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On the Number of Edges in a Minimum C6-Saturated Graph

Mingchao Zhang · Song Luo · Maiko Shigeno

Abstract A graph is said to be Ck-saturated if it contains no cycles of length k but does
contain such a cycle after the addition of any edge in the complement of the graph. De-
termining the minimum size of Ck-saturated graphs is one of the interesting problems on
extremal graphs. The exact minimum sizes are known for k = 3, 4 and 5, but only general
bounds are shown for k ≥ 6. This paper deals with bounds of the minimum size when k = 6.
It is shown that the minimum size of a C6-saturated graph on n vertices is no greater than
� 3n−3

2 � and no less than � 7n
6 � − 2. This lower bound, which is first proposed exclusively for

the C6-saturated graphs, significantly improves the best previously known lower bound.
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1 Introduction

For a graph family F , a given graph G is said to be F-saturated if G contains no copy of
member F ∈ F , but for any edge e in the complement of G, the graph adding edge e to G

contains a copy of F ∈ F . The minimum and maximum numbers of edges in an F-saturated
graph with n vertices are denoted by sat(n,F) and ex(n,F), respectively. For convenience, if
F = {F}, then we denote F -saturated, sat(n, F ) and ex(n, F ). In 1941, P. Turán determined
ex(n,Kp), where Kp stands for a complete graph of p vertices. In 1964, Erdös, Hajnal and
Moon [11] introduced the parameter sat(n, F ) and determined the value of sat(n,Kp). There
are a few graphs as F for which sat(n, F ) is known exactly. For example, stars [15], paths
[9,10,12,15], and bipartite graphs[4] are studied for F .

Cycle-saturated graphs have been investigated by various researchers. Let Ck denote
a cycle on k vertices. Exact values of sat(n,Ck) are known for a few k. Since C3

∼= K3,
sat(n,C3) = n−1 holds by the result of Erdös, Hajnal and Moon [11]. Ollmann [17] continued
to consider the case of C4, and proved that sat(n,C4) = � 3n−5

2 � for n ≥ 5. Later, Tuza[18]
provided a shortened proof of this result. Recently, Chen solved the case of C5 [3,5]. She
established that sat(n,C5) = � 10

7 (n − 1)�. For the case of Cn, Bondy [2] first showed that
sat(n,Cn) ≥ � 3n

2 �. This result was later improved to sat(n,Cn) = � 3n+1
2 � for n ≥ 20

by some researchers [6–8,16]. No other exact values seem to be known. Faudree, Faudree
and Schmitt [14] said that finding exact value of sat(n,Ck) for some k is quite difficult.
For a general k, some bounds of sat(n,Ck) are discussed. Barefoot et al. [1] proved that
n(1 + 1

2k+8 ) ≤ sat(n,Ck) ≤ ckn + O(n) for k ≥ 6, where ck is 2 − 1
2k/2−2

if k is even, and

2− 1
3·2(k−3)/2−2

if k is odd. They also showed tighter bounds for some specified k. Füredi and
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Kim [13] improved their lower bound to (1 + 1
k+2 )n− 1 < sat(n,Ck) < (1 + 1

k−4 )n+
�k−4

2

�

for k ≥ 7 and n ≥ 2k − 5. However, the gap still exists between the lower bound and the
upper bound. Thus, it remains an interesting problem to determine non-trivial bounds of
sat(n,Ck) for some k.

In this paper, we discuss new bounds for sat(n,C6). The best previously known upper
bound of sat(n,C6) was 3n

2 for n ≥ 11 due to Barefoot et al. [1]. They constructed C6-
saturated graphs for any n(≥ 11) by using an idea of constructing Ck-builders. This idea is
also applied in our discussion and leads to a new upper bound

sat(n,C6) ≤ �3n− 3

2
�

when n ≥ 9. At first sight, our result has not much modification. However, this new upper
bound provides a tight bound for small n. A lower bound for sat(n,C6) can be yielded by
employing the result for sat(n,Ck) of Barefoot et al. [1]. Unfortunately, to our knowledge, no
other lower bound of C6 is known. In order to improve the lower bound, we introduce a new
idea: instead of dealing with C6-saturated graphs directly, we first analyze the number of
edges in a C6-saturated graph whose minimum degree is no less than two, and then propose
a lower bound for sat(n,C6). By using this new idea, we obtain a new lower bound

sat(n,C6) ≥ �7n
6
� − 2

when n ≥ 6 that improves the lower bound 21
20n given in Barefoot et al.[1]. We believe that

our lower bound is first proposed for the case of C6. Our result also implies that the bounds
given by Füredi and Kim [13] hold for k = 6.

2 Preliminaries

Given a graph G, we denote by V (G) and E(G) the vertex set and the edge set. The
cardinalities of V (G) and E(G) are called the order and size of G, respectively. Especially,
we denote e(G) = |E(G)|. For a subset A of V (G), G[A] represents the subgraph of G

induced by A. We denote a path through vertices u1, u2, ..., uk by P (u1, u2, ..., uk), and a
cycle through u1, u2, ..., uk, u1 by Ck(u1, u2, ..., uk, u1). Ignoring the set of vertices, a cycle
on k vertices will be denoted by Ck.

The distance between two vertices u and v is denoted by dist(u, v). If A and B are two
subsets of V (G) we denote by e(A,B) the number of edges of E(G) with one end vertex in
A and the other in B, that is,

e(A,B) = |{(u, v) ∈ E(G) | u ∈ A, v ∈ B}|.

Given a vertex v ∈ V (G), we denote by N(v) the set of neighbors of v, that is, N(v) =
{u ∈ V (G) | (v, u) ∈ E(G)}, and by d(v) the cardinality of N(v), called the degree of v. Let
δ(G) = min{d(v) | v ∈ V (G)} be the minimum degree.

3 An upper bound

This section slightly modifies the upper bound for sat(n,C6) from [1] by constructing C6-
saturated graphs. Note that a graph G is C6-saturated if and only if there is no path of
length 5 joining any adjacent two vertices, while there is a path of length 5 joining any
nonadjacent two vertices.

