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Abstract

We refurbish our axiomatics of differential geometry introduced in
[Mathematics for Applications,, 1 (2012), 171-182]. Then the notion of
Euclideaness can naturally be formulated. The principal objective in this
paper is to present an adaptation of our theory of differential forms de-
veloped in [International Journal of Pure and Applied Mathematics, 64
(2010), 85-102] to our present axiomatic framework.

1 Introduction

The principal objective in this paper is to replicate our treatment of differen-
tial forms in [8] in the context of our axiomatics on differential geometry in
[9]. Trying to achieve this goal, we have realized that our axiomatics there is
somewhat fragile. Therefore, we were forced to refurbish the axiomatics. The
main improvement is that prolongations of spaces with respect to Weil algebras
can directly be generalized to those with respect to finitely presented algebras.
As is well known, the prolongation of a space with respect to the Weil algebra
k [X ] /

(
X2
)
(the Weil algebra corresponding to first-order infinitesimals) is its

tangent bundle. Similarly, the prolongation of a space with respect to the poly-
nomial algebra k [X1, ..., Xn], which is not a Weil algebra but surely a finitely
presented algebra, is simply the exponentiation of the space by R

n. Thus the
secondary objective in this paper is to improve our axiomatics, to which Section
2 is devoted. In particular, the theorem established in [10] that the tangent
space is a module over k, which is external to the category K, is enhanced to
the theorem that the tangent space is a module over R, which is an object in K.

Section 3 is concerned with Euclidean modules. Our new axiomatics of dif-
ferential geometry enables us to formulate the notion of Euclideaness properly,
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in which cartesian closedness and prolongations with respect to polynomial alge-
bras will play a crucial role. In orthodox differential geometry and its extensions
to infinite-dimensional differential geometry, we first study the category of linear
spaces of some kind and smooth mappings, say, the category of Hilbert spaces,
that of Banach spaces, that of Fréchet spaces, that of convenient vector spaces
and so on. We then study the category of manifolds, which are modeled locally
after such linear spaces. Our approach moves in the sheer opposite direction.
We first establish the general theory of microlinear spaces. The theory of Eu-
cliean modules (i.e., its linear part) is obtained as a special case of this general
theory.

Sections 4 and 5 are merely an adaptation of our treatment of differential
forms in [10] to our present axiomatic framework. Section 4 is devoted to a
unique characterization of differential forms, which could be called the funda-
mental theorem on differential forms. The characterization and existence of
exterior differentiation, which will be discussed in Section 5, is an easy conse-
quence of this fundamental theorem.

2 Refurbishing our Axiomatics

2.1 The Refurbishment

Let k be a commutative ring. We denote by Tk the algebraic theory of k-algebras
in the sense of Lawvere. We denote by FPTk the category of finitely presented
k-algebras. It is well known that Weil algebras over k are finitely presented
k-algebras. We denote by Weilk the category of Weil k-algebras, which is well
known to be left exact. In particular, its terminal object is k itself. A finitely
presented k-algebra A is called pointed if it has a unique maximal ideal m such
that the composition of the canonical morphism

k → A

and the canonical projection
A→ A/m

is an isomorphism. We denote by PFPTk the category of pointed finitely pre-
sented k-algebras. Not only Weil k-algebras but also polynomial k-algebras
k[X1, ..., Xn] lie in PFPTk. Given a left exact category K and a k-algebra ob-
ject R in K, there is a canonical functor R⊗· (denoted by R⊗ · in [3]) from the
category Weilk to the category of k-algebra objects and their homomorphisms
in K.

