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Abstract

We refurbish our axiomatics of differential geometry introduced in
[Mathematics for Applications,, 1 (2012), 171-182]. Then the notion of
Fuclideaness can naturally be formulated. The principal objective in this
paper is to present an adaptation of our theory of differential forms de-
veloped in [International Journal of Pure and Applied Mathematics, 64
(2010), 85-102] to our present axiomatic framework.

1 Introduction

The principal objective in this paper is to replicate our treatment of differen-
tial forms in [§] in the context of our axiomatics on differential geometry in
[9). Trying to achieve this goal, we have realized that our axiomatics there is
somewhat fragile. Therefore, we were forced to refurbish the axiomatics. The
main improvement is that prolongations of spaces with respect to Weil algebras
can directly be generalized to those with respect to finitely presented algebras.
As is well known, the prolongation of a space with respect to the Weil algebra
k[X]/(X?) (the Weil algebra corresponding to first-order infinitesimals) is its
tangent bundle. Similarly, the prolongation of a space with respect to the poly-
nomial algebra k[X1, ..., X,;], which is not a Weil algebra but surely a finitely
presented algebra, is simply the exponentiation of the space by R™. Thus the
secondary objective in this paper is to improve our axiomatics, to which Section
is devoted. In particular, the theorem established in [I0] that the tangent
space is a module over k, which is external to the category IC, is enhanced to
the theorem that the tangent space is a module over R, which is an object in K.

Section [3]is concerned with Euclidean modules. Our new axiomatics of dif-
ferential geometry enables us to formulate the notion of Euclideaness properly,
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in which cartesian closedness and prolongations with respect to polynomial alge-
bras will play a crucial role. In orthodox differential geometry and its extensions
to infinite-dimensional differential geometry, we first study the category of linear
spaces of some kind and smooth mappings, say, the category of Hilbert spaces,
that of Banach spaces, that of Fréchet spaces, that of convenient vector spaces
and so on. We then study the category of manifolds, which are modeled locally
after such linear spaces. Our approach moves in the sheer opposite direction.
We first establish the general theory of microlinear spaces. The theory of Eu-
cliean modules (i.e., its linear part) is obtained as a special case of this general
theory.

Sections Ml and [l are merely an adaptation of our treatment of differential
forms in [I0] to our present axiomatic framework. Section [ is devoted to a
unique characterization of differential forms, which could be called the funda-
mental theorem on differential forms. The characterization and existence of
exterior differentiation, which will be discussed in Section [B] is an easy conse-
quence of this fundamental theorem.

2 Refurbishing our Axiomatics

2.1 The Refurbishment

Let k be a commutative ring. We denote by T}, the algebraic theory of k-algebras
in the sense of Lawvere. We denote by FPT}, the category of finitely presented
k-algebras. It is well known that Weil algebras over k are finitely presented
k-algebras. We denote by Weily, the category of Weil k-algebras, which is well
known to be left exact. In particular, its terminal object is k itself. A finitely
presented k-algebra A is called pointed if it has a unique maximal ideal m such
that the composition of the canonical morphism

k— A

and the canonical projection
A— A/m

is an isomorphism. We denote by PFPT}, the category of pointed finitely pre-
sented k-algebras. Not only Weil k-algebras but also polynomial k-algebras
k[X1,...,X,] lie in PFPTy. Given a left exact category K and a k-algebra ob-
ject R in KC, there is a canonical functor R®- (denoted by R ® - in [3]) from the
category Weily to the category of k-algebra objects and their homomorphisms
in C.

