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SUMMARY This paper proposes a new construction of the
visual secret sharing scheme for the (n, n)-threshold access struc-
ture applicable to color images. The construction uses matrices
with n rows that can be identified with homogeneous polynomi-
als of degree n. It is shown that, if we find a set of homogeneous
polynomials of degree n satisfying a certain system of simulta-
neous partial differential equations, we can construct a visual
secret sharing scheme for the (n, n)-threshold access structure
by using the matrices corresponding to the homogeneous poly-
nomials. The construction is easily extended to the cases of the
(t, n)-threshold access structure and more general access struc-
tures.
key words: secret sharing, visual secret sharing, visual cryptol-

ogy, general access structure

1. Introduction

The visual secret sharing scheme (VSSS) originated
from Naor and Shamir [9] provides a unconventional
way for secret sharing of digital images. In the VSSS
with n participants a secret image is encrypted into n
images called shares. The n shares are distributed to
n respective participants. The VSSS has an important
property that no computation is required for decryp-
tion of the shares. That is, if the n shares are printed
on n respective transparencies, all sets of participants
qualified for reproducing the secret image can decrypt
their shares only by stacking. For any unqualified sets
of participants, the VSSS is designed not to reveal any
information on the secret image.

Secret sharing of black-white images for the (t, n)-
threshold access structure is discussed in [2]–[5], [7], [9],
[14], where t is an integer satisfying 2 ≤ t ≤ n. In par-
ticular, from viewpoints of the combinatorics and the
linear programming, [2], [3], [5] attempt to optimize the
contrast of the reproduced image obtained by stacking
arbitrary t shares. Construction of the VSSS for gen-
eral access structures is discussed in [1]. It proposes
constructions of the VSSS for various access structures
and obtains several combinatorial bounds on the con-
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trast.
On the other hand, there are not many results on

secret sharing of color images [6], [8], [10], [11], [14] for
the (t, n)-threshold access structure. In addition, there
is no study that deals with the VSSS for color images
designed for general access structures. A technical dif-
ficulty on the VSSS for color images may consist in
how we can mathematically express stacking of colored
pixels instead of using simple “OR” operation that ex-
presses stacking of black and white pixels. In order to
define the VSSS for color images in strict mathematical
sense, [8] treats pixels as elements of a bounded lattice
of colors. In the framework in [8] stacking of pixels is
expressed as the join operation of the bounded lattice,
which enables to reproduce a secret image by stacking
of shares in an arbitrary order. However, the optimality
of the constructions given in [8] is not guaranteed, i.e.,
brightness of the reproduced image is not maximized in
the constructions.

In this paper we propose a new construction of the
(n, n)-VSSS for color images defined over a bounded up-
per semilattice, where the (n, n)-VSSS means the VSSS
for the (n, n)-threshold access structure. As is men-
tioned in [9], the VSSS is obtained if we can construct
matrices called the basis matrices with certain prop-
erties. We construct the basis matrices from concate-
nations of matrices with n rows belonging to the class
each element of which can be identified with a mono-
mial of degree n. The concatenation of such matrices
can be expressed in homogeneous polynomials of degree
n. We prove that, if a set of homogeneous polynomials
of degree n is a solution to a system of simultaneous
partial differential equations satisfying a specified ini-
tial condition, the set of matrices corresponding to the
solution can be used as the basis matrices. In addition,
if the solution satisfies the minimal condition, the solu-
tion turns out to be unique. This property guarantees
a certain kind of optimality of the basis matrices corre-
sponding to the minimal solution and enables to search
for the globally optimal basis matrices in the class that
make the reproduced image as bright as possible.

The new construction has two byproducts. One is
a construction of the basis matrices of the (t, n)-VSSS.
We can show that it is easy to obtain the basis matri-
ces of the (t, n)-VSSS if we obtain the basis matrices
of the (t, t)-VSSS by using the new construction. The
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other is a construction of the VSSS for general access
structures. Let ΓQual and ΓForb be the sets of all subsets
of n participants that are qualified and forbidden to re-
produce a secret image, respectively. If ΓQual and ΓForb

are monotone increasing and decreasing, respectively,
and form a partition of all subsets of n participants,
then we can construct the basis matrices for such ac-
cess structure by using the basis matrices of the (t, t)-
VSSS, where t is a certain constant determined by ΓForb.
The construction uses the cumulative map [12] and is
essentially parallel to the construction proposed in [1].

This paper is organized as follows. Section 2 is de-
voted to definitions of bounded upper semilattices, gen-
eral access structures and the VSSS for color images.
Pixels with colors are treated as elements belonging to
a bounded upper semilattice of colors. In Sect. 3 a new
construction of the (n, n)-VSSS for color images is pro-
posed. Several examples are also given. Constructions
of the VSSS for the (t, n) access structure and general
access structures are described in Sect. 4.

2. Definitions

2.1 A Bounded Upper Semilattice of Colors

A partially ordered set L is called the upper semilattice
if for any x, y ∈ L the least upper bound of x and y,
which is denoted by x�y, belongs to L. The operation �
is called the join of L. It is known that the idempotent
law, the commutative law and the associative law hold
with respect to the join. The upper semilattice L is
called bounded if it contains the least element 0 and the
greatest element 1 satisfying x� 0 = x and x� 1 = 1 for
any x ∈ L. Throughout the paper assume that L is an
arbitrary bounded upper semilattice with the join �.

For example, the set of eight colors 0 (white), C
(cyan), M (magenta), Y (yellow), R (red), G (green) B
(blue) and 1 (black), compose a bounded upper semi-
lattice Lcolor whose Hasse diagram is given in Fig. 1.
Figure 1 shows that Y � M = R, Y � C = G, M � C = B
and R � C = G � M = B � Y = 1. Physically, x � y
means the mixture of two colors x and y. If x is mixed

Fig. 1 Hasse diagram of the bounded upper semilattice
Lcolor.

with white, we obtain the same color x. On the other
hand, x becomes black when x is mixed with black. If
two colors x and y are printed on two respective trans-
parencies, we obtain the color x� y by stacking them in
an arbitrary order.

It is also important to note that, if L is a bounded
upper semilattice, then for an arbitrary integer q ≥
1 the Cartesian product Lq is also a bounded upper
semilattice. The join �q of Lq is defined as

(x1, x2, . . . , xq) �q (y1, y2, . . . , yq)
= (x1 � y1, x2 � y2, . . . , xq � yq), (1)

where xi and yi belong to L for all i = 1, 2, . . . , q. The
least and the greatest elements of Lq are (0, 0, . . . , 0)
and (1, 1, . . . , 1), respectively.