As mentioned in Barefoot et al. [1], a Ck-saturated graph G is said to be a Ck-builder
if G has a vertex, called a joint vertex, such that if the joint vertices of two copies of G are
identified then the resulting graph is still Ck-saturated. Note that a graph obtained from s

(s ≥ 1) copies of a Ck-builder by identifying joint vertices is also Ck-saturated. For example,
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the graph B1 in Fig. 1 (a), shown originally in [1], is a C6-builder, where one of the bold
vertices is a joint vertex. This fact can be verified by the existence of paths of length 2 and
3 from the joint vertex to every vertex nonadjacent to the joint vertex, and by the existence
of paths with length 1, 3, and 4 from the joint vertex to every vertex adjacent to the joint
vertex. The graph B2 in Fig. 1 (b) is obtained from two copies of B1 by identifying one
of the bold vertices as joint vertices. Moreover, a graph attaching one triangle (i.e., K3) to
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Fig. 1 An example of C6-builder; (a) a C6-builder shown originally in [1]. (b) a graph B2 identified joint
vertices of two copies of B1.

B1 at each of some of the bold vertices is also C6-saturated, because there exists a path of
length 3 from a bold vertex to every other vertex. Such graphs are denoted by B�, B�2 and
B�3 as shown in Fig. 2.
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Fig. 2 Graphs attaching one triangle to B1 at each of some of the bold vertices.

We now introduce another notation. Given a Ck-builder G1, a Ck-saturated graph G is
called a Ck-base graph w.r.t. G1 if G has a vertex, called a base vertex, such that if the base
vertex and the joint vertex of G1 are identified then the resulting graph is still Ck-saturated.
It is obvious that a Ck-builder is a base graph w.r.t. itself, with a base vertex identical to
its joint vertex. We can see that B�, B�2 and B�3 are also C6-base graph w.r.t. B1.

Proposition 1 Let B1 and B0 are graphs in Fig. 1 (a) and Fig. 3 (a), respectively. Then,
B0 is a C6-base graph w.r.t. B1.
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(b) Attaching B1 to B0

Fig. 3 C6-base graph w.r.t B1.

Proof It can be verified that B0 is a C6-saturated graph.
Let the bold vertex in Fig. 3 (a) be a base vertex. We can verify that B0 has a path

of length 2 from this base vertex to each gray vertex. In addition, B0 also has both paths
of length 3 and 4 from the base vertex to each white vertex. On the other hand, when we
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define one of the bold vertices as a joint vertex of B1, we can verify that B1 has a path of
length 3 between the joint vertex and any other vertex, and also has a path of length 1 or
2 between them. Hence, the graph identifying the joint vertex of B1 with the base vertex
of B0, as shown in Fig. 3 (b), has a path of length 5 between nonadjacent vertices, which
implies that it is C6-saturated. ��

In a similar discussion, we can obtain three other C6-base graphs w.r.t B1.

Corollary 1 Let B�, B�2 and B�3 be a graph represented in Fig. 4 (a), (b) and (c),
respectively. Then, these graphs are C6-base graphs w.r.t. B1 in Fig. 1 (a), where the base
vertices are represented by bold ones.
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Fig. 4 Graphs attaching one triangle (triangles) to B0. There exists a path of length 3 from a base vertex
to each gray vertex, while there exist both paths of length 3 and 4 from a base vertex to each white vertex.

Theorem 1 sat(n,C6) ≤ � 3n−3
2 �, when n ≥ 9.

Proof When n is odd, Barefoot et al. [1] has shown this upper bound as follows. When
n = 8s + r for r ∈ {1, 3, 5, 7}, a graph obtained by attaching s − 1 copies of B1 to the
C6-base graph B1, B�, B�2 or B�3 has order 8s + r and size 12s + 3r−3

2 . Hence, we have
sat(n,C6) ≤ 12s+ 3r−3

2 =12× n−r
8 + 3r−3

2 = 3n−3
2 .

Now let n be even. When n = 10, the graphs in the Fig. 5 are C6-saturated with sizes 13.
When n ≥ 12 and n = 8s+r for some r ∈ {2, 4, 6, 8}, a C6-saturated graph with order n and
size 12s+� 3r−3

2 � can be constructed using C6-base graphs w.r.t B1. If r = 4, a graph obtained
by attaching s−1 copies of B1 to the C6-base graph B0 has order n = 8(s−1)+12 = 8s+4
and size 12(s − 1) + 16 = 12s + 4. If r = 6, a graph attaching s − 1 copies of B1 to B�
has order n = 8(s − 1) + 14 = 8s + 6 and size 12(s − 1) + 19 = 12s + 7. If r = 8, a graph
obtained by attaching s−1 copies of B1 to B�2 has order n = 8(s−1)+16 = 8s+8 and size
12(s−1)+22 = 12s+10. Finally, if r = 2, a graph obtained by attaching s−2 copies of B1 to
B�3 has order n = 8(s−2)+18 = 8s+2 and size 12(s−2)+25 = 12s+1. We then estimate,

for even n, sat(n,C6) ≤ 12s+ � 3r−3
2 �=12× n−r
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Fig. 5 Minimum C6-saturated graphs with order 10.

Remark 1 By enumerating all the graphs whose sizes are less than � 3n−3
2 � with small n,

our computer search verifies sat(n,C6) = � 3n−3
2 � for n = 9, 10 and 11. Moreover, minimum

C6-saturated graphs with order 9 are only B1 shown in Fig. 1 (a) and graphs in Fig 6. When
n = 10, the minimum C6-saturated graphs are the only graphs in Fig. 5.
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Fig. 6 Minimum C6-saturated graphs with order 9. Bold vertices imply that they act as joint vertices for
C6-builders.

4 A lower bound

This section gives a lower bound of sat(n,C6).

Theorem 2 sat(n,C6) ≥ � 7n
6 � − 2 holds.

To obtain this lower bound, we first estimate the number of edges for a C6-saturated graph
whose minimum degree is greater than 2.

Theorem 3 Assume that G is a C6-saturated graph with order n. If δ(G) ≥ 2, then we have
e(G) ≥ � 5n−7

4 �.

