. Unfortunately, except for some heuristics [7], all existing

algorithms are totally inadequate to solve such kind of problems because those are designed

for economic applications with only a few ratios [4, 5, 16, 17]. The purpose of this paper is to

propose an algorithm for computing a globally optimal solution of sum-of-ratios optimization

problems sharing the above mentioned feature, in a practical amount of computational time.

In the next section, we give a formal definition of the target sum-of-ratios optimization

problem. We also illustrate how the problem arises in computer vision, and reveal its char-

acteristics as a geometric problem. Based on this observation, we develop a special-purpose

branch-and-bound algorithm in Section 3. We first devise an linear programming relaxation

for bounding, and then propose a convergent subdivision rule for branching. After providing a

detailed description of the algorithm, we prove its correctness in the rest of the section. Lastly,

we report some numerical results of the algorithm, and conclude the paper in Section 4.

2 Sum-of-ratios optimization problem

The problem considered in this paper is a class of fractional optimization problems, often

called the sum-of-ratios optimization problem:∣∣∣∣∣∣∣
minimize

r

∑
i=1

∣∣∣∣ cTi x+ γi

dT
i x+δi

∣∣∣∣q
subject to Ax ≥ b, 0 ≤ x ≤ v,

(1)

where A ∈ Rm×n, b ∈ Rm, ci,di,v ∈ Rn, γi,δi ∈ R1, and q is a positive integer. Let us denote

the feasible set by

D = {x ∈ Rn | Ax ≥ b, 0 ≤ x ≤ v},

and assume throughout the paper that D ̸= /0 and

dT
i x+δi > 0, i = 1, . . . ,q, ∀x ∈ D. (2)

If q = 1, then (1) is a linear sum-of-ratios optimization problem, for which branch-and-bound

algorithms have been proposed in [16, 17]. When q = 2, problem (1) is a special case of

2

nonlinear sum-of-ratios optimization problem:∣∣∣∣∣∣∣
minimize

r

∑
i=1

fi(x)
gi(x)

subject to x ∈ D,

(3)

where fi : Rn → R1 is a convex function, and gi : Rn → R1 is concave and positive on D. As

shown in [13], these conditions are satisfied by setting

gi(x) = dT
i x+δi, fi(x) =

(
cTi x+ γi

)2

dT
i x+δi

, i = 1, . . . ,q.

For problem (3), branch-and-bound algorithms similar to the one in [16] have also been de-

veloped in [4, 5]. The number q of ratios that can be handled by those existing deterministic

algorithms is limited to only around ten, at the present time. The difficulty of (1) is attributed

to the sum of ratios, not due to ratios themselves. To see this, consider the simplest case

where q = 1. It is known that a linear ratio is a quasiconvex and quasiconcave function on the

domain where the denominator is positive (see e.g., [19]). This characteristic leads to an ef-

ficient solution to linear fractional programming problems, as shown by Charnes and Cooper

[6]. However, the sum of quasiconvex functions is not in general quasiconvex, and the sum

of quasiconcave functions is not quasiconcave. These imply that the sum of linear ratios is

neither a quasiconvex nor a quasiconcave function. In consequence, (1) can have multiple

local minima different from global minima, not only at vertices of D, even when q = 1. From

the viewpoint of computational complexity, (1) is known to be NP-hard [9, 20].

2.1 SUM-OF-RATIOS OPTIMIZATION IN COMPUTER VISION

The problem (1), although difficult to solve, has a wide variety of applications in computer vi-

sion dealing with geometric relations between the three-dimensional world and its projection

onto a two-dimensional image plane. In this section, we take triangulation as a typical exam-

ple and show how it can be formulated into (1). Essential to this formulation is the pinhole

camera model.

Pinhole camera model: The pinhole camera model describes the relationship between the

coordinates of a three-dimensional point and its projection onto the image plane of an ideal

pinhole camera, where the camera aperture is a pinhole and no lenses are used to focus light.