2.2 General Access Structures

We define access structures for secret sharing scheme
according to [1], [13]. Suppose that n is an integer sat-
isfying n ≥ 2. Let P = {1, 2, . . . , n} be the set of n
participants. Denote by 2P the set of all subsets of P.
Throughout the paper the i-th share is distributed to
the i-th participant for i = 1, 2, . . . , n. Let ΓQual and ΓForb

be two disjoint subsets of 2P satisfying ΓQual∪ΓForb = 2P .
If A = {i1, i2, . . . , ip} ⊆ P satisfies A ∈ ΓQual, then a
secret image is reproduced from the i1-th, the i2-th,
. . . , and the ip-th shares. Because of this reason mem-
bers of ΓQual are called the qualified sets. On the other
hand, members of ΓForb are called the forbidden sets
since no information on the secret image is obtained
from the shares corresponding to any A ∈ ΓForb. The
pair (ΓQual,ΓForb) is called an access structure. Suppose
that all participants know the access structure.

We assume that ΓQual is monotone increasing and
ΓForb is monotone decreasing. That is, ΓQual and ΓForb are
supposed to satisfy that any B ∈ 2P including A ∈ ΓQual

belongs to ΓQual and any B ∈ 2P included in A ∈ ΓForb

belongs to ΓForb, respectively. Denote Γ∗
Qual and Γ∗

Forb by
the minimal qualified sets and the maximal forbidden
sets defined as

Γ∗
Qual = {A ∈ ΓQual : B /∈ ΓQual for any B ⊂ A}, (2)

Γ∗
Forb = {A ∈ ΓForb : A ∪ {i} /∈ ΓForb

for any i ∈ P\A}, (3)

respectively. If ΓQual satisfies

Γ∗
Qual = {A ∈ 2P : |A| = t}

for some 2 ≤ t ≤ n, then (ΓQual,ΓForb) is called the (t, n)-
threshold access structure, where |A| denotes the car-
dinality of A. Obviously, in the (t, n)-threshold access
structure Γ∗

Forb can be expressed as

Γ∗
Forb = {A ∈ 2P : |A| = t− 1}.
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2.3 The Lattice-Based (ΓQual,ΓForb)-Visual Secret
Sharing Scheme

A visual secret sharing scheme defined over a bounded
lattice is firstly proposed by [8] for the (t, n)-threshold
access structure. We extend the definition given in [8]
for general access structures.

Let L be a bounded upper semilattice of colors.
Define C = {c1, c2, . . . , cK} as a subset of L that a secret
image contains. The subset C itself is not necessarily
an upper bounded semilattice. Let P = {1, 2, . . . , n}
be a set of n participants. For an integer q ≥ 1 we
express an element of (Lq)n in the form of n× q matrix
S, where

S =




s11 s12 · · · s1q

s21 s22 · · · s2q

...
...

. . .
...

sn1 sn2 · · · snq


 (4)

and sij ∈ L for all i = 1, 2, . . . , n and j = 1, 2, . . . , q.
For 1 ≤ p ≤ n and A = {i1, i2, . . . , ip} ⊆ P define S[A]
as the p× q matrix

S[A] =




si11 si12 · · · si1q

si21 si22 · · · si2q

...
...

. . .
...

sip1 sip2 · · · sipq


 , (5)

which is obtained by picking up the i1-th, the i2-th, . . .,
and the ip-th rows of S. For such p and A define the
mapping h : (Lq)p → Lq as

h(S[A])
= (si11, si12, . . . , si1q) �q (si21, si22, . . . , si2q)

�q · · · �q (sip1, sip2, . . . , sipq), (6)

where �q denotes the join of Lq defined in (1). That
is, for given S ∈ (Lq)n and A ⊆ P, h(S[A]) means the
join of all rows of S specified by A.

The lattice-based visual secret sharing for an ac-
cess structure (ΓQual,ΓForb) is defined as follows:

Definition 1: Let (ΓQual,ΓForb) be an access structure
of n participants. Let L be a bounded upper semi-
lattice of colors and C = {c1, c2, . . . , cK} a subset of
L. If there exists q ≥ 1 and Xck

⊂ (Lq)n, 1 ≤ k ≤
K, satisfying the following two properties, the collec-
tion of Xck

, 1 ≤ k ≤ K, is called the lattice-based
(ΓQual,ΓForb)-visual secret sharing scheme (the lattice-
based (ΓQual,ΓForb)-VSSS) with C.

(i) For each k = 1, 2, . . . ,K, if A ∈ Γ∗
Qual, then for all

S ∈ Xck
h(S[A]) ∈ Lq contains only 1s and at least

one ck, where Γ∗
Qual means the minimal qualified sets

of ΓQual defined in (2).

(ii) If A ∈ Γ∗
Forb, then Xck

[A], 1 ≤ k ≤ K, defined as

Xck
[A] = {S[A] : S ∈ Xck

} (7)

are indistinguishable in the sense that they con-
tain the same elements with the same frequencies,
where Γ∗

Forb means the maximal forbidden sets of
ΓForb defined in (3).

Notice that, if 1 ∈ C, then (i) in Definition 1 means that
h(S[A]) contains q 1s for any A ∈ ΓQual and S ∈ X1. If
(ii) in Definition 1 is satisfied, Xck

[A], 1 ≤ k ≤ K,
become indistinguishable for all A ∈ ΓForb. In case that
(ΓQual,ΓForb) is the (t, n)-threshold access structure for
some 2 ≤ t ≤ n, the lattice-based (ΓQual,ΓForb)-VSSS is
simply called the the lattice-based (t, n)-VSSS.

When a secret image is encrypted into n shares,
for each pixel of the secret image we choose S ∈ Xck

randomly with the uniform distribution according to
its color ck. The i-th row of S is used for generating
q pixels of the i-th share corresponding to the original
pixel. The q pixels are called the subpixels of the i-th
share. This step is repeated until all pixels in the secret
image are encrypted. As a result, we obtain n shares
that are q times larger than the secret image.

For any A ∈ ΓQual the secret image is reproduced as
follows. All should be done are finding A∗ ⊆ A satisfy-
ing A∗ ∈ Γ∗

Qual arbitrarily and stacking the |A∗| shares
indicated by A∗. Here, we use the assumption that all
participants know the access structure. Note that the
|A∗| shares can be stacked in an arbitrary order since
the join of Lq satisfies the commutative law and the
associative law. Property (i) in Definition 1 guarantees
that for each pixel in the secret image we can find at
least one subpixel with the same color in its correspond-
ing stacked q subpixels. On the other hand, for any
A ∈ ΓForb property (ii) in Definition 1 guarantees that
no information on colors of pixels of the secret image is
obtained from the |A| shares indicated by A. Figure 3
in [8] gives examples of a secret image, two shares and
a reproduced image in the lattice-based (2, 2)-VSSS.

