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Mapping of QTLs underlying flowering time in sorghum [Sorghum bicolor (L.)

Moench]
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Due to its critical importance in crop yield, the photoperiodic regulation of flowering time is considered an
important trait in sorghum breeding programs. In this study, quantitative trait loci for flowering time were
detected using an F, population derived from a cross between Kikuchi Zairai, a late-flowering cultivar orig-
inating from Japan and SC112, an early-flowering cultivar originating from Ethiopia. F, plants were grown
with their parents under a natural day length and a 12 h day length. Two linkage maps were constructed using
213 simple sequence repeats markers. Nine quantitative trait loci controlling flowering time were identified
in F, plants grown under a natural day length, whereas 7 QTLs were identified under a 12 h day length. Five
QTLs controlling flowering time were shared under both of the day length conditions.
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Introduction

Sorghum [Sorghum bicolor (L.) Moench] is an important
food source for the world’s poorest people who inhabit food-
insecure regions worldwide, and sorghum has unique prop-
erties that make it well suited for food use. Some sorghum
varieties are rich in antioxidants and all sorghum varieties
are gluten-free and attractive alternatives for those who suf-
fer from wheat allergy (Harris et al. 2007). Farrel et al.
(2006) suggested that sorghum will be of increasing impor-
tance to feed the world’s expanding populations. Sorghum is
also an important animal feed used in many countries, such
as the US, Mexico, South America, Australia and Japan
(Mekbib 2007). Moreover, sorghum is a biofuel crop of
growing importance and is currently the second source of
grain-based ethanol in the US after maize. As much as 12%
of sorghum production is used to produce ethanol and its
various co-products (Scheinost ez al. 2001, Wagoner 1990).

Sorghum was first domesticated in Ethiopia and is dis-
tributed widely throughout tropical, subtropical and temper-
ate environments (Teshome ef al. 2007). The adaptation in
sorghum to a broad range of growing conditions is mainly in
response to the photoperiod (Chanterau ez al. 2001). Flower-
ing time is an important adaptive character that impacts the
yield and quality of crop plants. Furthermore, flowering is a
crucial event in the life cycle of seed-propagated plants be-
cause of its key role in the adaptation of a plant to its envi-
ronment by tailoring the vegetative and reproductive growth
phases to the local climate (Buckler et al. 2009).
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Childs et al. (1997) reported that a series of six maturity
genes was found to alter flowering time in sorghum: May,
Ma,, Mas, May, Mas and Mag. The four maturity genes Ma,—
Ma, inhibit flowering under long-day conditions, whereas
they promote flowering under short-day conditions. Muta-
tions in Ma, cause the greatest reduction in the sensitivity to
long days and mutations in Ma,, Ma; and Ma, generally
have small effects on the sensitivity to long days (Quinby
1967); however, even sorghum varieties with recessive ma,
ma, and ma; alleles flower later under long-day condition
than under short days (Pao and Morgan 1986). The genes
Mas and Mag represent a special case because they very
strongly inhibit floral initiation, regardless of the day length,
only when both are present in the dominant form (Childs et
al. 1997).

Childs et al. (1997) reported that Mas is one of six genes
that regulate the photoperiodic sensitivity of flowering in
sorghum. To provide evidence that Maj; is synonymous with
PHYB, these authors mapped PHYA-, PHYB-, PHYC- and
Mas-linked molecular markers and then sequenced the three
phytochrome genes, demonstrating that ma;® in sorghum
contains a mutation in PHYB. As a result, Childs et al.
(1997) observed that Maj; encodes the apoprotein of phyto-
chrome B. Recently, Murphy et al. (2011) identified that
Ma, is the pseudoresponse regulator protein 37 (PRR37)
through the positional cloning and analysis of SbPRR37
alleles that modulate flowering time in sorghum produced
for grain and biofuel. Many QTLs controlling flowering
time were identified in previous studies. Chanterau et al.
(2001) investigated the genetic control of flowering time in
sorghum using an RIL population derived from a cross be-
tween IS2807, a slightly photoperiod-sensitive tropical
caudatum landrace and TS7680, a highly photoperiod-
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sensitive tropical guinea landrace. Emphasis was placed on
identifying the most relevant trait to account for the basic
vegetative phase and photoperiod sensitivity.

