
ar
X

iv
:1

21
0.

34
22

v4
  [

m
at

h.
D

G
] 

 1
8 

O
ct

 2
01

2

Axiomatic Differential Geometry III-3

-Its Landscape-

Chapter 3: The Old Kingdom of Differential

Geometers

Hirokazu NISHIMURA

Institute of Mathematics

University of Tsukuba

Tsukuba, Ibaraki, 305-8571, JAPAN

October 19, 2012

Abstract

The principal objective in this paer is to study the relationship be-
tween the old kingdom of differential geometry (the category of smooth
manifolds) and its new kingdom (the category of functors on the category
of Weil algebras to some smooth category). It is shown that the canon-
ical embedding of the old kingdom into the new kingdom preserves Weil
functors.

1 Introduction

Roughly speaking, the path to axiomatic differential geometry is composed of
five acts. Act One was Weil’s algebraic treatment of nilpotent infinitesimals in
[31], namely, the introduction of so-called Weil algebras. It showed that nilpo-
tent infinitesimals could be grasped algebraically. While nilpotent infinitesimals
are imaginary entities, Weil algebras are real ones. Act Two began almost at
the same time with Steenrod’s introduction of convenient categories of topolog-
ical spaces (cf. [30]), consisting of a string of proposals of convenient categories
of smooth spaces. Its principal slogan was that the category of differential ge-
ometry should be (locally) cartesian closed. The string was panoramized by
[29] as well as [1]. Act Three was so-called synthetic differential geometry,
in which synthetic methods as well as nilpotent infinitesimals play a predom-
inant role. It demonstrated amply that differential geometry could be made
axiomatic in the same sense that Euclidean geometry is so, though it should
resort to reincarnation of nilpotent infinitesimals. In any case, synthetic differ-
ential geometers were forced to fabricate their own world, called well-adapted
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models, where they could indulge in their favorite nilpotent infinitesimals in-
cessantly. Their unblushing use of moribund nilpotent infinitesimals alienated
most of orthodox mathematicians, because nilpotent infinitesimals were almost
eradicated as genuine hassle and replaced by so-called ε − δ arguments in the
19th century. The reader is referred to [10] and [13] for good treatises on syn-
thetic differential geometry. Act Four was the introduction of Weil functors
and their thorough study by what was called the Czech school of differential
geometers in the 1980’s, for which the reader is referred to Chapter VIII of [11]
and §31 of [12]. Weil functors, which are a direct generalization of the tangent
bundle functor, opens a truly realistic path of axiomatizing differential geometry
without nilpotent infinitesimals. Then Act Five is our axiomatic differential
geometry, which is tremendously indebted to all previous four acts. For ax-
iomatic differential geometry, the reader is referred to [17], [18], [19], [20], [21]
and [22].

In our previous two papers [21] and [22], we have developed model theory for
axiomatic differential geometry, in which the category KSmooth of functors on
the categoryWeilR of Weil algebras to the smooth category Smooth (by which
we mean any proposed or possible convenient category of smooth spaces) and
their natural transformations play a crucial role. We will study the relationship
between the category Mf of smooth manifolds and smooth mappings and our
new kingdom KSmooth as well as that between Smooth and KSmooth in this
paper.

2 Convenient Categories of Smooth Spaces

The category of topological spaces and continuous mappins is by no means carte-
sian closed. In 1967 Steenrod [30] popularized the idea of convenient category
by announcing that the category of compactly generated spaces and continuous
mappings renders a good setting for algebraic topology. The proposed category
is cartesian closed, complete and cocomplete, and contains all CW complexes.

At about the same time, an attempt to give a convenient category of smooth
spaces began, and we have a few candidates at present. For a thorough study
upon the relationship among these already proposed candidates, the reader is
referred to [29], in which he or she will find, by way of example, that the category
of Frölicher spaces is a full subcategory of that of Souriau spaces, and the
category of Souriau spaces is in turn a full subcategory of that of Chen spaces.
We have no intention to discuss which is the best convenient category of smooth
spaces here, but we note in passing that both the category of Souriau spaces and
that of Chen spaces are locally cartesian closed, while that of Frölicher spaces
is not. At present we content ourselves with denoting some of such convenient
categories of smooth spaces by Smooth, which is required to be complete and
cartesian closed at least, containing the category Mf of smooth manifolds as a
full subcategory. Obviously the categoryMf contains the setR of real numbers.
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3 Weil Functors

Weil algebras were introduced by Weil himself [31]. For a thorough treatment
of Weil algebras as smooth algebras, the reader is referred to III.5 in [10].