Definition 1 (DG-category) The present refinement of our original axiomatics
in [9] is that we allow not only Weil prolongations but also finitely presented
prolongations. Therefore, given a finitely presented k-algebra A, we are endowed
with a left exact functor T4 : K — K preserving cartesian closed structures in
the sense that we have

T (XY) = (T4X)" (1)
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for any objects X andY in K. For any freely generated k-algebra A = k[ X7, ..., X,]
over n generaters X1, ..., Xy, T4 = T*X1Xal 45 required to be simply the ex-
ponentiation by R™, so that we have

kX1 Xal x — Y B" (2)
for any object X in K. In particular, when n =0, we have
T"X = X
Given a finitely presented k-algebra A, it is required that
TAR = R®A (3)
Given two finitely presented k-algebra A and B, it is required that
TE o T4 = TA®KE (4)
Given a morphism ¢ : A — B in PFPT}, we have a natural transformation
Q- T4 = T8
which respects cartesian closed structures, so that we have
ap (X¥) = (0, (X)) (5)
for any objects X and'Y in IC. It is also required to satisfy

ap (TOX) =T (ap (X)) : TATYX = TO®HAX = TASCX = TOTAX
- TOTPX = TPOCX = TP X = TPTX (6)

for any object C in the category PFPT). Given two morphisms ¢ : A — B and
Y : B — C in PFPTy, it is required that

Qap O Qp = Qapog (7)
Given any identity morphism ids : A — A in PFPTy, it is required that
Qid, = idpa (8)
Given a morphism ¢ : A — B in PFPTy, it is required that
oy (R) = Ry )
Thus our new definition of a DG-category is a quadruple
(K,R, T, )
where

1. K is a category which is left exact and cartesian closed.



2. R is a commutative k-algebra object in IC.

3. Given an object A in PFPTy, T4 : K — K is a left-exact and cartesian-
closed-structure-preserving functor.

4. Given a morphism ¢ : A — B in PFPTy, a : T4 = TP is a natural
transformation.

5. The quadruple (K,R, T, «) is required to satisfy (2)-(9) as azioms.
Remark 2 As in [9] we have a bifunctor
®: K x PFPT, — K

with
X@A=T2X

for any object X in IC and any object A in PFPTy, and

fee
=, (Y)oTAf
=T foa,(X)
for any morphism
f: X—=Y
in K and any morphism
p:A— B

m PFPTk
Remark 3 Given an object A in PFPTy and an object X in IC, we write

74 (X): TAX - X

and
A (X): X - TAX
for
aask (X): TAX - TEX = X
and

hsa(X): X =TFX - TAX
respectively, where A — k and k — A are the canonical morphisms in PFPT.

It is easy to see that

Proposition 4 Let (K,R, T,«a) be a DG-category with the category K being
locally cartesian closed and M an object in K. Then (IC/M, R, T, aM) is a
DG-category but for conditions () and (3), where



1. K/M is the slice category.
2. Rys is the canonical projection

RxM—M

3. Given an object
T E—-M

in K and an object A in PFPTy, T4, () is defined to be
T, (1) = M
where Tf/_[ (m) is obtained as the equalizer of
T7: T'E - T M

and
TAYE T4 (E)E m Ma (MZ TAM

and ({I0) is
Ty (1) = TAE74 (B)E . M

4. Let ¢ : A — B be a morphism in PEPT),. Since the diagrams
TAE o, (E) TBE
s
TA7 | 1 TBrn

TAM (M3 TEM

TAE  a,(E) TBE
-

Ta (B) N\ 75 (E)
E
Tl
M

va (M) s (M)

TAM o, (M) TBM

commute, there is a unique morphism

—A —B
ay! (m) : Ty (1) = Ty (1)
in KC such that the diagram
—A =B
Ty (m) oyl (1) Ty (m)
B
1 1

commutes.



Definition 5 (Local DG-category) A DG-category (K, R, T, «) is called a local DG-category

if KC is locally cartesian closed and (IC/M, RM,TM,aM) 1s a DG-category for
any object M in IC.

Remark 6 The notion of microlinearity and that of Weil exponentiability re-
main the same as those in [9].

In the following, we will consider an arbitrarily chosen local DG-category
(K,R, T, o) with M being a microlinear and Weil exponentiable object in K.

