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We fabricated rectangular mesa structures of superconducting Bi2Sr2CaCu2O8+δ (Bi2212) 

using e-beam lithography and Ar ion beam etching techniques for terahertz (THz) emission. C-

axis resistance versus temperature (R-T), current-voltage (I-V) characteristics and bolometric 

THz power measurements were performed to characterize Bi2212 mesas. The emission 

frequency of mesas was determined using a simple Michelson interferometer set up which also 

demonstrates polarized emission. Interference patterns of THz radiation from Bi2212 mesas 

were detected by various detectors such as a liquid Helium cooled silicon composite bolometer, 

a Golay cell and a pyroelectric detector. An emitted power as high as 0.06 mW was detected 

from Bi2212 mesas. This is the first time, most of the pumped power was extracted as THz 

emission from a Bi2212 mesa.  The radiation was at 0.54 THz determined using the Michelson 

interferometric setup. 
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Although electromagnetic waves in the terahertz frequency region (0.1 to 10 THz) host 

potential applications including sensing, imaging and spectroscopy, these applications are 

presently limited by the lack of powerful, continuous wave, and compact solid-state sources 

[1,2]. The Josephson effect, occurring between two superconductors separated by a thin 

insulating layer, provides a unique and simple principle to generate electromagnetic radiation in 

the terahertz frequency range. When a dc voltage is applied across the junction, an ac-current 

oscillates at the Josephson frequency fJos= V/Φ0, where V is the voltage across the junction and 

Фo is flux quantum. For instance, 1 mV corresponds to an emission frequency of 0.483 THz. 

Therefore, Josephson junctions are potential sources of high-frequency electromagnetic 

radiation. Unfortunately, the operation frequency of the Josephson oscillator fabricated out of 

conventional superconductors is limited by the small superconducting energy gap [3]. 

Furthermore, the typical observed emission power is in the range of picowatts for a single 

junction. The emitted power can be enhanced using a large mutually coherent array of 

Josephson junctions made of conventional superconductors with various synchronization 

methods; however, variations of junction parameters may cause desynchronization and 

significant drop in emission power [4]. 

Stacks of intrinsic Josephson junctions (IJJ) in layered high temperature 

superconductors, such as Bi2Sr2CaCu2O8+δ (Bi2212), offer the most promising alternative for 

terahertz oscillators. Since the junctions are homogeneous on the atomic scale along the c-axis 

of Bi2212 single crystals, a very high density of IJJs (one junction per 1.5 nm) makes the super-

radiation possible with many junctions. Moreover, a large superconducting gap of 40 meV [5] 

allows for high Josephson frequencies up to 15 THz. However, the major issue to synchronize 

oscillations in all junctions also remains for Bi2212 system. To excite coherent electromagnetic 

radiation from intrinsic Josephson junctions, many approaches have been considered, among 

them the method of using moving Josephson vortices oscillating charge was investigated most 

intensively [6]. Nevertheless, high-frequency emission was observed up to 0.5 THz from 

Bi2212 with a weak power due to unsynchronized Josephson oscillations [7].  

Recently, we observed continuous, coherent and monochromatic electromagnetic 

terahertz radiation emitted along the walls of rectangular mesa-shaped samples of the high 

temperature superconductor Bi2212. The mesa acts as electromagnetic cavity, synchronizing 

almost all of the IJJ [8]. We observed that the fundamental frequencies of the emission were as 

high as 0.85 THz for a mesa width of 40 µm providing an emitted power of up to 0.5 μW. More 

recently, emitted powers of 5 µW and frequencies at the higher harmonics up to 2.5 THz have 

been obtained [9]. The thermal management of the large mesas on Bi2212 crystals has been 

investigated by Kurter et al. [10]. Furthermore, they showed that the backbending in the I-V 

curve results from the particular temperature dependence of quasiparticle resistances for Bi2212 
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rather than a significant suppression of the energy gap. Angular dependence of the emission 

power has also been studied [11]. Wang et al. imaged electric field distributions in the junction 

stack of Bi2212 by low temperature scanning laser microscopy and observed standing 

electromagnetic waves (cavity resonances)[12]. They found that standing waves of the electric 

field are created through interactions with a hot spot and this effect may have an active role in 

generating synchronized radiation from intrinsic Josephson junction stacks. In ref. [13] we 

discussed the dependence of the characteristics of the mesa structures on the oxygen doping 

level of the Bi2212 crystals and reported that the THz emitting mesas are below a certain 

underdoped level, which has relatively small critical current in contrast to optimally doped and 

overdoped Bi2212. Minami, et al. reported the radiation characteristics of terahertz radiation 

emitted from rectangular mesa structures of Bi2212 and they concluded that these devices 

exhibit enough frequency purity, intensity, and controllability suitable for device applications 

[14]. By improving the sample fabrication technique, Yamaki et al. estimated total emission 

power of Bi2212 mesa structures about 30 μW [15].  