The geometry related to the mapping of a pinhole camera is illustrated in Figure 1. Let us

denote the object of shooting by x′ = (x′1,x
′
2,x

′
3)

T in the three-dimensional coordinate system

with its origin at the camera aperture o. Light emanating from x′ passes through o and projects

3

u

w

o

φ

x’

x1

x2 x3

y’1

y’2

z

Figure 1: Geometry of a pinhole camera.

an inverted image y′ = (y′1,y
′
2)

T on the image plane, which is parallel to the x1-x2 plane and

located at the focal length ϕ (> 0) from o in the negative direction of the x3 axis. Let u =

(0,0,x′3)
T, w = (0,0,−ϕ)T and z = (y′1,y

′
2,−ϕ)T. Since the triangle connecting three points

o,u and x′ is similar to that connecting o,w and z, we have (y′1,y
′
2)

T = (ϕ/x′3)(x
′
1,x

′
2)

T, or

equivalently  y′1
y′2
1

=
ϕ
x′3

 x′1
x′2

x′3/ϕ


in homogeneous coordinates. It should also be noted that the image y′ is invariant under

scaling of x′. We denote this by

 y′1
y′2
1

∼

 x′1
x′2

x′3/ϕ

=

 1 0 0 0

0 1 0 0

0 0 1/ϕ 0




x′1
x′2
x′3
1

 , (4)

and say that (y′1,y
′
2,1)

T is equivalent, or proportional, to (x′1,x
′
2,x

′
3/ϕ)T. The 3×4 matrix in

(4) is called the camera matrix.

Triangulation: Triangulation (or reconstruction) is the process of determining the three-

dimensional coordinates of the object x′, given its projections onto two, or more, images

captured by pinhole cameras. In theory, the triangulation problem is quite trivial. Each image

y′ of x′ corresponds to a half-line in the three-dimensional space such that all points on the

4

y2
y 2

x’

y1

y 1

o1 o2

Figure 2: Triangulation from two images.

line are projected to y′. Therefore, x′ must lie on the intersection of those lines, and we must

be able to calculate its coordinates analytically from a pair of different images. In practice,

however, various types of noise, such as geometric noise from lens distortion or interest point

detection error, lead to inaccuracies in the measured image coordinates. As a result, lines

associated with different images of x′ do not always intersect in the three-dimensional space,

as is shown in Figure 2.

Suppose that x′ = (x′1,x
′
2,x

′
3)

T is in an arbitrary three-dimensional coordinate system, and

that there are N images yi = (yi
1,y

i
2)

T of x′ captured by cameras i = 1, . . . ,N. Let us denote

the ith camera matrix by

Ci
0 =

 1 0 0 0

0 1 0 0

0 0 1/ϕ i 0

 ,

where ϕ i (> 0) is the focal length of camera i. Note that x′ is denoted as Rix′+ ti for some

rotation matrix Ri and a translation vector ti in the three-dimensional coordinate system with

the origin at the focal point oi of camera i. Hence, from (4), we have[
yi

1

]
∼ Ci

0

[
Ri ti

0 1

][
x′

1

]
, i = 1, . . . ,N.

Let

Ci =

 ci
1 γ i

1

ci
2 γ i

2

ci
3 γ i

3

= Ci
0

[
Ri ti

0 1

]
,

5

which is referred to as the normalized camera matrix. The coordinates of the image yi is then

given as

yi
1 =

ci
1x′+ γ i

1
ci

3x′+ γ i
3
, yi

2 =
ci

2x′+ γ i
2

ci
3x′+ γ i

3
,

if there is no noise. As mentioned above, however, this is not the case in practice, and we need

to determine the coordinates (x1,x2,x3)
T of x′ so as to minimize the reprojection residual,

defined below, between each yi and the measurement yi:

ri
j(x) =

∣∣∣∣∣ ci
jx+ γ i

j

ci
3x+ γ i

3
− yi

j

∣∣∣∣∣ , i = 1, . . . ,N; j = 1,2.

If we adopt the L1 or L2 norm criterion, the problem to be solved is as follows:∣∣∣∣∣∣∣
minimize

N

∑
i=1

2

∑
j=1

(
ri

j(x)
)q

subject to ci
3x+ γ i

3 ≥ 0, i = 1, . . . ,N,

(5)

where q = 1 or 2, depending on the adopted norm. Since

N

∑
i=1

2

∑
j=1

(
ri

j(x)
)q

=
N

∑
i=1

2

∑
j=1

∣∣∣∣∣(ci
j − yi

jc
i
3)x+ γ i

j − yi
jγ i

3

ci
3x+ γ i

3

∣∣∣∣∣
q

,

problem (5) is apparently a special case of (1). Besides triangulation, there are a number of

problems formulated into (1), in computer vision, especially in connection with multiple-view

geometry. For more details, see e.g. [11, 13].

3 Practical branch-and-bound algorithm

Geometric applications of (1), such as in computer vision and in [2, 7, 18], share a common

characteristic that the number of ratios is large but the number of variables is small. For

example, triangulation assumed in [3] uses more than a hundred cameras, and in that case, (1)

has more than two hundreds ratios in the objective function whereas the number of variables

is only three. By exploiting this feature, we will develop below a special-purpose branch-and-

bound algorithm, which performs branching in the variable space and converges to a globally

optimal solution of (1). First, we will derive a linear programming relaxation for the bounding

operation.