2.2 The Duality

We have already explained the duality between the category of Weil algebras in
the real world and the category of infinitesimal objects in the imaginary world.
Namely, we have a contravariant functor D from the category of Weil algebras
to the category of infinitesimal objects and a contravariant functor W from the
category of infinitesimal objects to the category of Weil algebras, both of which
constitute a dual equivalence between the two categories. By way of example,
Dk[X]/(Xz) is intended for

D={zeR|2®>=0}
while Dy x y]/(x2,v2,xYy) is intended for
D) = {(z,5) € D x D | oy = 0}
Therefore we have

Wp = k[X]/ (X?)
Wpey =k[X,Y]/(X?Y? XY)

Similarly
WaeDes(d,0)eD(2)

stands for the homomorphism of k-algebras from k[X,Y]/ (X% Y2 XY) to
k[X]/ (X?) assigning the equivalence class of X in k[X]/ (X?) to the equiva-
lence class of X in [X,Y]/ (X 2y x Y) and assigning the equivalence class of
0in k[X]/ (X?) to the equivalence class of Y in [X,Y]/ (X2, Y% XY).

We can extend contravariant functors D and W so as to yield a dual equiv-
alence between the category PFPT) and the category of (real or imaginary)
carved spaces standing for genuinely formal Specy. By way of example, we have

Diz,,2:] = R®
Diiz,, 2, X,v]/(X2,v2,xv) = R? x D(2)

while

W,

deDw—deR



stands for the canonical projection
k[X] — K[X]/(X?)
and

Wiy ,ra,dy ,d2) ER2 x D(2) 371 dy +r2d2€D

stands for the homomorphism of k-algebras from k [X] / (X?) to k [Z1, Z2, X, Y] / (X2, Y%, XY)
assigning the equivalence class of Z1 X + Z5Y in k [Z1, Z2, X, Y]/ (X2, Y2, XY)
to the equivalence class of X in k[X]/(X?).

2.3 The Tangent Space

Definition 7 (Scalar Multiplication) The exponential transpose of the scalar
multiplication

R x (M®WD)—>M®WD
18
idyr @ Wir,d)erx Disraen * M @ Wp — M @ Wrxp = M @ Wp @k Wr) =
(M & Wp) @ Wg = (M @ Wp)®
Now we strengthen one of the main results of [I0] into
Theorem 8 The canonical projection
wp (M) : M Wp - M

is an Ryr-module in the slice category IC/M, where Ry is the canonical projec-
tion

RxM—M

Proof. Here we deal only with the statement that the scalar multiplication
distributes over the addition, for which we have to verify that the diagram

R x (M®WD(2)) - Rx(M&Wp)
1 1
M®WD(2) — M @ Wp

commutes, where the horizontal arrows stand for addition, while the vertical
arrows correspond to scalar multiplication. This follows easily from the com-
mutativity of the diagram

M @ Wp2) idy ® WdeD»—>(d,d)eD(22 M @ Wp

{ {
M @ Wrxpe) 1dm @ Wiayerx D (r,d,d)cRxD(2) M @ WrxD

where the left vertical arrow is

idar @ Wi dy ,da)eRx Des (rdy srd2) €D



while the right vertical arrow is

idy ® W(r,d)eRx DwsrdeD

3 Euclidean Modules

An R-module in K is an object E in K endowed with a morphism
+g:EXE — E,

intended for addition, and a morphism
rE:RXE—E,

intended for scalar multiplication, which are surely subject to the usual axioms
of an R-module depicted diagrammatically. Equivalently, an R-module structure
on an object E in K can be given by a single morphism

p:RXxEXE—E
intended for the morphism

RX]EXER]ExidEEx]Ei—E]E
—

which is surely subject to some axioms depicted diagrammatically.