Using an RIL population of sorghum derived from the
cross between 296B and IS18551, Srinivas et al. (2009) de-
tected nine QTLs controlling flowering time: two QTLs on
SBI-01, two QTLs on SBI-02 and one QTL each on SBI-03,
SBI-05, SBI-06, SBI-07 and SBI-08. The phenotypic varia-
tion explained by each QTL ranged from 6.1 to 13.5%. The
QTL detected on SBI-01 (gDan-sbi01-2) explained 13.5%
of the phenotypic variation and was considered to be a major
QTL controlling flowering time in sorghum.

Despite extensive analysis of the day length control of
flowering in sorghum (Chanterau et al. 2001, Srinivas et al.
2009), little is known with regard to the effect of variations
in the photoperiod or day length on the sorghum flowering
time (Menz et al. 2002). Such effects are a major concern to
breeders because understanding the genetics of flowering
is essential to adapt the life cycle of sorghum to the agro-
environments in which it is grown. Although genetic studies
are inconclusive as to the number of genes and the type of
gene action involved in determining the flowering time and
sensitivity to photoperiod, a series of studies based on differ-
ent types of populations have identified quantitative trait loci
(QTLs) that are associated with flowering time in sorghum.
In contrast, the QTLs controlling the sensitivity to photo-
period changes have not been described in detail or under a
wide range of photoperiodic conditions.

SSR markers are effective at detecting the genotypic vari-
ation caused by a high degree of polymorphism (Yonemaru
et al. 2009) and SSR markers with a high degree of polymor-
phism contribute to the genetic dissection of agriculturally
important traits in sorghum. Furthermore, the construction
of linkage maps is fundamental to identify the chromosomal
location of genes controlling flowering time in sorghum, and
genetic studies of flowering time culminated in the identifi-
cation of genes that influence flowering time in sorghum. To
gain a better understanding of the genetic control of flower-
ing time in sorghum, we conducted QTL analysis of the
flowering time using SSR markers.

Materials and Methods

Mapping population

A set of 144 F, plants were developed from the cross be-
tween Kikuchi Zairai (Japan, late-flowering cultivar) and
SC112 (Ethiopia, early-flowering cultivar) selected from a
diversity research set of sorghum germplasm (Shehzad et al.
2009). The F, plants and their parental cultivars were sown
in early May 2008 in the experimental field of Tsukuba Uni-
versity under a natural day length, with a planting density of
1.5m x 20 cm. During the growing season, the day length
was 14.25h in May, 14.40 h in June, July and August and
13h in September, decreasing to 12.5h after September.
The F, plants and their parents were also grown during the
growing season (May—November) in a controlled 12 h day

length facility in 2008. Standard agronomic practices were
applied from sowing to harvest. The days to flowering were
scored as the number of days from sowing to the time when
50% of the panicle had flowered.

Genomic DNA isolation

The leaves of 40-day-old plants were sampled and used
for genomic DNA isolation. Extraction of DNA from leaf
tissues was based on the CTAB method described by Murray
and Thomson (1980), with modifications. The extraction
buffer was composed of 2% CTAB, 50mM Tris-HCl
(pH 8), 10 mM EDTA, 0.7 M NaCl, 0.1% SDS, 0.1 mg/ml
proteinase K, 2% insoluble PVP and 2% 2-mercaptoethanol.
To remove the cellular debris and proteins, we used
chloroform-isoamyl alcohol (24 : 1 v/v) extraction. The DNA
was then precipitated by adding 2-propanol and the precipi-
tate was rinsed with 70% and then 95.5% ethanol. The final
precipitate was dissolved in 50 pl 1/10 TE and stored at 4°C.

Screening for SSR markers

Microsatellite primers were selected from the genome-
wide simple sequence repeats markers developed by
Yonemaru et al. (2009) using whole-genome shotgun se-
quences of sorghum. A total of 580 genome-wide SSR
markers were randomly selected from all ten of the sorghum
chromosomes and screened for the detection of poly-
morphisms between the parental cultivars of the F, mapping
population. Overall, 213 markers were polymorphic and
were used for constructing linkage maps.

PCR conditions and electrophoresis

PCR amplifications of the sorghum SSRs were per-
formed in a 10 pl reaction mixture containing 10 ng DNA
template, 10 x PCR buffer (Mg?" concentration: 20 mM),
2 mM dNTP, 25 ng each primer and 0.02 U Blend Taq Plus
polymerase enzyme using Applied Biosystems 9700 and
2700 thermal cyclers. The annealing temperature was deter-
mined for all of the markers using the mean of the Eppendorf
MasterCycler ep gradient S. The thermal cycler protocol
consisted of denaturation at 94°C for 5 min, 35 cycles of
94°C, 55 to 65°C and 72°C, followed by 7 min at 72°C and
cooling at 10°C. The PCR products were analyzed on 30%
acrylamide gels (10 cm in size) using a constant voltage of
200 V and current of 500 mA for 75 to 110 min, depending
on the size of the PCR product. TBE buffer (10x) was used
for casting the gel and 1x TBE buffer was used during elec-
trophoresis; the gel was stained with ethidium bromide solu-
tion for 5 to 10 min and photographed using a Kodak Digital
Science EDAS 290 ver. 3.6 with Kodak ID Image analysis
software ver. 3.5. Different bands for the same SSR primer
were grouped according to their respective size by compari-
son with a 50 bp ladder DNA size marker.