Definition 1 (DG-category) The present refinement of our original axiomatics
in [9] is that we allow not only Weil prolongations but also finitely presented
prolongations. Therefore, given a finitely presented k-algebra A, we are endowed
with a left exact functor TA : K → K preserving cartesian closed structures in
the sense that we have

TA
(
XY

)
=
(
TAX

)Y
(1)
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for any objects X and Y in K. For any freely generated k-algebra A = k[X1, ..., Xn]
over n generaters X1, ..., Xn, T

A = Tk[X1,...,Xn] is required to be simply the ex-
ponentiation by R

n, so that we have

Tk[X1,...,Xn]X = XR
n

(2)

for any object X in K. In particular, when n = 0, we have

TkX = X

Given a finitely presented k-algebra A, it is required that

TA
R = R⊗A (3)

Given two finitely presented k-algebra A and B, it is required that

TB ◦TA = TA⊗kB (4)

Given a morphism ϕ : A→ B in PFPTk, we have a natural transformation

αϕ : TA ⇒ TB

which respects cartesian closed structures, so that we have

αϕ
(
XY

)
= (αϕ (X))

Y
(5)

for any objects X and Y in K. It is also required to satisfy

αϕ
(
TCX

)
= TC (αϕ (X)) : TATCX = TC⊗kAX = TA⊗kCX = TCTAX

→ TCTBX = TB⊗kCX = TC⊗kBX = TBTCX (6)

for any object C in the category PFPTk. Given two morphisms ϕ : A→ B and
ψ : B → C in PFPTk, it is required that

αψ ◦ αϕ = αψ◦ϕ (7)

Given any identity morphism idA : A→ A in PFPTk, it is required that

αidA
= idTA (8)

Given a morphism ϕ : A→ B in PFPTk, it is required that

αϕ (R) = R⊗ϕ (9)

Thus our new definition of a DG-category is a quadruple

(K,R,T, α)

where

1. K is a category which is left exact and cartesian closed.
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2. R is a commutative k-algebra object in K.

3. Given an object A in PFPTk, T
A : K → K is a left-exact and cartesian-

closed-structure-preserving functor.

4. Given a morphism ϕ : A → B in PFPTk, αϕ : TA ⇒ TB is a natural
transformation.

5. The quadruple (K,R,T, α) is required to satisfy (2)-(9) as axioms.

Remark 2 As in [9] we have a bifunctor

⊗ : K×PFPTk → K

with
X ⊗A = TAX

for any object X in K and any object A in PFPTk, and

f ⊗ ϕ

= αϕ (Y ) ◦TAf

= TBf ◦ αϕ(X)

for any morphism
f : X → Y

in K and any morphism
ϕ : A→ B

in PFPTk.

Remark 3 Given an object A in PFPTk and an object X in K, we write

τA (X) : TAX → X

and
ιA (X) : X → TAX

for
αA→k (X) : TAX → TkX = X

and
αk→A (X) : X = TkX → TAX

respectively, where A→ k and k → A are the canonical morphisms in PFPTk.

It is easy to see that

Proposition 4 Let (K,R,T, α) be a DG-category with the category K being
locally cartesian closed and M an object in K. Then

(
K/M,RM ,TM , α

M
)
is a

DG-category but for conditions (1) and (5), where
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1. K/M is the slice category.

2. RM is the canonical projection

R×M →M

3. Given an object
π : E →M

in K and an object A in PFPTk, T
A
M (π) is defined to be

T
A

M (π) →M (10)

where T
A

M (π) is obtained as the equalizer of

TAπ : TAE → TAM

and
TAE τA (E)

−−−−→
E π−→M ιA (M)

−−−−→
TAM

and (10) is

T
A

M (π) → TAE τA (E)
−−−−→

E π−→M

4. Let ϕ : A→ B be a morphism in PFPTk. Since the diagrams

TAE αϕ (E)
−−−−→

TBE

TAπ ↓ ↓ TBπ

TAM
−−−−−→
αϕ (M) TBM

TAE αϕ (E)
−−−−→

TBE

τA (E) ց ւ τB (E)
E
π ↓
M

ιA (M) ւ ց ιB (M)

TAM
−−−−−→
αϕ (M) TBM

commute, there is a unique morphism

αMϕ (π) : T
A

M (π) → T
B

M (π)

in K such that the diagram

T
A

M (π) αMϕ (π)
−−−−→

T
B

M (π)

↓ ↓

TAE
−−−−→
αϕ (E) TBE

commutes.
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Definition 5 (Local DG-category) A DG-category (K,R,T, α) is called a local DG-category

if K is locally cartesian closed and
(
K/M,RM ,TM , α

M
)
is a DG-category for

any object M in K.

Remark 6 The notion of microlinearity and that of Weil exponentiability re-
main the same as those in [9].