Definition 9 (Euclidean R-module) An R-moduleE is called Euclidean pro-
vided that the composition of the exponential transpose

E xE — E* (11)
of
Rx]Ex]E:]ExRindEx-RJEEx]Ei—EE (12)
—_—
and
OWieposaer (E) EF=EeoWr -E®@Wp (13)

in succession is an isomorphism.
It should be obvious that

Lemma 10 The R-module structure of E naturally gives rise to that of EX for
any object X in IC in the sense that the exponential transpose

7:ExE—E®
of the R-module structure

p:RxExE—=E



on E induces a mapping
X mX X X R\ X x\R
(@) :E*xE* = (ExE)" — (E) :(E ) ,
which is the exponential transpose of the derived R-module structure
R x EXxEX — EX
on EX.

Proposition 11 IfE is a Fuclidean R-module, then so is EX for any object X
n K.

Proof. We use the same notation as in Lemma [[0] We have
X
X (mX\R o mry X X
aWdEDHdEJR (E ) = (aWdEDHdER (E)) : (E ) - (E ) - (E® W]R) —
(E@Wp)* =EX @ Wp

Since < %
(Weprice ®) 0@ = (aw, e, (B) 0 3)

we are sure that EX is a Euclidean R-module. m
It should be evident that

Lemma 12 The R-module structure of E naturally gives rise to that of E@ W
for any Weil algebra W in the sense that the exponential transpose

7:ExE—E®
of the R-module structure
p:RxXExXxE—E
on E induces a mapping
Pidy : EQW)Xx(EQW)=EXE) QW -EX@W = (Eo W)*,
which is the exponential transpose of the derived R-module structure
Rx(EW)X(EQW)>EQW
onE®@ W.

Proposition 13 IfE is a Fuclidean R-module, then so is EQ W for any Weil
algebra W.



Proof. We use the same notation as in Lemma [I2] We have

E@W)=aw,  _(B)@idy: (EeW)"=(EeW)eWs
=EWr) W - (E@Wp)@W =(EeW)® Wp

o
Wd€D>—>d€]R

Since

(W, B @i ) 0 (F @ idw) = (aw (E) o 5) @ idw

deDdek

we are sure that E ® W is a Euclidean R-module. m

Remark 14 IfE is an R-module, then the first projection
m:ExXxE—>E

is naturally an R-module in the slice category KC/E.

Proposition 15 If E is a Euclidean R-module, then the identification of E ®
Wp and E x E in Definition [ together with the commutative diagram

ExE = E&Wp

1 \( )/ ™Wp (E)
E

allows us to identify the Ryr-module structure in Theorem[8 and that in Remark

2
Proof.
1. First we deal with addition. We have

E@WD(Q) =(E®@Wp) xu (EQ Wp)

— (ExE) xu (ExE)
(1 *y) M (57
= E xExE (14)
1,3 2 4
where the numbers under E are given simply so as for the reader to relate
each occurrence of E on the last line to the appropriate occurrence of E on

the previous line. This isomorphism can be realized by the composition
of the exponential transpose

E x E x E — E¥*F (15)
of

Ii& X I;K X Ib[jlxlgxlg = IBEXIEQXI%XI;& X I5Eld]E x rE X REEXEXE

1d]E><+§E><]Ei—§]E (16)

10



and

E): E¥® —E@ Wrxg = E® Wby (17)

OWi(a; d)eD(@)r (a1 d)ernr

in succession, where the numbers under R and E are intended for the
reader to easily relate their occurrences on the first line to those on the
second line. Therefore, the commutativity of the diagrams

ExExE — ER*R = E ® Wryr

idg X +g | 1 1dEg ® Wreres (rr)eR xR
ExE — ER = E @ Wk
ERXR — E © Waxr - E® Wp(2)
ldg @ Wreres (rr)eRxR 4 1 1de @ Wieps(@ajep@) >
ER =E Wk — E® Wp

with the morphism
E x E x E — EF®

being that in ([I3]), the morphism
E x E — EF
being that in (), the moriphism
E*F® = E® Wexr = E® Wp)
being the morphism
Ide @ Wd,,d2)eD(2)(d1,d2) ERXR

and the morphism
ER=E@Wr - EQWp

being the morphism
idg ® WdeD»—»dGR

implies the commutativity of the diagram

ExExE = E ® Wp(z)
idg X +g | 1 idg ® Wiepes(d,a)eD(2)
ExE = E® Wp

This is no other than the gist of the desired statement.