Construction of genetic linkage map and mapping of QTLs
controlling flowering time
Two linkage maps were constructed for F, plants grown
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under natural day length and under controlled day length
using the computer software MAPMAKER version 3.0
(Lander et al. 1987). MAPMAKER performs full multipoint
linkage analyses (simultaneous estimation of all of the re-
combination fractions from the primary data). The linkage
groups identified were considered not to be linked if the dis-
tance between the flanking markers was greater than 35 cM.
The map distances (in centimorgans) were calculated using
the Kosambi mapping function. QTL analysis was per-
formed with the composite interval mapping (CIM) method
of Windows QTL -cartographer (WinQTL) version 2.5
(Wang et al. 2004). The LOD threshold for declaring the
presence of a QTL for the trait-environment combination
was defined by the 1000 permutation test at >2.5. The posi-
tion at which the logarithm of the odds (LOD) score curve
reached its maximum was used as the estimate of the QTL
location. The value of the additive effect of each QTL peak
LOD score position was computed. The percentage of the
phenotypic variance explained by a QTL was estimated as
the coefficient of determination (R?) using single-factor
analysis from a general linear model procedure (Wang et al.
2004). QTLs detected for the different day length environ-
ments were considered to be the same if the estimated map
position of their peaks fell within 20 ¢cM of each other.

Results

Phenotypic data analysis

The days to flowering varied widely among the parental
accessions and F, plants grown under a natural day length,
whereas the male parent, SC112, and the female parent,
Kikuchi Zairai, flowered 67 and 132 days after sowing, re-
spectively. The frequency distribution for the flowering time
in F, plants ranged from 68 to 135 days and was almost with-
in the variation of their parents (Fig. 1). The analysis indicat-
ed considerable differences between the parental cultivars
and their F, plants with regard to the variation in flowering
time. Under 12 h day length, the number of days to flower-
ing was 58 days for SC112 and 102 days for Kikuchi Zairai,
and the variation in the flowering time among F, plants
ranged from 56 to 71 days (Fig. 2).

Linkage mapping and identification of QTLs controlling
flowering time

Of the 580 markers screened using the parental cultivars
Kikuchi Zairai and SC112, 213 SSR primers generated poly-
morphic bands and showed a clear and polymorphic banding
pattern between the parental cultivars. The polymorphic
SSR markers were used for the construction of linkage maps
and the mapping of the QTLs controlling flowering time in
the F, population under natural day length and 12 h day
length.

The final map constructed using F, plants grown under
natural day length included 178 SSR markers that were dis-
tributed throughout 17 linkage groups, spanning a length of
2468 cM (Fig. 3). The linkage groups were assigned to the
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Fig.1. Variation in flowering time in F, plants and their parents grown
under natural day length (P1: SC 112, P2: Kikuchi Zairai)
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Fig.2. Variation in flowering time in F, plants and their parents grown
under 12 h day length (P1: SC 112, P2: Kikuchi Zairai)

ten chromosomes based on the positioning of the mapped
SSRs described by Yonemaru ef al. (2009) and the linkage
group nomenclature followed the chromosome naming sug-
gested by Kim ef al. (2005). The coverage of the SSR mark-
ers was relatively equal across all of the chromosomes. The
number of markers represented per individual chromosome
ranged from 6 on chr 6b to 18 on chr 1. The average number
of markers mapped to each chromosome was 10. The dis-
tance between the markers ordered at a LOD score >2.5
ranged from 2.8 to 33.1 cM, with an average distance of
14 cM between the markers. The distance covered by the
markers ranged from 55.9 cM on chr 1b to 225.6 cM on chr 1.