Many theoretical models have been proposed to explain the nature of the mechanism of 

THz emission from Bi2212 mesas. Koshelev and Bulaevskii proposed that modulations of the 

Josephson critical current along the width of mesa is responsible for the cavity resonance [16]. 

A new dynamic state caused by the nonlinear property of IJJ has been discovered in which the 

phase kinks enable cavity resonance modes of the Josephson plasma [17,18]. Tachiki et al. 

suggest that the energy of the nonradiative component of the magnetic field allows determining 

the orientation of the cavity resonance mode [19]. However, there is no consensus about the 

precise nature of the synchronization mechanism. 

In this study, single crystals of Bi2212 grown by traveling solvent floating zone 

technique (TSFZ) method were used. The as grown crystals were cut in small pieces and 

annealed in partial O2 pressure with slow and long processes for two days to obtain homogenous 

underdoped Bi2212 single crystals. After annealing, a piece of a small single crystal was glued 

on a sapphire substrate with silver epoxy. The crystals were cleaved using a scotch tape and 

then a 100 nm gold film was evaporated onto the crystal. A mesa patterning process followed, 

allowing to apply a voltage and measure the current–voltage (I-V) characteristics along the c-

axes of the Bi2212. Rectangular mesa structures (55 x 300 µm2) with a height of 1250 nm were 

fabricated on Bi2212 single crystals using e-beam lithography and Ar ion beam etching 

techniques. After the mesa fabrication, a CaF2 layer was evaporated through a shadow mask 

onto the top part of the crystal, including a small section of the mesa for the electrical isolation 

purpose, in order to establish electrical contact to the gold layer on top of the mesa,. Lift off 

technique was used for fabrication of gold stripes by e-beam lithography onto the mesa and the 

CaF2. Finally, a gold wire was attached to the gold strip over the CaF2 and two pads with silver 

epoxy for the electrical contacts of the mesa and two pads. 
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In order to characterize the Bi2212 mesas, c-axis resistance versus temperature (R-T) 

and I-V behavior were measured in a He flow cryostat. During I-V characterization, the 

emission characteristics of the mesas below Tc were also measured with a bolometer, Golay cell 

or a pyroelectric detector. A Michelson interferometer set up as shown in Fig. 1 was used to 

determine the emission frequency. First, a complete I-V curve is measured with one blocked 

mirror of Michelson interferometer. The optimum emission voltage is obtained from these data. 

Then, the mesa is biased at this voltage and interferometric data were taken. 

Figure 2(a) shows the I−V curve of one of the representative THz emitting mesas with 

55x300 µm2 at T=35 K. The trace was taken by both a back and forward scan. A large contact 

resistance between gold and Bi2212 is determined from the I-V curve. The data also shows that 

the Josephson current density is 103 A/cm2 which is in the underdoped region of Bi2212 phase 

diagram and comparable to other THz emitting mesas [13]. Figure 2(b), shows the detected THz 

radiation signals from a Si composite bolometer. The bolometer signal is increasing at back 

bending region of I-V curve. It indicates that local temperature of the mesa is increasing and the 

bolometer detects the heating of the mesa in the form of unpolarized, incoherent blackbody 

radiation. When all junctions are in the resistive state and the bias is decreasing slowly, 

polarized and synchronized emission peaks from the mesa for positive and negative bias 

voltages were observed in the return branches at ± 1.28 V. On the bias decreasing part of the I-V 

curve at low bias there are some jumps (Fig. 2(a)). They occur as some junctions switch to the 

zero voltage state and they are referred to as re-trapping. When we look at the emission region 

(arrows in Fig. 2(a)), we see a bump in the return branch due to radiation (inset of Fig. 2(a)). 

That is, emission persists over an extended voltage range around the resonance condition. This 

property is a consequence of the slightly inclined side walls of the mesa resonator and 

allows for the design of THz sources with voltage-tunable emission frequencies [20]. As it can 

be seen from the close-up of the return branch, no re-trapping events were observed in the 

emission region, indicating that all junctions are tightly locked to the resistive state. The 

absence of a jump in the I-V curve allows us to establish a baseline of the current and to 

determine the excess current that supplies the energy for the excitation of the cavity resonance. 

These data suggest that about 126 µW are pumped into the in-phase resonance. 