. Now we deal with scalar multiplication. The commutativity of the dia-
grams

ExE — Ef =E @ We
\l/ J, ld]E & W(rl,'r‘g)ERXR'—)TrI‘zER
(ExE® — ERXR — B ® Wexr

11



ER=E® Wr — E® Wp
Idg @ W(ry 1) eRxRsr1m2eR + L idg ® Wia,r)eDxRsdreD
ER*E = E ® Wryr - E@Wpxr = (E@ Wp)¥

with the left vertical arrow in the first diagram
E x E — (E x E)X
being the exponential transpose of

RXxEXxE=EXxRxEidg x ggE x E (18)
—_—

the upper horizontal arrow
E xE — E*
in the first diagram being that in (L), the lower horizontal arrow
(E x E)* —» EF*R = E @ Wexr

in the first diagram being that in (II) exponentiated by R, the upper
horizontal arrow
EfF =E®@Wr - E® Wp

in the second diagram being
idg ® WaeDrsder
and the lower horizontal arrow
E*E = E ® Waxr = E® Wpxr = (E@ Wp)"
in the second diagram being
idg @ W(4,r)e DxRes (d,r)eR xR

implies the commutativity of the diagram

ExE = E® Wb
1 1
ExE® = (EoWp)F

which is the exponential transpose of the commutative diagram

RxExE = Rx(E®Wp)
A A
ExE = E® Wb

with the left vertical arrow being that in (I8]) and the right vertical arrow
being the scalar multiplication in Definition [[1 This is no other than the
gist of the desired statement.

12



]
It should be apparent that

Lemma 16 The diagram
Wae D (0,0)e D2

WD(Q) W(d1,dg)eDQH(dl,d1d2)eD(22 Wpe —/————— D
de D—(0,d)eD?

18 a limit diagram in the category Weily.
Theorem 17 The Ry-module
wp (M) : M @Wp = M
18 Fuclidean with respect to the DG-category (IC/M7 Rar, Tar, aM).
Proof. By Lemma [I6 we have the limit diagram

M @ Wp(a) idm @ Wid ds)e D2 (dr ,drd2)eD(2)

idy @ Waepes(0,0)ep?
M @ Wp2 : 2 M ® Whp
idayr @ Wae Des (0,d)e D2

Therefore we have W
M @ Wpa) =Ty (1w, (M))

while we have
M®WD(2) = (M@WD) XM (M®WD)

Therefore the desired conclusion follows. m

4 Differential Forms
Let E be a Euclidean R-module which is microlinear and Weil exponentiable.

Definition 18 (Differential Forms with values in E) We denote by Q" (M;E)
the intersection of all the following equalizers:

1. the equalizer of the exponential transpose

]EM®WDn N ERX(M@WDn)

of the composition of

R
EMEWDn o (R x (M @ Wpn)) idgrewpn X () EMEWDn o (M @ Wipn)
/. M@Wpn

and
EMEWDn 5 (M @ Wpn) eyE

13



in succession and the exponential transpose
]EM®WDn N ERX(M@WDn)

of the composition of

EMEWD™ 5 (R x (M @ Wpn))

=R x (EM®Vor x (M ) id R xE

x ( X (M ® Wpn)) idg x evR x
and the scalar multiplication
RxE RFE
X

in succession, where i ranges over the natural numbers from 1 to n, and
the exponential transpose of

R
(._) ‘R x (M &Wpn) = M®Wpn
/. MQWpn

8

: M @Wpn — (M@ Wpn)* = (M & Wpn) @ Wr
:M®WD”><R:M®WR><D"