The second linkage map was constructed in a similar
fashion using F; plants grown under 12 h day length and in-
cluded 175 SSR markers, covering a total genetic distance
estimated at 2340 cM (Fig.4). The coverage of the SSR
markers was relatively equal across all of the chromosomes.
The linkage groups ranged from 42.3cM on chr 1b to
225.7cM on chr 1 and were assigned to the ten chromo-
somes. The number of markers represented per individual
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Fig.3. Location of QTLs for flowering time measured in this study on a genetic linkage map based on F, mappinjg population grown under
natural day length. QTLs are represented by bars (1-Lod interval) and extended lines (2-LOD interval).

chromosome ranged from 6 on chr 1b and chr 6 to 18 on chr
1. The average number of markers mapped to each chromo-
some was 10. The distance between the markers ordered at
LOD score >2.5 ranged from 5 to 31 cM, with an average
distance of 13 cM between the markers.

Using CIM analysis with a 1000 permutation test, 9
QTLs controlling flowering time were identified in F, plants
grown under natural day length (Table1): ¢FTI-I and
qFTI-2 on chr 1, gFT2 on chr 2, gFT3 on chr 3, gFT5b on
chr 5b, gFT7 on chr 7, gFTS on chr 8, gF'T8b on chr 8b and

qFT10 on chr 10. These QTLs were mapped with an additive
effect that ranged from (3.5) for gFTI-1 to (6.4) for gFT5b
and a dominance effect that ranged from (-7.5) for ¢FT8 to
(9.7) for gFT2. The phenotypic variation explained by each
QTL ranged from (3.4%) for gFT1-2 to (9.2%) for gFT2, as
shown in Table 1. The 9 QTLs identified under the natural
day length explained 60% of the total phenotypic variation
and were mapped with a LOD score ranging from 2.6 for
qFTI-1to 6 for gFT2.

Under 12h day length, 7 QTLs controlling flowering



QTLs for flowering time in sorghum

chrl chr1b chr2
$B259 ——0.0 0.0 SB313 0.0 —— SB1370
10.0 SB269  10.0 —-{—SBI359
SB209 ——176 163 §B321  18.0 ——SBl431
253 SB34 25.0 —1—SB1449
SBOO TT336 383 SB264 350 ——SB1362
423 SB26 460 —{—SBLa3Z
SB171 —-—58.9 58.0 ——SBI406 -
SB67 ———69.9 IE
$B229 —-—3802 77.1 —— SB1512
SB72 ——90.4 90.1 ——— SB1599
SB186 ——1—101.0 AL
SB10S —H—1092 105.1 SB1558
SB28E 1182 1221 ——SB1539
SBL09 —17—130.2 1321 —-{—SB1§79
SB127 T MLs 1451 —H—SB1621
SB526 ——152.0 1521 —[—SB1595
737 SBS96 —1—165.0 162.1 —1— SB1493
::i i
=
R 1841 —5—SB1508
SBS00 00.0
SB632 —-—2100
SBS4T 2257
chr4 chr4b chrs
0.0 ——SB2800 0.0 SB2866 0.0 —— SB3L78
9.0 SB2433
22,0 —{-—5B2380 200 SB2938  19.6 ——— SB312§
370 SB29s2  34.6 ———SB318L
47.8 ——SB2992 00— spaars
579 | T SB3039 4o
68.8 —{-—SB2505  68.0 SB2453 669 —1—SB3201 1
769 ——— SB3364
L8 T SBIT 5oy $B2405
92.9 ——SB3163
98.8 —[1—SB2489 99,0 SB2418
109.8 ~{—— SB2550 1069 —— SB3013
115.8 —J7— SB2470 1189 ——SB3074
123.8 — 1 SB2902 B
135.8 —— 5B2370 1307
145.8 ——SB2439 11— saaist
170.5 ——SB2998
1035 —— 5B2626
chr7 chr8 chr8b
00 ——SB4228 00 —{7—SB4306 00— SB4616
110 —[~SB3861 120 —1—SB4661
212 ~1—SB4277
270 —1—8B4017 o'y | spygag 250 T SB44ST
36.0 — [ SB4654
49.0 ~-—sB409g 450 T[T SBI36 466 —1—SB4S2E
54,0 —[~SB3948  55.0 — [ SB4292
640 —1~SBA024 g6 —-|-spasay L6 [ SBSTS
73.6 —-{— SB4136 747 = saséo
850 —[SB4366 462 —1—SB4SIO
92.6 ——— SB4152
1021 T SBGLT 405 0 smades
1127 —[[—SB4lI2 ]3] ——SB431S
123.0 —— SB3991
129.4 —o— SB4670
137.0 —-{— SB4168
159.8 —1— SB4120
172.8 —— 5B3996