Notation 1 We denote by WeilR the category of Weil algebras over R.

Let us endow the category Smooth with Weil functors.

Proposition 2 Let W be an object in the category WeilR with its finite pre-
sentation

W = C∞ (Rn) /I

as a smooth algebra in the sense of III.5 of [10]. Let X,Y ∈ Smooth, f, g ∈
Smooth (Rn, X), and h ∈ Smooth (X,Y ). If

f ∼W g,

then
h ◦ f ∼W h ◦ g

Proof. Given ς ∈ Smooth (Y,R), we have

ς ◦ (h ◦ f)− ς ◦ (h ◦ g)

= (ς ◦ h) ◦ f − (ς ◦ h) ◦ g ∈ I

so that we have the desired result.

Corollary 3 We can naturally make TW
Smooth a functor

TW
Smooth

: Smooth→ Smooth

Proposition 4 Let W1 and W2 be objects in the category WeilR with their
finite presentations

W1 = C∞ (Rn) /I

W2 = C∞ (Rm) /J

as smooth algebras. Let
ϕ :W1 →W2

be a morphism in the category WeilR, so that there exists a morphism

←−ϕ : Rm → Rn

in the category Smooth such that the composition with ←−ϕ renders a mapping

C∞ (Rn)→ C∞ (Rm)

inducing ϕ. Let X ∈ Smooth and f, g ∈ Smooth (Rn, X). If

f ∼W1
g

then
f ◦←−ϕ ∼W2

g ◦←−ϕ
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Proof. Given any ς ∈ Smooth (Y,R), we have

ς ◦ (f ◦←−ϕ )− ς ◦ (g ◦←−ϕ )

= (ς ◦ f) ◦←−ϕ − (ς ◦ g) ◦←−ϕ

= (ς ◦ f − ς ◦ g) ◦←−ϕ ∈ J

since ς ◦ f − ς ◦ g ∈ I, and the composition with ←−ϕ : Rn → Rm maps I into J .

Corollary 5 The above procedure automatically induces a natural transforma-
tion

αSmooth

ϕ : TW1

Smooth
⇒ TW2

Smooth

Notation 6 Given an object W in the category WeilR, the restriction of the
functor TW

Smooth
to the category Mf is denoted by TW

Mf
. Given a morphism

ϕ : W1 → W2 in the category WeilR, the corresponding restriction of αSmooth
ϕ

is denoted by αMf
ϕ .

Remark 7 Weil functors
TW

Mf
: Mf →Mf

are given distinct (but equivalent) definitions and studied thoroughly in Chap-
ter VIII of [11] in the finite-dimensional case and §31 of [12] in the infinite-
dimensional case.

It is well known that

Proposition 8 We have the following:

1. Given an object W in the category WeilR, the functor

TW
Mf

: Mf →Mf

abides by the following conditions:

• TW
Mf preserves finite products.

• The functor
TR

Mf
: Mf →Mf

is the identity functor.

• We have
TW2

Mf
◦TW1

Mf
= TW1⊗RW2

Mf

for any objects W1 and W2 in the category WeilR.

2. Given a morphism ϕ : W1 → W2 in the category WeilR, αMf
ϕ : TW1

Mf
⇒

TW2

Mf
is a natural transformation subject to the following conditions:
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• We have
αMf

idW
= idTW

Mf

for any identity morphism idW :W →W in the category WeilR.

• We have
αMf

ψ · αMf

ϕ = αMf

ψ◦ϕ

for any morphisms ϕ : W1 → W2 and ψ : W2 → W3 in the category
WeilR.

• Given an object W and a morphism ϕ : W1 → W2 in the category
WeilR, the diagrams

TW
Mf
◦TW1

Mf

TW
Mf
◦ αMf

ϕ

⇒
TW

Mf
◦TW2

Mf

‖ ‖

TW1⊗RW
Mf

⇒
αMf

ϕ⊗RidW

TW2⊗RW
Mf

and

TW⊗RW1

Mf

αMf

idW⊗Rϕ

⇒
TW⊗RW2

Mf

‖ ‖

TW1

Mf
◦TW

Mf

⇒

αMf
ϕ ◦TW

Mf

TW2

Mf
◦TW

Mf

are commutative.