6

3.1 LINEAR PROGRAMMING RELAXATION

Consider the following subproblem of (1):

P(l,u)

∣∣∣∣∣∣∣
minimize

r

∑
i=1

∣∣∣∣ cTi x+ γi

dT
i x+δi

∣∣∣∣q
subject to Ax ≥ b, l ≤ x ≤ u,

where 0 ≤ l ≤ u ≤ v. Let us try applying the Charnes-Cooper transformation [6] to P(l,u), by

introducing auxiliary variables:

yi = ηix, ηi =
1

dT
i x+δi

, i = 1, . . . ,r.

Then we have ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
r

∑
i=1

∣∣cTi yi + γiηi
∣∣q

subject to Ayi −bηi ≥ 0
dT

i yi +δiηi = 1

yi = ηix
yi ≥ 0, ηi ≥ 0

 i = 1, . . . ,r

l ≤ x ≤ u,

(6)

which is equivalent to P(l,u) in the following sense.

Proposition 3.1. If x∗ is an optimal solution of P(l,u), then (x∗,y∗,ηηη∗) with y∗i = η∗
i x∗ and

η∗
i = 1/(dT

i x∗ + δi) is an optimal solution of (6). Conversely, if (x∗,y∗,ηηη∗) is an optimal

solution of (6), then x∗ is an optimal solution of P(l,u).

Proof. Let x∗ be an optimal solution of P(l,u). By assumption (2), we have dT
i x∗+ δi > 0

for i = 1, . . . ,q. We can also see that (x∗,y∗,ηηη∗) with y∗i = η∗
i x∗ and η∗

i = 1/(dT
i x∗+δi) is a

feasible solution of (6). Suppose there is a feasible solution (x′,y′,ηηη ′) of (6) such that

r

∑
i=1

∣∣cTi y′i + γiη ′
i
∣∣q < r

∑
i=1

∣∣cTi y∗i + γiη∗
i
∣∣q . (7)

However, we have

r

∑
i=1

∣∣cTi y′i + γiη ′
i
∣∣q = r

∑
i=1

∣∣∣∣ cTi x′+ γi

dT
i x′+δi

∣∣∣∣q , r

∑
i=1

∣∣cTi y∗i + γiη∗
i
∣∣q = r

∑
i=1

∣∣∣∣ cTi x∗+ γi

dT
i x∗+δi

∣∣∣∣q ,
and besides x′ is a feasible solution of P(l,u). Therefore, (7) contradicts the optimality of x∗

for P(l,u). The converse can be proven similarly.

7

While the feasible set of P(l,u) is a polyhedron, this is no longer the case for problem (6).

Yet it can easily be relaxed into a polyhedral set as follows, by eliminating x from (6):

P̃(l,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
r

∑
i=1

∣∣cTi yi + γiηi
∣∣q

subject to Ayi −bηi ≥ 0
dT

i yi +δiηi = 1

lηi ≤ yi ≤ uηi

yi ≥ 0, ηi ≥ 0

 i = 1, . . . ,r.

Proposition 3.2. If P(l,u) has an optimal solution x∗, then P̃(l,u) also has an optimal solution

(ỹ, η̃ηη), which satisfies
r

∑
i=1

∣∣cTi ỹi + γiη̃i
∣∣q ≤ r

∑
i=1

∣∣∣∣ cTi x∗+ γi

dT
i x∗+δi

∣∣∣∣q . (8)

Moreover, if (ỹ, η̃ηη) satisfies
1

η̃1
ỹ1 = · · ·= 1

η̃r
ỹr, (9)

then (1/η̃i)ỹi is an optimal solution of P(l,u) for any i.

Proof. Let x∗ be an optimal solution of P(l,u). Letting y∗i = η∗
i x∗ and η∗

i = 1/(dT
i x∗+ δi),

we have lη∗
i ≤ x∗η∗

i ≤ uη∗
i , y∗i = x∗η∗

i , and hence (y∗,ηηη∗) is a feasible solution of P̃(l,u).
Since the objective function has an obvious lower bound, zero, P̃(l,u) must have an optimal

solution (ỹ, η̃ηη), which satisfies (8). Note that η̃ηη > 0; otherwise, η̃i = 0, ỹi = 0, and hence

dT
i ỹi+δ η̃i ̸= 1 for some i. If (ỹ, η̃ηη) satisfies (9), then (1/η̃i)ỹi is a feasible solution of P(l,u),

and its optimality follows from (8).