155

chr2b chr3 chr3b
0.0 SB1314 0.0 —{—SB1799 0.0 —— SB1637
13.0 —{-— SBI549
189 T SBI6SS 23.0 ——SB1628
BL4S .0 —H— SB1650
30 sm:s: 39.9 ——SB1751 330
80 185~ SB1688
57.5 ~-}-SB1774 52.0 —— SB1651
63.0 —TSBLO48 63 —[1—SBL746
73.1 —{—— SB1694 70.0 ——SB1633
——SB1923
85.0 —1—SB1070 - 80.0
o1l ——
.0 —— SB1876
102.0 ——— SB1109 I—:_,' 96.0
1141 ——sp1779 ¥ 1110 —[[—SBI1893
—o—SB1949
1361 —o—SB1822 1L =

chr5b chr6 chr 6b
0.0 —F—SB3266 0.0 —— SB3500 0.0 —F—SB3392 l‘
&
220 —[ 7~ SB3280 20— SBINS 252 —|-smanas 0
0.0 —{——SB3371 A
0.0 430 SBI664 g ——sBIsBY
59.0 —[—SB31S0 631 —[—SB380S 542 —1—SB3489
720 [ SB3117 F 731 —1T-SB3764 455 1 sBaga3
B
93.4 —H—sB33ge 15 908 ———SBISYE
100.8 ——— SB3735
108.8 —|-—SB3630 1055 ———SB3ds2
115.6 —o— SB3258 117.8 ~ |- sB3s4s
1235 = SB3744
1342 —— SB3688
1492 —— SB3653

chr9 chr10
0.0 —f7—SB4706 0.0 —f—SBSS12
17.8 ——SB5040
261 —— SBS535
33.0 —|-{—SB4747
46.3 ~1—SB4836
549 - SBAGSS o651 1-sBs3I6
61.9 — 1 SB4671
68.9 —[—SB4956
831 —-—SB4s09 814 — T SBS440
1019 ——SB4733  99.1 —[—SBS274
114.4 —1—SBS526
1252 ——SB4925 1234 ——SBSS44
134.4 —— SBS596
F
=
152.9 ——SBS142 1S
173.9 —5—SB5210

Fig.4. Location of QTLs for flowering time measured in this study on a genetic linkage map based on F, mappinjg population grown under 12 h
day length. QTLs are represented by bars (1-Lod interval) and extended lines (2-LOD interval).

time were identified (Table 2). Among these QTLs, gFT1-2
onchr 1, ¢gFT2 onchr 2, gFT3 on chr 3, gFT5b on chr 5b and
qFTI10 on chr 10 were similarly identified under natural day
length. Nevertheless, gFT5 on chr 5 and ¢gFT6b on chr 6b
were mapped only under 12 h day length. The 7 QTLs deter-
mined under 12 h day length explained the additive effect
that ranged from (1.2) for gFT6b on chr 6b to (4.43) for
qFT5b on chr 5b and the dominance effect that ranged from
(—10.2) for gFT2 on chr 2 to (—4.2) for gFT3 on chr 3. The
phenotypic variation explained by each QTL ranged from

(4.1%) for gFTI-2 on chr 1 to (8.8%) for ¢gFT10 on chr 10
(Table 2). The 7 QTLs identified under 12 h day length ex-
plained 46.6% of the total phenotypic variation.

Accordingly, five QTLs were mapped under natural and
12 h day lengths; however, gFT5 on chr 5 and gFT6b on chr
6b were identified only under 12 h day length and explained
only 11.2% of the phenotypic variation. Furthermore, gF71-
1 on chr 1, gFT7 on chr 7, gFT8 on chr 8 and gFT8b on
chr 8b were identified only under natural day length and ex-
plained 27.1% of the phenotypic variation.
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Table1. QTLs identified under natural day length

Map .. .

QTL Chr Interval position LOD Additive Domi-  Var.

effect”  nance Exp’
(cM)

qFTI-1 Chrl1 SBI105 112.0 2.6 3.5 =5.1 53
SB258 1203

qFTI-2 Chr1  SB596 170.3 4.2 3.7 —4.0 34
SB666 181.9

qgFT2 Chr2 SB1406 60.2 6 5.7 9.7 9.2
SB1512 81.0

qFT3 Chr3 SBI1839 101.7 5.6 5.1 24 63
SB1779 123.1

qFT5b Chr5b SB3117 71.5 6.5 6.4 -7.1 6.5
SB3369 101.3

qgFT7 Chr7 SB4017 34.7 5.0 3.6 -6.0 7.3
SB4096 53.0

qFT8 Chr8 SB4292 55.1 2.7 52 =15 6.8
SB4327  64.9

qFT8b Chr8b SB4660 112.7 4.8 3.6 —6.2 7.7
SB4540 141.6

qFTI0 Chr10 SB5596 1353 43 6.0 54 7.5
SB5142 1554

a CS112 alle decreased the number of days to flowering.
b Phenotypic variation explained by each QTL.