In the following sections we construct Xck
from all

permutations of columns of an n × q matrix Xck
for

k = 1, 2, . . . ,K. Such Xck
is called the basis matrix of

Xck
. If Xck

, 1 ≤ k ≤ K, are the basis matrices of Xck
,

then (ii) in Definition 1 can be replaced by

Xc1 [A] = Xc2 [A] = · · · = XcK
[A] (8)

for any A ∈ Γ∗
Forb. Here, we consider that |Xck

| always
equals q! even if more than two columns of its basis
matrix Xck

are the same.
Brightness of the reproduced image can be evalu-

ated by the parameter α defined as

α = min
A∈Γ∗

Qual

min
ck∈C,ck �=1

Nk(A)
q

, (9)

where Nk(A) means the number of components in
h(Xck

[A]) equal to ck. The number of subpixels q is



KOGA et al.: AN ANALYTIC CONSTRUCTION OF THE VISUAL SECRET SHARING SCHEME
265

also an important parameter on the performance of the
lattice-based (ΓQual,ΓForb)-VSSS since q determines the
size of n shares. However, in this paper we try to maxi-
mize α instead of minimizing q. It is not q but α that is
crucial to the lattice-based (ΓQual,ΓForb)-VSSS if we use
pixels of small size or apply a technique proposed in [6]
for reducing the size of subpixels by random selection
of columns.

3. Construction of the Lattice-Based (n, n)-
VSSS

3.1 The Column-Permuting Matrices and Their
Polynomial Representations

In this section we construct the basis matrices of the
lattice-based (n, n)-VSSS by concatenating matrices
belonging to a certain class. Fix a bounded upper
semilattice L. We use the convention that all sym-
bols expressed in the sans serif font are elements in
L. A matrix Mn(a1, a2, . . . , an) is called the n-th order
column-permuting matrix if Mn(a1, a2, . . . , an) consists
of all permutations of a vector t[a1, a2, . . . , an]. Then,
Mn(a1, a2, . . . , an) has n rows and n! columns. For ex-
ample, M3(a, b, c) is the 3× 6 matrix expressed as

M3(a, b, c) =


 a b b c c a

b a c b a c
c c a a b b


 . (10)

Note that the join of all rows of Mn(a1, a2, . . . , an) is
composed by n! (a1 � a2 � · · · � an)s.

There are generally (n!)! ways to express
Mn(a1, a2, . . . , an) in a form of n × n! matrix.
However, we regard two column-permuting matri-
ces as equal if one matrix can be transformed into
the other only by an adequate permutation of its
columns. In other words, Mn(a1, a2, . . . , an) is sup-
posed to be equal to Mn(a′1, a

′
2, . . . , a

′
n) if and only

if {a1, a2, . . . , an} = {a′1, a′2, . . . , a′n} is satisfied. We
identifyMn(a1, a2, . . . , an) with a monomial a1a2 · · · an,
where ai is the symbol corresponding to ai used in the
monomial. For example, the monomial expressions of
M3(a, b, c) andM3(a, a, b) are abc and a2b, respectively,
where a, b and c are the symbols corresponding to a, b
and c, respectively. Clearly, the degree of monomials
expressing n-th order column-permuting matrices are
always equal to n.

The concatenation of two column-permuting ma-
trices Mn(a1, a2, . . . , an) and Mn(a′1, a

′
2, . . . , a

′
n) is de-

noted by Mn(a1, a2, . . . , an)�Mn(a′1, a
′
2, . . . , a

′
n). Con-

catenated column-permuting matrices are regarded to
be equal if they contain the same matrices in the same
frequencies. We identify Mn(a1, a2, . . . , an) � Mn(a′1,
a′2, . . . , a

′
n) with a polynomial a1a2 · · · an + a′1a

′
2 · · · a′n,

where + denotes a formal addition expressing the con-
catenation. The polynomial a1a2 · · · an + a′1a

′
2 · · · a′n is

called the polynomial representation of Mn(a1, a2, . . . ,

an) �Mn(a′1, a′2, . . . , a′n). For example, the polynomial
expression of M3(a, a, a) � M3(b, b, c) � M3(b, b, c) is
a3 + 2b2c. Notice that there is a one-to-one correspon-
dence between all finite concatenations of n-th order
column-permuting matrices and homogeneous polyno-
mials of degree n. The sum of all coefficients in a poly-
nomial expression means the number matrices included
in the concatenation.

Now, consider the (n−1)×n! matrixM ′
n(a1, a2, . . . ,

an) obtained by eliminating the n-th row of
Mn(a1, a2, . . . , an). For example, M ′

3(a, b, c) means the
2 × 6 matrix obtained by eliminating the third row of
the matrix given in (10). Clearly, (10) implies that
M ′

3(a, b, c) can be expressed as

M ′
3(a, b, c) = M2(a, b)�M2(b, c)�M2(c, a). (11)

It is interesting to notice that ab + bc + ca, the poly-
nomial expression of the right hand side of (11), is
obtained by applying a partial differential operator
( ∂

∂a + ∂
∂b + ∂

∂c ) to abc, the monomial expression of
M3(a, b, c). More generally, the operation obtaining
M ′

n(a1, a2, . . . , an) from Mn(a1, a2, . . . , an) can be de-
scribed by using the polynomial representation as

ψ[a1a2 · · · an] =
n∑

i=1

n∏
j=1
j �=i

aj ,

where ψ is the partial differential operator correspond-
ing to L = {x1, x2, . . . , xJ} defined as

ψ =
∂

∂x1
+

∂

∂x2
+ · · ·+ ∂

∂xJ
, (12)

where xk, 1 ≤ k ≤ K, denote the symbol used in
the polynomial expression corresponding to xk. No-
tice that {a1, a2, . . . , an} ⊆ {x1, x2, . . . , xJ} from the
convention. The same argument is still valid for the
concatenated column-permuting matrices. That is, if
F is the polynomial representation of a concatenated
column-permuting matrix X over L, then the polyno-
mial representation of X ′ can be expressed as ψF .

3.2 Basis Matrices for the Lattice-Based (n, n)-VSSS

In this subsection we unveil a basic property on the
basis matrices of the lattice-based (n, n)-VSSS with
C = {c1, c2, . . . , cK}. Let Xck

be the basis matrix of
Xck

for k = 1, 2, . . . ,K. In order to guarantee (8) for
the (n, n)-threshold access structure, it is sufficient to
choose Xck

, 1 ≤ k ≤ K, satisfying

Xc1 [A] = Xc2 [A] = · · · = XcK
[A] (13)

for all A ∈ 2P satisfying |A| = n − 1, where P =
{1, 2, . . . , n} is a set of n participants. If Xck

, 1 ≤ k ≤
K, are concatenated column-permuting matrices, (13)
can be expressed as

X ′
c1

= X ′
c2

= · · · = X ′
cK

(14)
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or

ψFc1 = ψFc2 = · · · = ψFcK (15)

from a property of the column-permuting matrices,
where Fck

is the polynomial expressions of Xck
for

k = 1, 2, . . . ,K. We call K homogeneous polynomials
Fck

, 1 ≤ k ≤ K, the basis polynomials if their corre-
sponding concatenated column-permuting matrices are
the basis matrices of the lattice-based (n, n)-VSSS with
C = {c1, c2, . . . , cK}. It is obvious that the basis poly-
nomials must be homogeneous polynomials of degree n
satisfying (15).