4.1 Proof of Theorem 3

It is obvious when δ(G) ≥ 3, since e(G) =
�

v∈V (G) d(v)/2 ≥ 3n/2. Thus, we shall focus on
the case of δ(G) = 2. To prove Theorem 3, for simplicity, we deal with only C6-saturated
graphs without any end block consisting of a cycle, that is, without cycles containing exactly
one cut vertex. If an end block consists of a cycle with length more than 4, it does not form
a cycle of length 6 when adding some chord in this cycle. If an end block consists of a cycle
C with length 3, our lower bound is not affected, because the subgraph H of G deleting C

is also C6-saturated and

e(G) = e(H) + 3 ≥ 5(n− 2)− 7

4
+ 3 ≥ 5n− 7

4

holds. Thus, without loss of generality, this subsection assumes the following.

Assumption 1 A graph G is a C6-saturated graph with order n and with no end block
consisting of a cycle.

We provide some additional notations in order to prove Theorem 3. Suppose that a vertex
r ∈ V (G) has the minimum degree, i.e., d(r) = δ(G). We call such a vertex r a root, and let

L
i def
= {u ∈ V (G) | dist(r, u) = i}.

Note that L0 = {r} and L
i = ∅ for i > 5, because G is C6-saturated, that is to say, a pair of

nonadjacent vertices is connected by a path of length five. Thus, V (G) can be partitioned
into L

0
, L

1
, L

2
, L

3
, L

4 and L
5. We further partition each L

i (i = 1, 2, 3, 4, 5) into

L
i
S

def
= {u ∈ L

i | e({u}, Li−1 ∪ L
i) = 1}, and L

i
S

def
= L

i \ Li
S .

Our lower bound of e(G) is estimated by summing degrees of vertices. We denote the sum
of degrees of vertices in X(⊆ V (G)) by

D(X)
def
=

�

x∈X

d(v).
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Edges incident to v ∈ L
i are divided into three classes; edges between L

i−1 and v, edges
between L

i and v, and edges between v and L
i+1. According to these classes, we divide d(v)

into three parameters:

d
l(v)

def
= |{(u, v) ∈ E(G) | u ∈ L

i−1}|,

d
m(v)

def
= |{(u, v) ∈ E(G) | u ∈ L

i}|, and

d
r(v)

def
= |{(u, v) ∈ E(G) | u ∈ L

i+1}|.

We also section D(X) for X(⊆ V (G)) into

D
l(X)

def
=

�

v∈X

d
l(v), D

m(X)
def
=

�

v∈X

d
m(v), and D

r(X)
def
=

�

v∈X

d
r(v).

Note that if X ⊆ L
i, then D

l(X) = e(Li−1
, X), Dm(X) = 2e(X,X) + e(X,L

i \ X), and
D

r(X) = e(X,L
i+1) holds. Especially, for i = 0, 1, 2, 3, 4

D
r(Li) = D

l(Li+1) = e(Li
, L

i+1) ≥ |Li+1| (1)

holds since d
l(v) ≥ 1 for each v ∈ V (G) \ {r}. From the definition of Li

S , we have d
l(v) +

d
m(v) = 1 for any vertex v ∈ L

i
S (i = 1, 2, 3, 4, 5). Thus, we obtain

D
l(Li

S) = D
l(Li

S) +D
m(Li

S) = |Li
S |. (2)

The followings are basic properties for degrees.

Proposition 2 D
l(Li) +D

m(Li) ≥ |Li|+ |Li
S
| holds for i = 1, 2, 3, 4, 5.

Proof We have D
l(Li

S
) + D

m(Li
S
) ≥ 2|Li

S
| from the definition of Li

S
. Thus, together with

(2), we obtain

D
l(Li) +D

m(Li) = D
l(Li

S) +D
m(Li

S) +D
l(Li

S
) +D

m(Li
S
)

≥ |Li
S |+ 2|Li

S
|

= |Li|+ |Li
S
|.

��

Proposition 3 For i ∈ {1, 2, 3, 4}, Dr(Li) ≥ max{|Li
S |, |Li+1|} holds if d(v) ≥ 2 for each

v ∈ L
i
S.

Proof For v ∈ L
i
S , it follows form d

l(v) + d
m(v) = 1 and d(v) ≥ 2 that dr(v) ≥ 1. Thus, we

have D
r(Li) ≥ |Li

S |. Together with (1), we obtain the desired relation. ��

For L̂ ⊆ L
i andX ⊆ L

i−1, denote the set of vertices L̂∩(
�

v∈X N(v)) by L̂(X). Especially,

if X = {u}, we denote L̂(u) instead of L̂({u}).
When we estimate the lower bound of e(G) with δ(G) = 2, consider two cases of whether

we can choose a root r satisfying D
m(L1) = 0 or not. At first, we deal with the case of

D
m(L1) �= 0 for any root r with d(r) = 2. Namely, every vertex of degree two is in a triangle

(i.e. K3). To establish this case, the technique proposed by [18] is adopted.

Proposition 4 For a C6-saturated graph G with δ(G) = 2, let A ⊆ {v ∈ V (G) | d(v) = 2}.
Assume that every vertex in A is in a triangle and has no neighbor with degree 2. At least
one of the following is satisfied:
(i) We can choose a root r ∈ A such that L1 = {x1, x2} and L

2 = {t1, t2} satisfy L
2(x1) =

{t1} and L
2(x2) = {t2}, where t1 �= t2;

(ii) D(X) ≥ 3|X| holds for X = V (G) \ {v ∈ V (G) | d(v) = 2, v �∈ A}.
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Proof Let G� be the subgraph induced by the vertices in V (G) \A. Call an edge of G� red if
it forms a triangle with some vertex in A, and call the other edges of G� blue. An edge of G
incident to a vertex in A is called white. Let dred(v), dblue(v), and dwhite(v) be the number
of red edges, of blue edges, and of white edges, respectively, incident to v.

Partition V (G�) into X1, . . . , Xl, where each Xi induces a connected component in the
graph consisting of only red edges. Since every vertex in A is contained in a triangle, such
a vertex corresponds to one red edge. We define

Yi
def
= {v ∈ A | ∃u1, u2 ∈ Xi, (v, u1), (v, u2) ∈ E(G)}

and

Vi
def
= Xi ∪ Yi.

Note that V1, . . . , Vl is a partition of V (G).
If Vi∩A = ∅, then Vi is a singleton of a vertex v that does not incidence with any red edge.

Such a vertex v has degree more than 3 or belongs to the set {u ∈ V (G) | d(u) = 2, u �∈ A}.
Therefore, if D(Vi) ≥ 3|Vi| for any Vi with A ∩ Vi �= ∅, then the condition (ii) is satisfied.