Table2. QTLs identified under 12 h day length

Map .. .

QTL Chr Interval position LOD Additive Domi-  Var.

effect  nance Exp®
(cM)

qFTI-2 Chr1  SB596 1650 3.2 4.1 -7.3 4.1
SB666 180.0

qFT2 Chr2 SB1406 58.0 4.8 2.2 -10.2 8.3
SB1512 77.1

qgFT3 Chr3 SB1839 91.1 6.1 4.4 —4.2 7.0
SB1779 114.1

qgFT5 Chr5 SB3039 57.9 5.7 2.3 =5.1 6.2
SB3201 66.9

qFT5b Chr5b SB3117 72.0 6.2 4.4 -7.2 7.2
SB3369 93.4

qFT6b Chr6b SB3392 00 28 1.2 -8.2 5.0
SB3733 25.2

qFtl10  Chr10 SB5596 1344 49 5.5 -6.3 8.8
SB5142 1529

@ CS112 alle decreased the number of days to flowering.
b Phenotypic variation explained by each QTL.

Discussion

In the present study, we analyzed the QTLs underlying flow-
ering time in the sorghum cultivars Kikuchi Zairai and
SC112 and their F, plants grown under conditions of both
natural and 12 h day lengths. A wide variation in flowering

Table3. List of QTLs controlling flowering time in sorghum detected
in previous studies and the present study

Chr Marker Mapping population Authors
1 SB596 Kikuchi Zairai x SC 112 Present study (qFT1-2)
1 Dsenhsbm 13 RIL (296B x IS18551)  Srinivas ef al. 2009
2 Xtxp298 RIL (296B x IS18551)  Srinivas et al. 2009
2 SB1406 Kikuchi Zairai x SC 112 Present study (qFT2)
3 Dsenhsbm 87 RIL (269B x IS18551)  Srinivas et al. 2009
3 SBI1839 Kikuchi Zairai x SC 112 Present study (qFT3)
5 SB3125 Kikuchi Zairai x SC 112 Present study (qFT5)
5 Xtxp23 RIL (296B x IS18551)  Srinivas ef al. 2009
5 SB3117 Kikuchi Zairai x SC 112 Present study (qFT5b)
6 SB3392 Kikuchi Zairai x SC 112 Present study (qFT6b)
6 GlumeT RIL (296B x IS18551)  Srinivas ef al. 2009
7* SB4096 Kikuchi Zairai x SC 112 Present study (qFT7)
7  Xtxp312 RIL (296B x IS18551)  Srinivas ef al. 2009
8* SB4292 Kikuchi Zairai x SC 112 Present study (qFT8)
8  Xtxp292 RIL (296B x IS18551)  Srinivas et al. 2009
8 SB4660 Kikuchi Zairai x SC 112 Present study (qFT8b)
10*¥ SB5596 Kikuchi Zairai x SC 112 Present study (qFT10)
10 UMC 113 RIL (IS2807 x 249) Dufour 1996
10 UMC113 RIL (IS2807 x IS7680) ~Chanterau et al. 2001

* New QTLs (identified in the present study).

time was noted among the parental cultivars and their F,
plants under natural day length. The F, population demon-
strated transgressive segregation for flowering time, which
can be caused by both of the parental cultivars contributing
favorable or unfavorable alleles for flowering time or a
breakage of the linkage between favorable and unfavorable
alleles, in addition to the failure to declare small QTLs sta-
tistically. The normal distribution signified the continuous
genetic variation that exists between F, plants.