There is one more requirement that Fck
, 1 ≤ k ≤

K, satisfying (15) can be regarded as the basis polyno-
mials. Notice that, if Fck

contains a term a1a2 · · · an,
then the term results in the color a1�a2�· · ·�an ∈ L in
a reproduced image. Let z be the symbol corresponding
to the greatest element 1 ∈ L and assume that 1 /∈ C.
Since h(Xck

[P]) contains only 1s and at least one ck,
all terms of Fck

result in either ck or 1 in the repro-
duced image. Throughout the paper we focus on the
case that the terms resulting in 1 contain at least one
z. Since such terms vanish if we substitute z = 0 into
Fck

, we can consider that Fck
satisfies

Fck
|z=0 = Nkck (16)

for each k = 1, 2, . . . ,K, where ck is the symbol cor-
responding to ck and Nk, 1 ≤ k ≤ K, are positive
integers. Notice that ck in (16) is equal to a1a2 · · · an

if ck is represented as ck = a1 � a2 � · · · � an.
Summarizing, we have the following theorem:

Theorem 1: Let C = {c1, c2, . . . , cK}, 1 /∈ C be a
subset of a bounded upper semilattice L. Let Fck

, 1 ≤
k ≤ K, be K homogeneous polynomials of degree n. If
Fck

, 1 ≤ k ≤ K, satisfy the following two conditions,
they can be regarded as the basis polynomials of the
lattice-based (n, n)-VSSS with a set of colors C.
(a) ψFc1 = ψFc2 = · · · = ψFcK

, where ψ is the partial
differential operator defined in (12),

(b) there exist positive integers Nk, 1 ≤ k ≤ K, satis-
fying Fck

|z=0 = Nkck for k = 1, 2, . . . ,K, where z
and ck are the symbols corresponding to 1 and ck,
respectively.

3.3 Examples

In this section we construct the basis polynomials of
the lattice-based (n, n)-VSSS over L̃color, where L̃color

is the sublattice of Lcolor composed by 0,Y,C,G and 1.
Hereafter, let a, y, c, g and z be the symbols in the poly-
nomial representations corresponding to 0,Y,C,G and
1. The partial differential operator ψ can be expressed
as ψ = ∂

∂a + ∂
∂y + ∂

∂c +
∂
∂g + ∂

∂z .

Example 1: (The lattice-based (2, 2)-VSSS with
{Y,C,G}) The basis matrices of this case can be writ-
ten as follows [8]:

XY = M2(0,Y)�M2(C, 1),
XC = M2(0,C)�M2(Y, 1),
XG = M2(Y,C)�M2(0, 1).

Then, the polynomial representations of XY, XC and
XG become FY = ay + cz, FC = ac + yz and FG =
cy+az, respectively. It is easy to check that FY, FC and
FG are homogeneous polynomials of degree 2 satisfying
conditions (a) and (b) in Theorem 1. In fact, all of
ψFY, ψFC and ψFG are equal to a + c + y + z. This
construction yields q = 4 and α = 1

2 . ✷

Example 2: (The lattice-based (3, 3)-VSSS with
{Y,C}) Here, we construct XY and XC without us-
ing G. First, define FY and FC by

FY = a2y +A1(a, c, y)z +A2(a, c, y)z2,

FC = a2c+B1(a, c, y)z +B2(a, c, y)z2,

where A1, B1, A2 and B2 are homogeneous polynomials
composed by only a, c and y. Since FY and FC are
homogeneous polynomials of degree 3, the degrees of
A1 and B1 must be 2 and the degrees of A2 and B2

must be 1. In addition, notice that FY|z=0 = a2y and
FC|z=0 = a2c result in 0 � 0 � Y = Y and 0 � 0 � C = C
in a reproduced image, respectively.

By applying ψ to FY and FC and setting ψFY =
ψFC, it follows that

(a2 + 2ay +A1) + (ψ̃A1 + 2A2)z + (ψ̃A2)z2

= (a2 + 2ac+B1) + (ψ̃B1 + 2B2)z

+ (ψ̃B2)z2, (17)

where ψ̃ = ∂
∂a +

∂
∂y +

∂
∂c . We choose A1, A2, B1 and B2

in the simplest way that (17) holds as an identity. That
is, we choose A1, A2, B1 and B2 satisfying the following
three equations:

a2 + 2ay +A1 = a2 + 2ac+B1, (18)

ψ̃A1 + 2A2 = ψ̃B1 + 2B2, (19)

ψ̃A2 = ψ̃B2. (20)

From (18) we have A1 = 2ac and B1 = 2ay. By using
these A1, B1 and (19), A2 and B2 can be chosen as
A2 = y and B2 = c. Such A2 and B2 trivially satisfy
(20). Therefore, we obtain

FY = a2y + 2acz + yz2,

FC = a2c+ 2ayz + cz2,

which can be regarded as the basis polynomials cor-
responding to the basis matrices XY and XC with
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q = 4× 3! = 24 and α = 1/4. ✷

Example 3: (The lattice-based (3, 3)-VSSS with
{Y,C,G}) We can construct the basis matrices XY, XC

and XG similarly to Example 2. The basis polynomials
FY, FC and FG satisfying FY|z=0 = a2y, FC|z=0 = a2c
and FG|z=0 = acy are expressed as

FY = a2y + (2ac+ cy)z + (a+ y)z2,

FC = a2c+ (2ay + cy)z + (a+ c)z2,

FG = acy + (a2 + ac+ ay)z + (c+ y)z2.

In this example, q = 6× 3! = 36 and α = 1/6. ✷

3.4 Basis Polynomials for the Lattice-Based (n, n)-
VSSS with K Colors

This subsection is devoted to a construction of the
lattice-based (n, n)-VSSS with a set of colors C =
{c1, c2, . . . , cK}. First, we consider the case when
ck, 1 ≤ k ≤ K, satisfy

ck = ck,1 � ck,2 � · · · � ck,n, (21)

where ck,i, 1 ≤ k ≤ K, 1 ≤ i ≤ n, are distinct elements
in L not equal to the greatest element 1 ∈ L.

Let ck and ck,i be the symbols corresponding to
ck and ck,i in the polynomial expressions, respectively.
For each k = 1, 2, . . . ,K and p = 0, 1, . . . , n define sk,p

by

sk,p =




∑
{i1,i2,...,ip}⊆P

i1<i2<···<ip

ck,i1ck,i2 · · · ck,ip
, if 1 ≤ p ≤ n,

1, if p = 0.
(22)

It is clear that sk,1 = ck,1 + ck,2 + · · ·+ ck,n and sk,n =
ck,1ck,2 · · · ck,n = ck.

The basis polynomials Fck
, 1 ≤ k ≤ K, can be

found in the following theorem.

Theorem 2: In the lattice-based (n, n)-VSSS with
C = {c1, c2, . . . , cK} satisfying (21), the basis polyno-
mial Fck

can be expressed as

Fck
=

n−1∑
i=0

i:even

sk,n−iz
i +

n−1∑
i=1

i:odd

K∑
j=1
j �=k

sj,n−iz
i (23)

for all k = 1, 2, . . . ,K.

