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Abstract

A tt*-bundle is constructed by a harmonic map from a Riemann surface into
an n-dimensional sphere. This ¢¢*-bundle is a high-dimensional analogue of
a quaternionic line bundle with a Willmore connection. For the construc-
tion, a flat connection is decomposed into four parts by a fiberwise complex
structure.
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1. Introduction

A tt*-bundle is a real vector bundle equipped with a family of flat con-
nections, parametrized by a circle. The present paper delivers a t¢t*-bundle
derived from a harmonic map from a Riemann surface to an n-dimensional
sphere.

The notion of ¢t*-bundles is introduced by Schéfer [10] as a simple so-
lution to a generalized version of the equation of topological-antitopological
fusion, introduced by Cecotti and Vafa [2], in terms of real differential geom-
etry. A topological-antitopological fusion of a topological field theory model
is a special geometry structure on a Frobenius manifold. As a geometric in-
terpretation of a special geometry structure on a quasi-Frobenius manifold,
Dubrovin [6] showed that a solution to the equation is locally a pluriharmonic
map from an n-dimensional quasi-Frobenius manifold to the symmetric space

GL(n,R)/ O(n).
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Schéfer [10] showed that an admissible pluriharmonic map from a simply
connected complex manifold M to a symmetric space GL(r,R)/ O(p, ¢), and
that to SL(r,R)/SO(p, q) with p+q = r, gives rise from a metric tt*-bundle.
A harmonic map from a Riemann surface to SU(1,1)/S(U(1) x U(1)) =
SL(2,R)/SO(2) is obtained by the generalized Weierstrass representation
formula by Dorfmeister, Pedit, and Wu [5]. The Gauss map of a spacelike
surface of constant mean curvature in the Minkowski space R*! is a harmonic
map from a Riemann surface to SL(2,R)/SO(2). The Sym-Bobenko formula
(Bobenko [1], Dorfmeister and Haak [4]) connects a surface and its Gauss
map. Applying these formulae, Dorfmeister, Guest, and Rossman [3] gave the
description of the quantum cohomology of CP!. The quantum cohomology
of CP! provides a solution to the third Painlevé equation.

A surface of constant mean curvature in R? is an interesting research
subject in the theory of surfaces. Its Gauss map is a harmonic map from a
Riemann surface to the two-dimensional sphere S2. It is impossible to write
S? as a symmetric space GL(r,R)/ O(p, q) or SL(r,R)/SO(p,q). This led
the authors to find a tt*-bundle for a harmonic map into S?. The theory
of a quaternionic line bundle with a Willmore connection by Ferus, Leschke,
Pedit, and Pinkall [8] provides a way to construct a ¢¢*-bundle for a harmonic
map from a Riemann surface into S?. This method is extended and a tt*-
bundle associated with a harmonic map from a Riemann surface into S™
(n > 2) is obtained (Theorem 4.1).

2. tt*-bundles

We recall a tt*-bundle (Schéfer [10]).

Let M be a complex manifold with complex structure J™ . For a one-form
w on M, we define a one-form *w on M by *w :=wo J™. Let E be a trivial
real vector bundle of rank n over M, V a connection on F, and S a one-form
with values in the real endomorphisms of E. A one-form S'is considered as a
one-form with values in n-by-n real matrices. Define a family of connections

{ve}eeR on E by

V? =V + (cos)S + (sinf) * S.



The curvature of VY is
dv’ oV’
=d¥ oV + (cos#)d¥ S + (sinf)d¥ * S
+ ((cos0)S + (sinf) x S) A ((cos6)S + (sin ) * S)
=d¥ oV + (cos)d¥ S + (sinf)d” * S
+(cos0)>S A S + cosOsin (S A *S +*S A S) + (sinf)? x S A xS
=dV oV + (cos0)dVS + (sinf)d” = S

1 20 in 20 1-— 20
++C%SAS+S”1 (SA%S +355 A 8)+ —— = 5 S A8

1 1
:dVOV+§S/\S—|—§*S/\*S

+(cos 0)dV S + (sinf)d" * S
+C08229(S/\S—*S/\*S)+ sin 26

A vector bundle E with V and S is called a tt*-bundle if V? is flat for all
6 € R. By the preceding calculation, a vector bundle £ with V and S is a
tt*~bundle, if and only if
dVoV+SAS=0, dVS5=0, d¥S=0,
SAS=+xSA%xS, SAxS=—%xS5AS.

(S A*S + %S A S).