In the following, we will consider an arbitrarily chosen local DG-category
(K,R,T, α) with M being a microlinear and Weil exponentiable object in K.

2.2 The Duality

We have already explained the duality between the category of Weil algebras in
the real world and the category of infinitesimal objects in the imaginary world.
Namely, we have a contravariant functor D from the category of Weil algebras
to the category of infinitesimal objects and a contravariant functor W from the
category of infinitesimal objects to the category of Weil algebras, both of which
constitute a dual equivalence between the two categories. By way of example,
Dk[X]/(X2) is intended for

D =
{
x ∈ R | x2 = 0

}

while Dk[X,Y ]/(X2,Y 2,XY ) is intended for

D(2) = {(x, y) ∈ D ×D | xy = 0}

Therefore we have

WD = k [X ] /
(
X2
)

WD(2) = k [X,Y ] /
(
X2, Y 2, XY

)

Similarly
Wd∈D 7→(d,0)∈D(2)

stands for the homomorphism of k-algebras from k [X,Y ] /
(
X2, Y 2, XY

)
to

k [X ] /
(
X2
)
assigning the equivalence class of X in k [X ] /

(
X2
)
to the equiva-

lence class of X in [X,Y ] /
(
X2, Y 2, XY

)
and assigning the equivalence class of

0 in k [X ] /
(
X2
)
to the equivalence class of Y in [X,Y ] /

(
X2, Y 2, XY

)
.

We can extend contravariant functors D and W so as to yield a dual equiv-
alence between the category PFPTk and the category of (real or imaginary)
carved spaces standing for genuinely formal Spec

R
. By way of example, we have

Dk[Z1,Z2] = R
2

Dk[Z1,Z2,X,Y ]/(X2,Y 2,XY ) = R
2 ×D(2)

while
W

d∈D 7→d∈R
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stands for the canonical projection

k[X ] → k[X ]/(X2)

and
W(r1,r2,d1,d2)∈R2×D(2) 7→r1d1+r2d2∈D

stands for the homomorphism of k-algebras from k [X ] /
(
X2
)
to k [Z1, Z2, X, Y ] /

(
X2, Y 2, XY

)

assigning the equivalence class of Z1X+Z2Y in k [Z1, Z2, X, Y ] /
(
X2, Y 2, XY

)

to the equivalence class of X in k [X ] /
(
X2
)
.

2.3 The Tangent Space

Definition 7 (Scalar Multiplication) The exponential transpose of the scalar
multiplication

R× (M ⊗WD) →M ⊗WD

is

idM ⊗W(r,d)∈R×D 7→rd∈D : M ⊗WD →M ⊗WR×D =M ⊗ (WD ⊗k WR) =

(M ⊗WD)⊗WR = (M ⊗WD)
R

Now we strengthen one of the main results of [10] into

Theorem 8 The canonical projection

τWD
(M) :M ⊗WD →M

is an RM -module in the slice category K/M , where RM is the canonical projec-
tion

R×M →M

Proof. Here we deal only with the statement that the scalar multiplication
distributes over the addition, for which we have to verify that the diagram

R×
(
M ⊗WD(2)

)
→ R× (M ⊗WD)

↓ ↓
M ⊗WD(2) → M ⊗WD

commutes, where the horizontal arrows stand for addition, while the vertical
arrows correspond to scalar multiplication. This follows easily from the com-
mutativity of the diagram

M ⊗WD(2) idM ⊗Wd∈D 7→(d,d)∈D(2)
−−−−−−−−−−−−−−−−−→

M ⊗WD

↓ ↓

M ⊗WR×D(2)

−−−−−−−−−−−−−−−−−−−−−−−−−→
idM ⊗W(r,d)∈R×D 7→(r,d,d)∈R×D(2) M ⊗WR×D

where the left vertical arrow is

idM ⊗W(r,d1,d2)∈R×D 7→(rd1,rd2)∈D
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while the right vertical arrow is

idM ⊗W(r,d)∈R×D 7→rd∈D

3 Euclidean Modules

An R-module in K is an object E in K endowed with a morphism

+E : E× E → E,

intended for addition, and a morphism

·R,E : R× E → E,

intended for scalar multiplication, which are surely subject to the usual axioms
of anR-module depicted diagrammatically. Equivalently, an R-module structure
on an object E in K can be given by a single morphism

ϕ : R× E× E → E

intended for the morphism

R× E× E ·R,E × idE
−−−−−−→

E× E+E
−→

E

which is surely subject to some axioms depicted diagrammatically.