We now consider the case that there is a Vî whose average degree is less than 3, that
is, D(Vî) =

�
v∈Vî

(dred(v) + dblue(v) + dwhite(v)) < 3|Vî|. We assume there are k red

edges in G[Xî]. Thus,
�

v∈Xi
dred(v) = 2k. Since 4|Yî| =

�
v∈Vî

dwhite(v), we have 2k +�
v∈Xî

dblue(v) + 4|Yî| < 3|Vî| = 3(|Yî|+ |Xî|). Because Xî forms connected components by

only red edges, |Xî| ≤ k + 1 holds. Thus, we have

2k +
�

v∈Xî

dblue(v) + |Yî| < 3|Xî| ≤ 3k + 3 (3)

Moreover, it follows from the definition of Yi that |Yî| ≥ k, which implies that 3k +�
v∈Xî

dblue(v) < 3|Xî| ≤ 3k + 3. Hence,
�

v∈Xî
dblue(v) ≤ 2 and |Xî| = k + 1. Thus,

red edges in G[Xî] forms a spanning tree.
Next, we prove |Yî| = k. Suppose that |Yî| ≥ k + 1. Then, there exists a red edge

(u1, u2) corresponding to two vertices y1, y2 ∈ Yî. By joining y1 and y2, there exists a
cycle C6(y1, v1, v2, v3, v4, y2, y1). Without loss of generality, we assume that v1 = u1 and
v4 = u2. By substituting |Yî| ≥ k + 1 to (3), we obtain

�
v∈Xî

dblue(v) ≤ 1, which implies

that the cycle C6(y1, v1, v2, v3, v4, y2, y1) does not contain any blue edge. If v2, v3 ∈ Xî,
(v1, v2), (v2, v3), (v3, v4) are red edges. If v2 ∈ Yî, there exists a red edge (v1, v3). Similarly, if
v3 ∈ Yî, there exists a red edge (v2, v4). In any case, we conclude there exists a cycle through
u1 and u2 consisting of only red edges, which contradicts the fact that red edges in G[Xî]
forms a spanning tree.

Hence, we obtain |Yî| = k, which implies each red edge in G[Xî] exactly corresponds
to only one vertex in Yî. Because each leaf s of the spanning tree consisting of red edges
in G[Xî] is a neighbor of a vertex in A, d(s) ≥ 3 holds from the assumption. Then, such
a leaf s needs to be incident with blue edges, since dred(s) = 1, dwhite(s) = 1. It follows
from

�
v∈Xî

dblue(v) ≤ 2 that there are exactly two leaves on the spanning tree. Hence,

the spanning tree is actually a path and any inner vertex v in this path satisfies d(v) =
dred(v) + dwhite(v) = 2 + 2.

Furthermore, we prove k = 1. Suppose k ≥ 2. Then, there exist three vertices u1, u2, u3 ∈
Xî such that there exist red edges (u1, u2) and (u2, u3). Thus, there also exist white edges
(y1, u1), (y1, u2) and (y2, u2), (y2, u3), for some y1, y2 ∈ Yî. Joining y1 and y2, we have to have
a cycle C6(y1, v1, v2, v3, v4, y2, y1). Clearly, v1 has to be either u1 or u2. When v1 = u1, we
have to have v4 = u2 or v4 = u3. If v4 = u2, then v3 = u3, since u2 is not a leaf. However, this
implies a contradiction since a cycle C6(u1, y1, u2, y2, u3, v2, u1) is created without adding
any extra edge. On the other hand, if v4 = u3, then clearly, v3 �= u2 and v2 �= u2. However,
this also leads a contradiction since a cycle C6(u1, y1, u2, u3, v3, v2, u1) is created without
adding any extra edge. Thus, v1 = u2. In this case, we have to have v2 = u1 and v4 = u3.
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However, this contradicts since a cycle C6(u1, v3, u3, y2, u2, y1, u1) is created without adding
any extra edge. Hence, we can conclude that k = 1.

Conclusively, the desirable root r is the unique vertex in Yî. Initiated at this root, L1 =
{x1, x2}. Then, there are two blue edges (x1, t1) and (x2, t2), that is, L

2(x1) = t1 and
L
2(x2) = t2. If t1 = t2, joining r and t1, we fail to obtain a C6 cycle. Thus r satisfies the

desired condition (i). ��
Proposition 5 For a C6-saturated graph G, assume that δ(G) = 2, e(G) < 3n

2 and every
vertex with degree 2 is in a triangle. For any u ∈ L

3
S, L

4(u) � L
4
S holds by choosing an

appropriate root.

Proof Since e(G) <
3n
2 , Proposition 4 implies that we can choose a root r satisfying the

condition (i) by setting A = {v ∈ V (G) | d(v) = 2} which does not violate the assumption
of Proposition 4 since G satisfies Assumption 1. Without loss of generality, we assume
u ∈ L

3(L2(x2)). Joining x1 and u, we have a cycle C6(x1, v1, v2, v3, v4, u, x1). Since u ∈ L
3
S ,

v4 belongs to L
2 or L4. Suppose that v4 ∈ L

2. Then, v4 = t2. Since x2 can be neither v1 nor
v2, we have v1 = t1 ∈ L

2. In this case, both of v2 and v3 do not become r or x2. However,
this contradicts since a C6(x1, t1, v2, v3, t2, x2, x1) can be created without adding any extra
edge. Hence, we have to have v4 ∈ L

4. Moreover, we have v3 ∈ L
3∪L

4 since dist(x1, v3) ≤ 3.
Hence, we obtain v4 ∈ L

4
S
. ��

The above property implies that we have e(L3
S , L

4
S
) ≥ |L3

S |. Thus, we haveDl(L4
S
) ≥ |L3

S |.

Lemma 1 e(G) ≥ 5n−5
4 holds when δ(G) = 2 and every vertex with degree 2 is in a triangle.

Proof We estimate
�5

i=0 D(Li) by calculating degrees of vertices in each hierarchy when
e(G) < 3n

2 .
Let a root r satisfy the condition (i) of Proposition 4. It is clear that

D(L0) +D(L1) +D
l(L2) = 10.

From (1) and Proposition 2, we obtain

D
r(L2) +D

l(L3) +D
m(L3) ≥ 2|L3|+ |L3

S
|.