Indeed,
(SAS—xSA*S)(X,Y)
= S(X)S(Y) - S(Y)S(X) = S(JMX)S(JMY) + S(JMY)S(JM X)
= —S(X)S(JMIMY) + S(JMIMY)S(X)
—S(JMX)S(JMY) + S(JMY)S(JMX)
= —S(X)S(JMIMY) + S(JMY)S(JMX)
+S(JMIMY)S(X) — S(JMX)S(JMY)
= —(SA xS + xS A S9)(X, JVY)
for any tangent vectors X, Y of M. Hence, SA S = xS A xS is equivalent to

SAxS=—x5AS. Then, a vector bundle £ with V and S is a tt*~bundle,
if and only if

dVoV+SAS=0, d¥S§=0, d¥+S=0, SAS=xSAx%S



(see Schéfer [10], Proposition 1).

Assume that £ with V and S forms a tt*-bundle. Define F' as the com-
plexification of F, that is, F' := C® E. Denote the complex-linear extensions
of V and S by the same notations respectively. Define a family of connections

{V*},cc\qoy of F by
1 ~ 1 .
V“:V+;C+MC, C:§(S—@*S). (1)

Then C'is a (1,0)-form on M with values in complex linear endmorphisms
of F. The tt*-bundle E with V and S is the real part of F' with V* if and
only if |u] = 1.

Proposition 2.1. For each p € C\ {0}, the connection V* is flat.
Proof. As E with V and S is a tt*-bundle, it follows that
d¥C =0, dVC =0,
C/\C:}l(SAS—Z’S/\*S—z’*S/\S—*S/\*S):O,

C’/\C’:;l(S/\S—H'S/\*S—i*S/\S—i—*S/\*S):%(S/\S—i—iS/\*S).

Then
wH v 1 _ 1 _

A" oVt =d¥ oV + ;C’—l—uC’ A ;C—FuC
=dVoV+CANCH+CAC
=dVoV+SAS=0.

Hence V* is flat. O]

Adding the assumption in Proposition 2.1, we assume that there exists a
hermitian pseudo-metric h on F', and a metric connection V with respect to
h, such that

h(C(X)a,b) = h(a, C(X)b),

where a, b € I'(F), and X is a vector field of type (1,0) on M. Then
(F,V,C,C,h) becomes a harmonic bundle defined in Schéfer [11].



3. Decomposition of a connection

We obtain a condition for a map from a Riemann surface into a sphere, to
become a harmonic map, by decomposing a flat connection into four parts.

Let C'?,, be the Clifford algebra associated with R™ and the quadratic form
23423+ -+ 122 (see Lawson and Michelsohn [9]). The Clifford algebra C¥,,
is the algebra generated by an orthonormal basis ey, ... ,e, subject to the
relation

eiej + ejei = _251']"
Then CY,, is identified with R?". The set
{aeR* C O, |a*> = -1}

is an (n — 1)-dimensional unit sphere "' C R* C C/,, = R*".

Let M be a Riemann surface with complex structure J» and V be the
trivial associate bundle of a principal C/,-bundle, with right C¢, action,
over M. We denote the set of smooth sections of V' by I'(V') and the fiber
of V at p by Vj,. Let Q™(V) be the set of V-valued m-forms on M for every
non-negative integer m. Then Q°(V) = ['(V). Let W be another trivial
associate bundle of a principal C/,-bundle, with right C?,, action, over M.
We denote by Hom(V, W) the C¢,,-homomorphism bundle from V' to W. Let
N be a smooth section of the Clifford endomorphism bundle End(V) of V
such that —NN, o N, is the identity map Id, on V), for every p € M. The
section N is a complex structure at each fiber of V. We have a splitting
End(V) = End(V); @ End(V)_, where

End(V)y ={£ € End(V) : N¢ = &N}
End(V)_. ={( € End(V) : N¢ = —(N}.
This splitting induces a decomposition of £ € End(V') into £ = £, +&_, where
& =(§—NEN)/2€ End(V), and £ = (£ 4+ NEN)/2 € End(V)_.
Let T*M ®gr V' be the tensor bundle of the cotangent bundle T*M of M

and V over real numbers. We set xw = w o J™ for every w € Q'(V). We
have a splitting 7T*M @r V = KV @& KV, where

KV={neT*M®rV :xn=Nn}, KV={neT*MegrV :+n=—Nn}.

This splitting induces the type decomposition of n € T*M ®g V into n =
n +n", wherey = (n—Nxn)/2€ KV and ' = (n+ Nxn)/2€ KV.
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Let C' be the right trivial Clifford bundle over M with fiber C?,,. We
identify a smooth map ¢: M — C¥, with a smooth section p — (p, ¢(p))
of C. The bundle End(C) is identified with C', by the identification of &, €
End(C), with P, € C, such that {,(1) = P, for every p € M. We assume
that N takes values in R” C C/,. Then N is considered as a map from M
to S"! ¢ R™. Then T*M ®g C' decomposes as

T"M ®r C = (KC); © (KC)_® (KC)y ® (KC)_.