Definition 9 (Euclidean R-module) An R-moduleE is called Euclidean pro-
vided that the composition of the exponential transpose

E× E → E
R (11)

of
R× E× E = E× R× E idE × ·R,E

−−−−−−→
E× E+E

−→
E (12)

and
αWd∈D 7→d∈R

(E) : ER = E⊗WR → E⊗WD (13)

in succession is an isomorphism.

It should be obvious that

Lemma 10 The R-module structure of E naturally gives rise to that of EX for
any object X in K in the sense that the exponential transpose

ϕ̃ : E× E → E
R

of the R-module structure

ϕ : R× E× E → E

8



on E induces a mapping

(ϕ̃)
X

: EX×E
X = (E× E)

X
→
(
E
R
)X

=
(
E
X
)R

,

which is the exponential transpose of the derived R-module structure

R× E
X×E

X → E
X

on E
X .

Proposition 11 If E is a Euclidean R-module, then so is EX for any object X
in K.

Proof. We use the same notation as in Lemma 10. We have

αW
d∈D 7→d∈R

(
E
X
)
=
(
αW

d∈D 7→d∈R
(E)
)X

:
(
E
X
)R

=
(
E
R
)X

= (E⊗WR)
X

→

(E⊗WD)
X = E

X ⊗WD

Since (
αW

d∈D 7→d∈R
(E)
)X

◦ (ϕ̃)
X

=
(
αW

d∈D 7→d∈R
(E) ◦ ϕ̃

)X

we are sure that EX is a Euclidean R-module.
It should be evident that

Lemma 12 The R-module structure of E naturally gives rise to that of E⊗W
for any Weil algebra W in the sense that the exponential transpose

ϕ̃ : E× E → E
R

of the R-module structure

ϕ : R× E× E → E

on E induces a mapping

ϕ̃⊗ idW : (E⊗W )×(E⊗W ) = (E× E)⊗W → E
R ⊗W = (E⊗W )

R
,

which is the exponential transpose of the derived R-module structure

R× (E⊗W )×(E⊗W ) → E⊗W

on E⊗W .

Proposition 13 If E is a Euclidean R-module, then so is E⊗W for any Weil
algebra W .

9



Proof. We use the same notation as in Lemma 12. We have

αW
d∈D 7→d∈R

(E⊗W ) = αW
d∈D 7→d∈R

(E)⊗ idW : (E⊗W )
R
= (E⊗W )⊗WR

= (E⊗WR)⊗W → (E⊗WD)⊗W = (E⊗W )⊗WD

Since
(
αW

d∈D 7→d∈R
(E)⊗ idW

)
◦ (ϕ̃⊗ idW ) =

(
αW

d∈D 7→d∈R
(E) ◦ ϕ̃

)
⊗ idW

we are sure that E⊗W is a Euclidean R-module.

Remark 14 If E is an R-module, then the first projection

π1 : E× E → E

is naturally an R-module in the slice category K/E.

Proposition 15 If E is a Euclidean R-module, then the identification of E ⊗
WD and E× E in Definition 9 together with the commutative diagram

E× E = E⊗WD

π1 ց ւ τWD
(E)

E

allows us to identify the RM -module structure in Theorem 8 and that in Remark
14.

Proof.