. the equalizer of the exponential transpose
EM@WDn — EM@WDn

of the composition of

EMEWD™ 5 (M @ Wpn) idgmewpn X (-7) yrgmp. BN EYP" X (M @ Wpn)

and
EMEWD™ 5 (M @ Wpn) ey E

in succession and the exponential transpose
EM®WD" N EM®WD"
of the composition of

EMEWDn 5 (M @ Wpn) eyE

and
E (Eg) E E
AN
in succession, where o ranges over all the permutation of the set {1,...,n},

€, 18 the signature of o, (e5) g is the scalar multiplication by €5, and
(-U)M®WDTL N M ® WDn — M ® WDn
18

(@1,dn)ED™ = (dg 1y 1esd () JEDT

14



Definition 19 (Infinitesimal Integration of Differential Forms) We define a mor-
phism

/ (M @Wpn) x QY (M;E) - E
ME

in K to be the composition of
idaeWwpn Xign () sEmewon © (M @ Wpn)x Q" (M;E) = (M @ Wpa ) xEM@Von

and
ev: (M @ Wpn) x EM®Ver |

in succession, where
: .On . MRWpn
ZQ"(M;]E)%]EM@WD" . Q (M,]E) — E

18 the canonical injection.

Remark 20 We should point out that the orthodox definition of the infinites-
imal integration of differential forms in synthetic differential geometry, such
as seen in Chapter 4 of [6]], is unnecessarily decorated with redundant fringes.
Therein, it is defined as a mapping

where the mapping factors through the canonical injection
hom (E ® Wpn) = E® Wpn

with hom (E ® Wpn) being the homogeneous subobject of EQWpn. Since hom (E @ Wpn)
18 canonically isomorphic to E, such an unnecessarily decoration is to be averted.

It is trivial to see that

Proposition 21 The morphism
/ (M @Wpn) x Q"(M;E) - E
M,E

satisfies the following properties:

1. The composition of morphisms
R
(._) xidgn (a1 : RX(M & Wpn ) xQ(M;E) = (M @ Wpa)xQ"(M; E)
/. M@Wpn

and

M,E

15



in succession is equal to the composition of morphisms
n
ide/ RX (M®Wpn) x Q" (M;E) > RxE
ME

and
F:RxE - E

mn succession.
2. The composition of morphisms
('U)M®WDn XidQn(M;]E) : (M ® WDn)XQn(M; E) — (M ® WDn)XQn(M; E)

and

/ (M @Wpn) x Q"(M;E) - E
ME

in succession is equal to the composition of morphisms

/ (M @Wpn) x Q"(M;E) - E
MJE

and

E (GG)JE@WDn E
e
m Ssuccession.
As should have been expected, we have

Theorem 22 (The Fundamental Theorem on Differential Forms) Given an ob-
ject X in KC and a morphism

@: (M@Wpn) x X - EQWpn, (19)

if the morphism (I9) satisfies the two conditions in Proposition[Z1 with Q™ (M;E)
replaced by X and f;“E replaced by @, then there exists a unique morphism

p: X = QY (M;E)
such that ¢ is equal to the composition of morphisms
idpewpn X @1 (M @Wpn) x X — (M @ Wpn) x Q"(M;E)
and

/ (M @Wpn) x Q" (M;E) - E
ME

n SuUccession.

16



Proof. The theorem follows rather directly from the universal construction
of Q"(M;E). Take the exponential transpose

$:X = (E@ Wpa)MEWon
of (Id), which factors, by the two conditions on ¢, into a morphism
o: X = Q" M;E)
followed by the canonical monomorphism
Q" (M;E) — EM®Wbr

It is not difficult to see that the above @ is the desired unique morphism in the
theorem. The details can safely be left to the reader. m

5 The Exterior Differentiation

Definition 23 Given natural numbers n,i with 1 < i < n+ 1, we define a
morphism

(7). s <o) -

M,E
mn IC to be

M®WDn+1) X Qn(M,E)