Although a smaller range of variation in flowering time
under 12 h day length was found for F, plants, all of the
plants flowered earlier under 12 h day length than when
grown under natural day length. The decrease in days to
flowering under 12 h day length suggested that sorghum is a
short-day plant and flowers most rapidly when illuminated
for fewer hours per day (Craufurd et al. 1999). These results
were also reported previously by Garner and Allard (1923)
who showed that flowering in sorghum was accelerated by a
daily reduction of the day length. In the present study, flow-
ering in a larger number of F, plants was accelerated under
12 h day length when compared to the flowering time of
the early-flowering Ethiopian cultivar. Accordingly, the
Japanese cultivar allele appeared to delay the flowering time
under natural day length, whereas the Ethiopian cultivar
allele suppressed the delayed effect on flowering by the
Japanese cultivar allele and accelerated flowering under 12 h
day length. Under 12 h day length, the Ethiopian cultivar
flowered nine days earlier than under natural day length and
the Japanese cultivar flowered 30 days earlier.
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The linkage maps constructed in this study are most
likely among the rare sorghum genetic linkage maps con-
structed entirely of SSR markers. In contrast, the available
sorghum genetic linkage maps are based mainly on RFLPs
or a combination of different markers types, especially
RFLPs with other marker types, such as SSRs (Chanterau et
al. 2001, Menz et al. 2002), AFLPs, RAPDs (Haussmann et
al. 2002) and DArTs (Mace et al. 2009). However, under
both of the day length conditions, the total map length was
larger than the range previously reported: the distances be-
tween the adjacent markers are larger in our map than in pre-
viously published maps. This result may be due to the segre-
gation pattern of the genotypic data and the type of SSR
markers used in this study; most of the markers were highly
distorted and skewed. The SSR markers used were more af-
fected by distortion than the other markers used in previous
studies. Most of the markers showed 3 : 1 segregation ratio,
and markers with unclear polymorphism were excluded to
minimize scoring errors; however, the physical distance be-
tween the selected markers was relatively large compared
with previous maps.

Five QTLs controlling flowering time were detected un-
der both natural and 12 h day lengths, whereas gFT/-1 on
chr 1, gFT7 on chr 7, gFT8 on chr 8 and gFT8b on chr 8b
were detected only under the natural day length. These four
QTLs were considered to be sensitive to the photoperiod due
to the response to the change in day length. These QTLs ex-
plained 27.1% of the total phenotypic variation and con-
trolled the photoperiodic sensitivity, as a discrepancy in the
day length or photoperiod was required for their expression.
Conversely, gF'T5 on chr 5 and gFT6b on chr 6b were iden-
tified only under 12 h day length and were expressed under
a fixed day length, suggesting that their expression was not
affected by the change in day length and that they were in-
sensitive to the photoperiod.

The 9 QTLs identified under natural day length explained
60% of the variation of the flowering time. The 7 QTLs
identified under 12 h day length explained 46.6% of the vari-
ation of the flowering time, which explains the complex ge-
netic nature of the flowering time in sorghum and the possi-
bility of environmental influences on this trait.

In this study, positive additive effects suggested that the
alleles of SC112 contributed to the earliness of the flowering
time of F, plants. Furthermore, the small additive effects of
individual QTLs indicated the complexity of the genetic
control of flowering time in sorghum.

These results are similar to the finding of a study con-
ducted by Srinivas et al. (2009) in which nine QTLs control-
ling flowering time were identified in sorghum, with very
small additive effects ranging from 1.24 to 1.96. These re-
sults are also similar to the finding of Mace et al. (2012) who
described that small additive effects of QTLs controlling
morphological traits can be explained by the smaller herita-
bility of flowering time.

Similarly, Buckler ef al. (2009) studied the variation in
flowering time with a set of 5000 recombinant inbred lines

(maize Nested Association Mapping population, NAM) and
explained that one million plants were assayed in eight envi-
ronments but showed no evidence of any single large-effect
QTLs. Indeed, the authors identified 36 QTLs that explained
89% of the total variance of the flowering time in maize.
Buckler ef al. (2009) identified evidence of numerous small-
effect QTLs shared among families; however, allelic effects
differ across founder lines. In their study, no major QTLs
were identified at which allelic effects were determined by
the geographic origin or large effects of epistasis or environ-
mental interactions. On the basis of these results, Buckler et
al. (2009) suggested that in outcrossing species maize, the
genetic architecture of flowering time is dominated by small,
additive QTLs, concluding that a simple additive model ac-
curately predicts flowering time in maize, in contrast to the
genetic architecture observed in rice and Arabidopsis.

These findings in maize described by Buckler et al.
(2009) strongly support the results of the present study be-
cause Buckler ef al. (2009) concluded that there were two
different types of genetic architecture of flowering time in
plants: one based on numerous small-effect QTLs control-
ling flowering time in outcrossing species, (maize) and
another type based on a single large-effect QTL in rice and
Arabidopsis.