3. Given an object W in the category WeilR, we have

TW (R) =W

4. Given a morphism ϕ : W1 →W2 in the category WeilR, we have

αϕ (R) = ϕ

4 A New Kingdom for Differential Geometers

Notation 9 We introduce the following notation:

1. We denote by KSmooth the category whose objects are functors from the
category WeilR to the category Smooth and whose morphisms are their
natural transformations.

2. Given an object W in the category WeilR, we denote by

TW
Smooth

: KSmooth → KSmooth

the functor obtained as the composition with the functor

W ⊗R · : WeilR →WeilR

5



so that for any object M in the category KSmooth, we have

TW
Smooth (M) =M (W ⊗R ·)

3. Given a morphism ϕ : W1 →W2 in the category WeilR, we denote by

αSmooth

ϕ : TW1

Smooth
⇒ TW2

Smooth

the natural transformation such that, given an object W in the category
WeilR, the morphism

αSmooth

ϕ (M) : TW1

Smooth
(M)→ TW2

Smooth
(M)

is
M (ϕ⊗R idW ) :M (W1 ⊗R W )→M (W2 ⊗R W )

4. We denote by RSmooth the functor

R⊗R· : WeilR → Smooth

We have established the following proposition in [21] and [22].

Proposition 10 We have the following:

1. KSmooth is a category which is complete and cartesian closed.

2. Given an object W in the category WeilR, the functor

TW
Smooth

: KSmooth → KSmooth

abides by the following conditions:

• TW
Smooth

preserves limits.

• The functor
TR

Smooth
: KSmooth → KSmooth

is the identity functor.

• We have
TW1

Smooth
◦TW2

Smooth
= TW1⊗RW2

Smooth

for any objects W1 and W2 in the category WeilR.

• We have

TW
Smooth

(

MN
)

= TW
Smooth

(M)
T

W
Smooth

(N)

for any objects M and N in the category KSmooth.

3. Given a morphism ϕ : W1 →W2 in the category WeilR,

αϕ : TW1

Smooth
⇒ TW2

Smooth

is a natural transformation subject to the following conditions:
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• We have
αSmooth

idW
= idTW

for any identity morphism idW :W →W in the category WeilR.

• We have
αSmooth

ψ ◦ αSmooth

ϕ = αSmooth

ψ◦ϕ

for any morphisms ϕ : W1 → W2 and ψ : W2 → W3 in the category
WeilR.

• Given objects M and N in the category KSmooth, the diagram

TW1

Smooth
(M)

T
W1

Smooth
(N)

‖

TW1

Smooth

(

MN
)

αSmooth
ϕ (M)

T
W1

Smooth
(N)

−−−−−−−−−−−−−−−−−→
TW2

Smooth
(M)

T
W1

Smooth
(N)

αSmooth
ϕ

(

MN
)

↓ ր TW2

Smooth
(M)

αSmooth

ϕ (N)

TW2

Smooth

(

MN
)

‖

TW2

Smooth
(M)T

W2

Smooth
(N)

is commutative.

• Given an object W and a morphism ϕ : W1 → W2 in the category
WeilR, the diagrams

TW
Smooth

◦TW1

Smooth

TW
Smooth

◦ αSmooth
ϕ

⇒
TW

Smooth
◦TW2

Smooth

‖ ‖

TW⊗RW1

Smooth

⇒
αSmooth

idW⊗Rϕ

TW⊗RW2

Smooth

and

TW1⊗RW
Smooth

αSmooth

ϕ⊗RidW

⇒
TW2⊗RW

Smooth

‖ ‖

TW1

Smooth
◦TW

Smooth

⇒
αSmooth
ϕ ◦TW

Smooth

TW2

Smooth
◦TW

Smooth

are commutative.