A further point to note on P̃(l,u) is that it is decomposable into r problems, each of which

is of the form: ∣∣∣∣∣∣∣∣∣∣∣∣

minimize
∣∣cTi yi + γiηi

∣∣q
subject to Ayi −bηi ≥ 0

dT
i yi +δiηi = 1

lηi ≤ yi ≤ uηi

yi ≥ 0, ηi ≥ 0.

(10)

8

Introducing another auxiliary variable ζi =
∣∣cTi yi + γiηi

∣∣, we can rewrite (10) into∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize ζ q
i

subject to Ayi −bηi ≥ 0
dT

i yi +δiηi = 1

−ζi ≤ cTi yi + γiηi ≤ ζi

lηi ≤ yi ≤ uηi

yi ≥ 0, ηi ≥ 0, ζi ≥ 0.

To minimize ζ q
i , we only need to minimize ζi, regardless of the magnitude of q, because ζi is

restricted to be nonnegative. Therefore, to solve (10), we may solve the following:

Qi(l,u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize ζi

subject to Ayi −bηi ≥ 0
dT

i yi +δiηi = 1

−ζi ≤ cTi yi + γiηi ≤ ζi

lηi ≤ yi ≤ uηi

yi ≥ 0, ηi ≥ 0, ζi ≥ 0.

This implies that, even though P̃(l,u) is a nonlinear optimization problem with (n+1)r vari-

ables, it can be solved by solving r linear programming problems, each with n+2 variables.

Proposition 3.3. The relaxed problem P̃(l,u) has an optimal solution (ỹ, η̃ηη) if and only if the

linear programming problem Qi(l,u) has an optimal solution (ỹi, η̃i, ζ̃i) for i = 1, . . . ,r.

Proof. Obvious from the above observation.

Thus, we can decide whether the subproblem P(l,u) is worth solving or not, by solving

linear programming problems Qi(l,u) for i = 1, . . . ,r. More precisely, if ∑r
i=1 ζ̃ q

i ≥ z∗ holds

for the value z∗ of the best feasible solution obtained so far, we can leave P(l,u) out of con-

sideration because there are no better solutions in the intersection of D with

[l,u] = {x ∈ Rn | l ≤ x ≤ u}.

Otherwise, we have to examine subproblems of the subproblem P(l,u) after an adequate

branching operation.

3.2 CONVERGENT SUBDIVISION RULE

One way to generate subproblems of P(l,u) is naturally to subdivide the rectangle [l,u] into

a set of subrectangles. If we divide [l,u] along xk = (lk + uk)/2 for k ∈ argmax{u j − l j | j =

9

1, . . . ,n}, the algorithm is guaranteed to be convergent just like the usual rectangular branch-

and-bound algorithm for concave minimization based on the bisection rule [8, 12, 22]. Instead

of such an exhaustive method, we will propose here a more sophisticated subdivision rule for

branching.

For any optimal solution (ỹ, η̃ηη) of P̃(l,u), let

x̃i =
1
η̃i

ỹi, i = 1, . . . ,r. (11)

If x̃1 = · · ·= x̃r, then xi is an optimal solution of P(l,u) for any i, by Proposition 3.2. Even if

not, x̃i’s are all feasible for P(l,u), and so is their centroid

ωωω =
1
r

r

∑
i=1

x̃i. (12)

By means of this point ωωω ∈ [l,u], we can subdivide the rectangle, just as under the ω-subdivision

rule for the rectangular branch-and-bound algorithm [8, 12, 22]. Namely, let

ρ j = min{u j −ω j,ω j − l j}, j = 1, . . . ,n, (13)

and select

j′ ∈ argmax{ρ j | j = 1, . . . ,n}. (14)

Then we may divide [l,u] into [l′,u] and [l,u′], where

l′j =

{
ω j, if j = j′

l j, otherwise,
u′j =

{
ω j, if j = j′

u j, otherwise.
(15)

If we apply the same operation to both subrectangles [l′,u] and [l,u′] recursively, the following

sequences are generated:

lk ≤ lk+1 ≤ ωωωk+1 ≤ uk+1 ≤ uk, k = 1,2, . . . , (16)

where [l1,u1] = [l,u], and ωk
jk is equal to either lk+1

jk or uk+1
jk . For each k, equations (11) and

(12) yield x̃k
i ’s and ωωωk from an optimal solution (ỹk, η̃ηηk

) of P̃(lk,uk).