1. First we deal with addition. We have

E⊗WD(2) = (E⊗WD)×M (E⊗WD)

=
(
E
1
×E

2

)
×M

(
E
3
×E

4

)

= E
1,3

×E
2
×E

4
(14)

where the numbers under E are given simply so as for the reader to relate
each occurrence of E on the last line to the appropriate occurrence of E on
the previous line. This isomorphism can be realized by the composition
of the exponential transpose

E× E× E → E
R×R (15)

of

R
1
× R

2
× E

3
×E

4
×E

5
= E

3
×R

1
×E

4
×R

2
× E

5
idE × ·R,E × ·R,E
−−−−−−−−−−−→

E× E× E

idE ×+E−−−−−−→
E× E+E−→

E (16)
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and

αW(d1,d2)∈D(2)7→(d1,d2)∈R×R
(E) : ER×R = E⊗WR×R → E⊗WD(2) (17)

in succession, where the numbers under R and E are intended for the
reader to easily relate their occurrences on the first line to those on the
second line. Therefore, the commutativity of the diagrams

E× E× E → E
R×R = E⊗WR×R

idE ×+E ↓ ↓ idE ⊗Wr∈R 7→(r,r)∈R×R

E× E → E
R = E⊗WR

E
R×R = E⊗WR×R → E⊗WD(2)

idE ⊗Wr∈R 7→(r,r)∈R×R ↓ ↓ idE ⊗Wd∈D 7→(d,d)∈D(2)

E
R = E⊗WR → E⊗WD

,

with the morphism
E× E× E → E

R×R

being that in (15), the morphism

E× E → E
R

being that in (11), the moriphism

E
R×R = E⊗WR×R → E⊗WD(2)

being the morphism

idE ⊗W(d1,d2)∈D(2) 7→(d1,d2)∈R×R

and the morphism
E
R = E⊗WR → E⊗WD

being the morphism
idE ⊗W

d∈D 7→d∈R

implies the commutativity of the diagram

E× E× E = E⊗WD(2)

idE ×+E ↓ ↓ idE ⊗Wd∈D 7→(d,d)∈D(2)

E× E = E⊗WD

This is no other than the gist of the desired statement.

2. Now we deal with scalar multiplication. The commutativity of the dia-
grams

E× E → E
R = E⊗WR

↓ ↓ idE ⊗W(r1,r2)∈R×R7→r1r2∈R

(E× E)
R

→ E
R×R = E⊗WR×R

11



E
R = E⊗WR → E⊗WD

idE ⊗W(r1,r2)∈R×R7→r1r2∈R ↓ ↓ idE ⊗W(d,r)∈D×R 7→dr∈D

E
R×R = E⊗WR×R → E⊗WD×R = (E⊗WD)

R

with the left vertical arrow in the first diagram

E× E → (E× E)R

being the exponential transpose of

R× E× E = E× R× E idE × ·R,E
−−−−−−→

E× E (18)

the upper horizontal arrow

E× E → E
R

in the first diagram being that in (11), the lower horizontal arrow

(E× E)R → E
R×R = E⊗WR×R

in the first diagram being that in (11) exponentiated by R, the upper
horizontal arrow

E
R = E⊗WR → E⊗WD

in the second diagram being

idE ⊗Wd∈D 7→d∈R

and the lower horizontal arrow

E
R×R = E⊗WR×R → E⊗WD×R = (E⊗WD)

R

in the second diagram being

idE ⊗W(d,r)∈D×R 7→(d,r)∈R×R

implies the commutativity of the diagram

E× E = E⊗WD

↓ ↓

(E× E)R = (E⊗WD)
R

which is the exponential transpose of the commutative diagram

R× E× E = R× (E⊗WD)
↓ ↓

E× E = E⊗WD

with the left vertical arrow being that in (18) and the right vertical arrow
being the scalar multiplication in Definition 7.This is no other than the
gist of the desired statement.

12



It should be apparent that

Lemma 16 The diagram

WD(2) W(d1,d2)∈D2 7→(d1,d1d2)∈D(2)
−−−−−−−−−−−−−−−−−−−→

WD2

Wd∈D 7→(0,0)∈D2

−−−−−−−−−−−→−−−−−−−−−−−→
Wd∈D 7→(0,d)∈D2

WD

is a limit diagram in the category Weilk.

Theorem 17 The RM -module

τWD
(M) :M ⊗WD →M

is Euclidean with respect to the DG-category
(
K/M,RM ,TM , α

M
)
.