Combining Proposition 2 and D
r(L3) = D

l(L4) = D
l(L4

S) + D
l(L4

S
) ≥ |L4

S | + |L3
S | which

can be deduced from Proposition 5, we obtain

D
r(L3) +D

l(L4) +D
m(L4) ≥ (|L4

S |+ |L3
S |) + (|L4|+ |L4

S
|)

= 2|L4|+ |L3
S |.

On the other hand, (1) and Proposition 2 bring

D
r(L3) +D

l(L4) +D
m(L4) ≥ 2|L4|+ |L4

S
|.

Thus, we have

D
r(L3) +D

l(L4) +D
m(L4) ≥ 2|L4|+max{|L3

S |, |L4
S
|}.

Using Proposition 3 we have D
r(L4) ≥ max{|L4

S |, |L5|} , and it follows D(L5) = 2|L5| since
d(v) ≥ 2 for all v.

By summing up these inequalities, we obtain

2e(G) =
5�

i=0

D(Li)

= (D(L0) +D(L1) +D
l(L2)) + (Dr(L2) +D

l(L3) +D
m(L3))

+(Dr(L3) +D
l(L4) +D

m(L4)) +D
r(L4) +D(L5)

≥ 10 + (2|L3|+ |L3
S
|) + (2|L4|+max{|L3

S |, |L4
S
|}) + max{|L4

S |, |L5|}+ 2|L5|

≥ 10 +
5(|L3|+ |L4|+ |L5|)

2
= 10 +

5(n− 5)

2
.

��
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Next, we treat the case in which there exists a root r such that D
m(L1) = 0. That is

to say, there exists a root r that is not in a triangle. In this case, we need to estimate the
summation of degrees more precisely. We further partition L

i
S (i = 2, 3) into

L
i
SC

def
= {u ∈ L

i
S | Li+1(u) ⊆ L

i+1
S }

and
L
i
SC

def
= {u ∈ L

i
S | Li+1(u) � L

i+1
S }.

Then, we have
e(Li

SC
, L

i+1
S

) ≥ |Li
SC

|. (4)

Recall that L3
SC

(L2
S
) = L

3
SC

∩ (
�

v∈L2
S
N(v)). Thus, we have

e(L3
SC

(L2
S
), L4

S
) ≥ |L3

SC
(L2

S
)|. (5)

Lemma 2 D
r(L2) +D

l(L3) +D
m(L3) ≥ 2|L3|+max{|L2

SC
|, |L3

S
|} holds.

Proof Together with (2) and (4), we estimate

D
r(L2) = D

l(L3) = D
l(L3

S) +D
l(L3

S
)

= |L3
S |+ e(L2

, L
3
S
)

≥ |L3
S |+ e(L2

SC
, L

3
S
)

≥ |L3
S |+ |L2

SC
|.

Combining Proposition 2, we obtain

D
r(L2) +D

l(L3) +D
m(L3) ≥ |L3

S |+ |L2
SC

|+ |L3|+ |L3
S
|

= 2|L3|+ |L2
SC

|. (6)

On the other hand, from (1) and Proposition 2, we obtain

D
r(L2) +D

l(L3) +D
m(L3) ≥ 2|L3|+ |L3

S
|. (7)

We can rewrite the two lower bounds (6) and (7) into a compact form as the desirable
inequality. ��

To consider a finer structure, we partition L
3
SC into

L
3
SCD

def
= {u ∈ L

3
SC | ∀w ∈ L

5(L4(u)), N(w) ⊆ L
4(L3

SC) ∨ d(w) = 2}

and
L
3
SCD

def
= {u ∈ L

3
SC | ∃w ∈ L

5(L4(u)), N(w) � L
4(L3

SC) ∧ d(w) > 2}.

Lemma 3 When d(v) ≥ 2 for any v ∈ L
5, D(L5) ≥ 2|L5|+ 1

2 |L
3
SCD

| holds.

Proof Define

L
5
D

def
= {u ∈ L

5|N(u) � L
4(L3

SC), d(u) ≥ 3}.

By using the definition of L3
SCD

, for a given u ∈ L
3
SCD

, we can find a w ∈ L
5(L4(u)) for

which N(w) � L
4(L3

SC) and d(w) ≥ 3. Namely, w ∈ L
5
D
. Hence, we can find at least one

w ∈ L
5
D

for any given u ∈ L
3
SCD

, which implies that

e(L4(L3
SCD

), L5
D
) ≥ |L4(L3

SCD
)| ≥ |L3

SCD
|. (8)

On the other hand, if w ∈ L
5
D

then we have

e(L4 \ L4(L3
SCD

), {w}) + d
m(w) ≥ e(L4 \ L4(L3

SC), {w}) + d
m(w) ≥ 1,
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because N(w) � L
4(L3

SC). As a result,

e(L4 \ L4(L3
SCD

), L5
D
) +D

m(L5
D
) ≥ |L5

D
| (9)

holds. Combining (8) and (9), we obtain

D(L5
D
) =

1

2
D(L5

D
) +

1

2
(Dl(L5

D
) +D

m(L5
D
))

≥ 1

2
D(L5

D
) +

1

2
(e(L4(L3

SCD
), L5

D
) + e(L4 \ L4(L3

SCD
), L5

D
) +D

m(L5
D
))

≥ 3

2
|L5

D
|+ 1

2
(|L3

SCD
|+ |L5

D
|)

= 2|L5
D
|+ 1

2
|L3

SCD
|.

Since d(v) ≥ 2 for v ∈ L
5, we conclude

D(L5) = D(L5 \ L5
D
) +D(L5

D
)

≥ 2|L5 \ L5
D
|+ 2|L5

D
|+ 1

2
|L3

SCD
|

= 2|L5|+ 1

2
|L3

SCD
|.

��

We next estimate a bound for Dr(L3) +D
l(L4) +D

m(L4).

Proposition 6 Let Li
P

def
= {u ∈ L

i | dm(u) = 0}. If Dm(L1) = 0, then L
4(u) � L

4
S holds

for any u ∈ L
3
S(L

2
P ) with d(u) ≥ 2.

Proof Suppose it is false, that is to say, for some u ∈ L
3
S(L

2
P ), L

4(u) ⊆ L
4
S holds. Since

u ∈ L
3
S and d(u) ≥ 2, there exists w ∈ L

4(u). If we add (r, w) to E(G), a cycle, say
C6(r, v1, v2, v3, v4, w, r) should exist.