(
(idas @ Widy ..o s 1)€ D1 (dr s odi 1o s 1,di)€DHL) X idQ"(M;]EZ
(M® WDn+1) x Q" (M;E)

— (M & Wpaer) x (2" (M:E) ® k)

idyvew,,,. % (idorang) @ (k= k[X]/ (X?) = Wp))

(M @ Wpn+1) x (Q"(M;E) ® Wp)

= ((M @ Wpn) ® Wp) x (2" (M;E) ® Wp)

— (M & Wpn) x Q"(M;E)) © Wp

/ ®idWD E@WD
M,E

=E®E—E

where the last morphism
E®E—E

1s the second projection, and
k— k[X]/ (X?) =Wp

is the canonical morphism.

17



Notation 24 We denote by

(872’1+1)M®WD71+1

the morphism

idy ® W(d1 ----- dpy1)€D"Th—(dy,...,di—1,diy1,...,dpy1,d;) €D HL

In order to establish the fundamental theorem on exterior differentiation, we
need two lemmas, which go as follows:

Lemma 25 The composition of morphisms

R
<]) XidQn(M;]E) : Rx (M 029 WDn+1)><Qn(M; E) — (M 9 WDn+1) XQ"(M; E)
MRWpn

and

(/n>,:wl®“bwﬁx§WMQEyﬁE

ME
in succession is equal to the composition of morphisms

ide</ ):Rx(M®WDH+1)><Q"(M;IE)—>R><]E
M,E/ ;

and
T:RxE —=E
1M SUCCession.
Proof. For j < i, it is easy to see that

T ()
? MW pn+1 j

MW ppn+1

R
_ (() ®ide> JCEICADIEtN,

M@Wpn

while, for j > 4, it is also easy to see that

R
n+1
(al * )M®WDn+1 © <J>

MW pn+1

R
= . i H n+1
- ((J’l> M®Wpn ®ldWD> ° (1dR x (o )M®Won+1>

Therefore, for j # i, that

(1) 2((), i)
(&) ( " /AZE))

18



follows directly. It remains to show that

A ()
(- ([)

which follows readily from

R
o)
( i )M®WDn+1 i M&Wpni1
R
n+1
= . O .
(n+1> (@ )M®Wm+1

M@Wpnt1

]
Lemma 26 Given a permutation o of {1,...,n+ 1}, we have

(%(—1)141 </A:E)> : ((-")M®Wm+1 x idQn(M;E))

i=1
n+1 n
= 50’ (—1)i+1 (/ )
Proof. We notice that

+1
(aln )M®WDn+1 © (.U)M®WDn+1

O I I
(1 M® (57) M®WDn+1o 7)) MOW, i

where 67 is the permutation of {1,...,n} with
a7 ()
a7 ()
J)
7)

‘We notice also that

() )
ME M@Wpn
:55?/
“JME
-1

eso = (_1)0 (i)figa

Therefore the desired statement follows. m

§) in case of j < o~ '(i) and o (j) < 4;

o
o(j+1) in case of j = o~ !(i) and o (j) < 4;
o

=3

7 ( (
7 ( (
7 ( () — 1 in case of j < o~ (i) and o (§) = i
7 ( (

) o(j+1)—1in case of j = o '(i) and o (j) = i.

and
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Theorem 27 (The Fundamental Theorem on Exterior Differentiation) There ex-
ists a unqiue morphism

d, : Q"(M;E) — Q""(M;E)
in IC such that the the composition of morphisms
idpew, . X Aot (M @ Wpnat) x Q" (M;E) = (M @ Wpne) x Q" (M;E)

and

n+1
/ (M @Wpni1) x Q"THM;E) - E
M,E

18 equal to the morphism
n+1 . n
> (=1 </ ) (M @ Wpnir) x Q' (M;E) - E
i=1 M,E/ ;

Proof. This follows easily from Lemmas 25 and 26 and Theorem ]
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