Proof. By Lemma 16 we have the limit diagram

M ⊗WD(2) idM ⊗W(d1,d2)∈D2 7→(d1,d1d2)∈D(2)
−−−−−−−−−−−−−−−−−−−−−−−−−→

M ⊗WD2

idM ⊗Wd∈D 7→(0,0)∈D2

−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→
idM ⊗Wd∈D 7→(0,d)∈D2

M ⊗WD

Therefore we have
M ⊗WD(2) = T

WD

M (τWD
(M))

while we have
M ⊗WD(2) = (M ⊗WD)×M (M ⊗WD)

Therefore the desired conclusion follows.

4 Differential Forms

Let E be a Euclidean R-module which is microlinear and Weil exponentiable.

Definition 18 (Differential Forms with values in E) We denote by Ωn(M ;E)
the intersection of all the following equalizers:

1. the equalizer of the exponential transpose

E
M⊗WDn → E

R×(M⊗WDn )

of the composition of

E
M⊗WDn×(R× (M ⊗WDn)) id

E
M⊗WDn ×

(
·
i

)R
M⊗WDn

−−−−−−−−−−−−−−−−−−→

E
M⊗WDn×(M ⊗WDn)

and
E
M⊗WDn × (M ⊗WDn) ev−→E

13



in succession and the exponential transpose

E
M⊗WDn → E

R×(M⊗WDn )

of the composition of

E
M⊗WDn × (R× (M ⊗WDn))

= R×
(
E
M⊗WDn × (M ⊗WDn)

)
idR × ev
−−−−−→

R× E

and the scalar multiplication

R× E ·R
E
−→

E

in succession, where i ranges over the natural numbers from 1 to n, and
the exponential transpose of

(
·
i

)R
M⊗WDn

: R× (M ⊗WDn) →M ⊗WDn

is

αW(a,d1,...,dn)∈R×Dn→(d1,...,adi,...,dn)∈Dn
(M)

:M ⊗WDn → (M ⊗WDn)
R
= (M ⊗WDn)⊗WR

=M ⊗WDn×R =M ⊗WR×Dn

2. the equalizer of the exponential transpose

E
M⊗WDn → E

M⊗WDn

of the composition of

E
M⊗WDn × (M ⊗WDn) id

E
M⊗WDn × (·σ)M⊗WDn

−−−−−−−−−−−−−−−−−−→
E
M⊗WDn × (M ⊗WDn)

and
E
M⊗WDn × (M ⊗WDn) ev−→E

in succession and the exponential transpose

E
M⊗WDn → E

M⊗WDn

of the composition of

E
M⊗WDn × (M ⊗WDn) ev−→E

and
E (ǫσ) E

−−−→
E

in succession, where σ ranges over all the permutation of the set {1, ..., n},
ǫσ is the signature of σ, (ǫσ) E is the scalar multiplication by ǫσ, and

(·σ)M⊗WDn
:M ⊗WDn →M ⊗WDn

is
αW

(d1,...,dn)∈Dn→(dσ(1),...,dσ(n))∈Dn
(M)

14



Definition 19 (Infinitesimal Integration of Differential Forms) We define a mor-
phism ∫ n

M,E

: (M ⊗WDn)× Ωn(M ;E) → E

in K to be the composition of

idM⊗WDn×iΩn(M ;E)→E
M⊗WDn : (M ⊗WDn)×Ωn(M ;E) → (M ⊗WDn)×E

M⊗WDn

and
ev : (M ⊗WDn)× E

M⊗WDn → E

in succession, where

iΩn(M ;E)→E
M⊗WDn : Ωn(M ;E) → E

M⊗WDn

is the canonical injection.

Remark 20 We should point out that the orthodox definition of the infinites-
imal integration of differential forms in synthetic differential geometry, such
as seen in Chapter 4 of [6], is unnecessarily decorated with redundant fringes.
Therein, it is defined as a mapping

(M ⊗WDn)× Ωn(M ;E) → E⊗WDn

where the mapping factors through the canonical injection

hom (E⊗WDn) → E⊗WDn

with hom(E⊗WDn) being the homogeneous subobject of E⊗WDn. Since hom (E⊗WDn)
is canonically isomorphic to E, such an unnecessarily decoration is to be averted.