Proof: Since Fck
|z=0 = sk,n = ck is clear from (23),

we only prove that Fck
, 1 ≤ k ≤ K, in (23) satisfy

condition (a) in Theorem 1. For each k = 1, 2, . . . ,K
ψFck

is evaluated in the following way:

ψFck

1)
=

(
n∑

l=1

∂

∂ck,l
+

∂

∂z

)
Fck

=
n−1∑
i=0

i:even

(
n∑

l=1

∂

∂ck,l
+

∂

∂z

)
sk,n−iz

i

+
n−1∑
i=1

i:odd

K∑
j=1
j �=k

(
n∑

l=1

∂

∂cj,l
+

∂

∂z

)
sj,n−iz

i

2)
=

n−1∑
i=0

i:even

(i+1)sk,n−i−1z
i+

n−1∑
i=2

i:even

isk,n−iz
i−1

+
n−1∑
i=1

i:odd

K∑
j=1
j �=k

(i+1)sj,n−i−1z
i+

n−1∑
i=1

i:odd

K∑
j=1
j �=k

isj,n−iz
i−1

=
n∑

i=1
i:odd

isk,n−iz
i−1+

n−1∑
i=2

i:even

isk,n−iz
i−1

+
n∑

i=2
i:even

K∑
j=1
j �=k

isj,n−iz
i−1+

n−1∑
i=1

i:odd

K∑
j=1
j �=k

isj,n−iz
i−1

=
n−1∑
i=1

K∑
j=1

isj,n−iz
i−1

+
{

nzn−1, if n is odd,
(K − 1)nzn−1, otherwise, (24)

where the marked equalities follow since
1): Fck

contains only z and ck,i, i = 1, 2, . . . , n,
2): for all i = 0, 1, . . . , n− 1 and j = 1, 2, . . . ,K

n∑
l=1

∂

∂cj,l
sj,n−i = (i+ 1)sj,n−i−1

holds from the definition of sj,p in (22).

Since (24) no longer depends on k, ψFc1 = ψFc2 =
· · · = ψFcK

is established. ✷

By using the formula
n∑

i=0
i:even

(
n

i

)
=

n∑
i=1

i:odd

(
n

i

)
= 2n−1 for all n ≥ 1,

it is not hard to verify that the basis matrices cor-
responding to Fck

, 1 ≤ k ≤ K, in (23) satisfy α =
1/(K ·2n−1−K+1) if n is odd and α = 1/(K ·2n−1−1)
otherwise.

For constructing the lattice-based (n, n)-VSSS
with C = {c1, c2, . . . , cK} satisfying 0 /∈ C and 1 /∈ C,
it is often convenient to find the basis polynomials
Fck

, 1 ≤ k ≤ K, satisfying

Fck
|z=0 = an−1ck for all k = 1, 2, . . . ,K, (25)

where a and ck denote the symbols corresponding to 0
and ck, respectively. The following theorem describes
such basis polynomials yielding α = 1/(K · 2n−2).

Theorem 3: The basis polynomials of the lattice-
based (n, n)-VSSS with C = {c1, c2, . . . , cK} satisfying
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0 /∈ C, 1 /∈ C and (25) can be written as

Fck
=

n−1∑
i=0

i:even

(
n− 1

i

)
an−1−ickz

i

+
n−1∑
i=1

i:odd

K∑
j=1
j �=k

(
n− 1

i

)
an−1−icjz

i (26)

for all k = 1, 2, . . . ,K.

Proof: Since Fck
in (26) clearly satisfy (25), we have

only to prove that ψFck
, 1 ≤ k ≤ K, do not depend

on k. However, by using techniques used in the proof
of Theorem 2, it is not hard to verify that ψFck

=
( ∂

∂a + ∂
∂ck

+ ∂
∂z )Fck

is independent of k. ✷

If the basis polynomials Fck
, 1 ≤ k ≤ K, contain

a homogeneous polynomial f �= 0 of degree n in com-
mon, we can use Fck

− f, 1 ≤ k ≤ K, as the new basis
polynomials that require less subpixels than Fck

. For
example, if Fck

, 1 ≤ k ≤ K, contain zn in common, we
can drop zn from Fck

, 1 ≤ k ≤ K, without violating
conditions (a) and (b) in Theorem 1. The basis poly-
nomials Fck

, 1 ≤ k ≤ K, are called minimal if such
f does not exist. As is easily checked, the basis poly-
nomials given in Examples 1–3 and Theorems 2–3 are
minimal. The following theorem claims that minimal
basis polynomials are unique in a certain sense.

Theorem 4: Let C = {c1, c2, . . . , cK} ⊆ L be a set
of colors and Fck

, 1 ≤ k ≤ K, be the minimal basis
polynomials of the lattice-based (n, n)-VSSS satisfying

Fck
|z=0 = Nkck, (27)

where for k = 1, 2, . . . ,K Nk is a positive integer and
ck denotes the symbol corresponding to ck. Let L′ =
{c′1, c′2, . . . , c′I , 1} be a subset of L whose corresponding
symbols {c′1, c′2, . . . , c′I , z} are contained in at least one
Fck

. Then, Fck
, 1 ≤ k ≤ K, are unique in the sense

that they satisfy

ϕFc1 = ϕFc2 = · · · = ϕFcK (28)

and (27), where ϕ is the partial differential operator
defined as

ϕ =
∂

∂c′1
+

∂

∂c′2
+ · · ·+ ∂

∂c′I
+

∂

∂z
. (29)

Proof: Suppose that there exist another basis polyno-
mials F̃ck

, 1 ≤ k ≤ K, satisfying

ϕF̃c1 = ϕF̃c2 = · · · = ϕF̃cK
(30)

and F̃ck
|z=0 = Nkck for all k = 1, 2, . . . ,K. Assume

that F̃ck
, 1 ≤ k ≤ K, are minimal. From (28) and (30)

we have

ϕfc1 = ϕfc2 = · · · = ϕfcK
, (31)

where fck
is defined as fck

= F̃ck
− Fck

for all k =

1, 2, . . . ,K. Notice that fck
|z=0 = F̃ck

|z=0 −Fck
|z=0 =

Nkck −Nkck = 0 for all k = 1, 2, . . . ,K.
Hereafter, we prove that fc1 = fc2 = · · · = fcK .