Lemma 3.4. There exist points l and u in [l1,u1] such that l ≤ u, and as k →+∞,

lk → l, uk → u.

The sequence {ωωωk} also has accumulation points, each of which lies on a corner of the limit

rectangle [l,u].

10

Proof. We see from (16) that for each j both sequences {lk
j} and {uk

j} are monotonic, bounded,

and hence have limits l j and u j, respectively, such that l j ≤ u j. As for {ωωωk}, it is generated

in the compact set [l1,u1] and has at least one accumulation point. Let ωωω be an arbitrary

accumulation point and {ωωωks} a subsequence converging to ωωω . Since {1, . . . ,n} is a finite set,

there is an index t ∈ {1, . . . ,n} such that jks = t for infinitely many s. Therefore, by noting

that ωks
t ∈ {lks+1

t ,uks+1
t }, we have ωks

t → ω t ∈ {lt ,ut} as s →+∞. We also see from (13) and

(14) that

min{uks
t −ωks

t ,ωks
t − lks

t } ≥ min{uks
j −ωks

j ,ω
ks
j − lks

j }, j = 1, . . . ,n.

The left-hand side converges to zero, and so does the right-hand side. This implies that ωωω is a

corner point of the rectangle [l,u].

Lemma 3.5. Let ωωω be any accumulation point of {ωωωk}, and {ωωωks} a subsequence converging

to ωωω . Then, as s →+∞,

x̃ks
i → ωωω , i = 1, . . . ,r.

Proof. As shown in the preceding lemma, ω j ∈ {l j,u j} for j = 1, . . . ,n. Since lks
j ≤ x̃ks

i j for

each i, we have

ωks
j − lks

j =
1
r

r

∑
i=1

(
x̃ks

i j − lks
j

)
≥ 1

r

(
x̃ks

i j − lks
j

)
≥ 0,

which implies that x̃ks
i j − lks

j → 0 if ω j = l j. Similarly, x̃ks
i j −uks

j → 0 if ω j = u j. In either case,

x̃ks
i j → ω j, as s →+∞.

3.3 DESCRIPTION OF THE ALGORITHM

Starting from [l1,u1] = [0,v], we solve the relaxed problem P̃(lk,uk) successively for k =

1,2, The rectangle [lk,uk] is discarded unless the value of P̃(lk,uk) is less than the value

of the incumbent xk, the best feasible solution of (1) obtained so far. Since ωωωk yielded by (11)

and (12) from (ỹk, η̃ηηk
) is feasible for P(lk,uk), and hence for (1), the incumbent xk can be

updated with ωωωk if necessary. This feasible solution ωωωk is also used to divide [lk,uk] into two

subrectangles, according to (13), (14) and (15). Let ε ≥ 0 be a given tolerance. The algorithm

is summarized as follows:

algorithm sum ratio

begin

for i = 1, . . . ,r do begin

solve Qi(0,u) and obtain an optimal solution (ỹi, η̃i, ζ̃i); x̃i := (1/η̃i)ỹi;

end;

β (0,u) := ∑r
i=1 ζ̃ q

i ; ωωω := (1/q)∑r
i=1 x̃i;

11

x1 := ωωω ; z1 := ∑r
i=1 |(ciωωω + γ i)/(diωωω +δ i)|q; L := {[0,u]}; k := 1;

while L ̸= /0 do begin

select a rectangle with the smallest value of β from L and denote it by [lk,uk];

if zk −β (lk,uk)≤ ε then L := /0;

else begin

let x̃k
i = (1/η̃k

i)ỹ
k
i for the solution (ỹk

i , η̃k
i , ζ̃ k

i) of Qi(lk,uk), and ωωωk = (1/q)∑r
i=1 x̃k

i ;

for j = 1, . . . ,n do ρ j := min{uk
j −ωk

j ,ωk
j − lk

j};

select jk ∈ argmax{ρ j | j = 1, . . . ,n};

for p = 2k,2k+1 do [lp,up] := [lk,uk]; l2k
jk := ωk

jk ; u2k+1
jk := ωk

jk ;

for p = 2k,2k+1 do begin

for i = 1, . . . ,r do begin

solve Qi(lp,up) and obtain an optimal solution (ỹi, η̃i, ζ̃i); x̃i := (1/η̃i)ỹi;

end;

β (lp,up) := ∑r
i=1 ζ̃ q

i ; ωωω p := (1/q)∑r
i=1 x̃i;

zp := ∑r
i=1 |(ciωωω p + γ i)/(diωωω p +δ i)|q;

end;

select pk ∈ argmin{zp | p = k,2k,2k+1}; xk+1 := ωωω pk ; zk+1 := zpk ;

L := L ∪{[l2k,u2k], [l2k+1,u2k+1]}\{[lk,uk]}; k := k+1

end

end

end;

Theorem 3.6. Suppose ε = 0. If the algorithm sum ratio terminates after k iterations, then xk

is an optimal solution of (1). If sum ratio does not terminate, then every accumulation point

of the sequence {xk | k = 1,2, . . .} is an optimal solution.