The frequency of the emission was determined by a simple interferometer set up as 

shown in Fig. 1 implementing various detectors (bolometer, Golay cell and pyroelectric 

detector). The setup splits a single wave emitted from the long edge of mesa so that one wave 

strikes a fixed mirror and the other a movable mirror. When the reflected beams are brought 

together, they form an interference pattern proving the coherence. The interference patterns 

were detected outside of the cryostat after traveling a long way through ambient air with high 

losses. 
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Figure 3 shows signals detected by the detectors in the interferometer setup. It can be 

clearly seen that signals detected by Si composite bolometer has lower noise due to its higher 

sensitivity. Our bolometer has 10–13 W/Hz½ NEP value but has to work under liquid-helium-

temperature. The cryogenic environment is not necessary for the Golay cell and the pyroelectric 

detector, but, their sensitivities are much lower than Si composite bolometer. The NEP values 

are in the range of 1 nW/Hz½ for Golay cell and 60 nW/Hz½ for pyroelectric detector; therefore, 

more noisy signals were observed from pyroelectric detector. However, radiation could even be 

detected with the pyroelectric detector is the proof of intense radiation.  

The emission frequency was calculated by fast Fourier transform (FFT) of interference 

data given in Fig. 3 using Labview program. Figure 4 shows the Fourier transform of the data, 

providing the frequency spectrum of the emission. The peak in this figure indicates that the 

emission frequency is 0.54 THz for all three different detector setups. The noise in 

interferometer patterns of pyroelectric detector also shows noise in FFT spectrum. If we subtract 

the contact resistance from I-V curve, the voltage of the bump decreases to 955 mV. According 

to the Josephson voltage-frequency relation, emission frequency is 0.54 THz which occurs at 

955 mV for 833 junctions. This is consistent with interferometer result, so it satisfies Josephson 

voltage-frequency relation.  

 

In order to estimate emission power, firstly we calculated the signal to noise ratios from 

Fig. 4 and then we determined the irradiance incident on the detectors using, 

 

      (1) 

 

where H is the irradiance incident on the detector of area A, Vn is the root mean square noise 

voltage within the measurement bandwidth ∆f, and V s is the root mean square signal voltage 

[21]. We get nearly 270 nW emission power for Golay cell an pyroelectric detector for 1 Hz 

band width. This leads to a value of 60 µW total power when we take into account the 

geometrical configurations of the mesa and equipments. Since the pumped power is 126 µW, 

47.6 % of the total dc power is dissipated in the mesa. To the knowledge of the authors, this is 

the first time, that most of the pumped power is extracted as THz emission.  The emitted power 

could be further improved by improving experimental techniques such as increasing annealing 

time to obtain more homogenous doping of underdoped Bi2212 single crystals. We note that the 

emitted power might still be underestimated since the frequency of 0.54 THz is very close to a 

water vapor absorption line and the setup was in ambient air. 

THz detection from rectangular Bi2212 mesa structures nowadays is mostly 

accomplished with bolometers. In this paper, we showed that synchronously emitting Josephson 
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junctions from Bi2212 provide sufficient power to use room temperature THz detectors, such as  

Golay cells and pyroelectric detectors due to the high emitted power. We calculate that most of 

the pumped power is extracted as THz emission. In contrast to previous studies, the emission 

frequency was determined using interferometer set up instead of FTIR. The interference patterns 

were detected after traveling a long way through ambient air. The emission frequency calculated 

by a Fourier transformation of the interference data is consistent with Josephson frequency-

voltage relation. These THz emitting mesas can easily be used for practical applications as sub-

THz sources without the need for high magnetic fields as in case of moving vortices or sub-THz 

operation of quantum cascade lasers (QCL) [2].  
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Figure Captions 
 

Figure 1. Michelson interferometer setup for frequency determination of mesas. 
 
Figure 2. (a) Current versus Voltage (I-V) curve of the mesa at 28 K. The inset shows 
detailed demonstration of bump at emission voltage. Note that contact resistance is 
subtracted from I-V curve to find exact pump energy. (b) LHe cooled Si composite 
Bolometer versus Voltage curve of the mesa at 35 K. 

Figure 3. Interference patterns detected by bolometer, Golay cell and pyroelectric 
detector. 

Figure 4. Fast Fourier Transforms of interference patterns given in Fig. 3. 
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Figure 1 
Ozyuzer et al. 
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Figure 2(a)  
Ozyuzer et al. 
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Figure 2(b)  
Ozyuzer et al. 
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Figure 3  
Ozyuzer et al. 
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Figure 4  
Ozyuzer et al. 

 