Numerous QTLs controlling flowering time in sorghum
have been identified in previous studies (Crasta et al. 1999,
Dufour 1996, Feltus et al. 2006, Hart et al. 2001, Lin et al.
1995, Paterson et al. 1995, Srinivas et al. 2009); however,
no QTL controlling flowering time or sensitivity to photo-
periodic changes with a major effect was identified in previ-
ous studies of sorghum. Moreover, it is expected that new re-
combinations will help to identify new QTLs; therefore, we
compared our results with previous studies on flowering
time and photoperiodic responses in sorghum to account for
possible new QTLs in addition to the QTLs previously iden-
tified (Table 3).

qFT2 on chr 2 was mapped to a position adjacent to that
mapped by Srinivas et al. (2009), as shown in Table 3 and
qFT3 (101.7-123.1 cM) was mapped to a position adjacent
to the QTL mapped on chr 3 by Srinivas et al. (2009). The
QTLs identified on chr 5 in this study (¢FT5 and gFT5b)
were located at the same physical positions as the QTLs re-
ported by Srinivas et al. (2009).

However, no QTLs were mapped to the same genomic re-
gions as gF7T7 (34.7-53.0 cM) and ¢FT10 (134.4-152.9 cM)
in previous studies. In addition, no QTL controlling flower-
ing time in sorghum was reported in previous studies on
chr 8 at the same position as gF'Tg delimited by SB4292 and
SB4327 on chr 8 in this study. Therefore, gFT7 qF T8 and
qFT10 mapped in the present study on chr 7, chr 8 and chr 10,
respectively, are considered to have been newly mapped,
as they were not reported in previous studies (Table 3). In
addition, gFT8b was previously mapped by Srinivas ef al.
(2009). The map location of genes involved in the photo-
periodic response in sorghum will be discussed in compari-
son with rice genes involved in photoperiodic responses. The
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region on chr 8 of sorghum, which carries a photoperiod
QTL, aligns with a region on chr 6 of rice between SSR
marker locus RZ144 and isozyme pgi-2, which is linked
to Se-1, a major photoperiod sensitivity gene in rice (Yano
et al. 1997).

Recently, Murphy et al. (2011) reported that Ma, has the
largest impact on flowering time in sorghum. Thus, we can
suggest that the Ethiopian cultivar might promote flowering
time via the effect of Ma, or its homologs. In addition, Lin e?
al. (1995) mapped the QTL (FlrAvgDIl =QMal.ugaD)
linked to SBIO6 (31-59 cM) and suggested that this QTL
corresponded to Ma,. Using genotypes known to segregate
for May, Klein et al. (2008) showed that Ma; mapped to an
adjacent region on SBI-06 (approx. 11-21cM). In the
present study, gFT6b was mapped in the region delimited by
SB3392 and SB3733 (0.0-25.2 c¢cM) on chr 6b under 12 h
day length and could correspond to the Ma, allele because it
was mapped to a region adjacent to SBI-06 (Klein et al.
2008, Lin et al. 1995).

Childs et al. (1997) mapped the Ma; maturity gene to
SBI-01 (115.5-125.7 ¢cM) and determined that the ma;R mu-
tation of this gene causes a phenotype similar to plants
known to lack phytochrome B. In the present study, gFTI-1
was mapped to the region delimited by SB105 and SB258
(112.0-120.3 cM) on chr 1 under natural condition, corre-
sponding to the region adjacent to the Mas allele as reported
by Child et al. (1997). Consequently, gF'TI-1 could corre-
spond to the Mas allele, as it was mapped on a region adja-
cent to SBI-01.

As the data in Lin et al. (1995) were inconsistent with the
assigned map location of QMal.ugaD in Feltus ez al. (2006),
further studies are suggested to confirm these results. Fur-
thermore, the correspondence between the QTLs that modu-
late flowering time identified in genetic studies and Ma;-
May is not entirely clear because the location of Ma, and Ma,
on the linkage map is not known.

The present study indicated that the flowering time in sor-
ghum was controlled by a large number of QTLs with small
effects, suggesting that the genetic architecture of the flow-
ering time in sorghum was similar to maize. This study rep-
resents a preliminary and basic study of the QTLs control-
ling flowering time in sorghum, and the results of this study
emphasize the investigation of the genetic architecture of
flowering time in sorghum, comprising the scope of our fu-
ture research. Finally, the interaction of the QTLs control-
ling flowering time in sorghum with the photoperiod appears
to be fundamental to the improvement of this crop and to
feed the world’s expanding populations, especially because
sorghum is particularly adapted at low levels of input and is
suited to hot and dry agro-ecologies in which it is difficult to
grow other food crops.
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