It is trivial to see that

Proposition 21 The morphism

∫ n

M,E

: (M ⊗WDn)× Ωn(M ;E) → E

satisfies the following properties:

1. The composition of morphisms

(
·
i

)R
M⊗WDn

×idΩn(M ;E) : R×(M ⊗WDn)×Ωn(M ;E) → (M ⊗WDn)×Ωn(M ;E)

and ∫ n

M,E

: (M ⊗WDn)× Ωn(M ;E) → E

15



in succession is equal to the composition of morphisms

idR ×

∫ n

M,E

: R× (M ⊗WDn)× Ωn(M ;E) → R× E

and
·R
E
: R× E → E

in succession.

2. The composition of morphisms

(·σ)M⊗WDn
×idΩn(M ;E) : (M ⊗WDn)×Ωn(M ;E) → (M ⊗WDn)×Ωn(M ;E)

and ∫ n

M,E

: (M ⊗WDn)× Ωn(M ;E) → E

in succession is equal to the composition of morphisms

∫ n

M,E

: (M ⊗WDn)× Ωn(M ;E) → E

and
E (ǫσ)E⊗WDn

−−−−−−−→
E

in succession.

As should have been expected, we have

Theorem 22 (The Fundamental Theorem on Differential Forms) Given an ob-
ject X in K and a morphism

ϕ : (M ⊗WDn)×X → E⊗WDn , (19)

if the morphism (19) satisfies the two conditions in Proposition 21 with Ωn(M ;E)
replaced by X and

∫ n
M,E replaced by ϕ, then there exists a unique morphism

ϕ̂ : X → Ωn(M ;E)

such that ϕ is equal to the composition of morphisms

idM⊗WDn × ϕ̂ : (M ⊗WDn)×X → (M ⊗WDn)× Ωn(M ;E)

and ∫ n

M,E

: (M ⊗WDn)× Ωn(M ;E) → E

in succession.

16



Proof. The theorem follows rather directly from the universal construction
of Ωn(M ;E). Take the exponential transpose

ϕ̃ : X → (E⊗WDn)
M⊗WDn

of (19), which factors, by the two conditions on ϕ, into a morphism

ϕ̂ : X → Ωn(M ;E)

followed by the canonical monomorphism

Ωn(M ;E) → E
M⊗WDn

It is not difficult to see that the above ϕ̂ is the desired unique morphism in the
theorem. The details can safely be left to the reader.

5 The Exterior Differentiation

Definition 23 Given natural numbers n, i with 1 ≤ i ≤ n + 1, we define a
morphism (∫ n

M,E

)

i

: (M ⊗WDn+1)× Ωn(M ;E) → E

in K to be

(M ⊗WDn+1)× Ωn(M ;E)
(
idM ⊗W(d1,...,dn+1)∈Dn+1 7→(d1,...,di−1,di+1,...,dn+1,di)∈Dn+1

)
× idΩn(M ;E)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗WDn+1)× Ωn(M ;E)

= (M ⊗WDn+1)× (Ωn(M ;E)⊗ k)

idM⊗W
Dn+1

×
(
idΩn(M ;E) ⊗

(
k → k[X ]/

(
X2
)
= WD

))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(M ⊗WDn+1)× (Ωn(M ;E)⊗WD)

= ((M ⊗WDn)⊗WD)× (Ωn(M ;E)⊗WD)

= ((M ⊗WDn)× Ωn(M ;E))⊗WD∫ n

M,E

⊗idWD

−−−−−−−−→

E⊗WD

= E⊗ E → E

where the last morphism
E⊗ E → E

is the second projection, and

k → k[X ]/
(
X2
)
= WD

is the canonical morphism.
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Notation 24 We denote by
(
∂n+1
i

)
M⊗W

Dn+1

the morphism

idM ⊗W(d1,...,dn+1)∈Dn+1 7→(d1,...,di−1,di+1,...,dn+1,di)∈Dn+1

In order to establish the fundamental theorem on exterior differentiation, we
need two lemmas, which go as follows:

Lemma 25 The composition of morphisms
(
·
j

)R

M⊗WDn

×idΩn(M ;E) : R×(M ⊗WDn+1)×Ωn(M ;E) → (M ⊗WDn+1)×Ωn(M ;E)

and (∫ n

M,E

)

i

: (M ⊗WDn+1)× Ωn(M ;E) → E

in succession is equal to the composition of morphisms

idR ×

(∫ n

M,E

)

i

: R× (M ⊗WDn+1)× Ωn(M ;E) → R× E

and
·R
E
: R× E → E

in succession.