Since w ∈ L
4(u) ⊆ L

4
S , v4 ∈ L

3 ∪L
5 holds. If v4 ∈ L

5, then dist(r, v4) > 4 and it violates
the construction of the cycle C6. Thus, we have v4 ∈ L

3, which, together with w ∈ L
4
S ,

implies v4 = u. By using the similar technique, we prove v3 ∈ L
2. In addition, u ∈ L

3
S(L

2
P )

and (v3, u) ∈ E(G) together imply v3 ∈ L
2
P . We can also say v2 ∈ L

1 in a similar way.
However, if v2 ∈ L

1, then we need to have v1 ∈ L
1. Thus, we have (v1, v2) ∈ E(G), which

violates the condition D
m(L1) = 0. ��

Proposition 6 implies that there exists a w ∈ L
4
S
with (u,w) ∈ E(G) for any u ∈ L

3
S(L

2
P ).

Since L
2
S ⊆ L

2
P , we have e(L3

S(L
2
S), L

4
S
) ≥ |L3

S(L
2
S)|.

Lemma 4 If Dm(L1) = 0 and d(v) ≥ 2 for any v ∈ L
3, then D

r(L3)+D
l(L4)+D

m(L4) ≥
2|L4|+ |L3

S(L
2
S)|+ |L3

SC
(L2

S
)| holds.

Proof Proposition 6 implies

e(L3
S(L

2
S), L

4
S
) ≥ |L3

S(L
2
S)|.

Together with (2) and (5), we estimate

D
r(L3) = D

l(L4) = D
l(L4

S) +D
l(L4

S
)

≥ D
l(L4

S) + e(L3
S , L

4
S
)

≥ |L4
S |+ e(L3

S(L
2
S), L

4
S
) + e(L3

SC
(L2

S
), L4

S
)

≥ |L4
S |+ |L3

S(L
2
S)|+ |L3

SC
(L2

S
)|,
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where the penultimate inequality can be deduced from the fact that L3
S is partitioned into

L
3
S(L

2
S) and L

3
S(L

2
S
). Combining Proposition 2, we obtain

D
r(L3) +D

l(L4) +D
m(L4) ≥ (|L4

S |+ |L3
S(L

2
S)|+ |L3

SC
(L2

S
)|) + (|L4|+ |L4

S
|)

= 2|L4|+ |L3
S(L

2
S)|+ |L3

SC
(L2

S
)|.

��

In order to give another lower bound forDr(L3)+D
l(L4)+D

m(L4), we introduce notions

L
4
SP

def
= {u ∈ L

4
S
|e({u}, L3) ≥ 2},

and
L
4
SP3

def
= {u ∈ L

4
SP

|e({u}, L3 ∪ L
4) ≥ 3}.

Proposition 7 If |L1| = 2, then L
4(L3(u)) ∩ L

4
SP

�= ∅ holds for any u ∈ L
2
SC .

Proof Since u ∈ L
2
S , there exists an x̂ ∈ L

1 with (x̂, u) �∈ E(G). By joining x̂ and u, a cycle
C6(x̂, v1, v2, v3, v4, u, x̂) should exist. When v4 ∈ L

1, we have v1 ∈ L
2 since v1 �= r. However,

this case creates C6(x̂, v1, v2, v3, v4, r, x̂) without adding any extra edge. Hence, we have to
have v4 ∈ L

3. Since u ∈ L
2
SC , we have v4 ∈ L

3
S , which implies v3 ∈ L

4 and then v2 ∈ L
3.

Hence, we end this proof with v3 ∈ L
4
SP

. ��

Proposition 8 If |L1| = 2, then |{v ∈ L
2
SC |u ∈ L

4(L3(v))}| ≤ 2 holds for any u ∈ L
4.

Moreover, when D
m(L1) = 0 and |{v ∈ L

2
SC |u ∈ L

4(L3(v))}| = 2 holds, we have u ∈ L
4
SP3

.

Proof Assume that three distinct elements x, y, z belong to {v ∈ L
2
SC |u ∈ L

4(L3(v))} for
some u ∈ L

4. Since |L1| = 2, we can immediately claim that at least two of x, y, z are
adjacent to either x1 or x2. Without loss of generality, assume (x2, y), (x2, z) ∈ E(G), then
there exist some y1, z1 ∈ L

3
S for which (y, y1), (z, z1) ∈ E(G) and (y1, u), (z1, u) ∈ E(G)

since u ∈ L
4(L3(y)) and u ∈ L

4(L3(z)). Now the contradiction can be seen from the fact
that C6(x2, y, y1, u, z1, z, x2) exists without adding any extra edge. Hence, |{v ∈ L

2
SC |u ∈

L
4(v)}| ≤ 2.
We next consider the case of |{v ∈ L

2
SC |u ∈ L

4(v)}| = 2. Let x, y ∈ L
2
SC such that

u ∈ L
4(L3(x))∩L4(L3(y)). Obviously, there exist some x1, y1 ∈ L

3
S for which (x, x1), (y, y1) ∈

E(G) and (x1, u), (y1, u) ∈ E(G). Then, u ∈ L
4
SP

. Assume that u �∈ L
4
SP3

. Namely, (L3 ∪
L
4) ∩N(u) = {x1, y1}. By joining r and u, we have to have a cycle C6(r, v1, v2, v3, v4, u, r).

If v4 ∈ L
5, then dist(v4, r) > 4, which contradicts. Thus, we have v4 = x1 or v4 = y1.

Namely, v4 ∈ L
3
S(L

2
S). We can also notice that v1 ∈ L

1 and v2 ∈ L
2 since D

m(L1) = 0.
Therefore, v3 ∈ L

2 ∪ L
3, which however, implies v4 ∈ L

3
S
or v4 ∈ L

3(L2
S
). This contradicts

to v4 ∈ L
3
S(L

2
S). Hence, u ∈ L

4
SP3

��

Proposition 9 If |L1| = 2, then |L4
SP

|+ |L4
SP3

| ≥ |L2
SC | holds.