According to this decomposition, a connection V: T'(C') — QY(C) of the
Clifford bundle C' decomposes as
V=0V+AY+0V+QY,
V:T(C)—-T(KC), V'¢=(Ve),
V" T(C) —T(KC), V'¢=(Ve),
6% T(C) = T((KC).), 9% = (Vo).
AY € T(Hom(C, (KC)_)), A% = (V'9)._,
0V:T(C) = T((KC)4), 0V =(V'9)s,
QY € T(Hom(C, (KC)-)), Q¥ = (V'¢)-,
where ¢ is any smooth section of C. We see that AV and Q_V are tenso-
rial, that is, AV € I'(Hom(C, (KC)_)) and QV € T'(Hom(C, (KC)_)). The

sections AV and QV are called the Hopf fields of V' and V” respectively.
We denote by d the trivial connection on C'.

Lemma 3.1. A map N: M — S"! c R* C CY,, is a harmonic map, if and
only if d x A4 = 0.

Proof. The Hopf field A? satisfies the equation

Aty ==[(d + Jd'J)] ¢

H[\DIH

—[d—=J*xd+J(d—J*xd)J]¢

L (o) - N < (d9)
T [N(dN)g — dg] + [(AN) + N + dg]}
=1 IN(@N) + #(dN)] 6

%H%



for every ¢ € I'(C'). Hence
1
d* A% = Z(dNA *dN + Nd* dN).

Hence d * A = 0 if and only if
dN N *dN + Nd x dN = 0.

For an isothermal coordinate (z,y) such that x + yi is a holomorphic
coordinate, a map N: M — S"~! ¢ R" c C/, is a harmonic map if and
only if

AN = —(N,, + N,,)dz A dy = |dN|*N
(see Eells and Lemaire [7]). We have
d*dN =dx* (N, dx + N, dy) = d(—N, dy + N, dz)
= —(Nyw + Nyy)dzx A dy = AN,
AN A% dN = (N, dz + N, dy) A (=N, dy + N, dx) = (—=N; — N])dx A dy
= (ING)* + [N, [*)dz A dy = |dN?,

where the Clifford multiplication is used. Hence, N is a harmonic map if and
only if d x A% = 0. O

4. Harmonic maps into a sphere

We construct a tt*-bundle for a harmonic map from a Riemann surface
to an n-dimensional sphere.

Let M be a Riemann surface with complex structure J. For a one-form
w on M, define a one-form *w on M by *w := wo JM. For one-forms w and
n on M with values in C'/,,, we have the relation

*WAX=wA".
Indeed, for a basis F, E, of a tangent space of M with JY E, = E,, we have

(wAN)(qEL +rEy, sEy + tEy)
= (gt — rs)(w(E1)n(E2) — w(Ea)w(Er)),
(xw A xn)(qEy +1Ey, sE) +tEy) = (wAn)(qEs — rEy, sEy — tE))
= (gt — rs)(w(E)n(Er) — w(Es)w(Er)),



where ¢, r, s, t € R.
Let F:= M xR?>" =2 M x C/l,. Foramap N: M — S* ' Cc R" C O,
define a one-form S on M with values in C'/,, by

S = i(*dN + N dN).
Lemma 4.1. N is a harmonic map if and only if the one-form S satisfies
dxS=0.
Proof. Since we have
4d* S =d(—dN + N xdN) = dN A *dN + N d * dN = 4d x A%,
this lemma follows from Lemma 3.1. O]

Theorem 4.1. A vector bundle F' withV :=d — S and S is a tt*-bundle.
Proof. We see that

4dS =dx dN +dN NdN = dN NdN + N dN A *dN,
165 NS = (x*dN + NdN) A (xdN + N dN)
=%dN A *dN +*dN NNdN + NdN A*dN + NdN NN dN
=dN NdN + NdN A*dN + NdN A *dN + dN A dN
= 2(dN NdN + N dN A xdN).
Hence dS =25 A S holds.
Lemma 4.1 and a direct calculation yield
V? =d+ (cosf — 1)S + (sin ) * S,
dv90v9
= (cosf — 1)dS + ((cosf — 1)S + (sin ) * S) A ((cos@ — 1)S + (sinf) * .5)
= (cosf — 1)dS + (cos — 1)2S A S + (cos — 1)(sin)S A xS
+(sinf)(cos® — 1) * S A S + (sin#)? * S A xS
= (cosf — 1)dS — 2(cosf — 1)S A S = 0.
Hence F' with V and S is a tt*bundle. O

For a harmonic map from a Riemann surface to S?, we have two tt*-
bundles. One is the t¢*-bundle in Theorem 4.1. The other is that in the
theory of quaternionic holomorphic line bundles (see [8]). These do not
coincide directly as the fiber of the former is C'¢5 and that of the latter is
Cl,.
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