Proof. For j < i, it is easy to see that

(
∂n+1
i

)
M⊗W

Dn+1
◦

(
·
j

)R

M⊗W
Dn+1

=

((
·
j

)R

M⊗WDn

⊗ idWD

)
◦
(
idR ×

(
∂n+1
i

)
M⊗W

Dn+1

)

while, for j > i, it is also easy to see that

(
∂n+1
i

)
M⊗W

Dn+1
◦

(
·
j

)R

M⊗W
Dn+1

=

((
·

j−1

)R

M⊗WDn

⊗ idWD

)
◦
(
idR ×

(
∂n+1
i

)
M⊗W

Dn+1

)

Therefore, for j 6= i, that

(∫ n

M,E

)

i

◦

((
·
j

)R

M⊗W
Dn+1

× idΩn(M ;E)

)

=
(
·R
E

)
◦

(
idR ×

(∫ n

M,E

)

i

)
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follows directly. It remains to show that
(∫ n

M,E

)

i

◦

((
·
i

)R
M⊗W

Dn+1

× idΩn(M ;E)

)

=
(
·R
E

)
◦

(
idR ×

(∫ n

M,E

)

i

)

which follows readily from

(
∂n+1
i

)
M⊗W

Dn+1
◦
(
·
i

)R
M⊗W

Dn+1

=

(
·

n+1

)R

M⊗W
Dn+1

◦
(
∂n+1
i

)
M⊗W

Dn+1

Lemma 26 Given a permutation σ of {1, ..., n+ 1}, we have
(
n+1∑

i=1

(−1)i+1

(∫ n

M,E

)

i

)
◦
(
(·σ)M⊗W

Dn+1
× idΩn(M ;E)

)

= εσ

n+1∑

i=1

(−1)i+1

(∫ n

M,E

)

i

Proof. We notice that
(
∂n+1
i

)
M⊗W

Dn+1
◦ (·σ)M⊗W

Dn+1

=
(
idM ⊗W(δσi )Dn

)(
·δ

σ
i

)
M⊗W

Dn+1

◦
(
∂n+1
σ−1(i)

)
M⊗W

Dn+1

where δσi is the permutation of {1, ..., n} with

δσi (j) = σ (j) in case of j < σ−1(i) and σ (j) < i;

δσi (j) = σ (j + 1) in case of j ≧ σ−1(i) and σ (j) < i;

δσi (j) = σ (j)− 1 in case of j < σ−1(i) and σ (j) ≧ i;

δσi (j) = σ (j + 1)− 1 in case of j ≧ σ−1(i) and σ (j) ≧ i.

We notice also that
(∫ n

M,E

)
◦

((
·δ

σ
i

)
M⊗WDn

× idΩn(M ;E)

)

= εδσ
i

∫ n

M,E

and
εδσ

i
= (−1)σ

−1(i)−iεσ

Therefore the desired statement follows.
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Theorem 27 (The Fundamental Theorem on Exterior Differentiation) There ex-
ists a unqiue morphism

dn : Ωn(M ;E) → Ωn+1(M ;E)

in K such that the the composition of morphisms

idM⊗W
Dn+1

× dn : (M ⊗WDn+1)× Ωn(M ;E) → (M ⊗WDn+1)× Ωn+1(M ;E)

and ∫ n+1

M,E

: (M ⊗WDn+1)× Ωn+1(M ;E) → E

is equal to the morphism

n+1∑

i=1

(−1)i+1

(∫ n

M,E

)

i

: (M ⊗WDn+1)× Ωn(M ;E) → E

Proof. This follows easily from Lemmas 25 and 26 and Theorem 22.
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[6] Lavendhomme, René:Basic Concepts of Synthetic Differential Geometry,
Kluwer Academic Publishers, Amsterdam, 1996.

[7] Nishimura, Hirokazu:Differential geometry of microlinear Frölicher spaces I,
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