Proof Since |{v ∈ L
2
SC |u ∈ L

4(L3(v))}| ≤ 2 for any u ∈ L
4
SP

, we divide L
4
SP

into subsets
U0,U1 and U2 as

U0 = {u ∈ L
4
SP

| |{v ∈ L
2
SC |u ∈ L

4(L3(v))}| = 0}
U1 = {u ∈ L

4
SP

| |{v ∈ L
2
SC |u ∈ L

4(L3(v))}| = 1}
U2 = {u ∈ L

4
SP

| |{v ∈ L
2
SC |u ∈ L

4(L3(v))}| = 2}.

From Proposition 7, it can be seen that for any v ∈ L
2
SC , v corresponds to some u ∈ L

4
SP

,
where u ∈ U1 or u ∈ U2. Additionally, by the definitions of U1 and U2 we immediately obtain

|U1|+ 2|U2| ≥ |L2
SC |.
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On the other hand, from Proposition 8 and the definition of L4
SP3

, it follows |L4
SP3

| ≥ |U2|.
Hence, we can complete the proof by noting that

|L4
SP

|+ |L4
SP3

| ≥ (|U1|+ |U2|) + |U2| ≥ |L2
SC |.

��

Lemma 5 If |L1| = 2, then D
r(L3) +D

l(L4) +D
m(L4) ≥ 2|L4|+ |L4

S
|+ |L2

SC | holds.

Proof we have

D
r(L3) + (Dl(L4) +D

m(L4))

≥ (|L4|+ |L4
SP

|) + (|L4|+ |L4
S
|+ |L4

SP3
|)

= 2|L4|+ |L4
SP

|+ |L4
S
|+ |L4

SP3
|

≥ 2|L4|+ |L4
S
|+ |L2

SC |,

where the last inequality holds due to Proposition 9. ��

Finally, we give a lower bound for Dl(L2) +D
m(L2).

Proposition 10 If δ(G) = 2 and there exists a root r that is not in a triangle, then we can
select a root r� with d(r�) = 2 such that Dm(L1) = 0 and |L3

SCD(u)| ≤ 1 for any u ∈ L
2
S
.

Proof We need only consider the root r that does not satisfy the condition for r
�. That is

to say, we assume that for a root r there exists u ∈ L
2
S
such that two distinct vertices y, z

belong to L
3
SCD(u). Since y, z ∈ L

3
SC it immediately follows that there exist some y1, z1 ∈ L

4
S

such that (y, y1), (z, z1) ∈ E(G).
Joining y and z we would have a cycle, say C6(y, v1, v2, v3, v4, z, y). We first prove v1 ∈ L

4.
Suppose if v1 ∈ L

2, then we have to have v1 = u and v4 ∈ L
4. Furthermore, v3 ∈ L

5 holds
since v4 ∈ L

4
S . Therefore we have dist(v1, v3) > 2, which contradicts to the construction of

C6. Hence, we can say v1 ∈ L
4 and v2 ∈ L

5. In a similar way, we can say v4 ∈ L
4 and

v3 ∈ L
5. Without loss of generality, we can set v1 = y1 and v4 = z1. Since y, z ∈ L

3
SCD(u)

and (v2, v3) ∈ E(G), which implies N(v2) � L
4(L3

SC) and N(v3) � L
4(L3

SC), we obtain
d(v2) = d(v3) = 2.

We now take v2 as a root. It is obviously that D
m(L1) = 0. If there exists some h

such that (y1, h), (z1, h) ∈ E(G), then we obtain a C6(y1, h, z1, z, u, y, y1) without adding
any extra edge, as is shown in Fig. 7. Hence, we have d

m(z1) = 0. Furthermore, we are
going to prove that for root v2, |L3

SCD(u)| ≤ 1 for any u ∈ L
2
S
. Suppose it is false, then

there exists u� ∈ L
2
S
such that two distinct vertices y�, z� belong to L

3
SCD(u�). As the similar

discussion, we have y
�
1, z

�
1 ∈ L

4
S such that (y�, y�1)(z

�
, z

�
1) ∈ E(G) and y

�
2, z

�
2 ∈ L

5 such that
(y�2, z

�
2) ∈ E(G) and d(y�2) = d(z�2) = 2. We next consider a cycle C6(y�2, u1, u2, u3, u4, v3, y

�
2)

created by joining v3 and y
�
2. Notice that u1 = y

�
1 or u1 = z

�
2, but we can prove neither

holds as follows. If u1 = y
�
1, then we have to have u2 = y

� and u3 = u
�. Since d(v3) = 2, v�4

should be z1, which leads a contradiction to d
m(z1) = 0. If u1 = z

�
2, then it is obviously that

u2 = z
�
1, u3 = z

� and u4 = u
�. Since z1 is the unique vertex adjacent to v3 in L

2, u� has to
be z1. Namely, u� ∈ L

3
SC(v3), since z1 ∈ L

3
S(v3). On the other hand, Proposition 6 implies

that L3
SC(v3) = ∅ since v3 ∈ L

2
P , which also contradicts. Therefore v2 is a desired root r�.

✑
✑
✑

◗
◗
◗✏✏✏
◗❆

❍✟

✟

❍

❍✟

❍
①

①
①

①
①①

①
①❤v2

❤v3
❤y1

❤z1
❤y❤

z❤
u❤d(v2) = 2

d(v3) = 2

L0 L1 L2

Fig. 7 When we set v2 a root.

��
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The above property implies that |L2
S
| ≥ |L3

SCD| holds by choosing an appropriate root. By
combining this result and Proposition 2, we have

D
l(L2) +D

m(L2) ≥ |L2|+ |L2
S
| ≥ |L2|+ 1

2
(|L2

S
|+ |L3

SCD|),

which conducts the following property.

Proposition 11 If δ(G) = 2, Dl(L2)+D
m(L2) ≥ |L2|+ 1

2 (|L
2
S
|+ |L3

SCD|) holds by choosing
an appropriate root.

Lemma 6 e(G) ≥ 5n−7
4 holds when δ(G) = 2 and a root r with D

m(L1) = 0 exists.

Proof Suppose that we have selected a root r satisfying the condition of Proposition 10.
Since r is the only vertex in L

0 and there are two vertices in L
1, we have

D(L0) +D(L1) = D(L0) +D
l(L1) +D

r(L1) ≥ 4 + |L2|.