4. Given an object W in the category WeilR, we have

TW
Smooth

(RSmooth) = RSmooth ⊗R W

5. Given a morphism ϕ : W1 →W2 in the category WeilR, we have

αSmooth

ϕ (RSmooth) = RSmooth ⊗R ϕ

7



5 From the Old Kingdom to the New One

Notation 11 We write

iSmooth : Smooth→ KSmooth

for the functor

iSmooth (M) :W ∈ ObjWeilR 7→ TW
Smooth

M ∈ ObjKSmooth

iSmooth (M) : ϕ ∈ MorWeilR 7→ αSmooth

ϕ (M) ∈MorKSmooth

provided with an object object M in the category Smooth, and

iSmooth (f) (W ) = TW
Smooth

f : TW
Smooth

M1 → TW
Smooth

M2

provided with a morphism f : M1 →M2 in the category Smooth and an object
W in the category WeilR. The restriction of iSmooth to the subcategory Mf is
denoted by

iMf : Mf → KSmooth

Theorem 12 Given an object W in the category WeilR, the diagram

Mf iMf
−−→

KSmooth

TW
Mf
↓ ↓ TW

Smooth

Mf
−−→
iMf KSmooth

is commutative.

Proof. Given an object M in the category Mf , we have

(

TW
Smooth

◦ iMf

)

(M)

= iMf (M) ◦ (W ⊗R ·)

= T
W⊗R·

Mf
M

= T·
Mf

(

TW
Mf
M

)

= iMf

(

TW
MfM

)

=
(

iMf ◦T
W
Mf

)

(M)

Given a morphism
f :M1 →M2
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in the category Mf , we have

(

TW
Smooth ◦ iMf

) (

f
)

= iMf

(

f
)

◦ (W ⊗R ·)

= TW⊗R·

Mf
f

= T·
Mf

(

TW
Mf
f
)

= iMf

(

TW
Mf
f
)

=
(

iMf ◦T
W
Mf

)

(

f
)

Theorem 13 Given a morphism ϕ : W1 → W2 in the category WeilR, the
diagram

iMf ◦T
W1

Mf

iMf ◦ α
Mf
ϕ

⇒
iMf ◦T

W2

Mf

‖ ‖

TW1

Smooth
◦ iMf

⇒
αSmooth
ϕ ◦ iMf

TW2

Smooth
◦ iMf

is commutative.

Proof. Given an object M in the category Mf , we have

(

iMf ◦ α
Mf

ϕ

)

(M)

= iMf

(

αMf

ϕ (M)
)

= T·
Mf

(

αMf

ϕ (M)
)

= αMf

ϕ (T·
Mf

(M))

= αSmooth

ϕ (iMf (M))

=
(

αSmooth

ϕ ◦ iMf

)

(M)

6 Microlinearity

Definition 14 Given a category K endowed with a functor TW : K → K for
each object W in the category WeilR and a natural transformation αϕ : TW1 ⇒
TW2 for each morphism ϕ :W1 → W2 in the category WeilR, an objectM in the
category K is called microlinear if any limit diagram D in the category WeilR
makes the diagram TDM a limit diagram in the category K, where the diagram
TDM consists of objects

TWM

9



for any object W in the diagram D and morphisms

αϕ (M) : TW1M → TW2M

for any morphism ϕ :W1 →W2 in the diagram D.

Proposition 15 Every manifold as an object in the category Smooth is mi-
crolinear.

Proof. This can be established in three steps.

1. The first step is to show that Rn is micorlinear for any natural number
n, which follows easily from

TW
MfR

n = TW
SmoothR

n =Wn

and
αMf

ϕ (Rn) = αSmooth

ϕ (Rn) = ϕn

for any morphism ϕ :W1 →W2 in the category WeilR.

2. The second step is to show that any open subset of Rn is microlinear in
homage to the result in the first step.

3. The third step is to establish the desired result by remarking that a smooth
manifold is no other than an overlapping family of open subsets of Rn.

The details can safely be left to the reader.

Theorem 16 The embedding

iSmooth : Smooth→ KSmooth

maps smooth manifolds to microlinear objects in the category KSmooth.

Proof. Let D be a limit diagram in the categoryWeilR. LetM be a smooth
manifold in the category Smooth. Given an object W in the category WeilR,
the diagram

(

TD
Smooth

(iSmooth (M))
)

(W ), which consists of objects

TW ′
⊗RW

Mf
M = TW⊗RW

′

Mf
M = TW ′

Mf

(

TW
Mf
M

)

for any object W ′ in the category WeilR and morphisms

TW1⊗RW
Mf

M αMf

ϕ⊗RidW
(M)

−−−−−−−−−→
TW2⊗RW

Mf
M

‖ ‖

TW⊗RW1

Mf
M TW⊗RW2

Mf
M

‖ ‖

TW1

Mf

(

TW
MfM

) −−−−−−−−−−→
αMf
ϕ

(

TW
MfM

)