Proof. Let us assume that sum ratio does not terminate; otherwise, the claim is obvious. The

algorithm then generates at least one infinite sequence of nested rectangles, such as those in

(16). Renumbering the indices if necessary, we have {lk} and {uk} converging to l and u,

respectively. From the description of sum ratio, it holds that

0 ≤ β (lk,uk)< zk ≤
r

∑
i=1

∣∣∣∣ ciωωωk + γ i

diωωωk +δ i

∣∣∣∣q , k = 1,2,

Note that {zk} is nonincreasing, bounded from below, and hence converges to some z ≥ 0. Let

ωωω be any accumulation point of {ωωωk}, and {ωωωks} a subsequence converging to ωωω . Then, as

s →+∞, we have
r

∑
i=1

∣∣∣∣ ciωωωks + γ i

diωωωks +δ i

∣∣∣∣q −β (lks ,uks)→ 0,

12

because

β (lks ,uks) =
r

∑
i=1

∣∣∣ciỹks
i + γ iη̃ks

i

∣∣∣q = r

∑
i=1

∣∣∣∣∣ ci(1/η̃ks
i)ỹks

i + γ i

di(1/η̃ks
i)ỹks

i +δ i

∣∣∣∣∣
q

=
r

∑
i=1

∣∣∣∣∣ cix̃ks
i + γ i

dix̃ks
i +δ i

∣∣∣∣∣
q

,

and x̃ks
i → ωωω by Lemma 3.5. We see therefore that, as s →+∞,

β (lks ,uks),
r

∑
i=1

∣∣∣∣ ciωωωks + γ i

diωωωks +δ i

∣∣∣∣q → z.

Suppose

∃x′ ∈ D,
r

∑
i=1

∣∣∣∣ cTi x′+ γi

dT
i x′+δi

∣∣∣∣q < z. (17)

At iteration ks for each s, this feasible solution x′ belongs to some rectangle [l,u]∈L , and we

have

β (lks ,uks)≤ β (l,u)≤
r

∑
i=1

∣∣∣∣ cTi x′+ γi

dT
i x′+δi

∣∣∣∣q ,
because [lks ,uks] is selected as a rectangle with the smallest value of β . However, β (lks ,uks)→
z, which contradicts (17). Hence, we have

z ≤
r

∑
i=1

∣∣∣∣ cTi x+ γi

dT
i x+δi

∣∣∣∣q , ∀x ∈ D. (18)

Also note that D is compact, and any accumulation point of {xk}, say x, belongs to D. For any

subsequence {xkt} converging to x, we have

r

∑
i=1

∣∣∣∣ cTi xkt + γi

dT
i xkt +δi

∣∣∣∣q = zkt → z,

as t →+∞, because {zk} is a convergent sequence. This, together with (18), implies that x is

an optimal solution of (1).

Corollary 3.7. If ε > 0, the algorithm sum ratio terminates after finitely many iterations and

yields an approximate solution xk of (1) such that

zk =
r

∑
i=1

∣∣∣∣ cixk + γ i

dixk +δ i

∣∣∣∣q ≤ r

∑
i=1

∣∣∣∣ cix+ γ i

dix+δ i

∣∣∣∣q + ε, ∀x ∈ D. (19)

Proof. Let {ωωωks} be a subsequence of {ωωωk} converging to ωωω . Then, as p →+∞, we have

zks −β (lks ,uks)→ 0,

13

as seen in the proof of Theorem 3.6. Therefore, if ε > 0, it holds at some iteration k that

zk −β (lk,uk)≤ ε . This termination criterion implies (19) because β (lk,uk) represents a lower

bound of (1).