Fix j and k satisfying 1 ≤ j, k ≤ I arbitrarily and
define g = fcj

−fck
. Since fcj

and fck
satisfy fcj

|z=0 =
fck

|z=0 = 0, g becomes a homogeneous polynomial of
degree n expressed as g = g1z+ g2z

2 + · · ·+ gn−1z
n−1,

where for each j = 1, 2, . . . , n − 1 gj is a homogenous
polynomial of c′i, 1 ≤ i ≤ I, of degree n−j. By noticing
that g is a solution to ϕg = 0, it follows that

g1 + (ϕ̃g1 + 2g2)z + (ϕ̃g2 + 3g3)z2 + · · ·
+ (ϕ̃gn−2 + (n− 1)gn−1)zn−2

+ (ϕ̃gn−1)zn−1 = 0,

where ϕ̃ =
∑I

i=1
∂

∂c′i
, which implies g1 = g2 = · · · =

gn−1 = 0 and therefore g = 0. This fact leads to the
existence of a homogeneous polynomial f of degree n
satisfying fc1 = fc2 = · · · = fcK

= f . Such f must
satisfy f = 0 since Fck

, 1 ≤ k ≤ K, are minimal and
F̃ck

, 1 ≤ k ≤ K, are assumed to be minimal. That is, if
such f not equal to 0 exists, the definition of fck

implies
that F̃ck

= Fck
+ f holds for all k = 1, 2, . . . ,K, which

conflicts with the assumption that F̃ck
, 1 ≤ k ≤ K, are

minimal. This completes the proof of this theorem. ✷

Example 4: (The lattice-based (3, 3)-VSSS with
{R,G,B}) Here, we demonstrate how Theorem 2 can
be applied to construction of the lattice-based (3, 3)-
VSSS with {R,G,B} over Lcolor. We construct the basis
polynomial FR, FG and FB by using only 0,Y,M,C and
1. Though we can also construct FR, FG and FB in a
way similar to Example 2, we construct them by using
Theorem 2.

Let a, y,m, c and z be the symbols corresponding
to 0,Y,M,C and 1, respectively. It is important to
notice that basis matrices corresponding to monomials
amy, acy and acm result in R,G and B in a reproduced
image, respectively. In order to apply Theorem 2 we
first split the symbols corresponding to 0,Y,M and C.
That is, we split 0 into 01, 02 and 03, Y into Y1 and
Y2, M into M1 and M2 and C into C1 and C2, and ex-
press amy, acy and acm as a1m1y1, a2c1y2 and a3c2m2,
respectively. Then, Theorem 2 guarantees that FR, FG

and FB can be written as follows:

FR = a1m1y1 + (a2c1 + a2y2 + c1y2

+ a3c2 + a3m2 + c2m2)z + (a1 +m1 + y1)z2, (32)
FG = a2c1y2 + (a1m1 + a1y1 +m1y1

+ a3c2 + a3m2 + c2m2)z + (a2 + c1 + y2)z2, (33)
FB = a3c2m2 + (a1m1 + a1y1 +m1y1

+ a2c1 + a2y2 + c1y2)z + (a3 + c2 +m2)z2. (34)

Next, we drop all subscripts of the symbols in (32)–
(34) and find all the terms included in FR, FG and FB

in common. In this example, it is easy to see that
(c+m+ y)az and az2 are included in all of (32)–(34).
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By eliminating such terms from (32)–(34), we obtain
the following minimal basis polynomials:

FR = amy + (a+m+ y)cz + (m+ y)z2, (35)
FG = acy + (a+ c+ y)mz + (c+ y)z2, (36)
FB = acm+ (a+ c+m)bz + (c+m)z2. (37)

These basis polynomials yield the basis matrices with
q = 6 × 3! = 36 and α = 1/6. Theorem 4 guarantees
that FR, FG and FB given in (35)–(37) are unique in
the sense that they are composed by {a, y,m, c, z} and
satisfy FR|z=0 = amy, FG|z=0 = acy and FB|z=0 = acm.
The uniqueness guarantees that α cannot be larger than
1/6 in this construction. ✷

Remark: We can regard the requirement FR|z=0 =
amy, FG|z=0 = acy and FB|z=0 = acm as an initial
condition of the partial differential equation ψFR =
ψFG = ψFB and the basis polynomials in (35)–(37)
as the minimal solution. On the other hand, Theo-
rem 3 guarantees that, under another initial condition
FR|z=0 = a2r, FG|z=0 = a2g and FB|z=0 = a2b, the
minimal solution are expressed as

FR = a2r + 2(b+ g)az + rz2, (38)
FG = a2g + 2(b+ r)az + gz2, (39)
FB = a2b+ 2(g + r)az + bz2, (40)

where r, g and b denote the symbols corresponding to
R,G and B, respectively. Since the basis polynomi-
als in (38)–(40) also yield α = 1/6 and q = 36, we
cannot mention which of the two initial conditions is
better for the lattice-based (3, 3)-VSSS with {R,G,B}
from the viewpoint of brightness of the reproduced im-
age. However, difference of initial conditions appears
in construction of the lattice-based (3, 3)-VSSS with
{Y,M,C,R,G,B}. If we set the initial conditions as

FY|z=0 = a2y, FM|z=0 = a2m,FY|z=0 = a2c,

FR|z=0 = amy, FG|z=0 = acy, FB|z=0 = acm, (41)

then we obtain the following minimal basis polynomials
with α = 1/10:

FY=a2y+(2ac+2am+cm+cy+my)z+(a+y)z2,
FM=a2m+(2ac+2ay+cm+cy+my)z+(a+m)z2,
FC=a2c+(2am+2ay+cm+cy+my)z+(a+c)z2,
FR=amy+(a2+2ac+am+ay+cm+cy)z+(m+y)z2,
FG=acy+(a2+ac+2am+ay+cm+my)z+(c+y)z2,
FB=acm+(a2+ac+am+2ay+cy+my)z+(c+m)z2.

On the other hand, if we use

FY|z=0 = a2y, FM|z=0 = a2m,FY|z=0 = a2c,

FR|z=0 = a2r, FG|z=0 = a2g, FB|z=0 = a2b (42)

instead of (41), we obtain the basis polynomials with
α = 1/12 from Theorem 3 (Notice that they are min-
imal under the initial condition (42)). Generally, in

the construction of the lattice-based (n, n)-VSSS with
C = {c1, c2, . . . , cK} over L, if K is large, it will be
better to use small number of elements in L for rep-
resenting all of ck. For constructing the basis matrices
with the largest α, we need to search for the initial con-
ditions yielding the maximal α. The assumption that L
is a bounded upper semilattice provides various ways of
giving initial conditions and enables to find the optimal
initial condition yielding the maximal α.

3.5 Discussion

Here, we show that the basis matrices obtained from
Theorem 3 lead to the basis matrices of the lattice-
based (n, n)-VSSS given in Sect. 4 of [8]. Note that,
however, this fact does not mean the optimality of the
basis matrices in [8].

Consider the lattice-based (3, 3)-VSSS with
{R,G,B} whose basis polynomials are given in (38)–
(40) as an example. By using the definitions of the
column-permuting matrix and its polynomial represen-
tation, it is easy to check that the basis matrix XR

corresponding to FR can be expressed as follows:

XR = X̃R � X̃R,

where

X̃R =


R 0 0 G 0 G 0 1 1 B 0 B 0 1 1 R 1 1

0 R 0 0 G 1 1 G 0 0 B 1 1 B 0 1 R 1
0 0 R 1 1 0 G 0 G 1 1 0 B 0 B 1 1 R


 .