TW2

Mf

(

TW
MfM

)

for any morphism ϕ : W1 → W2 in the category WeilR, is a limit diagram in
the category Smooth, because TW

Mf
M is a microlinear object in the category

Smooth in homage to Proposition 15. Therefore the diagramTD
Smooth

(iSmooth (M))
is a limit diagram in the category KSmooth thanks to Theorem 7.5.2 and Re-
marks 7.5.3 in [27].
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7 Transversal Limits

Definition 17 A cone D in the category Smooth is called a transversal limit diagram

if the diagram TW
Smooth

D is a limit diagram for any object W in the category
WeilR. In this case, the vertex of the cone is called a transversal limit.

It is easy to see that

Proposition 18 A transversal limit diagram is a limit diagram, so that a
transversal limit is a limit.

Proof. Since
TR

SmoothD = D

for any cone D in the category Smooth, the desired conclusion follows imme-
diately.

What makes the notion of a transversal limit significant is the following
theorem.

Theorem 19 The embedding

iSmooth : Smooth→ KSmooth

maps transversal limit diagrams in the category Smooth to limit diagrams in
the category KSmooth.

Proof. This follows directly in homage to Theorem 7.5.2 and Remarks 7.5.3
in [27].

Now we are going to show that the above embedding preserves vertical Weil
functors, as far as fibered manifolds are concerned. Let us recall the definition
of vertical Weil functor given in [17].

Definition 20 Let us suppose that we are given a left exact category K endowed
with a functor TW : K → K for each object W in the category WeilR and a
natural transformation αϕ : TW1 ⇒ TW2 for each morphism ϕ : W1 → W2

in the category WeilR. Given a morphism π : E → M in the category K,

its vertical Weil functor
−→
TW (π) is defined to be the equalizer of the parallel

morphisms

TW (E)
TW (π)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−→
TW (π)TW (M)

−−−−−−−−→
αW→R (M)TR (M)

−−−−−−−−→
αR→W (M)

TW (M)

Lemma 21 The equalizer of the above diagram in the category Smooth is
transversal, as far as π : E → M is a fibered manifold in the sense of 2.4 in
[11].

Proof. The proof is similar to that in Proposition 15.
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1. In case that E = Rm+n, M = Rm, and π is the canonical projection, the
equalizer is the canonical injection

Rm ×Wn →Wm+n = TW (E)

and it is easy to see that it is transversal.

2. Then we prove the statement in case that E = U × V , M = U , and π is
the canonical projection, where U is an open subset of Rm, and V is an
open subset of Rn.

3. The desired statement in full generality follows from the above case by
remarking that the fiber bundle π : E →M is no other than an overlapping
family of such special cases.

The details can safely be left to the reader.

Theorem 22 Given an object W in the category WeilR and a fibered manifold
π : E →M in the category Smooth, we have

iSmooth

(−→
TW

Smooth
(π)

)

=
−→
TW

Smooth
(iSmooth (π))

Proof. In homage to Theorems 12 and 13, the functor iSmooth maps the
diagram

TW
Smooth (E)

TW
Smooth (π)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−→
TW

Smooth
(π)TW

Smooth
(M)

−−−−−−−−−→
αSmooth

W→R
(M)TR

Smooth
(M)

−−−−−−−−−→
αSmooth

R→W (M)
TW

Smooth (M)

in the category Smooth into the diagram

TW
Smooth (iSmooth (E))

TW
Smooth

(iSmooth (π))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→
TW

Smooth
(iSmooth (π))TW

Smooth
(iSmooth (M))

−−−−−−−−−−−−−−−−−→
αSmooth

W→R
(iSmooth (M))TR

Smooth
(iSmooth (M))

−−−−−−−−−−−−−−−−−→
αSmooth

R→W (iSmooth (M))

TW
Smooth (iSmooth (M))

in the categoryKSmooth. Since the equalizer of the former diagram is transversal
by Lemma 21, it is preserved by the functor iSmooth by Theorem 19, so that
the desired result follows.

Corollary 23 Given a morphism ϕ : W1 → W2 in the category WeilR and a
fibered manifold π : E →M in the category Smooth, we have

iSmooth

(

−→α
Smooth

ϕ (π)
)

= αSmooth

ϕ ((iSmooth (π)))
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