4 Numerical results

In this section, we present numerical results obtained with the algorithm sum ratio. According

to the description given in the previous section, sum ratio was coded in GNU Octave (version

3.0.5) [10], a MATLAB-like programming environment, and run on an AMD Opteron 256

(3.0GHz) single core processor. The problem used as a benchmark is of the form:∣∣∣∣∣∣∣∣∣∣
minimize

r

∑
i=1

∣∣∣∣dix+δ i

cix+ γ i

∣∣∣∣2
subject to cix+ γ i ≥ 0, i = 1, . . . ,r

0 ≤ x j ≤ 10.0, j = 1, . . . ,n,

(20)

which imitates triangulation from r/2 images when n = 3. All ci
j, γ i, di

j and δ i were generated

randomly in the interval [−0.5,0.5], and ten instances were selected for each size (n,r). As

for the subdivision rule, in addition to our proposed rule, we also tested the usual bisection

rule mentioned at the beginning of Section 3.2 for comparison; their respective computer

programs are referred to as ω-subdivision and bisection. To solve the linear programming

problem Qi(l,u), we coded a revised simplex procedure from scratch in Octave, without using

any procedures available in the optimization toolbox. Also, to prevent the convergence from

being affected by the magnitude of the optimal value, we replaced the termination criterion

zk −β (lk,uk)≤ ε in sum ratio by

(1− ε)zk −β (lk,uk)≤ 0.

The comparison results between ω-subdivision and bisection are demonstrated in Figures

3 - 6. Figure 3 shows the variation of the average computational time (in seconds) required

by each program with r ranging from 50 to 350 in 50 increments when n = 3 and ε = 0.05.

For the same set of instances, Figure 4 shows the average number of branching operations,

which is equal to the number of P̃(l,u)’s solved in the course of computation. The solid lines

represent the results by ω-subdivision, and the dashed lines are those by bisection. Both com-

puter programs behave similarly, but it is quite obvious that ω-subdivision is much superior

to bisection; in fact, the former requires less than half the computational time and number

of branching operations required by the latter for each r. Another thing to note about both

programs is that there is no tendency for the number of branching operations to increase with

14

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50 100 150 200 250 300 350

C
PU

 s
ec

on
ds

ratios (r)

ω-subdivision
bisection

Figure 3: Average computational time in seconds when n = 3 and ε = 0.05.

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350

br

an
ch

es

ratios (r)

ω-subdivision
bisection

Figure 4: Average numbers of branching operations when n = 3 and ε = 0.05.

15

 0

 50

 100

 150

 200

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

C
PU

 s
ec

on
ds

Tolerance (ε)

ω-subdivision
bisection

Figure 5: Average computational time in seconds when (n,r) = (3,50).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

br

an
ch

es

Tolerance (ε)

ω-subdivision
bisection

Figure 6: Average numbers of branching operations when (n,r) = (3,50).

16

Table 1: Average performance of ω-subdivision when n = 3 and ε = 0.05.

r 400 600 800 1,000 1,200
CPU time 80.61 133.3 197.3 262.4 354.9

(8.89) (17.5) (32.3) (32.3) (41.4)
branches 139.4 135.6 132.8 124.8 125.0

(15.8) (18.4) (20.0) (15.7) (14.9)

increasing r, except for a few ups and downs. Accordingly, the computational time is domi-

nated only by the time taken to solve r linear programming problems with five variables, and

increases moderately in an almost linear fashion with increase in r. In contrast to this, both

programs are rather sensitive to changes in ε . Figures 5 and 6 show the variation of the av-

erage computational time and number of branching operations, respectively, required by each

program when (n,r) was fixed at (3,50) and ε was changed in the interval [0.01,0.07]. The

number of branching operations increases in proportion to the reciprocal of ε , and so does the

computational time. Still, we see that ω-subdivision requires at most half the computational

time and number of branching operations required by bisection for each ε .

The results of solving instances with larger r by ω-subdivision are summarized in Table

1. It contains the average computational time (in seconds), the average number of branching

operations, and their standard deviations in parentheses when n = 3, ε = 0.05, and r ranged

from 400 to 1,200 in 200 increments. Again, the number of branching operations shows no

increase with increasing r, and remains less than 140 for all values of r. Eventually, it took

around six minutes to solve (20) of size (n,r) = (3,1200), which corresponds to triangula-

tion from 600 images. We can conclude that the algorithm sum ratio has performance more

than enough, at least for three-dimensional triangulation in computer vision. In that case, the

computational time will be further improved if we use the linear-time algorithm for linear

programming problems in a fixed dimension [21].