Defining M∗
n(a1, a2, . . . , an) as the matrix obtained

from all the different permutations of the vector
t[a1, a2, . . . , an], X̃R is written as

X̃R = M∗
3 (0, 0,R)�M∗

3 (0, 1,G)
�M∗

3 (0, 1,B)�M∗
3 (1, 1,R). (43)

Similarly, XG and XB corresponding to FG and FB can
be expressed as XG = X̃G � X̃G and XB = X̃B � X̃B,
respectively, where

X̃G = M∗
3 (0, 0,G)�M∗

3 (0, 1,B)
�M∗

3 (0, 1,R)�M∗
3 (1, 1,G), (44)

X̃B = M∗
3 (0, 0,B)�M∗

3 (0, 1,R)
�M∗

3 (0, 1,G)�M∗
3 (1, 1,B). (45)

Equations (43)–(45) guarantee that X̃R, X̃G and X̃B

can be used as the basis matrices of the lattice-based
(3, 3)-VSSS with {R,G,B} with the same brightness pa-
rameter α = 1/6 as XR, XG and XB. The number of
subpixels required by X̃R, X̃G and X̃B is 12, while XR,
XG and XB require 24 subpixels.

In order to show that Xck
corresponding to Fck

in Theorem 3 is written in the concatenated form of a
single matrix, we make use of the following property:
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Mn(0, . . . , 0︸ ︷︷ ︸
n−1−i

, ck, 1, . . . , 1︸ ︷︷ ︸
i

)

= M∗
n(0, . . . , 0︸ ︷︷ ︸

n−1−i

, ck, 1, . . . , 1︸ ︷︷ ︸
i

)[(n−1−i)!·i!], (46)

where for a matrix S S[α] denotes the concatenation of
S for α times. Then, it easily follows from (46) that for
all i = 1, 2, . . . , n−1

(
n−1

i

)
an−1−ickz

i corresponding to

Mn(0, . . . , 0︸ ︷︷ ︸
n−1−i

, ck, 1, . . . , 1︸ ︷︷ ︸
i

)[(
n−1

i )]

can be expressed as

M∗
n(0, . . . , 0︸ ︷︷ ︸

n−1−i

, ck, 1, . . . , 1︸ ︷︷ ︸
i

)[(n−1)!].

This means that for each k = 1, 2, . . . ,K there exists
a matrix X̃ck

satisfying Xck
= X̃

[(n−1)!]
ck

. We can use
X̃ck

, 1 ≤ k ≤ K, as the basis matrices of the lattice-
based (n, n)-VSSS. It is not hard to see that X̃ck

con-
tainsK ·n·2n−2 columns, whileXck

containsK ·n!·2n−2

columns. These X̃ck
, 1 ≤ k ≤ K, are equal to the basis

matrices of the lattice-based (n, n)-VSSS in [8].
Note that we can never obtain the basis matrices

corresponding to the basis polynomials in Examples 3–
4 and Remark (with α = 1/10) from the construction
given in [8]. In general, the construction proposed in
this section uses Mn(a1, a2, . . . , an) and therefore re-
quires more subpixels than the construction in [8] us-
ing M∗

n(a1, a2, . . . , an). Nevertheless, the proposed con-
struction enables us to easily obtain various basis ma-
trices that use properties of colors such as G = Y�C. In
addition, it is important to notice that reproduced im-
ages can be brighter. For example, in the lattice-based
(3, 3)-VSSS with {Y,M,C,R,G,B}, the basis matrices
corresponding to FY–FB satisfying (41) yield q = 60
and α = 1/10 while the basis matrices constructed via
the method in [8], which can be obtained from FY–FB

satisfying (42), yield q = 36 and α = 1/12.

4. Extensions

4.1 The Lattice-Based (t, n)-VSSS

We can obtain the basis polynomials of the lattice-
based (t, n)-VSSS from the basis polynomials of the
lattice-based (t, t)-VSSS. Let Xck

, 1 ≤ k ≤ K, be
the basis matrices of the lattice-based (t, t)-VSSS with
a set of colors C = {c1, c2, . . . , cK} constructed from
column-permuting matrices. All should be done are
to replace all contained column-permuting matrices
Mt(a1, a2, . . . , at) by Mn(a1, a2, . . . , at, 1, . . . , 1). For
example, by using the basis matrices in Example 1 in
Sect. 3.3 we obtain the following basis matrices for the
lattice-based (2, 3)-VSSS with {Y,C,G}:

XY = M3(0,Y, 1)�M3(C, 1, 1),
XC = M3(0,C, 1)�M3(Y, 1, 1),
XG = M3(Y,C, 1)�M3(0, 1, 1).

It is clear that XY,XC and XG obtained from all permu-
tations of the columns of XY, XC and XG, respectively,
satisfy Definition 1. The polynomial representations of
XY, XC and XG are FY = (ay + cz)z, FC = (ac + yz)z
and FG = (cy + az)z, respectively, where a, y, c and z
are symbols corresponding to 0,Y,C and 1, respectively.
More generally, the following theorem holds:

Theorem 5: Let F (t)
ck

, 1 ≤ k ≤ K, be the basis poly-
nomials of the lattice-based (t, t)-VSSS with a set of
colors C = {c1, c2, . . . , cK}. Then, for all integers n ≥ t
the basis polynomials Fck

, 1 ≤ k ≤ K, of the lattice-
based (t, n)-VSSS can be written as Fck

= F
(t)
ck

· zn−t.

Proof: Let F be a homogeneous polynomial of degree
n and X the concatenated column-permuting matrix
corresponding to F . It is important to note that for
each j = 1, 2, . . . , n − 1 ψjF implies the polynomial
representation of the matrix obtained by eliminating
the n-th, the (n − 1)-th, . . ., and the (n − j + 1)-th
columns of from X, where ψjF means applying ψ to F
repeatedly for j times. Therefore, for proving the claim
of the theorem it is sufficient to establish

ψn−t+1Fc1 =ψn−t+1Fc2 = · · ·=ψn−t+1FcK (47)

and show the existence of integers Nk > 0, 1 ≤ k ≤ K,
such that

ψn−tFck
|z=0 = Nk · F (t)

ck
|z=0. (48)

Equations (47) and (48) correspond to the conditions
(ii) and (i) in Definition 1, respectively.

Equation (47) is proved first. Since F
(t)
ck

, 1 ≤
k ≤ K, are the basis polynomials satisfying ψF

(t)
c1

=
ψF

(t)
c2

= · · · = ψF
(t)
cK

, it is clear that

ψjF
(t)
c1

= ψjF
(t)
c2

= · · · = ψjF
(t)
cK

(49)

holds for all j ≥ 1. In addition, if we note that ψ
is a linear partial differential operator, for each k =
1, 2, . . . ,K ψn−t+1Fck

is evaluated in the following way:

ψn−t+1Fck

= ψn−t+1(F (t)
ck

· zn−t)

=
n−t+1∑

i=0

(
n−t+1

i

)
(ψn−t+1−iF

(t)
ck

) · (ψizn−t)

=
n−t∑
i=0

(
n−t+1

i

)
(n− t)!

(n− t− i)!

· (ψn−t+1−iF
(t)
ck

) · zn−t−i, (50)

where the last equality in (50) follows from
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ψn−t+1zn−t = 0. Combining (49) with (50) immedi-
ately implies (47).