Combining Lemmas 11, 2, 4, 5, 3 and 3, we conclude

2e(G) =
5�

i=0

D(Li),

= (D(L0) +D(L1)) + (Dl(L2) +D
m(L2)) + (Dr(L2) +D

l(L3) +D
m(L3))

+(Dr(L3) +D
l(L4) +D

m(L4)) +D
r(L4) +D(L5)

≥ (4 + |L2|) + (|L2|+ 1

2
(|L2

S
|+ |L3

SCD|)) + (2|L3|+max{|L2
SC

|, |L3
S
|})

+(2|L4|+max{|L3
S(L

2
S)|+ |L3

SC
(L2

S
)|, |L4

S
|+ |L3

SC
|}) + max{|L4

S |, |L5|}+ (2|L5|+
1

2
|L3

SCD
|)

≥ 4 +
5(|L2|+ |L3|+ |L4|+ |L5|)

2
= 4 +

5(n− 3)

2

��

Consequently, we obtain the result of Theorem 3 by combining the results of Lemma 1
and Lemma 6.

4.2 Proof of Theorem 2

In order to prove Theorem 2, we only consider the case of δ(G) = 1 for a minimum C6-

saturated graph. We denote by S a set of vertices of degree 1 and N(S)
def
=

�
v∈S N(v). Let

G̃ be the subgraph induced by V (G)\S, that is, G̃ = G[V (G)\S], and ñ = |V (G̃)|(= n−|S|).
Note that, since G is C6-saturated, (i) G̃ is also C6-saturated; (ii) δ(G̃) ≥ 2; (iii) |S| = |N(S)|
holds. The property (iii) follows from N(u) ∩ N(v) = ∅ for any u, v ∈ S. The properties
(i)(ii) imply that e(G̃) can be bounded below by 5ñ−7

4 from Theorem 3. Thus, we have

e(G) = e(G̃) + |S| ≥ 5ñ− 7

4
+ |S| = 5n− |S| − 7

4
. (10)

We now estimate another bound of e(G).

Lemma 7 e(G) ≥ n+ |S|−5
2 holds.

Proof In order to avoid confusion, we denote the degree of v in G̃ by d̃(v). Let A = {v ∈
N(S) | d̃(v) = 2}.

If A = ∅, then d̃(v) ≥ 3 for any v ∈ N(S). Thus, we have

e(G̃) ≥ 3|N(S)|+ 2(ñ− |N(S)|)
2

= ñ+
|S|
2
.
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If A �= ∅, we choose a root r ∈ A and define L̃
i = {u ∈ V (G̃) | dist(r, u) = i}. Since

G is C6-saturated, L̃i = ∅ for i ≥ 5 and L̃
4 ∩ N(S) = ∅. At first we consider the case of

D
m(L̃1) �= 0 for any root r ∈ A, that is to say, every vertex in A is in a triangle in G̃.

Note that any neighbor u of r ∈ A satisfies d̃(u) ≥ 3, because by joining u and v ∈ S with
(v, r) ∈ E(G) we have to have C6. Thus, A satisfies the assumption of Proposition 4. If the
condition (i) of Proposition 4 holds, we have

e(G̃) = (D(L̃0) +D(L̃1) +D
l(L̃2) +D

r(L̃2) +D(L̃3) +D(L̃4))/2

≥ (10 + |L̃3|+ 2|L̃3|+ 2|L̃4|)/2
= (2ñ+ |L̃3|)/2 ≥ (2ñ+ |N(S)| − 5)/2 = ñ+ (|S| − 5)/2.

If the condition (ii) of Proposition 4 holds, we have

e(G̃) ≥ 3|N(S)|+ 2(ñ− |N(S)|)
2

= ñ+
|S|
2
,

since N(S) ⊆ V (G̃) \ {v ∈ V (G̃) | d̃(v) = 2, v �= A}.
Finally, we treat the case in which there exists a root r ∈ A with D

m(L̃1) = 0. For any
vertex v ∈ L̃

2 ∩ N(S), there exists a path of length 4 from r to v, which, together with
D

m(L̃1) = 0, implies that d̃m(v) ≥ 1. Thus, Dm(L̃2) ≥ |L̃2 ∩N(S)| holds. Hence, we have

e(G̃) = (D(L̃0) +D(L̃1) +D
l(L̃2) +D

m(L̃2) +D
r(L̃2) +D(L̃3) +D(L̃4))/2

≥ (4 + 2|L̃2|+ |L̃2 ∩N(S)|+ |L̃3|+ 2|L̃3|+ 2|L̃4|)/2
= (2ñ− 2 + |L̃2 ∩N(S)|+ |L̃3|)/2 ≥ (2ñ− 2 + |N(S)| − 3)/2 = ñ+ (|S| − 5)/2.

Consequently, we obtain e(G) = e(G̃) + |S| ≥ n+ |S|−5
2 . ��

By combining this result and (10),

e(G) ≥ max{5n− |S| − 7

4
, n+

|S| − 5

2
} ≥ 7n

6
− 2.

5 Conclusion

In this paper, we discuss the bounds for sat(n,C6). The obtained bounds, up to our knowl-
edge, are the best known ones so far. Besides, we foresee two promising avenues of research
in the near future.

First, although the refined upper bound seems only a minor improvement of the previous
one, by computer search it proves that this upper bound coincides with sat(n,C6) when
n = 9, 10 and 11. We might conjecture sat(n,C6) = � 3n−3

2 �, when n ≥ 9. In order to
reach the equality, the lower bound needs improving. This requires that when we analyze
the lower bound of the minimum number of edges in a C6-saturated graph with δ(G) = 2
each hierarchy L

i(i = 1, 2, ..., 5) should be partitioned into more finer structures and that
once such a lower bound is obtained a better calculation method should be also developed
to estimate the lower bound of sat(n,C6).

Second, as we have seen, the lower bound of sat(n,C6) can be obtained from the lower
bound of the number of edges in a minimum C6-saturated graph with δ(G) = 2, which
is meanwhile the key idea of this paper. However, the application of this idea may not be
limited to the case of C6-saturated graphs. Generally, when improving the lower bound of
sat(n,Ck) for some k, we can first estimate the lower bound of the number of edges in a
minimum Ck-saturated graph with δ(G) = 2 for some k. And then, by using the obtained
lower bound we can continue to improve the lower bound of sat(n,Ck) for some k.
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