How does the algorithm behave for instances with n > 3? Unfortunately, the performance

of ω-subdivision rapidly deteriorates with increasing n, as is shown in Table 2, which con-

tains the same statistics as in Table 1. This table seems to indicate that sum ratio is a poor

replacement for the algorithms in [16, 17], which are reported to solve sum-of-ratios opti-

mization problems with up to a hundred variables. However, we should remember that the

application areas for those algorithms are completely different from those for sum ratio. Un-

like sum ratio, it would be impossible for them to solve any instance with 1,200 ratios in a

practical amount of time, even if the number of variables is only three. What is important is

that one should choose the right algorithm for one’s particular application. There is no doubt

that the algorithm sum ratio widens the application range of sum-of-ratios optimization.

17

Table 2: Average performance of ω-subdivision when r = 50 and ε = 0.05.

n 2 3 4 5 6
CPU time 2.443 10.19 34.38 180.8 949.8

(0.558) (4.06) (20.57) (100.0) (519.7)
branches 43.0 170.6 538.6 2,675 13,106

(10.2) (68.3) (323.9) (1,479) (7,142)

References

[1] Almogy, Y., and O. Levin, “Parametric analysis of a multi-stage stochastic shipping
problem”, Proceedings of the Fifth IFORS Conference (Venice, 1969), 359–370.

[2] Arkin, E.M., Y.-J. Chiang, M. Held, J.S.B. Mitchell, V. Sacristan, S.S. Skiena, and T.-C.
Yang, “On minimum-area hulls”, Algorithmica 21 (1998), 119–136.

[3] Bartoli, A., and J.-T. Lapreste, “Triangulation for points on lines”, Image and Vision
Computing 26 (2008), 315–324.

[4] Benson, H.P., “Global optimization algorithm for the nonlinear sum of ratios problem”,
Journal of Optimization Theory and Applications 112 (2002), 1–29.

[5] Benson, H.P., “Using concave envelopes to globally solve the nonlinear sum of ratios
problem”, Journal of Global Optimization 22 (2002), 343–364.

[6] Charnes, A., and W.W. Cooper, “Programming with linear fractional functionals”, Naval
Research Logistics Quarterly 9 (1962), 181–186.

[7] Chen, D.Z., O. Daescu, Y. Dai, N. Katoh, X. Wu, and J. Xu, “Efficient algorithms and im-
plementations for optimizing the sum of linear fractional functions, with applications”,
Journal of Combinatorial Optimization 9 (2005), 69–90.

[8] Falk, J.E., and R.M. Soland, “An algorithm for separable nonconvex programming prob-
lems”, Management Science 15 (1969), 550–569.

[9] Freund, R.W., and F. Jarre, “Solving the sum-of-ratios problem by an interior-point
method”, Journal of Global Optimization 19 (2001), 83–102.

[10] GNU Octave, http://www.gnu.org/software/octave/.

[11] Hartley, R., and F. Kahl, “Optimal algorithms in multiview geometry”, Proceedings of
the Asian conference on computer vision 1 (2007), 13–34.

[12] Horst, R., and H. Tuy, Global Optimization: Deterministic Approaches, 2nd ed., Springer
(Berlin, 1993).

[13] Kahl, F., S. Agarwal, M.K. Chandraker, D. Kriegman, and S. Belongie, “Practical global
optimization for multiview geometry”, International Journal of Computer Vision 79
(2008), 271–284.

18

[14] Konno, H., and M. Inori, “Bond portfolio optimization by bilinear fractional program-
ming”, Journal of the Operations Research of Japan 32 (1989), 143–158.

[15] Konno, H., and H. Watanabe, “Bond portfolio optimization problems and their appli-
cations to index tracking: a partial optimization approach”, Journal of the Operations
Research Society of Japan 39 (1996), 295–306.

[16] Kuno, T., “A branch-and-bound algorithm for maximizing the sum of several linear ra-
tios”, Journal of Global Optimization 22 (2002), 155–174.

[17] Kuno, T., “A revision of the trapezoidal branch-and-bound algorithm for linear sum-of-
ratios problems”, Journal of Global Optimization 33 (2005), 435–464.

[18] Majhi, J., R. Janardan, J. Schwerdt, M. Smid, and P. Gupta, “Minimizing support struc-
tures and trapped area in two-dimensional layered manufacturing”, Computational Ge-
ometry 12 (1999), 241–267.

[19] Mangasarian, O.L., Nonlinear Programming, Krieger (Florida, 1969).

[20] Matsui, T., “NP-hardness of linear multiplicative programming and related problems”,
Journal of Global Optimization 9 (1996), 113–119.

[21] Megiddo, N., “Linear programming in linear time when the dimension is fixed”, Journal
of the Association of Computing Machinery 31 (1984), 114–127.

[22] Tuy, H., Convex Analysis and Global Optimization, Kluwer Academic Publishers (Dor-
drecht, 1998).

19