Next, we prove that (48) with setting Nk = (n−t)!
is satisfied for all k = 1, 2, . . . ,K. Similarly to (50) we
obtain

ψn−tFck
=

n−t∑
i=0

(
n− t

i

)
(ψn−t−iF

(t)
ck

) · (ψizn−t)

=
n−t∑
i=0

(
n− t

i

)
(n− t)!

(n− t− i)!

· (ψn−t−iF
(t)
ck

) · zn−t−i. (51)

Then, we have Nk = (n− t)! by setting z = 0 in (51).
✷

If the basis polynomials in Theorem 3 are used as
F

(t)
ck

in Theorem 5, its corresponding basis matrix Xck

containsK ·2n−2 column-permuting matrices and hence
contains K · 2n−2 · n! columns. In addition, such Xck

contains (n − t)! · t! columns that result in ck, where
(n − t)! follows from (48). Hence, α = 1/(K · 2n−2 ·(
n
t

)
). It is important to notice that Theorem 5 does

not guarantee the optimality of these basis matrices.

4.2 The Lattice-Based (ΓQual,ΓForb)-VSSS

Let (ΓQual,ΓForb) be an arbitrary access structure of n
participants P. In this subsection we show that the ba-
sis matrices of the lattice-based (ΓQual,ΓForb)-VSSS with
a set of colors C = {c1, c2, . . . , cK} can be constructed
by using the basis matrices of Xck

, 1 ≤ k ≤ K, of the
lattice-based (t, t)-VSSS with C, where t = |Γ∗

Forb
| and

Γ∗
Forb means the maximal forbidden sets defined in (3).

This construction is essentially parallel to the construc-
tion given Sect. 4 in [1].

Define T = {1, 2, . . . , t} and Γ∗
Forb = {B1, B2, . . . ,

Bt}. Denote by 2T all of the subsets of T . We define β :
P → 2T as the mapping that maps i ∈ P to {j ∈ T :
i /∈ Bj} ∈ 2T . Such mapping is called the cumulative
map [12]. It is known that β satisfies

(P1)
⋃
i∈A

β(i) = T for all A ∈ Γ∗
Qual,

(P2)
⋃
i∈A

β(i) ⊂ T for all A ∈ Γ∗
Forb, where the inclu-

sion holds in the strict sense.

Now, we construct the basis matrices Xck
, 1 ≤

k ≤ K, in the following way. Let X
(t)
ck

, 1 ≤ k ≤ K,
be the basis matrices of the lattice-based (t, t)-VSSS.
For each k = 1, 2, . . . ,K define the i-th row of Xck

as
h(X(t)

ck
[β(i)]) for all i = 1, 2, . . . , n, where X

(t)
ck
[β(i)] is

defined in the same manner as (5) and h is the mapping
defined in (6). If Xck

, 1 ≤ k ≤ K, contain the same
column in common, remove the column from all Xck

.
Hence, the number of columns of Xck

is less than or
equal to that of X(t)

ck
. Define Xck

, 1 ≤ k ≤ K, as the

set obtained from all the permutations of the columns
of Xck

.
The reason why such Xck

, 1 ≤ k ≤ K, become the
basis matrices of the lattice-based (ΓQual,ΓForb)-VSSS is
deeply related to the properties (P1) and (P2). Suppose
that A ∈ Γ∗

Qual. Then, (P1) guarantees that

h(Xck
[A]) = h

(
X

(t)
ck

[⋃
i∈A

β(i)

])

= h(X(t)
ck
[T ]), (52)

where the idempotent law on the join of Lq is used for
obtaining the first equality in (52). Since for each k =
1, 2, . . . ,K h(X(t)

ck
[T ]) is designed to contain 1s and at

least one ck from its definition, Xck
obtained from Xck

satisfies (i) in Definition 1. On the other hand, suppose
that A ∈ ΓForb and define B as B =

⋃
i∈A β(i). Since

(P2) implies |B| < t, the definitions ofX(t)
ck

, 1 ≤ k ≤ K,
lead to Xc1 [B] = Xc2 [B] = · · · = XcK

[B], where Xck
[B]

is defined in (7), which establishes (ii) in Definition 1.
Summarizing, we obtain the following theorem.

Theorem 6: Let (ΓQual,ΓForb) be an arbitrary access
structure of n participants. Let X

(t)
ck

, 1 ≤ k ≤ K, be
the basis matrices of the lattice-based (t, t)-VSSS with
a set of colors C = {c1, c2, . . . , cK}, where t = |Γ∗

Forb|. If
for each k = 1, 2, . . . ,K the i-th row of Xck

is defined
as h(X(t)

ck
[β(i)]) for all i = 1, 2, . . . , n, then Xck

, 1 ≤
k ≤ K, become the basis matrices of the lattice-based
(ΓQual,ΓForb)-VSSS with C.

Example 5: Suppose that P = {1, 2, 3, 4} and
Γ∗

Qual = {{1, 2}, {2, 3}, {3, 4}}. This is the access struc-
ture given in Example 4.1 in [1]. It is easy to see that
Γ∗

Forb = {{1, 4}, {1, 3}, {2, 4}}. We construct the ba-
sis matrices of the lattice-based (ΓQual,ΓForb)-VSSS with
{Y,C,G}.

Define B1 = {1, 4}, B2 = {1, 3} and B3 = {2, 4}.
Since |Γ∗

Forb| = 3, we define T as T = {1, 2, 3}. Let
β : P → 2T be the cumulative map satisfying β(1) =
{3}, β(2) = {1, 2}, β(3) = {1, 3} and β(4) = {2}. That
is, β maps i ∈ T to the set of indices of elements
in Γ∗

Forb not containing i. Denote by X
(3)
Y , X

(3)
C and

X
(3)
G the basis matrices of the lattice-based (3, 3)-VSSS

with {Y,C,G} given in Example 3 in Sect. 3.3. Then,
the basis matrices XY, XC and XG are obtained from
X

(3)
Y , X

(3)
C , X

(3)
G and β. For example, β(2) = {1, 2}

indicates that the second rows of XY, XC and XG are
obtained from the joins of the first and the second rows
of X(3)

Y , X
(3)
G and X

(3)
G , respectively. We obtain XY, XC

and XG with q = 36 − 4 = 32 and α = 3/16 since we
can remove four t[1, 1, 1, 1]s commonly contained in the
matrices obtained from X

(3)
Y , X

(3)
C , X

(3)
G and β. ✷
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5. Conclusion

In this paper we propose a new construction of the ba-
sis matrices of the lattice-based (n, n)-VSSS that can
be applied to color images. We show that, if we find ho-
mogeneous polynomials of degree n satisfying a certain
system of simultaneous partial differential equations,
we can obtain the basis matrices corresponding to the
homogenous polynomials. The obtained basis matrices
turns out to have a certain kind of optimality. We also
show that the basis matrices of the (t, n)-VSSS or VSSS
for general access structures are easily obtained from
the new construction. Developing another construction
of the basis matrices of the (t, n)-VSSS yielding brighter
reproduced images remains as an open problem.
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